
Special Issue on Iterative Methods in Numerical Linear Algebra

More than 180 mathematicians from all corners of the world attended the
First Copper Mountain Conference Devoted to Iterative Methods. The meet-
ing, held April 1-5, 1990, took place at the Copper Mountain Resort, which
is located 70 miles west of Denver. During the four days of the meeting, over
100 talks on current research were presented. Topics included nonsymmet-
ric systems, preconditioning strategies, parallel implementations, applications,
software, multigrid methods, domain decomposition, eigenvalue problems, inte-
gral equations, nonlinear systems, indefinite problems, discretization techniques,
complex matrix problems and common software standards.

There are two special issues devoted to chronicling the presentations made at
the Copper Mountain Conference, one in SISSCand the other in the SIAM Jour-
nal on Matrix Analysis and Applications (SIMAX). The review process followed
the normal SIAM policies for selecting referees and making recommendations.
This issue represents a rich mix of papers on a wide variety of topics related
to iterative methods. There are two aspects of this collection that we would
like to underscore. First, much of the research represented in these articles was
motivated or influenced by the need to develop new algorithms for the grow-
ing variety of parallel processing computers. Second, the increasing interaction
between the multigrid community and the iterative method community is re-
flected in the many articles that incorporate multigrid and multilevel ideas into
the construction of preconditioners and domain decomposition strategies. The
papers in this issue are representative of the lively and stimulating interaction
that occurred at the meeting.

A special effort was made to bring students to the meeting. The vehicle
for this effort was a Student Paper Competition, in which students were asked
to submit an original research paper consisting primarily of their own work.
Out of ten submissions, three winners were selected. First place went to Barry
Smith of the Courant Institute at New York University. Second place was
awarded to Doug James of North Carolina State University. Third place honors
were shared by Sverker Holmgren and Kurt Otto from Uppsala University in
Stockholm, Sweden. Barry Smith’s paper appears in this issue; the other two
winning papers will appear in the special issue of SIMAX, to be published in
July 1992.

We would like to thank the members of the program committee for their help
in organizing the meeting. They are: Seymour Parter (chair), Loyce Adams,
Steve Ashby, Howard Elman, Roland Freund, Gene Golub, Anne Greenbaum,
David Kincaid, Steve McCormick, Ahmed Sameh, Paul Saylor, Olof Widlund,
and David Young. In particular, we would like to give special thanks to Parter,
Elman, Greenbaum, McCormick, Sameh, and Widlund, who, in addition to
helping organize the meeting, acted as special SISSC editors for this issue.

Vll

Vlll INTRODUCTION

Through their efforts, the articles contained in this special issue were carefully
refereed and brought into print on schedule. We would also like to thank the
following persons for their generous support of this meeting: Fred Howes of the
Applied Mathematics Program of the National Science Foundation, Don Austin
from the Applied Mathematical Sciences Program of the Department of Energy,
Andy White from the Advanced Computing Laboratory at Los Alamos National
Laboratories, and Bob Huddleston of the Computing Division of Lawrence Liv-
ermore National Laboratories. Without their help, this meeting could not have
taken place.

As this issue goes to press, planning for the next Copper Mountain Confer-
ence on Iterative Methods is in its final stages. It will be held April 9-16, 1992,
in Copper Mountain, Colorado. Plans again include special journal issues in
SISSC and SIMAX. It is our hope that the lively interaction and the fine qual-
ity of presentations and papers that marked the first meeting can be duplicated
at the upcoming meeting.

Thomas A. Manteuffel
Linda R. Petzold

Special Issue Editors

Howard Elman
Anne Greenbaum
Steve McCormick
Seymor Parter
Ahmed Sameh
Olof Widlund

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 1-29, January 1992

1992 Society for Industrial and Applied Mathematics
001

A COMPARISON OF ADAPTIVE CHEBYSHEV AND
LEAST SQUARES POLYNOMIAL PRECONDITIONING

FOR HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS*

STEVEN F. ASHBYt, THOMAS A. MANTEUFFEL, AND JAMES S. OTTO

Abstract. This paper explores the use of adaptive polynomial preconditioning for Hermitian
positive definite linear systems, Ax b. Such preconditioners are easy to employ and well suited to
vector and/or parallel machines. After examining the role of polynomial preconditioning in conju-
gate gradient methods, the least squares and Chebyshev preconditioning polynomials are discussed.
Eigenvalue distributions for which each is well suited are then determined. An adaptive procedure
for dynamically computing the best Chebyshev polynomial preconditioner is also described. Finally,
the effectiveness of adaptive polynomial preconditioning is demonstrated in a variety of numerical
experiments on a Cray X-MP/48 and Alliant FX/8. The results suggest that relatively low degree
(2-16) polynomials are usually best.

Key words, conjugate gradient methods, polynomial preconditioning, Chebyshev polynomial,
least squares polynomial, adaptive procedure

AMS(MOS) subject classifications. 65F10, 41A10

1. Introduction. This paper examines polynomial preconditioning for Hermi-
tian positive definite (hpd) linear systems of equations, Ax b. Such systems arise in
many scientific applications. For example, the matrix resulting from the seven-point
finite difference approximation to a three-dimensional self-adjoint elliptic PDE is large,
sparse, and hpd. The conjugate gradient (CG) method of Hestenes and Stiefel [22]
is a popular and effective solution technique for these linear systems, especially when
combined with a preconditioner. The incomplete Cholesky factorization of Meijerink
and van der Vorst [26] is often an effective preconditioner for CG, but other choices
include Jacobi and SSOR. In this paper, we will consider polynomial preconditioning
for conjugate gradient methods. That is, we will solve

(1.1) C(A)Ax C(A)b

where C(A) is a preconditioning polynomial and C(A) is the associated polynomial
preconditioner. We will assume that C(A) has real coefficients, in which case both
C(A) and C(A)A are Hermitian.

Polynomial preconditioning has several advantages, the first of which is simplicity.
Since there are only two intrinsic operations, matrix-vector multiplication (matvec)
and vector addition (saxpy), it is easy to implement. The user need only specify the
polynomial degree and initialize a few parameters. Consequently, it is ideally suited
to "matrix-free" computations [8] (in which the matrix is known only implicitly).
Polynomial preconditioning is also versatile. As discussed in [3], polynomial precon-
ditioners may be used in a variety of CG methods. The best known of these is the

Received by the editors July 26, 1990; accepted for publication (in revised form) March 7, 1991.
This work was supported in part by National Science Foundation grant DMS-8704169 and by the
Applied Mathematical Sciences subprogram of the Office of Energy Research, Department of Energy,
by Lawrence Livermore National Laboratory under contract W-7405-ENG-48.

Computing and Mathematics Research Division, Lawrence Livermore National Laboratory,
P.O. Box 808, Livermore, California 94551.

Computational Mathematics Group, University of Colorado, Campus Box 170, P.O. Box 173364,
Denver, Colorado 80217.

2 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

PCG method of Concus, Golub, and O’Leary [13]. However, one may exploit the
special properties of polynomial preconditioners to devise new CG methods [7]. The
key here is commutativity: a polynomial in A commutes with A. In other words, the
preconditioner C commutes with the matrix A, a property generally not shared by
other preconditioners.

The main advantage of polynomial preconditioning is its suitability for vector
and/or parallel architectures. If the matvec is vectorizable, as when A has a regular
sparsity structure, polynomial preconditioning is effective on vector machines [3], [15],
[24], [25]. In contrast, incomplete factorizations are difficult to vectorize, especially for
the nonexpert. It is also possible to chain the matvecs implicit in the preconditioning,
thereby enhancing data locality and reducing memory traffic [11], [12], [30], [31].
Polynomial preconditioning is also effective on parallel machines, especially those on
which inner products are a bottleneck. This is so because polynomial preconditioned
CG methods converge in fewer steps than unpreconditioned CG, and thus compute
fewer inner products, albeit at the cost of several matvecs per step instead of one.
However, in many applications the matvec is parallelizable, and so we can expect an
overall reduction in CPU time on some architectures by substituting matvecs for inner
products. The effectiveness of polynomial preconditioning has been demonstrated on
an Alliant FX/8 [27] and on a Connection Machine [9].

A common complaint about polynomial preconditioning is that, unlike incomplete
Cholesky (ICCG), it is only marginally better than unpreconditioned CG, which we
will call CGHS. This criticism is somewhat misleading, however, because it is based on
the number of iterations required for convergence rather than the CPU time. Although
ICCG may take fewer iterations than polynomial preconditioned CG, the latter may
take less time [15], [25]. Moreover, even when incomplete Cholesky is more effective,
it can be further accelerated by using a polynomial preconditioner. Specifically, one
applies CG to

(1.2) C(M-1A)M-1Ax- C(M-IA)M-b
where M is the matrix representation of the incomplete factorization. If M and A
are Hermitian, then so is the preconditioner C(M-A)M-1, and several CG methods
are applicable [1], [2], [7]. Finally, we remark that polynomial preconditioning can be
implemented automatically, and so it is as easy to use as CGHS.

1.1. Outline of paper. In the next section we review preconditioned CG meth-
ods and discuss the various ways in which a polynomial preconditioner can be used.
In 3 we examine polynomial preconditioning. In particular, we discuss the least
squares and Chebyshev preconditioning polynomials, study them in the context of
CG methods, and show that the latter minimizes a bound on the condition number
of the preconditioned matrix. We compare the two polynomials in 4. In a variety
of numerical experiments we determine those eigenvalue distributions for which each
is well suited. In 5 we describe an adaptive procedure for dynamically computing
the extreme eigenvalues of A, which are used to determine the optimum endpoints on
which to base the Chebyshev preconditioning polynomial. We also present numerical
results demonstrating the accuracy, efficiency, and competitiveness of the resulting
adaptive algorithm. Finally, in 6, we summarize some numerical experiments that
demonstrate the effectiveness of polynomial preconditioning on a variety of test prob-
lems. Our results suggest that relatively low degree (2-16) polynomials are usually
best.

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 3

2. Preconditioned CG methods. In this section we examine the use of poly-
nomial preconditioners in CG methods. To do this it is useful to first characterize CG
methods. In [7], it is shown that any CG method is characterized by three matrices:
an hpd inner product matrix B, a left preconditioning matrix C, and the original sys-
tem matrix A. The resulting method, CG(B, C,A), minimizes IleillB (Bei, el 1/2

over V(CA, Cr0), where

(2.1) V(CA, Cro) span{Cr0, (CA)Cro, (CA)2Cro, ..., (CA)-ICro}

is a Krylov subspace of dimension at most i, e is the error in the current iterate, r0 is
the initial residual, and (., "/denotes the usual Euclidean inner product. By specifying
the inner product matrix B, we obtain a particular CG method. For example, when
A is hpd, one may take B A and C I, which yields CGHS, the original method
of Hestenes and Stiefel [22]. If one takes B A2 and C I, the conjugate residual
(CR) method results. Of course, one must chose B and C so that the method is
computable [7].

The most robust implementation of a CG method is the so-called Odir algo-
rithm [33], in which a three-term recursion is used to generate a set of direction vectors
that form a B-orthogonal basis for V. This algorithm converges to the solution of
Ax b whenever BCA is Hermitian. (For necessary and sufficient conditions, see [7]
and [16].) If BCA is hpd, the cheaper and more familiar Omin algorithm [33] is ap-
plicable. Instead of using a three-term recursion for the direction vectors, Omin uses
a two-term recursion involving the preconditioned residuals. Unfortunately, Omin
may "stall" when BCA is indefinite, in which case the more expensive Odir, or an

Odir/Omin hybrid, algorithm should be used [7], [10].
When A is hpd and C C(A), there are several choices for the inner product

matrix B. A few of the resulting CG methods are listed in Table 2.1. (See [3] and [7]
for a thorough discussion.) Notice that BCA is Hermitian in all cases, and so Odir
converges. The Odir restrictions in Table 2.1 are sufficient to insure that B is hpd.
The Omin restrictions are sufficient to guarantee that both B and BCA are hpd.
The first method is PCG. Like CGHS, it minimizes the A-norm of the error, but does
so over a preconditioned Krylov subspace. Although the matrix A must be hpd to
define a norm, the preconditioner C(A) only needs to be Hermitian for Odir. If C(A)
is hpd, one may use the more efficient Omin algorithm. The method GCGHS, which
is CGHS on CA, minimizes in the B C(A)A norm, and so C(A) must be chosen so
that the preconditioned matrix is hpd. As we will see, this is possible. The advantage
of GCGHS is this: if C(A) is a good preconditioner, then C(A)A . I, and so the
method more nearly minimizes the Euclidean norm of the error. The next method,
PCR, requires that C(A) be hpd, in which case C(A)A is hpd because A is hpd. The
last two methods, GPCR and GCR, employ B A2 and B (C(A)A)2, respectively.
The Odir algorithm will converge for either method; Omin is applicable if C(A)A is
hpd. Note that GPCR is possible because CA AC (which implies that BCA is
Hermitian), an advantage of C being a polynomial in A. The last method, GCR, is
simply CR applied to the preconditioned matrix, CA. We remark that each method
except PCG is applicable to Hermitian indefinite A [6].

Finally, we note that the spectral and B condition numbers of CA are identical
for each of the methods in Table 2.1. That is, ti(VA) ms(CA), where B(G)
IIGIIBIIG-IIB. Thus, estimates for the extreme eigenvalues of CA yield a bound on
I(CA), which may be used to implement a stopping criterion based on the true

4 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

TABLE 2.1
Polynomial preconditioned CG methods for hpd A.

Method B CA Odir Restrictions Omin Restrictions

PCG A C(A)A A hpd A hpd, C(A) hpd
GCGHS C(A)A C(A)A C(A)A hpd C(A)A hpd
PCR AC(A)A C(A)A A herm, C(A)hpd A hpd, C(A) hpd
GPCR A C(A)A A herm C(A)A hpd
GCR (C(A)A)2 C(A)A A herm C(A)A hpd

error, rather than the more usual residual error. Eigenvalue estimates for CA are
easily obtained from the CG iteration parameters [7], [13]. This is also the basis for
the adaptive procedure discussed in 5.

3. Polynomial preconditioning. In this section we examine several choices for
C(A). We wish to choose C to accelerate convergence of the CG iteration. One usually
chooses C to approximate A-1 in some sense, for example, by choosing C(A) A-1.
Of course, there are several ways of doing this. As we will see, there is no single
"best" polynomial; the proper choice of C(A) depends on the eigenvalue distribution
of A, which is seldom known a priori.

A simple choice for C()) is based on the Neumann series. Let A M- N and
consider

(3.1) A- (M- N)- (I + G + G2 + G3 +...)M-1

where G M-1N. If the spectral radius of G is less than one, the series converges.
We obtain our polynomial approximation to A- by truncating the Neumann series
[2], [9], [15], [25]. The advantage of this polynomial is its simplicity: there are no
parameters to estimate. Unfortunately, it may yield a poor preconditioner. If one
desires a polynomial preconditioner of degree m- 1, one can do much better than the
Neumann series polynomial. For example, Jordan [25] has shown that the Chebyshev
polynomial (3.2) is superior. Experiments also suggest that the optimum degree for
the Neumann series polynomial is two [2], [15], [25], whereas the optimum Chebyshev
or least squares polynomial degree is often higher [3], [27], [30].

To obtain a better preconditioner, recall that C(A) should approximate A- in
some sense. That is, C(A) should be the "best" polynomial approximation to A-1 on
some set S containing the spectrum of A, a(A). Since A is hpd, we will take S [c, d],
where 0 _< c _< d. Ideally, c- Ac and d Ad, the smallest and largest eigenvalues of
A. We next define the "best" polynomial to be that one which solves the following
approximation problem:

(3.2) min

where rm- is the set of polynomials of degree at most m- 1. All that remains is to
specify the norm.

3.1. The least squares polynomial preconditioner. Let us define the inner
product

(3.3) (f,

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 5

FIG. 3.1. Least squares preconditioned polynomial (m 5) .for S [0, 20].

where w(A) is a positive weight function on S- [c, d]. It induces the following norm:

d

(3.4) llfll If(A) lu(X)dx.

The solution to (3.2) in this norm is called the weighted least squares polynomial.
The associated preconditioned polynomial, Pm (A) C(A), is illustrated in Fig. 3.1.
(We call Pm(A) the preconditioned polynomial because pro(A) is the preconditioned
matrix.)

The related residual polynomials, rm (A) 1- C(A)A, are orthogonal with respect
to the weight function Aw(A). This is so because the error in (3.2) is orthogonal to
Arm-1, the subspace from which the best polynomial approximation to 1 is taken.
Consequently,

fcrm(A)rj(A)Aw(A)dA r,(A)q(A)w(A)dA O, j <_ m- 1,

where q(A) Arj(A) e ,Tl’m--1. Thus, the least squares residual polynomials are
orthogonal in the A-inner product, (f, g) (Af, g), and hence satisfy a three-term
recursion, which is computationally convenient (3.3). See also [24] and [30].

Unlike the Chebyshev polynomial described below, the least squares polynomial
is biased in its suppression of the eigenvalues of A. For example, when w 1, the
eigenvalues of larger modulus are mapped closer to 1 than those of smaller modulus.
If the eigenvalue distribution of A were known, one could choose w to exploit this
bias. In particular, one might consider a Jacobi weight function,

(3.5) w(a, 3; A) (d A)a(A c), a,/3 > -1.

6 S. F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

By appropriately choosing a and fl, one portion of a(A) could be emphasized over
another.

Shad [30] has noted that the least squares polynomial is relatively insensitive to
c, and so one may take c 0. Then, if a Jacobi weight function is used, the least
squares polynomial is given by

1-
Pm(1)

where P,(x) is the Jacobi polynomial [14] on [-1, 1] with respect to w(a + 1, ; A).
This follows from the A-orthogonality of the residual polynomials. If it is known that
a(A) is clustered near some point A0 E [0, d], one might wish to choose a and with
the following result in mind.

THEOREM 3.1. Let r(A) be the least squares residual polynomial for [0, d] with
respect to w(a, ; i), where (a,) W {(c,) a > 1, >_ }. Then the rela-
tive extrema of r(ik) monotonically decrease in magnitude on [0, A0] and monotonically
increase in magnitude on [A0, d], where

d(/-a-1) d(2a+3)(3.7) A= 1-+c+2 = +a+2

Proof. The result follows from (3.6) and Theorem 7.32.1 of [32]. D
Of course, one should choose the weight function w so that Pm(A) C(A)A is

positive on [Ac, Adj. This guarantees that pro(A) is hpd, which makes practicable the
Omin implementation of each method in Table 2.1. (Observe that PCG and PCR
are applicable because C(A)is hpd whenever p,(A) C(A)A is hpd.) We note
that pm(ik) may be indefinite if w(A) is biased toward the leftmost portion of [c, d].
However, if one employs a Jacobi weight function on [c, d], one may show [24, p. 369]
that p,(A) > 0 on [c, d] if (a,) e W2 {(a,)’a >_ _> -}, which includes the
Legendre weight function w =_ 1 (a 0). Moreover, if c 0 and a in W2,
then A0 A0(a)" [-1/2, cx) -- (d/2, d]. Thus, if a(A) is clustered near A0 e (d/2, d],
one might employ the weight function w(a0, s0; A), where c0 -(A0 3d/4)/(iko
d/2); cf. Theorem 3.1. Finally, if (a,) W3 {(o,) o > -1, -1 < _< -},
it follows as in Theorem 3.1 that the relative extrema of the least squares polynomial
decrease in magnitude on (0, d]. This property, which is in stark contrast to the
equioscillation property of the Chebyshev preconditioned polynomial (see below), may
be used to bias the preconditioner toward the large eigenvalues of A. This property
also insures that Pm() is positive on (0, d].

Because of its bias, the least squares polynomial yields an effective preconditioner
in many cases [24], [30]. Since one may take c 0, there is no need to estimate
the smallest eigenvalue of A. The right endpoint is often taken to be the Gershgorin
estimate for Ad. However, the least squares polynomial is not always best. For
example, if a(A) is dense near the origin, one should instead use the Chebyshev
polynomial preconditioner, which we describe next.

3.2. The Chebyshev polynomial preconditioner. Another interesting norm
is the uniform norm:

(3.8)]lf]l maxlf()l.cx
ES

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 7

Pm()

l+z:-

c d

Fz(. 3.2. Chebyshev preconditioned polynomial (m 5) for S-- [1, 20].

The solution to (3.2) in this norm is obtained from a shifted and scaled Chebyshev
polynomial:

1-

where Tin(x) is the mth Chebyshev polynomial of the first kind [28]. It is attractive
for several reasons. First, like the least squares polynomial, it may be computed
from a three-term recursion, which is computationally convenient. Second, since this
polynomial is explicitly known, it is much easier to devise an adaptive procedure
for dynamically computing the optimal endpoints c and d. Finally, this polynomial is
unbiased in its suppression of those eigenvectors constituting the error. In other words,
the Chebyshev preconditioning polynomial is well suited to those matrices whose
eigenvalues are densely and nearly uniformly distributed throughout the interval S
[c,d]. See 4.

This last fact follows from the Chebyshev minimax property, which states that the
preconditioned polynomial, pro(A) C(A)A, equioscillates about 1; see Fig. 3.2. This
equioscillation property has several other implications. For example, if c(A) c [c, d],
then a(pm(A)) C [1-em, l+em], where , IIl-pmlloo IT,l(dd-_c)l. Since em < 1,
the preconditioned matrix, Pm (A), is hpd. One may therefore apply CGHS to Pm (A),
yielding the method we call GCGHS. PCG is also applicable because C(A) is hpd.
Note that the spectral condition number of pm(A), R(pm(A)), satisfies

lq-m
(3.10) R(p,(A)) <

1--em

8 S. F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

when a(A) c[c, d]. Since em is a monotonically decreasing function of m, this bound
may be made as small as desired by taking m large enough. Specifically, if

cosh-1 _-1
(3.11) m >

()+icsh- t(A)-

then (pm(A)) < 5 for any 5 > 1. This follows from the definition of TIn(A) for A > 1.
The bound (3.10) yields an estimate of the number of CG steps required for

convergence. One needs approximately

(3.12) ln(5/2)

steps to reduce the error by an amount 5 [21], where

V/(p,(A)) 1
(3.13) cf cf(pm(A))

V/(pm(A)) + 1

is the CG convergence factor for the hpd matrix Pm(A). If the eigenvalues ofPm(A) are
uniformly distributed throughout [1-em, 1 +em], then (3.12)is fairly accurate. Since
(pm(A)) <_ (A) for m > 1, a Chebyshev polynomial preconditioned CG method
will usually converge in fewer iterations than the unpreconditioned CGHS method.
Of course, each iteration is more expensive, requiring m matvecs instead of one. We
remark that (pm(A)) is minimized when c Ac and d

The Chebyshev polynomial preconditioner is also optimum in that it minimizes
a bound on ,(C(A)A). This is a consequence of the following result.

THEOREM 3.2. A solution to

(3.14) min maxes
ce._l mins

is given by the Chebyshev preconditioning polynomial.
Proof. First observe that (3.14) does not possess a unique solution. In particular,

if Q solves (3.14), then so does Q, where is any nonzero constant. We may assume

C(A)A > 0 for A E S without loss of generality. (If C(A)A 0 for some A E S, then
(3.14) is unbounded.) Thus, we may restrict ourselves to those polynomials C(A) for
which

(3.15) 1 min (C(A)A) max (C(A)A) 1 e(C)
XES)ES

The problem (3.14) is now equivalent to minimizing _. This is, in turn, equivalent
to solving (3.2) in the uniform norm. []

Remark. If Pm is the Chebyshev preconditioned polynomial for S and a(A) c S,
the ratio in (3.14) gives a bound on the condition number of pro(A). Moreover, this
bound is minimized with respect to S when S [Ac, AdJ. The bound is attained when
S [,’c, ,d] and m is odd.

This theorem is similar to Theorem 3 in [24], but our proof is different. It shows
the equivalence of the minimax approximation problem (3.2) and the minimization
problem (3.14). We also remark that Rutishauser [29] was the first to propose Cheby-
shev polynomial preconditioning for CGHS; his motive was to mitigate its rounding
errors. We advocate polynomial preconditioning because it is well suited to vector
and/or parallel architectures.

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 9

3.3. Implementation. To implement least squares or Chebyshev polynomial
preconditioning, one neither explicitly forms the powers of A nor determines the co-
efficients of C(A). Instead, one may exploit the three-term recursion underlying the
least squares and Chebyshev residual polynomials to effect the polynomial precondi-
tioning. To see how, recall that both polynomials satisfy a recursion of the form

Q+() (+)Q() Q_()

where Qk is the least squares or Chebyshev residual polynomial; cf. (3.6) and (3.9).
The coefficients Ck, Ck, and may be generated recursively for the Jacobi-weighted
least squares and Chebyshev polynomials. We may use (3.16) to formulate a second
order Richardson iteration [21]:

(3.17) ro b- Axo
(3.18) A0 -0r0
(3.19) xi+l xi + Ai
(3.20) r+l b Axi+l
(3.21) A+I i+A +r+.
Thus, to implement the polynomial preconditioning, one simply executes m steps of
this nonstationary two-step iteration. (In the case of Chebyshev polynomial precondi-
tioning, one uses the Chebyshev iteration [21].) Specifically, one applies the iteration
to the linear system Aw v with w0 0, where v is the vector to be precondi-
tioned, usually the residual. One may show [4] that Wm C(A)v. Note that we
need only m- 1 matrix-vector multiplications because the final residual need not be
computed. We also remark that the three-term recursion underlying the least squares
and Chebyshev polynomials insures the stable evaluation of the preconditioning poly-
nomial C(). See also [24] and [30].

4. Chebyshev versus least squares. In this section we compare the least
squares and Chebyshev preconditioning polynomials in a variety of numerical exper-
iments. We will qualitatively describe those matrices for which the least squares
polynomial yields a better preconditioner than the exact Chebyshev preconditioner.
(The exact Chebyshev polynomial is the one based on [Ac,/d]; recall that this poly-
nomial minimizes a bound on the condition number of C(A)A.) Moreover, we will
explain why this is so. The importance of the stopping criterion will also be discussed.

Let us begin by dispelling a common misconception: the least squares polynomial
is not universally superior to the exact Chebyshev polynomial. This follows from
a result of Greenbaum [20], who established a partial ordering on preconditioners.
In brief, her result implies that the least squares preconditioner cannot be best for
every initial guess, x0. However, it is better in certain cases. For although the
exact Chebyshev polynomial minimizes the condition number of pro(A), this does
not alone determine the rate of convergence of the preconditioned CG method. The
eigenvalue distribution of pro(A) is also important. Because of its equioscillation
property, the Chebyshev polynomial tends to map [c, d] uniformly into [1-era, 1 -’m],
obliterating any favorable clustering of the eigenvalues of A. The unweighted least
squares polynomial (w 1) tends to map the larger eigenvalues of A most closely
about 1, giving less weight to the smaller eigenvalues. This is due to the tendency of
its relative extrema to decrease in magnitude on S. (This property can be made strict

10 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

by an appropriate choice of weight function; see 3.1.) Thus, if there are relatively
few eigenvalues of A near c, these will become isolated eigenvalues of the least squares
preconditioned matrix, the majority of whose eigenvalues will .be clustered about 1.
On the other hand, if the eigenvalues of A are dense near c, there will be no such
clustering of eigenvalues. The proper choice of polynomial therefore depends on the
spectrum of A. We will now explore this question numerically.

In the experiments below, the test matrices are diagonal with N 100,000
eigenvalues between c and)d 1 + 5. The true solution is the vector having 1
in each of its components and x0 0. Three eigenvalue distributions are considered.
In the first, Ak 5 + 1 l/k, k 2,..., N- 1, and so the eigenvalues are dense near
the right endpoint d, such as with integral operators of the second kind. In the second,
.kk + 1/(N- k + 1), and so the eigenvalues are dense near the left endpoint c, as
with integral operators of the first kind. In the third, the eigenvalues are uniformly
distributed, as is roughly the case for differential operators. In Figs. 4.1-4.4, we plot
the PCG relative error, logl0(lleil]2/lle0112), against for three polynomials of degree
m 9. (Recall that PCG refers to the preconditioned CG method of Concus, Golub,
and O’Leary [13].) The first is a least squares polynomial (with Legendre weight
w 1) based on [0, 1 +]; the second is the exact Chebyshev polynomial based on

[5, 1 / 5]; and the third is a Chebyshev polynomial based on [, 1 /], where is chosen
so that the related least squares and Chebyshev residual polynomials have the same
first root. By choosing in such a manner, we force this LS-Chebyshev polynomial
to mimic the behavior of the least squares polynomial on (0,). Consequently, the
two preconditioning polynomials behave alike for matrices with eigenvMues in (0,).

In Fig. 4.1, we have the dense-right eigenvalue distribution with 10-3. Since
the least squares polynomial is small on the large eigenvalues of A, the least squares
PCG method converges much more rapidly than the exact Chebyshev PCG method.
In Fig. 4.2, the eigenvalues are dense near the left endpoint, and the exact Chebyshev
PCG method converges faster. Similar results were observed for other values of 5.
In Figs. 4.3-4.4, we have the uniform eigenvalue distribution. When 10-3, the
gap between successive eigenvalues is l/N, which is smaller than Ac, and the exact
Chebyshev PCG method converges fastest. However, if 10-5, the gap between
successive eigenvalues is larger than A, and the least squares PCG method converges
faster. We have seen similar behavior in several other experiments. In short, the
exact Chebyshev polynomial appears to be superior to the least squares polynomial
when the gap between successive eigenvalues is small relative to the size of A. The
exact Chebyshev polynomial is also superior to the least squares polynomial when the
eigenvalues of A are dense near both endpoints of S or throughout S. In the latter
case, for instance, if we fix 10-3 and increase N, the exact Chebyshev polynomial
performs best for large N.

As claimed, the LS-Chebyshev polynomial behaves like the least squares polyno-
mial and, depending on the eigenvalue distribution of A, may be superior to the exact
Chebyshev polynomial. For example, if the eigenvalues of A are sparse near c and
dense near d (recall Fig. 4.1), the LS-Chebyshev PCG method will usually converge
in fewer iterations than the exact Chebyshev PCG method. The explanation is sim-
ilar to that for the superiority of the least squares polynomial: The LS-Chebyshev
polynomial maps those eigenvalues in [, d] more tightly about 1 than does the exact
Chebyshev polynomial. Of course, those eigenvalues in [c,) are mapped further away
from one. However, there are relatively few eigenvalues in [c,); moreover, they be-

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 11

0-7

0-23

0-27

0-31

Exact Chebyshev
Least Squares
LS-Chebyshev

40 60 80 100
Number of Iterations

FIG. 4.1. Dense-right eigenvalue distribution; 5-- 10-3.

Exact Chebyshev
Least Squares
LS-Chebyshev

20 40 60 80
Number of terations

100

FIG. 4.2. Dense-left eigenvalue distribution; 5 10-3.

12 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

0-3

0-s

0-7

0-10-11

10-1

10-15

0-17

10-lg

10-21

10-2

10-25
0

Exact Chebyshev
’, Least Squares. LS-Chebyshev

1

20 80 10040 60
Number of Iterations

FIG. 4.3. Uniform eigenvalue distribution; 6 10-3

10-1

Exact Chebyshev
Least Squares
LS-Chebyshev

10-4 1
0 20 40 60 80

Number of terations
100

FIG. 4.4. Uniform eigcnvalue distribution; 6 10-5.

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 13

come isolated eigenvalues of C(A)A. It is well known that CG rapidly damps the error
in the direction of the corresponding eigenvectors. After doing this, it is able to focus
its effort on the dense part of the spectrum where the LS-Chebyshev polynomial does
a better job of clustering the eigenvalues about 1. Since one seldom knows how the
eigenvalues of A are distributed, one must rely on an adaptive procedure to find the
optimum S. If one knew the eigenvalue distribution of A, an appropriately weighted
Chebyshev or least squares polynomial could be used to achieve faster convergence.
Freund [17] has recently proposed using the Lanczos eigenvalue estimates to obtain
such a weight function, and his results are promising. In particular, he has shown that
the resulting preconditioned CG method often converges faster than the method based
on the exact Chebyshev polynomial. Unfortunately, there is no guarantee that the
preconditioned matrix will be hpd for all S, and this can make difficult or impossible
the robust implementation of some adaptive CG algorithms.

Finally, we note that the choice of stopping criterion can also affect the choice
of polynomial. Since the least squares polynomial is small on the large eigenvalues
of A, it is biased toward this part of the spectrum. Those eigenvectors associated
with the large eigenvalues of A are consequently damped the most. If one bases the
stopping criterion on the relative residual, the eigenvectors corresponding to these
large eigenvalues are given greater weight. Thus, this stopping criterion is ideally
suited to the least squares polynomial. The exact Chebyshev polynomial, on the other
hand, is well suited for use in stopping criteria based on the true error. (Although the
true error is unknown, it can be bounded [7].) The difference between these stopping
criteria can be as large as B(A).

4.1. The need for an adaptive procedure. Recall that the weighted least
squares and uniform norms are defined with respect to the positive interval S, which
we have assumed contains the spectrum of A. That is, we have assumed that the
smallest and largest eigenvalues of A, Ac and Ad, are given. Unfortunately, this is
seldom true. In the case of the least squares polynomial, one may avoid this difficulty
by choosing c and d to be the Gershgorin estimates for Ac and Ad. In particular,
one may take c 0. The resulting preconditioner is often effective, but there are
eigenvalue distributions for which the exact Chebyshev polynomial is better. Here
one needs accurate estimates for the extreme eigenvalues of A. Although this might
be viewed as a reason for using the Neumann series or least squares polynomial, it
is not. As we will see, one may dynamically estimate A and)kd from the CG itera-
tion parameters. This is equivalent to dynamically determining the exact Chebyshev
polynomial preconditioner. However, as we have seen, one can often do much better
by basing the Chebyshev preconditioning polynomial on an interval [Copt, dopt], where
)c -- Copt -- dopt

_
)d" In the next section, we describe an adaptive procedure for

finding these optimum endpoints.

5. Adaptive CG algorithms. In this section we discuss adaptive CG algo-
rithms. In such an algorithm we apply a given CG method to the preconditioned
linear system C(A)Ax C(A)b, where C() is a Chebyshev preconditioning poly-
nomial. Information about the spectrum of A is extracted from the CG iteration
parameters and used to obtain a better preconditioner, C(A). In this way the adap-
tive algorithm tries to determine the optimum Chebyshev polynomial preconditioner
for A. Here the "optimum" polynomial is the one yielding the fastest convergence of
the preconditioned CG algorithm. Although we consider only the Chebyshev polyno-
mial, a similar procedure could be devised for the least squares polynomial.

14 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

In general, the interval on which the optimum polynomial is based, [Copt, dopt],
is a proper subset of E(A) [Ac, Ad]. Our goal is to determine .Copt and dopt. To
do this, we start with an initial set So [co, do] and expand it using information
obtained from the CG iteration. Specifically, given an interval S c E(A), and a
Chebyshev preconditioning polynomial C(A) based on S, we apply a CG method to
C(A)Ax C(A)b. After a prescribed number of steps, say , the adaptive procedure
is called:

(1) Compute eigenvalue estimates for pm(A) C(A)A.
(2) Extract eigenvalue estimates .for A and update S.
(3) Determine the new preconditioning polynomial, C(A).
(4) Resume or restart the CG iteration, whichever is appropriate.

After another t? CG steps, the adaptive procedure is called again, and so on until
convergence.

Eigenvalue estimates for Pm (A) are easily obtained from the CG iteration param-
eters by exploiting the equivalence of the CG and Lanczos algorithms [7], [13], [19].
(See [18] for an alternative.) As we will see, it is easy to recover eigenvalue estimates
for A when the degree m of the polynomial is odd. Once we have these estimates,
we determine the new polynomial (i.e., the new endpoints on which to base it.) by
comparing several convergence factors. If a new polynomial results, we restart the
CG iteration. By this we mean that the current iteration is abandoned and the CG
method is applied to (A)Ax O(A)b. The new initial guess is the last iterate of
the previous iteration or some linear combination of past iterates.

5.1. Estimating the extreme eigenvalues of A. Suppose we are executing
a polynomial preconditioned CG iteration, where

(5.1)

is the Chebyshev preconditioned polynomial for S [c, d]. Note that the image of S
underpm is J [1-e l+e] wheree=Tl(d+c--/j; recall 3.2. Next, assume the
adaptive procedure has been called, and let # be an eigenvalue estimate for pm(A)
such that # e E(pm(A)), the convex hull of a(pm(A)). (This is true of the estimates
we will obtain.) The desired eigenvalue estimate for A is one of the inverse images
of #; the task is to determine which one. It is important to choose an inverse image
that lies in E(A). Otherwise S might be improperly and irrevocably expanded, which
would slow the convergence of subsequent CG iterations.

Suppose first that tt E J,. Then there exists an inverse image of # inside S. Since
there is no justification for expanding S, this estimate may be discarded. If every
eigenvalue estimate for pm(A) is in J, there is no need to update S, and the CG
iteration resumes. The adaptive procedure has yielded no new information.

Now suppose tt J. Since tt E E(pm(A)), tt must have an inverse image in
E(A)\S, which means there is an eigenvalue of A outside S. If an estimate, A, of this
eigenvalue can be recovered, S can be expanded, and a new, better preconditioner
computed. When rn is odd, it is easy to extract A from #, as may be seen in Fig. 5.1.
For example, let # #1 < 1-e. Since Pm (A) is monotonically increasing for A (0, c),
there is a unique A1 (0, c) such that #1 Pm(l). Moreover, since #1 E(pm(A)),
A1 must lie in E(A). Similarly, if # #2 > 1 + e, then the unique inverse image of #2,
A2, lies in E(A). Note that estimates for only the smallest and largest eigenvalues of

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 15

Pm(7)

c d
7

FIG. 5.1. Chebyshev preconditioned polynomial (m 5) for S [1, 10].

pm(A) are needed, for these yield estimates, A1 and A2, for the extreme eigenvalues
of A.

To compute the inverse images of #1 and #2, a rootfinder could be used, but this
is unnecessary because Pm(A) is known explicitly. For m odd and d c, one may
show

1
 ,cosh (1 cos -i (1-(.2)

1[(())](5.3) A2-- (d+c)+(d-c)cosh lcosh_ ,2-1
m

If d c (a common choice for the initial S), then

(5.4) /1 =d(1-(1-#1)1/m) and

So far we have assumed that m is odd, which is important for two reasons. To
see why, consider Fig. 5.2, in which m is even. As before, any eigenvalue estimates
for p,(A) in J are discarded. Since both tails of Pm(A) are negative, there can be no
estimate # > 1 + e, so suppose # < 1 -e. There are now two inverse images, A1 and
A2, at least one of which lies in E(A). If the wrong one is chosen, the set S may be
incorrectly enlarged, and the CG method will converge more slowly than necessary.
To avoid this ambiguity, we shall always choose m odd.

16 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

FIc. 5.2. Chebyshev preconditioned polynomial (m 4) for S [1, 10].

Another advantage of choosing m odd is that it yields robust CG methods. By
this we mean that Pm(A) is hpd for any hpd A and for any set S. If this were not
true, the CG method might not be defined in the early iterations. For example, if m
were even and there were an eigenvalue of A greater than the largest root of C(A)A,
Pm(A) would be indefinite, in which case GCGHS and PCR are inappropriate, as are
the Omin implementations of PC(, GPCR, and GCR. One would have to use the
Odir or Odir/Omin implementation of PCG, GPCR, or GCR. When m is odd, on the
other hand, Pm(A) is hpd for any set S and the Omin implementation of each method
in Table 2.1 is applicable.

5.2. Determining the new endpoints. After eigenvalue estimates for A are
computed, we must determine the new endpoints on which to base the Chebyshev
preconditioning polynomial. A simple choice is c A1 and d A2, which essentially
gives the adaptive procedure in [3] and [5]. Since the Lanczos algorithm quickly de-
termines the extreme eigenvalues of C(A)A, and hence of A, this procedure quickly
finds the exact Chebyshev preconditioning polynomial. If this polynomial were used,
(C(A)A) would be minimized. However, this polynomial does not necessarily min-
imize the number of CG iterations required for convergence. It has been observed
[24], [30] that one often obtains better performance by basing the Chebyshev pre-
conditioning polynomial on some interval [Cop, dope], where Ac _< Cop <_ dop <_ Ad.
The LS-Chebyshev polynomial (4) is such an example. To understand why, recall
that the true rate of convergence of a CG method depends on the distribution of the
eigenvalues of A within (A). For instance, if Ac is an isolated eigenvalue of A and
a(A)\Ac c [%u,.d] for Au :>> Ac, then S [.w,%d] is a better choice than [c,d].
The reason is that CG methods pick out isolated eigenvalues and rapidly suppress

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 17

the error in the direction of corresponding eigenvectors. Unfortunately, one seldom
knows such detailed information about a(A). Although the recent idea of Freund [17]
to use the Lanczos eigenvalue estimates to approximate the eigenvalue distribution of
A is appealing, it is unclear whether this can be done dynamically.

We will now describe an adaptive procedure for finding the optimal left endpoint,
Copt, on which to base the Chebyshev preconditioning polynomial. To ease the task,
we will assume d Ad (see below). Although there is adopt

_
d, the CG iteration

is less sensitive to changes in d than in c. This is so because e e(c, d) is most
sensitive to changes in c. Ideally, the adaptive procedure will find Copt)c when the
exact Chebyshev preconditioning polynomial is best, and will find Copt when the
least squares polynomial is preferred. (Recall that the Chebyshev polynomial based
on [,Ad] mimics the least squares polynomial.) In 5.4 we will demonstrate the
effectiveness of this adaptive procedure in a variety of numerical experiments.

Let Pm()) pm();c,d) be the Chebyshev preconditioned polynomial based on

[c, d], 0 < c <_ d, m odd. Also let 2e be the size of the oscillations in the Chebyshev
polynomial, that is,

Since d)d is fixed, we will consider e to be a function of c alone. As c increases
from 0 to d, e decreases from 1 to 0. If a(A) c [c, d], then (pm(A)) <_ _. Suppose,
however, that a(A) C [o, d] for some 0 < o <_ c. That is, assume we have based
the preconditioning polynomial on [c, d], but there is an eigenvalue Ao <_ c. Then
to(pro(A)) <_ _, where 5- 1- Pm()o), and the associated asymptotic convergence
factor is

(Note that 0 _< e _< 5 _< 1.) If a(A) is dense in [Ao, d], this convergence factor may be
used to accurately predict the rate of convergence of the CG iteration.

Consider next Fig. 5.3, in which we plot cfc cf(c,c) and Cfo cf()o,C) as
functions of c. The lower curve plots cfc, the convergence factor when a(A) c [c, d]
and C(A) is based on Pm(); c,d). As c increases from 0 to d, cf decreases rapidly
from 1 to 0. The upper curve plots Cfo, the convergence factor when a(A) C [o, d],
but C(A) is still based on Pro(A; c, d). Note that the curves intersect at Ao and coincide
for c <_ Ao. Next let cfe be the empirical convergence factor, which is given by

if k is large enough. Here sk C(A)rk is the preconditioned residual, where C(A) is
the Chebyshev preconditioning polynomial for [c, d]. Note that cf may be monitored
throughout the CG iteration. If cfe <_ cf, the iteration is converging as it should, and
there is no need to call the adaptive procedure. On the other hand, suppose cf > cfc.
Then the iteration is converging more slowly than it should because we have missed an
eigenvalue of A, and so we need to compute eigenvalue estimates (5.1). Since we have
assumed d d, we will obtain only an estimate 1 for . Next let cf of(A1, c),

18 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

cf

FIG. 5.3. Convergence factors for a(A).

which is the convergence factor for a(A) C [/1, d]. If cfe > cfl, we will decrease c to
A1, as in [3] and [5]. But suppose cfc < cfe < cfl. This suggests that we should not
decrease c to A1, but to Ae, where cfe cf(A, c). As in (5.2), Ae is given by

(5.7) A- (d

where

+c)-(d-c)cosh (-cosh-1 (!))]

5 -1- (e -1) (1-b cfe)cf

from (5.5). By decreasing c to Ae instead of A, we are trying to minimize the actual
convergence factor (see below). Note that this strategy guarantees that c E (A).

5.3. Summary description. Given an interval S c (A), fix c and determine
’d via the CG-Lanczos equivalence (5.1). We will assume convergence when the
relative difference in two successive estimates is less than some tolerance, say 10-2

(Of course, if an a priori estimate of d is available, it may be used.) After a prescribed
number of steps, say g, call the adaptive procedure:

(1) Compute eigenvalue estimates for pm(A) C(A)A.
(2) Extract an eigenvalue estimate A for Ac.
(3) Compute cfe, cf, and cfl.
(4) Update c:

If cf <_ cf, c -- c.
If cf < cfe < cf, c - A.

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 19

If cfe >__ cfl, c - .(5) Restart the CG iteration if c has changed; resume if c is unchanged.

The key to this adaptive procedure is the comparison of cfe with cfc and cfl. If
a(A) is dense in [/, , then cfl is an accurate indicator of the CG rate of convergence,
and the comparison is well founded. Otherwise, it is simply an heuristic. If a(A) is not
dense in [/l,d], the adaptive procedure should detect this by computing cf < cf.
In this case, the iteration is converging as if a(A) were dense in [A, d]. However,
we know that there is at least one eigenvalue to the left of A because we computed
1 e E(A)\[e, 0. Since the iteration is converging at a rate determined by cfe, the
dense portion of a(A) is no larger than [A, d]. Thus, we assume that any eigenvalues
to the left of Ae are isolated, and we choose to base the Chebyshev preconditioning
polynomial on [A, d]. This heuristic is flawed because the dense portion of a(A) is
actually some interval [A, d] for A > A. (The isolated eigenvalues gave rise to the
convergence factor cfe rather than cf.) Unfortunately, there seems to be no way of
determining A.

The difference between this adaptive procedure and the one described in [3] and
[5] is essentially this: here we determine "d first and then refine c. (Of course, we can
continue to refine d, but it seems to make little difference in practice.) In general,
this new procedure will outperform the one in [3] and [5]. Of course, if the Chebyshev
preconditioning polynomial is optimum, the other procedure will find it more quickly
since c and d are adapted simultaneously.

Since S is either expanded or unchanged with each cM1 to the adaptive procedure,
it is important that the initial set, S0, be such that So c E(A). If the N N matrix
A is scaled to have unit diagonal, one may take So [1, 1]. A more general choice is

So IT, T], where T trace(A)/N or - (Ab, b)/(b,b}, both of which lie in E(A).
If one had an a priori estimate for Ad, say from Gershgorin’s theorem, one could
take co and do Ad. As discussed in 4, this would mimic the least squares
polynomial initially, but retain the flexibility of the adaptive procedure. Although
there is no guarantee that E E(A), this is often the case for moderate m and
(A) >> 1. In the next section we show that the polynomial found by this procedure
usually bests the least squares polynomial.

5.4. Performance. Having introduced the theory behind the adaptive proce-
dure, we now consider its performance in practice. We will first show that the adap-
tive procedure quickly and accurately determines Ac and Ad. We will then compare
two adaptively determined Chebyshev preconditioning polynomials with the exact
Chebyshev and least squares polynomials. We will see that the former are generally
competitive with the latter. In 6 we will demonstrate the effectiveness of adaptive
polynomial preconditioned CG algorithms for some large matrices from hydrology.

The tables below summarize the behavior of the adaptive procedure for two simple
test problems. The results are taken from [5], but the adaptive procedure described in
this paper would give similar results. The matrices have order 2500 and result from
a five-point and nine-point finite difference approximation to the two-dimensional
Laplacian. Although PC(] results are given only for a polynomial of degree 7, these
results are typical. In each table we list the estimates for Ac and)d computed by
the adaptive procedure, which is called every five steps. The adaptive algorithm is
initially given c d 1. In the last column we report the action taken by the
adaptive procedure.

Consider Table 5.1. After five steps, the adaptive procedure found new estimates

20 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

TABLE 5.1
PCG adaptive procedure for five-point Laplacian.

N 2500 m--7

0
5
10
15
20
25
30

TRUE

AC
0.10000e-+-01
0.24762e-01
0.27832e-02
0.27577e-02
0.19262e-02
0.18981e-02
0.18968e-02
0.18967e-02

,d
0.10000e-+-01
0.19870e+01
0.19962e-+-01
0.19972e+01
0.19981e/01
0.19981e/01
0.19981e+01
0.19981e+01

ACTION
initial
restart
restart
resume
resume
resume
resume

TABLE 5.2
PCG adaptive procedure for nine-point Laplacian.

N 25OO m=7
k

5
10
15
20
25

TRUE

AC
0.10000e+01
0.17330e-01
0.1504le-01
0.22899e-02
0.22899e-02
0.22899e-02
0.22753e-02

d
0.10000e+01
0.14347e+01
0.15959e+01
0.15968e-+-01
0.15990e+01
0.15992e+01
0.15992e+01

ACTION
initial
restart
restart
restart
resume
resume

for Ac and Ad and decided to restart the iteration using a new preconditioning poly-
nomial based on these estimates. After another five steps, the adaptive procedure
refined its estimates for Ac and ,d and again restarted. From here on it continues
to improve its estimates for Ac and Ad, but opts to resume the iteration using the
polynomial determined at step 10. Similar behavior is seen in Table 5.2. We remark
that Ac and)d are found more quickly with higher degree polynomials.

The performance described here is typical. Although the estimates for Ac and d
eventually converge to their true values, the adaptive procedure often finds satisfactory
estimates early on in the iteration. In other words, the adaptive procedure is able to
find a nearly optimum polynomial preconditioner within a few calls. This means that
there is little overhead associated with the adaptive procedure. We remark that the
resume versus restart decision is an important one: it can make a dramatic difference
in the number of steps required for convergence to the solution of the linear system.

In Figs. 5.4-5.9 we compare the performance of four polynomial preconditioned
CG (PPCG) algorithms on four eigenvalue distributions. (Here PPCG denotes
PCG [13] with a polynomial preconditioner.) The algorithms are: (1) PPCG with
the least squares preconditioning polynomial for [0, Ad]; (2) PPCG with the exact
Chebyshev preconditioning polynomial for [A, Ad]; (3) adaptive PPCG with co
and do Ad; and (4) adaptive PPCG with Co do trace(A)/N. We will abbreviate
these algorithms LS, EC, AC(LS), and AC(TR), respectively. For these experiments,
we employed the adaptive procedure described above. (Since the adaptive procedure
in [3], [5] quickly finds Ac and Ad, it would behave like EC.) The algorithms AC(LS)
and AC(TR) differ only in their initial intervals. The point of the former is to see
how the adaptive algorithm compares with the least squares polynomial when given
the same information, namely, Ad. AC(TR) is, in a sense, the "black box" algorithm

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 21

of choice since it requires no a priori knowledge of a(A).
The first three plots compare the four algorithms on the uniform, dense-left, and

dense-right distributions described in 4 (5 10-5, N 100,000). In Fig. 5.4,
the least squares polynomial outperforms the exact Chebyshev polynomial, but is
inferior to AC(LS). The reason is this: Although AC(LS) initially behaves like the
least squares polynomial, the adaptive procedure allows us to refine the left endpoint.
In Fig. 5.5, the exact Chebyshev polynomial is best, but the two adaptive algorithms
are competitive: Whereas EC starts off with the optimum left endpoint, they must
determine it dynamically. Finally, in Fig. 5.6, all four algorithms converge quickly.
AC(TR) beats AC(LS) because co is already too small. AC(LS) is slightly
worse than LS for this dense-right distribution because it erroneously adapts the left
endpoint toward the origin.

In the last three plots, the eigenvalue distribution is that of the five-point Lapla-
cian for a 400 400 grid. Since these eigenvalues are somewhat uniformly distributed
in (0, 8), Fig. 5.7 is nearly identical to Fig. 5.4, and the explanation for the algorithms’
relative performance is the same. In Fig. 5.8, we consider the effect of overestimat-
ing Ad, as is often the case with Gershgorin’s theorem. Here LS, EC, and AC(LS)
are all given do 12. Consequently, AC(TR) performs a bit better relative to the
other three, but the difference is marginal. In Fig. 5.9, we underestimate ,d with
do 6. Note that LS and EC both suffer. The adaptive algorithms, however, are able
to find ’d quickly, before adapting the left endpoint. We remark that overestimat-
ing (underestimating) d would have been much more troublesome for the dense-left
(dense-right) distribution.

In summary, our results show that adaptive Chebyshev polynomial precondi-
tioning is not only competitive with least squares and exact Chebyshev polynomial
preconditioning, but usually beats them. In particular, AC(LS) was superior to the
least squares polynomial for all but the dense-right distribution. This is so because,
although it initially behaves like the least squares polynomial, it retains the option
to adapt the left endpoint. Moreover, we have shown that the "black box" AC(TR)
algorithm is always competitive. This is important because one seldom has any a
priori knowledge of the eigenvalue distribution of A.

6. Numerical experiments. In this section we demonstrate the effectiveness
of adaptive polynomial preconditioning on a Cray X-MP/48 and Alliant FX/8 for
some large matrices arising in hydrology. In particular, we show that polynomial pre-
conditioned PCG (PPCG) can converge in less CPU time than the unpreconditioned
CGHS method. Although we do not compare it with other preconditionings, we em-
phasize that polynomial preconditioning can be used to further accelerate any other
preconditioning, for example, an incomplete factorization.

6.1. Description of experiments. Our test matrices, which arise in the mod-
eling of groundwater flow in a heterogeneous aquifer, result from the seven-point
finite difference approximation to a three-dimensional elliptic PDE with variable co-
efficients. Although several parameters determine the difficulty of the problem, we
isolate just two. In the first set of experiments, run on a Cray X-MP/48, the hy-
draulic conductivity field K is uncorrelated, which makes the problem difficult. In
the second set of experiments, run on an Alliant FX/8, the field is correlated. For
each machine we vary % the standard deviation of the In K field. As - increases, so
does the condition number of A. See [27] for details.

In the tables below, m is the degree of the preconditioned polynomial, Pm()).

22 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

Least Squares
Exact Chebyshev
Adoptive Cheby ITRIAdoptive Cheby LS

2O 40 60 80
Number of Iterotions

--,AC TR
LS

",,AC(LS)

100

FIG. 5.4. Uniform eigenvalue distribution; -- 10-5.

10o

10-1

10-2

Leost Squores
Exoct Chebyshev
Adoptive Cheby (TR)
Adoptive Cheby ()LS

" --.AC(

10-’
0

TR)
AC(LS)
EC

I,

20 40 60 80 100
Number of terotions

FIG. 5.5. Dense-left eigenvalue distribution; 10-5.

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 23

0-3

0-4

0-0-e
10-7

10-8

0-s

10- "=

10_
10_=

10-1
10_14

10-1
10-1e

0

Least Squares
Exact Chebyshev
Adoptive Cheby I:;1Adoptive Cheby

"""T"--’Ic(TR)
3 4 5 6 7 8 9 10

Number of terotions

FIG. 5.6. Dense-right eigenvalue distribution; 5-- 10-5.

10-1

0-2

2O

Least Squares
Exact Chebyshev
Adoptive Cheby /TR /Adoptive Cheby LS

\C(LS)

40 60 80
Number of terot ions

100

FIG. 5.7. Laplacian distribution.

24 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

10-1

0-2

Least Squares
Exact Chebyshev
Adaptive Cheby /TR1Adaptive Cheby LS

AC(LS)

2O 4O 6O 8O IO0
Number of terotions

FIG. 5.8. Overestimated Laplacian distribution.

100

0-1

0-2

Least Squares
Exact Chebyshev
Adoptive Cheby ITRIAdoptive Cheby LS

I,

20 40 60 80
Number of terotions

AC(TR)

AC(LS)

100

FIG. 5.9. Underestimated Laplacian distribution.

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 25

The first row of each table, m 1, corresponds to the unpreconditioned CGHS
method. We next give the number of CPU seconds required for convergence of the
CG iteration, which includes the adaptive procedure. The iteration was halted once
the relative error was brought below 10-s on the Cray and 10-6 on the Alliant. In
the last column of each table we list the ratio of CGHS time to PPCG time. If this
ratio is greater than 1, we say that polynomial preconditioning is effective. In all the
experiments, the right-hand-side vector b was chosen so that the true solution vector
has 1 in each component, and the initial guess was the zero vector. The adaptive
procedure used is the one described in [3] and [5]; the one presented in this paper
would give even better performance. Since the matrix was symmetrically scaled to
have unit diagonal, we set co do 1 in the adaptive procedure. New eigenvalue
estimates were computed every ten steps with a maximum of ten calls to the adaptive
procedure. Finally, we note that the results below were taken from [3] and [27].

6.2. Discussion of results. In Tables 6.1-6.3 we report results for a single
vector processor of a Cray X-MP/48. In the first table, the condition number of A is
about 60,000, as estimated by the adaptive procedure. Here we obtain a 15 percent
improvement over CGHS with a polynomial of degree 5. In the next two tables, a(A)

TABLE 6.1
Cray X-MP/48 CPU times.

N =’103,823
m

5
7
9
11

Iterations
1112
386
242
229
215
152

7=1.0
Seconds
18.00
15.77
15.65
20.59
24.82
21.35

CGHS/PPCG
1.00
1.14
1.15
0.87
0.73
0.84

TABLE 6.2
Cray X-MP/48 CPU times.

N 103,823
m
1
3
5
7
9
11

Iterations
2315
780
473
341
268
227
213

Seconds
37.04
31.81
30.56
30.22
30.16
31.28
34.84

=1.5
CGHS/PPC

1.00
1.16
1.21
1.23
1.23
1.18
1.06

is 160,000 and 360,000, respectively, corresponding to 1.5 and " 1.75. Notice
that polynomiM preconditioning is more effective here: it reduces the CPU time
required to solve the problem by about 25 percent. Also observe that the optimum
m is increasing with (A).

In Tables 6.4-6.6 we see similar qualitative results for the Alliant FX/8, which is
an 8-vector-processor machine. Although the problems are much larger, they are not
nearly as ill conditioned. (We estimate the condition numbers to be 8,400, 14,000, and
26,000.) We once again see the best performance on the hardest problem. Moreover,

26 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

TABLE 6.3
Cray X-MP/48 CPU times.

N 103,823
m
3
5
7
9
11
13
15
17
19

Iterations
4126
1383
833
600
469
386
328
287
255
235

Seconds
66.76
57.30
54.67
53.72
53.82
53.60
53.55
53.55
53.36
55.10

3‘ 1.75
CGHS/PPCG

1:’00
1.17
1.22
1.24
1.24
1.25
1.25
1.25
1.25
1.21

TABLE 6.4
Alliant FX/8 CPU times.

N 410,625
Iterations

468
183
103
82

57

Seconds
887.61
673.77
541.13
564.95
598.83
586.48

3,=1.0
CGHS/PPCG

1.00
1.32
1.64
1.57
1.48
1.51

TABLE 6.5
Alliant FX/8 CPU times.

N 410,625
m

5
7
9
11

3,=1.7
Iterations Seconds CGHS/PPCG

607 1141.40 1.00
249 910.98 1.25
155 801.22 1.42
95 664.83 1.76
79 684.41 1.70
69 714.39 1.62

notice the much larger CGHS/PPCG ratios: the time required to solve the problem
has been nearly cut in half. The computer architecture does indeed make a difference.

These results demonstrate the effectiveness of polynomial preconditioning on a
Cray X-MP/48 and an Alliant FX/8. We have seen that polynomial preconditioning
is most effective when the matrix A is ill conditioned. Moreover, as a(A) increases, so
does the optimum degree m. In general, however, low degree (2-16) preconditioning
polynomials are usually best. In contrast, high degree (20-50) polynomials are usually
best for Hermitian indefinite matrices [3], [6]. Although we have presented results for
only the hydrology problem, our conclusions are supported by a variety of other
numerical experiments, including those in [3], [9], [15], [25], [27].

We emphasize that our adaptive CG algorithms are as easy to use as CGHS,
yet can reduce the CPU time required to solve the linear system. The amount of
reduction depends on the computer architecture. We note that Holst [23] has obtained
results similar to those for the Alliant on a Cray 2. In particular, he has reported

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 27

TABLE 6.6
Alliant FX/8 CPU times.

N 410,625
m
1
3
5
7
9
11

Iterations
839
308
205
134
103
88

Seconds
1584.50
1108.60
1057.20
913.34
869.94
889.15

3,= 2.3
CGHS/PPCG

1.00
1.43
1.50
1.73
1.82
1.78

CGHS/PPCG ratios of nearly 2 to 1, which is far better than those achieved on
the X-MP. Chan, Kuo, and Tong [9] have shown that polynomial preconditioning is
competitive with other preconditioners on the massively parallel CM-2.

7. Summary. In this paper we have explored the use of adaptive polynomial
preconditioning for Hermitian positive definite linear systems. Such preconditioners
are easy to employ and well suited to vector and/or parallel computer architectures.
After reviewing preconditioned CG methods, we showed how one could use a polyno-
mial preconditioner in a variety of different ways. We then discussed the least squares
and Chebyshev preconditioning polynomials, studied them in the context of CG meth-
ods, and showed that the latter minimizes a bound on the condition number of the
preconditioned matrix. We next compared the two polynomials in a variety of numer-
ical experiments. In particular, we sought to determine those eigenvalue distributions
for which each is well suited. The least squares polynomial is superior for those ma-
trices whose eigenvalues are dense near the largest eigenvalue, Ad. In contrast, the
Chebyshev preconditioner is superior when the eigenvalues are dense throughout the
interval or when the gap between successive eigenvalues is smaller than the smallest
eigenvalue, At. We next described an adaptive procedure for dynamically computing
Ac and Ad, which are needed to determine the optimal Chebyshev polynomial precon-
ditioner. Specifically, by comparing various convergence factors, we attempt to find
the optimum endpoints on which to base the Chebyshev preconditioning polynomial.
The accuracy and efficiency of this adaptive procedure was also demonstrated. In
particular, we showed that our adaptive algorithm usually beats algorithms based on
the least squares or exact Chebyshev polynomials. Finally, in the previous section,
we presented some numerical results that demonstrate the effectiveness of adaptive
polynomial preconditioning for some large matrices arising in hydrology. Our results
suggest that relatively low degree (2-16) polynomials are usually best. Moreover, the
optimum degree m of the polynomial tends to increase with the condition number of
A, as does the effectiveness of polynomial preconditioning.

Acknowledgments. We wish to thank Professor Paul Saylor for his many help-
ful comments and thoughtful questions. We also thank Philip Meyer for providing
the hydrology test problems and associated software.

REFERENCES

[1] L. M. ADAMS, Iterative Algorithms for Large, Sparse Linear Systems on Parallel Computers,
Ph.D. thesis, Dept. of Applied Mathematics, University of Virginia, Charlottesville, VA,
1982.

28 S.F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO

[2] L. M. ADAMS, m-step preconditioned conjugate gradient methods, SIAM J. Sci. Statist. Com-
put., 6 (1985), pp. 452-463.

[3] S. F. ASHBY, Polynomial Preconditioning for Conjugate Gradient Methods, Ph.D. thesis, Dept.
of Computer Science, University of Illinois, Urbana, IL, December 1987. Available as Tech.
Report 1355.

[4] , Minimax polynomial preconditioning for Hermitian linear systems, SIAM J. Mat. Anal.
Appl., 12 (1991), pp. 766-789.

[5] S. F. ASHBY, T. A. MANTEUFFEL, AND J. S. OTTO, Adaptive polynomial preconditioning for
HPD linear systems, in Proc. Ninth International Conference on Computing Methods in
Applied Sciences and Engineering, R. Glowinski and A. Lichnewsky, eds., Paris, January
1990, SIAM, pp. 3-23.

[6] S. F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR, Adaptive polynomial preconditioning for
Hermitian indefinite linear systems, BIT, 29 (1989), pp. 583-609.

[7] A taxonomy for conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990),
pp. 1542-1568.

[8] P. N. BROWN AND A. C. HINDMARSH, Matrix-free methods for stiff systems of ODE’s, SIAM
J. Numer. Anal., 23 (1986), pp. 610-638.

[9] T. F. CHAN, C. J. Kuo, AND C. TONG, Parallel elliptic preconditioners: Fourier analysis and
performance on the Connection Machine, Tech. Report CAM 88-22, Dept. of Mathematics,
University of California, Los Angeles, 1988.

[10] R. CHANDRA, S. C. EISENSTAT, AND M. H. SCHULTZ, The modified conjugate residual method
]or partial differential equations, in Advances in Computer Methods for Partial Differential
Equations II, R. Vichnevetsky, ed., 1977, pp. 13-19.

[11] A. CHIONOPOULOS, A Class of Parallel Iterative Methods Implemented on Multiprocessors,
Ph.D. thesis, Dept. of Computer Science, University of Illinois, Urbana, IL, November
1986. Available as Tech. Report 1267.

[12] A. T. CHRONOPOULOS AND C. W. GEAR, Implementation of s-step methods on parallel vector
architectures, Tech. Report 1346, Dept. of Computer Science, University of Illinois, Urbana,
IL, June 1987.

[13] P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY, A generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations, in Sparse Matrix Computations,
J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309-332.

[14] P. J. DAVIS, Interpolation and Approximation, Dover, New York, 1975.
[15] P. F. DUBOIS, A. GREENBAUM, AND G. H. RODRIGUE, Approximating the inverse of a matrix

for use on iterative algorithms on vector processors, Computing, 22 (1979), pp. 257-268.
[16] V. FABER AND T. A. MANTEUFFEL, Necessary and suJficient conditions for the existence of a

conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352-362.
[17] R. FREUND, Polynomial Preconditioners for Hermitian and Certain Nonhermitian Matrices,

paper presented at SIAM Annual Meeting, San Diego, CA, July 1989.
[18] G. H. GOLUB AND M. D. KENT, Estimates of eigenvalues for iterative methods, Math. Comp.,

53 (1989), pp. 619-626.
[19] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University

Press, Baltimore, MD, 2nd ed., 1989.
[20] A. GREENBAUM, Comparison of splittings used with the conjugate gradient algorithm, Numer.

Math., 33 (1979), pp. 181-194.
[21] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic Press, New York,

1981.
[22] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,

J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-435.
[23] M. J. HOLST, private communication, 1989.
[24] O. G. JOHNSON, C. A. MICCHELLI, AND G. PAUL, Polynomial preconditioning for conjugate

gradient calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362-376.
[25] T. L. JORDAN, Conjugate gradient preconditioners for vector and parallel processors, in Proc.

Conference on Elliptic Problem Solvers, G. Birkhoff and A. Schoenstadt, eds., Academic
Press, 1984.

[26] J. A. MEIJERINK AND n. A. VAN DER VORST, An iterative solution method for linear systems of
which the coejCficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-
162.

[27] P. D. MEYER, A. J. VALOCCHI, S. F. ASHBY, AND P. E. SAYLOR, A numerical investigation of
the conjugate gradient method as applied to three-dimensional groundwater flow problems
in randomly heterogeneous porous media, Water Resources Res., 25 (1989), pp. 1440-1446.

POLYNOMIAL PRECONDITIONING FOR HPD LINEAR SYSTEMS 29

[28] T. J. RIVLIN, The Chebyshev Polynomials, John Wiley and Sons, New York, 1974.
[29] H. RUTISHAUSEI, Theory of gradient methods, in Refined Iterative Methods for Computation

of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Mitt. Inst.
angew. Math. ETH Ziirich, Nr. 8, Birkhiuser, Basel, 1959, pp. 24-49.

[30] Y. SAAD, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM
J. Sci. Statist. Comput., 6 (1985), pp. 865-881.

[31] P. E. SAYLOR, Leapfrog variants of iterative methods for linear algebraic equations, J. Comput.
Appl. Math., 24 (1988), pp. 169-193.

[32] G. SZEGO, Orthogonal Polynomials, Colloquium Publications 23, Revised Edition, American
Mathematical Society, Providence, RI, 1959.

[33] D. M. YOUNG AND K. C. JEA, Generalized conjugate gradient acceleration of nonsymmetrizable
iterative methods, Linear Algebra Appl., 34 (1980), pp. 159-194.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 30-46, January 1992

() 1992 Society for Industrial and Applied Mathematics
0O2

PRECONDITIONED ITERATIVE METHODS FOR HOMOTOPY
CURVE TRACKING*

COLIN DESAt, KASHMIRA M. IRANIt, CALVIN J. RIBBENS, LAYNE T. WATSON,
AND HOMER F. WALKER:

Abstract. Homotopy algorithms are a class of methods for solving systems of nonlinear equa-
tions that are globally convergent with probability one. All homotopy algorithms are based on the
construction of an appropriate homotopy map and then the tracking of a curve in the zero set of
this homotopy map. The fundamental linear algebra step in these algorithms is the computation
of the kernel of the homotopy Jacobian matrix. Problems with large, sparse Jacobian matrices are
considered. The curve-tracking algorithms used here require the solution of a series of very special
systems. In particular, each (n + 1) (n + 1) system is in general nonsymmetric but has a leading
symmetric indefinite n n submatrix (typical of large structural mechanics problems, for example).
Furthermore, the last row of each system may by chosen (almost) arbitrarily. The authors seek
to take advantage of these special properties. The iterative methods studied here include Craig’s
variant of the conjugate gradient algorithm and the SYMMLQ algorithm for symmetric indefinite
problems. The effectiveness of various preconditioning strategies in this context are also investigated,
and several choices for the last row of the systems to be solved are explored.

Key words, globally convergent, homotopy algorithm, nonlinear equations, preconditioned
conjugate gradient, homotopy curve tracking, sparse matrix, matrix splitting, bordered matrix

AMS(MOS) subject classifications. 65F10, 65F50, 65H10, 65K10

1. Introduction. The fundamental problem motivating this work is to solve a
nonlinear system of equations F(x) O, where F En En is a C2 map defined on
real n-dimensional Euclidean space En. The homotopy approach to solving F(x)
0 is to construct a continuous map H(.k,x), the "homotopy," deforming a simple
function s(x) to the given function F(x) as .k varies from 0 to 1. Starting from the
easily obtained solution to H(O,x) s(x) 0, the essence of a homotopy algorithm
is to track solutions of H(,,x) 0 until a solution of g(1, x) F(x) 0 is obtained.
The theoretical and implementational details of such algorithms are nontrivial; see
Rheinboldt and Burkardt [24] and Watson, Billups, and Morgan [36] for summaries
of significant recent progress in this area.

Homotopies are a traditional part of topology and only recently have begun to
be used for practical numerical computation. The homotopies considered here are
sometimes called "artificial-parameter generic homotopies," in contrast to natural-
parameter homotopies, where the homotopy variable is a physically meaningful pa-
rameter. In the latter case, the resulting homotopy zero curves must be dealt with
as they are, bifurcations, ill-conditioning, and all. Therefore, curve tracking becomes
the main focus of the problem-solving effort. Our artificial-parameter generic homo-
topics require that the homotopy zero curves obey strict smoothness conditions. These
conditions generally will not hold if the homotopy parameter represents a physically
meaningful quantity, but they can always be obtained via certain generic constructions
using an artificial (i.e., nonphysical) homotopy parameter.

Received by the editors April 5, 1990; accepted for publication (in revised form) December 5,
1990.

Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg,
Virginia 24061. The work of these authors was supported in part by Department of Energy grant
DE-FG05-88ER25068 and Air Force Office of Scientific Research grant 89-0497.

Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322. The
work of this author was supported in part by Department of Energy grant DE-FG02-86ER25018 and
National Science Foundation grant DMS-0088995.

3O

ITERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 31

The objective is to solve a "parameter-free" system of equations, F(x) O. What
this means is that one can design the homotopy to have paths with nice proper-
ties. Thus extra attention is devoted to constructing the homotopy, and the curve-
tracking algorithm can be limited to a well-behaved class of curves. The goal of using
these artificial-parameter homotopies is to solve fixed-point and zero-finding problems
with homotopies whose zero curves do not have bifurcations or other singular or ill-
conditioned behavior. The mathematical software package HOMPACK [36] used here
for comparative purposes is designed for artificial-parameter generic homotopies.

The theory and algorithms for functions F(x) with small, dense Jacobian matrices
DR(x) are well developed [33], [32]. In this paper we focus on large, sparse DR(x),
a class of problems about which much less is known. Solving large sparse nonlinear
systems of equations via homotopy methods involves sparse rectangular linear systems
of equations. The sparsity suggests the use of iterative solution methods. Precon-
ditioning techniques are used to make the iterative methods more efficient. In this
paper we are particularly interested in problems where the Jacobian matrix DF(x) is
symmetric. Such problems are common, for example, in structural mechanics, where
the Jacobian matrix is often the Hessian of a potential energy function.

Section 2 describes the homotopy approach to zero-finding problems and outlines
the curve-tracking algorithm used in this paper. Section 3 discusses the linear algebra
details of homotopy curve tracking. Several algorithmic possibilities are presented.
Section 4 presents numerical results from the application of the various algorithms to
three test problems. Some general conclusions from these results are drawn in 5.

2. Homotopy algorithm. The philosophy of artificial-parameter homotopy al-
gorithms is to create homotopies whose zero curves are well behaved, with Jacobian
matrices that are well conditioned, and that reach a solution for almost all choices
of a parameter. These homotopies may be used to solve fixed-point and zero-finding
problems.

In this paper we concentrate on the zero-finding problem F(x) O, where F
En -- En is a C2 map. The theoretical basis for the homotopy algorithm can be
summarized as follows (see [7] for details). Suppose there exists a C2 map

p" Em x [O,1) x En En

such that
(a) the n x (m + 1 + n) Jacobian matrix Dp(a, A, x) has rank n on the set

p-i(0)-- { (a,),x)[a e Em,O <_ A < 1, x e En,p(a,A,x)-0},

and for any fixed a e Em, letting pa(A,x) p(a,A,x),
(b) pa(0, x) p(a, 0, x) 0 has a unique solution x0,

(c) Pa (1, x) F(x),
(d) pa--l(0)is bounded.

Then for almost all a E Em there exists a zero curve q, of Pa along which the Jacobian
matrix Dpa has rank n, emanating from (0, x0) and reaching a zero of F at A 1.
Furthermore, - does not intersect itself and is disjoint from any other zeros of p.
Thus, with probability one, picking an a Em (which uniquely determines x0), and
following from (0, x0) to (1,), leads to a zero of F.

There are many different algorithms for tracking the zero curve . HOMPACK
supports three such algorithms: ordinary differential equation-based, "normal flow,"
and "augmented Jacobian matrix." We consider only the normal flow algorithm in
this paper. A brief description of the normal flow algorithm is now given.

32 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

Consider the homotopy map

po(x, +
The matrix Dxpa(X,A) ,kDF(x)+ (1- A)I is symmetric and sparse. (For the
problems of interest, Dxpa(X, ,k) has a "skyline" structure, and is conveniently stored
in a packed skyline format, in which the upper triangle is stored in a one-dimensional
indexed array. An auxiliary array of diagonal indices is also required.) Assuming that
F(x) is C2, a is such that the Jacobian matrix Dpa(X,) has full rank along 9’, and
9’ is bounded, the zero curve 9’ is C1 and can be parameterized by arc length s. Thus
x x(s), (s) along 9’, and

pa(X(8),,,(8)) "-’0

identically in s.
The zero curve 9’ given by (x(s), A(s)) is the trajectory of the initial value problem

(1) -sPa X(S),)(S) Dpa(x(s), ,k(s)), Dpa(X(S), ,k(s)) O,

dx dA Ids ds

(a) x(0) =0.

Since the Jacobian matrix has rank n along 9’, the derivative (dx/ds, dA/ds) is uniquely
determined by (1), (2), and continuity, and the initial value problem (1-3) can be
solved for x(s), A(s). From (1) it can be seen that the unit tangent (dx/ds, d,k/ds) to

9’ is in the one-dimensional kernel of Dpa.
The normal flow curve tracking algorithm has four phases: prediction, correction,

step size estimation, and computation of the solution at A 1. For the prediction
phase, assume that two points (x(sl),A(Sl)) and (x(82),,,(82))on 9’ with correspond-
ing tangent vectors (dx/ds(s), d/ds(sl)), (dx/ds(s2), d/ds(s2)) have been found,
and h is an estimate of the optimal step (in arc length) to take along 9’. The prediction
of the next point on 9’ is

Z() p(s2 + h),

where p(s) is the Hermite cubic interpolating (x(s), A(s)) at sl and s2. Precisely,

p(81)--(X(81),,’(81)),
dX

(s)’ss(81) (81)

dx dA)
and each component of p(s) is a polynomial in s of degree less than or equal to 3.

Starting at the predicted point Z(), the corrector iteration is

(4) Z(k+i) Z(k) [Dpa(Z(k))] + pa(Z(k)), k=0,1,...

ITERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 33

where [Dpa(Z(k))]+ is the Moore-Penrose pseudoinverse of the n (n + 1) Jacobian
matrix Dpa. Small perturbations of a produce small changes in the trajectory ,
and the family of trajectories for varying a is known as the "Davidenko flow."
Geometrically, the iterates given by (4) return to the zero curve along the flow normal
to the Davidenko flow, hence the name "normal flow algorithm."

A corrector step AZ is the unique minimum norm solution of the equation

(5) [Dpa]/kz

Fortunately, AZ can be calculated at the same time as the kernel of [Dp], and
with just a little more work. The numerical linear algebra details for solving (5), the
optimal step size estimation, and the endgame to obtain the solution at A 1 are
described by Watson [35], [34].

The calculation of the implicitly defined derivative (dx/ds, dA/ds) is done by
computing the one-dimensional kernel of Dp, i.e., by solving the n (n + 1) linear
system

(6) [Dpa]y--O.

This can be elegantly and efficiently done for small dense matrices, but the large
sparse Jacobian matrix presents special difficulties. The difficulty now is that the first
n columns of the Jacobian matrix Dpa(X,) involving DF(x) are definitely special,
and any attempt to treat all n / 1 columns uniformly would be disastrous from the
point of view of storage allocation. Hence, what is required is a good algorithm for
solving nonsquare linear systems of equations (5) and (6), where the leading n n
submatrix of Dpa is symmetric and sparse. This paper considers various iterative
methods for solving such linear systems of equations.

3. Numerical linear algebra algorithms. As discussed in 2 for the normal
flow curve-tracking algorithm, computing both the corrector step AZ and the tangent
vector (dx/ds, d./ds) requires the solution of a rectangular linear system involving
the n (n+ 1) matrix [Dpa]. This section describes various algorithms for the solution
of such linear systems. In particular, we first consider various ways to construct an

(n + 1) (n + 1) invertible system Ay b whose solution yields a solution to the
rectangular systems (5) and (6). We then describe two general approaches to solving
systems involving this augmented matrix A, and within these approaches we consider
various iterative solution methods. Finally, several preconditioners are suggested for
improving the convergence of the iterative methods.

3.1. Defining an invertible system. Let (2, A) be a point on the zero curve
-, and the unit tangent vector to at (2,) in the direction of increasing arc length
s. Then the matrix

Dxpa (X, .)A ct

where (c d) is any vector outside a set of measure zero (a hyperplane), is invertible
at (2,/k) and in a neighborhood of (2, A). Thus the kernel of Dpa for (x,)Q near
can be found by solving the linear system of equations

(7) Ay aen+l b,

34 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

where (c d) c, and e,+l is the (n 4- 1)st standard basis vector. Similarly, the
corrector step can be found by solving

The coefficient matrix A in the linear systems of equations (7) and (8) has a very
special structure, which can be exploited in several ways. Recall that the leading
n n submatrix of A is Dxpa, which is symmetric and sparse, but possibly indefinite.
We shall attempt to exploit this property below. The choice of the last row (c d)
is considered first.

From an implementation point of view, the easiest choice for (c d) is probably
the kth standard basis vector e, where the index k is defined by Ikl maxi Iil"
This is the choice made in HOMPACK. It is not difficult to show that with this choice
for (c d), A is invertible, though clearly not symmetric.

A second choice for the last row of A considered here is (c d) . This choice
would seem to be best from a conditioning standpoint, since is orthogonal to the
rows of Dpa(,/k), and hence one expects to be nearly orthogonal to the rows of
Dpa(x,) for (x,) near (,). It is clear that choosing (c d) also makes
A nonsymmetric, and in addition introduces a dense row into the otherwise sparse
matrix A (the last column Dp is also dense).

Since symmetry is advantageous for some algorithms, A can be made symmetric
and invertible by a third choice c D,xpa. The scalar d must still be chosen so that
rank A n 4- 1. It is enough to consider two cases:

1. Suppose rank Dxp n- 1. Then Dpa is not a linear combination of the
columns of Dxpa, because rank [Dp Dp] n by the homotopy theory.
Thus c (D,xpa) is not a linear combination of the rows of the symmetric
matrix Dpa, and we have

row rank (Dpa)t n.

Finally, (c d) is not a linear combination of the first n columns of A, for
any choice of d, so the column rank of A is n 4- 1.

2. Now suppose that rank Dp n. Then

rank (Dpa) n,

and it suffices to choose d to make the last column of A independent from
the first n columns. D,xpa is a unique linear combination of the columns of
Dxpa, and any choice of d other than this combination of the components
of (D_p) will make the (n 4- 1)st column independent. Let

_
denote A

at (,). Since dim[ker()] < 1, y 0 implies y a, and thus with

l (flt, l,+), (Dp(,)) fl+dl,+ O. Choosing any/3 = 0 and solving

(Dpa(,))tfl4-dln+l for d (n+ = 0 since rank Dxpa(,) n) gives
a d such that rank A n + 1 for (x,) near (,

Observe also that if Dxp is positive definite, choosing d > 0 sufficiently large
guarantees that

Dxpa D,xpa)A= (DApa)t d

ITERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 35

is also positive definite.
Proof. Since A is symmetric, by Sylvester’s theorem A is positive definite if and

only if all its leading principal minors are positive. Since Dzp, is positive definite,
the first n leading principal minors are positive, and it suffices to show det A > 0.
Expanding det A along the last column,

det A d. det Dzpa -4- terms not involving d > 0

for d > 0 sufficiently large. [:]

3.2. Splitting vs. direct approaches. Given a choice for the last row (c d),
we now consider two general approaches to solving systems of the form (7) and (8).
The first approach deals with the entire matrix A directly. As we have seen, depending
on the choice of last row, it may be that A is nonsymmetric. This immediately
eliminates several iterative solvers, at least for these cases. However, we do consider
a few versions of this approach where possible in the experiments reported in 4.

The second general approach is to attack (7) and (8) indirectly as follows. Split
A into the sum of a symmetric matrix M and a low rank modification L:

(9) A M + L,

where

L /\Dpa-C)(11) Ue,n+l U 0

Observe that for almost all choices of (c d) the symmetric part M is also invertible.
Then using the Sherman-Morrison formula, the solution y to the original system
Ay b can be obtained from

Uen+l M-lb.(12) y-- I-
(M_lu)ten+ A- 1

Equation (12) requires the solution of two linear systems involving the sparse (except
possibly for c), symmetric, invertible matrix M. The scheme (9)-(12) was proposed
by Kamat, Watson, and Junkins [20], and further investigated by Chan and Saad [6].

A third general approach, not considered here, would be a block-elimination ap-
proach that depends on solving systems involving the n n matrix Dzpa. Observe that
block elimination will frequently fail in the homotopy context, because even though
rank A n + 1 and rank (Dzpa D,xpa) rank Dpa n, it may very well happen
that Dzpa is singular (i.e., rank n- 1). Block-elimination strategies are considered
by Chan [4], [3] and Chan and Resasco [5].

3.3. Iterative solution methods. In 4 we report results from experiments
using two iterative solution methods: Craig’s method and SYMMLQ. Craig’s method
is nearly equivalent to the method of conjugate gradients (CG) [17] applied to the
normal equations. (Technically, a different norm is minimized over a different Krylov
space than if CG were applied directly to the normal equations.) It has long been
known that one way to apply CG to nonsymmetric problems is to solve the normal

36 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

equations instead of the original system. In particular, given any nonsingular matrix
A, the system of linear equations Ay b can be solved by considering the linear
system (normal equations)

or the related system

AtAy-- Atb,

AA z b, y A z.

Since the coefficient matrix for the latter system is both symmetric and positive
definite, the system can be solved by the CG algorithm. Once a solution vector z
is obtained, the vector y from the original system can be computed as y Atz.
A major disadvantage of this technique is that the convergence rate depends on

cond(AAt) (cond(A))2 rather than cond(A). An implementation of the CG al-
gorithm in which y is computed directly, without reference to z or AAt, is due to
Craig [9] and is described in [13] and [16]. Despite the efficiency of the implementa-
tion, the convergence rate still depends on cond(AAT) (cond(A))2 in general. The
cost per iteration of Craig’s method is dominated by two matrix-vector products, one
involving A and one involving At. Preconditioning (see 3.4) increases the work per
iteration substantially.

The second solution method considered here is the SYMMLQ algorithm described
in Paige and Saunders [23]. SYMMLQ solves symmetric indefinite systems. It is based
on a variant of the Lanczos procedure for tridiagonalizing a symmetric matrix. In [23]
it is shown that for symmetric positive definite systems, SYMMLQ is mathematically
equivalent to CG. However, unlike CG, which can break down when A is indefinite,
SYMMLQ is well defined and numerically stable in this case. Like CG, the cost of
one iteration of unpreconditioned SYMMLQ is primarily in a single matrix-vector
multiplication.

There are many other CG-like methods (i.e., Krylov subspace methods) for solving
nonsymmetric or indefinite problems, but most are not satisfactory in our context.
The generalized conjugate gradient method of Concus and Golub [8] and Widlund [37]
applies only to matrices with positive definite symmetric part (i.e., the matrix must
be positive definite, but not necessarily symmetric), although with preconditioning it
can sometimes be used to solve more general problems. The generalized conjugate
residual method [12] and ORTHOMIN(k) [29] also may break down if the coefficient
matrix is not positive definite. More general systems Ax b, where A is not positive
definite, can sometimes be solved by ORTHOMIN(k) if a nonsingular matrix Z is
known such that ZA is positive definite. ORTHOMIN(k) is then applied to the
transformed system ZAx Zb. A related method known as ORTHODIR [38] does
not break down in case A is indefinite, but it is observed to have stability problems
[26]. ORTHORES is another method with similar properties. GMRES(k) [28], [31],
like ORTHOMIN(k), is guaranteed to converge when the coefficient matrix is positive
definite. However, for an indefinite coefficient matrix, GMRES(k), while it does not
break down, may fail because the residual norms at each step, although nonincreasing,
do not converge to zero. Other Krylov subspace methods are studied by Axelsson [1];
Dennis and Turner [10]; Eisenstat, Elman, and Schultz [11]; Jea [19]; Saad [25]; and
Saad and Schultz [27].

Finally, there are other efficient iterative methods for solving sparse linear systems
based on matrix splittings (see Hageman and Young [15]). Typical of these is the
SSOR method, defined in terms of the splitting A D L U, where D is the

ITERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 37

diagonal of A, L is the strict lower triangle of A, and U is the strict upper triangle
of A. The method requires computations involving D-1. In the homotopy context,
D-1 frequently does not exist, and a diagonal matrix E such that [diag (A + E)] -does exist may not be of low rank. Consequently SSOR and methods based on similar
splittings are of limited utility in the present context.

3.4. Preconditioners. It is widely known that "preconditioning" can dramati-
cally improve the performance of many iterative methods. For example, the solution
to Ax b can also be obtained by solving the system

tx (Q-A)x Q-b ,
where Q is the so-called preconditioner. The goal of preconditioning is to decrease the
computational effort required to solve systems of linear equations by increasing the
rate of convergence of an iterative method. For preconditioning to be effective, faster
convergence must outweigh the costs of applying the preconditioner, so that the total
cost of solving the linear system is lower. The preconditioned coefficient matrix A
usually is not explicitly computed or stored, since although A is sparse, may not
be. The extra work of preconditioning, then, occurs in solving systems involving the
matrix Q. The main storage cost for preconditioning is usually for an extra array to
hold a factorization of Q. In this paper we consider two preconditioners:

Gill-Murray (GM). The preconditioner is taken as the modified Choleksy fac-
torization GG of a symmetric matrix A (see Gill and Murray [14]). In particular, if
A is "sufficiently" positive definite, then GG A. Otherwise GG A + , where

is diagonal with nonnegative diagonal entries. In the matrix splitting approach
described in 3.2, we apply GM preconditioning to the symmetric matrix M; in
the direct approach we apply GM to the entire matrix A (necessitating the choice
c Dpa to make A symmetric). We apply the GM preconditioner on the left when
Craig’s method is used (i.e., if A is the original matrix, (GG)-A is the precondi-
tioned matrix). In the case of SYMMLQ, the preconditioned system is G-1A(Gt)-,
since SYMMLQ requires symmetry.

ILU. The incomplete LU factorization described in [22] computes a lower trian-
gular matrix L and unit upper triangular matrix U satisfying

Li Uiy 0, (i, j) Z,
(LU)ij Ai, (i, j) Z.

Here, Z is the set of indices where A is known to be zero off the diagonal. (This
method is often referred to as ILU(0) to indicate that 0 fill-in is allowed.) It is
possible that Lii 0 in this algorithm. In this case Lii is set to a small positive
number, in which case (LU)ii Aii. The ILU factorization is modified slightly so
that it may be used with SYMMLQ. In this case we compute an incomplete LDLT

factorization, and apply LD/2 symmetrically as a preconditioner as described above.
If during the factorization procedure, an element of the diagonal matrix D is negative,
we simply take its absolute value. This is very similar to the GM factorization, except
with ILU we do no extra work to ensure that the factorization is well conditioned.

4. Numerical experiments. Of the various algorithmic possibilities mentioned
in the previous section, we consider further 22 distinct combinations. Some possibili-
ties do not make sense or are impractical in the homotopy context, and thus are not
considered. Ignoring the choice for the last row of A, and also ignoring the question of

38 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

TABLE 1
Execution time in seconds for turning point problem.

CR
n ek Dpa
20 17 19’ 21
60 167 176 186
125 1117 1132 1384
250 2296 1925 3873
500 4741 3899 8352
1000 11577 9335 20375

CRILU
ek Dpa
4 7 4
13 22 13
38 64 42
66 110 74
129 210 148
323 493 353

CRGM
DApa

5
22
85
134
260
617

TABLE 2
Execution time in seconds for turning point problem.

CR-S
n ek y
20 28 36
60 266 356
125 1635 2310
250 3026 3767
500 6279 7783
1000 14150 17768

CRILU-S
ek
6 6
20 22
54 65
95 109
189 207
434 490

CRGM-S
ek
12 13
41 50
127 170
228 267
448 501
1077 1174

splitting, we have six basic methods: unpreconditioned Craig’s method (CR), Craig’s
method with ILU preconditioning (CRILU), Craig’s method with GM precondition-
ing (CRGM), unpreconditioned SYMMLQ (SY), SYMMLQ with ILU precondition-
ing (SYILU), and SYMMLQ with GM preconditioning (SYGM). Data for all of these
methods, with both the splitting and direct approaches, and for various choices of the
last row, are given in Tables 1-24. In the splitting cases, the method names have an
-S appended (e.g., CR-S, SY-S,). We report results from all of these methods on
three test problems, which are now briefly described.

Turning point problem. The turning point problem is a relatively simple (and
artificial) example derived from the system of equations

F(x) 0

where

xid-1)F(x) tan-1 (sin[x(i mod 100)]) 2O
i- 1,...,N,

and x0 XNd-1 O. The zero curve - tracked from A 0 to A 1 corresponds to
pc(x,) (1- .8/k)(x-a)+.8/k F(x), where a is chosen artificially to produce turning
points in -. The Jacobian matrix Dxpa for the turning point problem is tridiagonal.
Tables 1-4 and 13-16 contain the data for this problem.

Shallow arch problem. This is a relatively small but quite difficult problem
from structural mechanics. It results from solving the equilibrium equations for a
discretization of a shallow arch under an externally applied load. See [21] and [18]
for a more complete description. Although this problem is small, it is included in
this study because it is a good test of the accuracy of our methods. To go through
the limit point and along the unloading portion of the equilibrium curve requires
very accurate Jacobian matrices and numerical linear algebra. In fact, the standard
iterative linear equation solver used in HOMPACK is unable to go past the limit
point without tweaking the HOMPACK step size control parameters. Dxpa for the

ITERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 39

TABLE 3
Execution time in seconds for turning point

SY SYILU SYGM
n Dpa Dpa Dpa
20 12 5 5
60 87 17 20
125 405 54 61
250 701 89 104
500 1376 174 199
1000 3270 400 457

problem.

TABLE 4
Execution time in seconds for turning point problem.

SY-S
n ek y
20 20 23
60 134 165
125 594 738
250 1030 1202
500 2109 2421
1000 4872 5500

SYILU-S
ek y
9 9

31 32
98 101
164 165
315 320
736 738

SYGM-S
ek y
9 9
33 34
105 108
175 175
332 337
765 787

shallow arch problem has bandwidth 5. Tables 5-8 and 17-20 contain the data for
this problem.

Shallow dome problem. This is another realistic problem from structural
mechanics, in which the equations of equilibrium for a model of a shallow dome must
be solved. See [18] for a more complete description. Dpa for the shallow dome
problem is block diagonal, with dense 21 x 21 blocks. Tables 9-12 and 21-24 contain
the data for this problem.

The times reported in Tables 1-12 are for tracking the entire zero curve 7 and
thus represent the solution of many linear systems of varying degrees of difficulty.
The average, maximum, and minimum number of iterations for each method (Craig’s
and SYMMLQ) are reported in Tables 13-24. The experiments are done in double
precision using a single processor of a Sequent Symmetry $81 multiprocessor. The
major headings are the acronyms for the algorithms, and the subheadings denote the
choice (c d) for the last row of A. There is asymmetry in the tables because some
possibilities do not make sense. For instance, there is no CRGM with ek because the
Gill-Murray preconditioner requires a symmetric matrix; and there are no methods
based on splitting when c Dpa, since this choice makes A symmetric, so there is
no need to split A into the sum of a symmetric matrix and a low rank modification.

5. Discussion and conclusions. Regarding the choice of last row (c d), Ta-
bles 1-12 show that there is no clear winner between ek, , and Dpa. Furthermore,
there seems to be little correlation between the algorithm and the best choice for c.
If anything, a weak conclusion--that all other things being equal, the best choice
is ekmseems to be indicated by the data. Apparently better conditioning (from)
or symmetry (from Dpa) does not compensate for the extra work involved in these
choices compared with ek.

A comparison of the direct with the splitting approach results in a slight preference
for the direct approach. However, the advantage is not a strong one in most cases.
In fact, there are cases where the splitting approach is better; and on the shallow
arch problem there is virtually no difference. The average number of iterations is

40 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

TABLE 5
Execution time in seconds for shallow arch problem.

CR
n ek Dpa
29 856 884 919
47 14205 13591 14606

CRILU CRGM
ek Dpa D;pa
533 458 443 464
5794 5807 6776 6921

TABLE 6
Execution time in seconds for shallow arch problem.

CR-S

29 1108 947
47 16904 17593

CRILU-S

599 470
5674 5957

CRGM-S
ek
468 818
7322 10105

considerably lower for many of the splitting cases than for the corresponding direct
case. This helps explain why the direct methods are often not significantly faster,
despite the fact that they solve half as many linear systems.

Regarding a comparison between the two basic iterative schemes, the data indicate
that unpreconditioned SYMMLQ is faster than unpreconditioned Craig’s method,
often by a significant amount. The advantage of SYMMLQ seems to be both in fewer
iterations and in less work per iteration (one less matrix-vector product). With GM
preconditioning, SYMMLQ is still a bit faster than Craig’s method for the turning
point and shallow dome problems; on the shallow arch problem the two perform
roughly the same. When ILU preconditioning is used, Craig’s method appears to be
superior. It performs slightly better on the turning point and shallow arch problems;
and ILU preconditioning combined with SYMMLQ fails completely on the shallow
dome problem (SYMMLQ is not converging to a solution of some of the linear systems,
and consequently the curve-tracking algorithm does not make progress).

It is tempting to conclude from the data that the best method overall is CRILU.
However, it must be pointed out that the ILU factorization fails to exist at turning
points and is unstable whenever A is indefinite (as is illustrated by SYILU on the
shallow dome problem). We encountered other homotopy curve-tracking runs, on
slightly different problems, which failed because the ILU preconditioner failed to exist
or generated an overflow, or because of the difficulty caused HOMPACK by inac-
curate tangents resulting from ILU. Because of this potential catastrophic failure or
instability, it is difficult to seriously consider the ILU preconditioner for use in robust
homotopy software. Still, the data do show why the concern of numerical analysts
about unstable algorithms is not always shared by others.

The GM preconditioner, meanwhile, is fairly competitive with ILU on the turning
point and shallow arch problems. Furthermore, it is more robust in the presence of
turning points and when A becomes indefinite. However, the data for the shallow
dome problem show that the GM preconditioner may do a very poor job indeed at
a few points on the curve. Tables 21-24 indicate that while the average number
of iterations is reduced by using the GM preconditioner, the maximum number can
actually increase. Thus the net improvement in efficiency is not at all impressive.

The algorithms SSOR and ORTHOMIN(k), discussed earlier, are not shown in
the tables because they totally fail at turning points and along unloading portions of
equilibrium curves (for reasons stated in 3). When these methods do work, they can
be very efficient (e.g., ORTHOMIN(1) on A with c- Dpa took 443 (6092) seconds
for the shallow arch problem with n 29 (47)), but that is no consolation for homo-

rERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 41

TABLE 7
Execution time in seconds for shallow arch problem.

SY SYILU SYGM
n Dpa Dpa ’Dpa
29 635 488 463
47 7343 5350 6277

TABLE 8
Execution time in seconds for shallow arch problem.

SY-S
n ek
29 615 664
47 8992 8362

SYILU-S
ek
464 499
5593 5683

SYGM-S
ek 9
500 537

5760 6506

TABLE 9
Execution time in seconds for shallow dome problem.

CR
n ek fl Dapa
21 46 47 47

546 2495 2545 2573
1050 4504 4691 4690

CRILU CRGM
ek Dpa Dpa
16 16 16 89

355 369 365 2233
632 665 651 4313

TABLE 10
Execution time in seconds for shallow dome problem.

CR-S
n ek
21 57 86

546 3127 4803
1050 5615 8553

CRILU-S
ek y
21 25

492 630
887 1133

CRGM-S
ek y
108 57

2710 1787
5107 3177

TABLE 11
Execution time in seconds for shallow dome problem.

SY SYILU SYGM
n Dpa D)pa DApa
21 22 o 29

546 957 c 693
1050 1743 o 1276

TABLE 12
Execution time in seconds for shallow dome problem.

SY-S
n ek
21 35 44

546 1420 2027
1050 2529 3690

SYILU-S
ek :

SYGM-S
ek
41 35

1052 928
1902 1629

42 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

topy curve tracking.
GMRES(k) hs a solid theoretical justification and has been used very success-

fully in a variety of contexts [28], [2], [31], [30]. Nevertheless, GMRES(k) with k < n
performed unacceptably on the test problems here, at least without preconditioning.
For the shallow arch problem with n 29 and tol 10-12, GMRES(29) on A with
c D,pa took 591 seconds, comparable to CRGM and CRGM-S. For k 1, 3,
25, GMRES(k) took over a day of CPU time. Relaxing the tolerance to 10-6, GM-
RES(25) took 18,330 seconds. This is especially noteworthy because the A matrices
are (theoretically) symmetric and positive definite. For the turning point problem
with n 20, tol 10-12, c D),pa, the performance degradation from the full
GMRES to GMRES(k) was dramatic. With k 20, 19, 18, 15, 10, 8, GMRES(k)
took, respectively, 19, 117, 154, 375, 338, 420 seconds. Thus for these problems,
without preconditioning, only the full GMRES method is competitive. Consequently
GMRES(k) was not included in the tables.

There are some theoretical results concerning the convergence of GMRES(k) given
in [28, 3.4]. These results give worst-case bounds on the rate of residual norm
reduction which are determined by the distribution of eigenvalues of A. For the shallow
arch and turning point problems, the eigenvalues of A were determined numerically
along the homotopy curve, and the resulting bounds were often (although not in every
case) found to guarantee only hopelessly slow residual norm reduction, indeed, often
to guarantee no residual norm reduction at all even when k n.

Actually, it is apparent from the data that a crucial advantage of Craig’s method
over methods such as GMRES(k) and ORTHOMIN(k) is that it can iterate indefi-
nitely, if necessary long after the solution would have been reached in exact arithmetic,
without incurring increasing costs per iteration and without restarting or otherwise
losing information from earlier iterations. Furthermore, there are theoretical guaran-
tees that Craig’s method will make progress at each iteration, whereas GMRES(k)
may fail to make any progress at all if A is indefinite. It is possible that if the number
of iterations necessary to meet the stopping tolerance could be kept small through
preconditioning, then GMRES(k) would be competitive for k < n. A complete study,
similar to that done here for Craig’s method, of GMRES(k) with preconditioning and
polynomial acceleration would be interesting and will be the topic of a future paper.

Tables 13-24 show the average, maximum, and minimum number of iterations per
linear system solution along the homotopy zero curve , for the three problems, using
the same algorithms as in Tables 1-12. Such iteration statistics give an intuitive feel for
how the algorithms behave and are sometimes very revealing. For example, Tables 13
and 14 show that symmetry does improve the algorithms’ efficiency (compare CR and
CR-S with last row e), and that, all other things being equal, achieving symmetric
coefficient matrices is worthwhile. (The algorithms based on splitting to achieve
symmetry are not uniformly better, because all other things are not equal.) Note
that in all cases (except for the shallow dome problem with GM preconditioning) the
maximum number of iterations is less than or equal to four times the average, which
says that the convergence behavior is fairly consistent. On the other hand the range
between the minimum and maximum is as great as 3 to 536, showing that there is a
wide variation in the difficulty of the linear systems encountered along 7.

A succinct, albeit oversimplified, summary of the discussion is that ILU precon-
ditioning is the most efficient, but it may completely fail for some cases, while the
Gill-Murray preconditioner rarely fails but may be considerably slower on extremely
difficult problems.

ITERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 43

TABLE 13
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

n
20 24,29,1
60 70,86,1
125 159,292,1
250 196,404,1
500 216,427,1
1000 224,446,1

CR
ek Dxpa

24,28,1
69,84,1

151,232,1
150,246,1
165,337,1
164,323,1

26,31,1
74,91,2

179,328,3
231,407,3
268,489,3
285,536,3

CRILU CRGM
ek Dxpa Dxpa

2,2,1 4,5,1 2,3,1 3,9,2
2,3,1 4,7,1 2,3,2 3,12,1
2,3,1 4,5,1 2,3,2 5,15,2
2,3,1 4,5,1 2,3,2 4,15,2
2,3,1 4,6,1 2,3,2 5,16,2
2,3,1 4,5,1 3,3,2 5,16,2

TABLE 14
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

CR-S
n
20 21,28,1
60 60,100,1
125 127,261,1
250 139,302,1
500 149,314,1
I000 151,312,1

ek y
24,29,1
69,87,1

154,264,1
150,246,1
164,281,1
162,289,1

CRILU-S

2,2,1 2,2,1
2,3,1 2,3,1
2,3,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1

CRGM-S

4,6,1 5,7,1
4,8,1 5,8,1
5,9,1 6,11,1

5,11,1 5,10,1
5,11,1 5,10,1
5,11,1 5,11,1

TABLE 15
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

n
20
60
125
250
5O0
1000

SY SYILU SYGM
Dpa Dpa Dpa
22,28,2 2,5,1 2,7,2
48,70,2 2,7,2 2,9,2

77,123,3 3,9,1 3,11,2
75,131,3 2,9,1 3,11,2
80,146,3 2,8,1 3,11,2
83,156,3 3,8,1 3,11,2

TABLE 16
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

SY-S
n
20 18,25,0
60 37,75,0
125 56,116,0
250 58,118,0
500 61,122,0
1000 62,127,0

21,25,0
46,61,0

71,108,0
68,100,0
72,107,0
71,106,0

SYILU-S
ek y

2,5,0 2,6,0
2,6,0 3,7,0
3,6,0 3,9,0
3,8,0 3,8,0
3,8,0 3,7,0
3,9,0 3,8,0

SYGM-S

2,5,0 2,5,0
2,5,0 3,7,0
3,7,0 3,9,0
3,7,0 3,8,0
3,7,0 3,8,0
3,8,0 3,8,0

TABLE 17
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

n
29
47

CR
ek Dxpa

99,127,51 91,107,38 98,120,52
265,360,109 239,305,133 265,355,105

ek
3,3,2
3,3,2

CRILU
Y

4,5,2
4,4,2

CRGM
Dpa Dxpa
3,3,2 6,7,2
3,3,2 6,7,2

44 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

TABLE 18
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

CR-S
n ek
2 6’6,109,i’
47 190,313,1

6i3,101,1
194,291,1

CRILU-S
ek Y

2,3,1 3,3,1
2,3,1 3,3,1

CRGM-S
ek 3

4,10,1 28,40,1
5,10,1 37,53,1

TABLE 19
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

SY SYILU SYGM
"D’pa’ Dpa ’Dpa

29 ’58179,37 2,5,2’ 2,4,2
47 115,152,72 3,5,2 3,5,2

TABLE 20
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

SY-S SYILU’S
n ek y e y
29 39,78,0 42,74,0 2,7,0 4,7,0
47 91,150,0 82,147,0 2,7,0 4,7,0

SYGM-S
e y

,5,0 10,12,0
2,7,0 12,16,0

TABLE 21
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

n ek
21 26,36,14

546 58,81,17
1050 58,87,18

CR
Dpa

26,36,14
57,82,17
59,91,18

26,36,14
58,82,18
58,83,18

CRILU
ek D,xpa

2,3,2 2,3,2 2,3,2
2,3,2 2,3,2 2,3,2
2,3,2 2,3,2 2,3,2

CRGM
Dpa

23,113,2
23,111,2
23,113,2

TABLE 22
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

CR-S
n ek
21 17,31,1 24,36,1

546 38,75,1 54,87,1
1050 38,76,1 53,91,1

CRILU-S
ek

2,3,1 2,3,1
2,3,1 3,3,1
2,3,1 3,3,1

CRGM-S
ek

17,118,1 7,46,1
15,113,1 9,63,1
16,114,1 8,101,1

ITERATIVE METHODS FOR HOMOTOPY CURVE TRACKING 45

TABLE 23
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

SY SYILU SYGM
n Dpa Dpa Dpa
21 17,32,10 o 7,23,2

546 34,55,11 6,33,2
1050 34,52,11 7,35,2

TABLE 24
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

SY-S
n e
21 14,34,0 19,32,0

546 25,58,0 37,69,0
1050 24,54,0 36,64,0

SYILU-S
ek y

SYGM-S
ek

5,33,0 4,17,0
6,40,0 4,18,0
6,40,0 4,23,0

REFERENCES

[1] O. AXELSSON, Conjugate gradient type methods for unsymmetric and inconsistent systems of
linear equations, Linear Algebra Appl., 29 (1980), pp. 1-16.

[2] P. N. BROWN AND A. C. HINDMARSH, Reduced storage matrix methods in stiff ode systems, J.
Appl. Math. Comp., 31 (1989), pp. 40-91.

[3] W. F. CHAN, Deflated decomposition of solutions of nearly singular systems, Tech. Report 225,
Department of Computer Science, Yale University, New Haven, CT, 1982.

[4] ., Deflation techniques and block-elimination algorithms for solving bordered singular
systems, Tech. Report 226, Department of Computer Science, Yale University, New Haven,
CT, 1982.

[5] T. F. CHAN AND D. C. RESASCO, Generalized deflated block-elimination, Tech. Report 337,
Department of Computer Science, Yale University, New Haven, CT, 1985.

[6] W. F. CHAN AND Y. SAAD, Iterative methods for solving bordered systems with applications to
continuation methods, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 438-451.

[7] S. N. CHOW, J. MALLET-PARET, AND J. A. YORKE, Finding zeros of maps: Homotopy methods
that are constructive with probability one, Math. Comp., 32 (1978), pp. 887-899.

[8] P. CONCUS AND G. H. GOLUB, A generalised conjugate gradient method for nonsymmetric
systems of linear equations, in Lecture Notes in Economics and Mathematical Systems,
134, R. Glowinski and J. L. Lions, eds., Springer-Verlag, Berlin, 1976, pp. 56-65.

[9] E. J. CRAIG, Iteration procedures for simultaneous equations, Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1954.

[10] J. E. DENNIS, JR. AND K. TURNER, Generalized conjugate directions, Linear Algebra Appl.,
88/89 (1987), pp. 187-209.

[11] S. C. EISENSTAT, H. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for non-
symmetric systems of linear equations, SIAM J. Numer. Anal., 5 (1983), pp. 345-357.

[12] H. C. ELMAN, Iterative methods for large, sparse, nonsymmetric systems of linear equations,
Ph.D. thesis, Yale University, New Haven, CT, 1982.

[13] D. K. FADEEV AND V. N. FADEEVA, Computational Methods of Linear Algebra, Freeman, Lon-
don, 1963.

[14] P. E. GILL AND W. MURRAY, Newton-type methods for unconstrained and linearly constrained
optimization, Math. Programming, 28 (1974), pp. 311-350.

[15] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic Press, New York,
1981.

[16] M. R. HESTENES, The conjugate-gradient method for solving linear equations, Proc. Sympos.
Appl. Math., 6 (1956), pp. 83-102.

[17] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,
J. Res. National Bureau of Standards, 49 (1952), pp. 409-435.

[18] K. M. IRANI, M. P. KAMAT, C. J. RIBBENS, n. F. WALKER, AND L. T. WATSON, Experiments
with conjugate gradient algorithms for homotopy curve tracking, SIAM J. Optimization, 1
(1991), pp. 222-251.

46 C. DESA, K. M. IRANI, C. J. RIBBENS, L. T. WATSON, AND H. F. WALKER

[19] K. C. JEA, Generalised conjugate gradient acceleration of iterative methods, Ph.D. thesis,
University of Texas at Austin, Austin, TX, 1982.

[20] M. P. KAMAT, L. T. WATSON, AND J. L. JUNKINS, A robust and eJficient hybrid method for
finding multiple equilibrium solutions, in Proc. Third Internat. Symposium on Numerical
Methods in Engineering, Paris, 1983, pp. 799-808.

[21] H. H. KWOK, M. P. KAMAT, AND L. T. WATSON, Location of stable and unstable equilibrium
configurations using a model trust region quasi-Newton method and tunnelling, Comput.
& Structures, 21 (1985), pp. 909-916.

[22] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear systems of
which the coeJficient matrix is a symmetric m-matrix, Math. Comp., 31 (1977), pp. 148-
162.

[23] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617-629.

[24] W. C. RHEINBOLDT AND Z. V. BURKARDT, Algorithm 596: A program for a locally parameter-
ized continuation process, ACM Trans. Math. Software, 9 (1983), pp. 236-241.

[25] Y. SHAD, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp.,
37 (1981), pp. 105-126.

[26] , Practical use of some Krylov subspace methods for solving indefinite and unsymmetric
linear systems, Tech. Report 214, Department of Computer Science, Yale University, New
Haven, CT, 1982.

[27] Y. ShAD AND M. H. SCHULTZ, Conjugate gradient-like algorithm for solving nonsymmetric
linear systems, Math. Comp., 44 (1985), pp. 417-424.

[28] , GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[29] P. K. W. VINSOME, Orthomin, an iterative method for solving sparse sets of simultaneous
linear equations, in Proc. Fourth Symposium on Reservoir Simulation, Society of Petroleum
Engineers of the AIME, 1976, pp. 149-159.

[30] H. F. WALKER, Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152-163.

[31] , Implementations of the GMRES method, Comput. Phys. Comm., 53 (1989), pp. 311-
320.

[32] L. T. WATSON, An algorithm that is globally convergent with probability one for a class of
nonlinear two-point boundary value problems, SIAM J. Numer. Anal., 16 (1979), pp. 394-
401.

[33] A globally convergent algorithm for computing fixed points of C2 maps, Appl. Math.
Comp., 5 (1979), pp. 297-311.

[34] , Globally convergent homotopy methods: A tutorial, Tech. Report 87-13, Department
of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, 1985.

[35] , Numerical linear algebra aspects of globally convergent homotopy methods, SIAM Rev.,
28 (1986), pp. 529-545.

[36] L. T. WATSON, S. C. BILLUPS, AND A. P. MORGAN, HOMPACK: A suite of codes for globally
convergent homotopy algorithms, ACM Trans. Math. Software, 13 (1987), pp. 281-310.

[37] O. WIDLUND, A Lanczos method of a class of nonsymmetric systems of linear equations, SIAM
J. Numer. Anal., 15 (1978), pp. 801-812.

[38] D. M. YOUNG AND K. C. JEA, Generalised conjugate gradient acceleration of nonsymmetrizable
iterative methods, Linear Algebra Appl., 34 (1980), pp. 159-194.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 47-70, January 1992

() 1992 Society for Industrial and Applied Mathematics

003

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES*

MARIO ARIOLIt, IAIN DUFF:, JOSEPH NOAILLES, AND DANIEL RUIZ

Abstract. A block version of Cimmino’s algorithm for solving general sets of consistent sparse linear
equations is described. The case of matrices in block tridiagonal form is emphasized because it is assumed
that the general case can be reduced to this form by permutations. It is shown how the basic method can
be accelerated by using the conjugate gradient (CG) algorithm. This acceleration is very dependent on a
partitioning of the original system and several possible partitionings are discussed. Underdetermined systems
corresponding to the subproblems of the partitioned system are solved using the Harwell sparse symmetric
indefinite solver MA27 on an augmented system. These systems are independent and can be solved in
parallel. An analysis of the iteration matrix for the conjugate gradient acceleration leads to the consideration
of rather unusual and novel scalings of the matrix that alter the spectrum of the iteration matrix to reduce
the number of CG iterations.

The various aspects of this algorithm have been tested by runs on an eight-processor Alliant FX/80 on

four block tridiagonal systems, two from fluid dynamics simulations and two from the literature. The effect
of partitioning and scaling on the number of iterations and overall elapsed time for solution is studied. In
all cases, an accurate solution with rapid convergence can be obtained.

Key words, sparse matrices, block iterative methods, projection methods, partitioning, augmented
systems, parallel processing, block Cimmino method, conjugate gradient preconditioning

AMS(MOS) subject classifications. 65F50, 65F10, 65F20, 65Y05

1. Introduction. Consider the solution of the system

(1.1) Ax=b

where A is an m n sparse matrix, x is an n-vector, and b is an m-vector. Although
the experiments will examine the case when m is equal to n, the method is applicable
for any m and n. The analysis will be principally concerned with the case m =< n where
the system is consistent, that is, there exists a vector x satisfying (1.1). In the following,
we assume for simplicity that A has full row rank, that is, dim(A)= m.

The general solution to (1.1) can be expressed as the sum

(1.2) :+r/

where : is in the range of AT and r/ is in the nullspace of A. Thus

and, from (1.1), we have

so that is given by

:= ATz

AATz b

(1.3) A(AA)-lb

* Received by the editors December 11, 1989; accepted for publication (in revised form) November 12,
1990.

t Istituto di Elaborazione dell’Informazione, Consiglio Nazionale delle Ricerche, via S. Maria 46, 56100
Pisa, Italy.

$ Rutherford Appleton Laboratory, Didcot, Oxon OXll 0QX, England.
Ecole Nationale Sup6rieure d’Electrotechnique, d’Electronique, d’Informatique, et d’Hydraulique de

Toulouse, Institut de Recherche en Informatique de Toulouse, 2 rue Camichel, 31071 Toulouse Cedex, France.
Centre Europ6en de Recherche et de Formation Avanc6e en Calcul Scientifique, 42 av. G. Coriolis,

31057 Toulouse Cedex, France.

47

48 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

or

A+b

where A+ is the Moore-Penrose pseudoinverse of A. Because, usually, the solution to
(1.1) of minimum norm is required, the component r/is taken to be zero, so the solution
of (1.1) is given by (1.3).

Sometimes the solution needed is the one closest to a vector y, that is, an x
satisfying (1.1) such that

(1.4)

is minimized. This is given by

x P(A)Y + A+b

where Par(A) is the orthogonal projector onto the nullspace of A given by

where P(Ar), the orthogonal projector on the range of AT, is given by

p(AT) A+A.

In this paper we will analyse parallel implementations of block iterative methods
for solving (1.1) and (1.4). We describe the general framework in 2, the extension
to norms other than the Euclidean norm (1.4) in 3. In 4 we identify the iteration
matrix associated with the algorithm and introduce in 5 and 6 conjugate gradient
acceleration and the augmented system, which is used in the implementation of the
algorithm.

In 7 the numerical properties of this algorithm will be studied, illustrating its
performance on block tridiagonal matrices. We introduce in 8 the block SSOR method
of Kamath and Sameh (1988) and Bramley and Sameh (1990), which can be seen as
an alternative to the block Cimmino algorithm. In 9 some ellipsoidal norms, which
will be used to improve the performance on some of our test problems, are introduced
for block tridiagonal matrices.

In 10 we then describe some numerical experiments performed on the Alliant
FX/80, and we present some concluding remarks in 11.

2. Block iterative methods. The method which will be introduced can be considered
as a generalization of the method of Cimmino (see Sloboda (1988)), and will therefore
be called the block Cimmino method.

The blocks are obtained by partitioning the system (1.1) as

(2.1)

A b

A b
X’--

where 1 -<_ p -< m.
If we define by Pt(AiT) the projector onto the range of Ai7", and the pseudoinverse

of A as Ai+, the block Cimmino algorithm can be described in the following way.

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 49

ALGORITHM 2.1 (block Cimmino method).
Choose x(), set k 0
repeat until convergence

begin
do in parallel i-- 1,...,p

i(k) Ai+bi p(AiT)x(k)

(2.2)
A’+(b’- A’x(k))

end parallel
p

x(k+I) X
(k) 4- to

i(k)

i=1

set k k 4- 1
end

This gives rise to a general purpose iterative solver well suited for both shared
memory and distributed memory computers. If we take p m, which means that each
manifold from (2.1) is a hyperplane defined by one equation in (1.1), then Algorithm
2.1 becomes the algorithm of Cimmino (see Sloboda (1988)).

The iterative scheme (2.2) will converge for any pseudoinverse ofA (see Campbell
and Meyer (1979)) and, in particular, does not require A to be full rank. However,
with the use of the explicit formulation of A i+ introduced in (1.3), the partitioning of
the system has to be chosen so that the rows in each A are linearly independent. This
is possible even if A is not full rank.

A general study of this block-row method has been performed by Elfving (1980).
In this paper, he calls this the "block-row Jacobi" method. He shows the effect of row
and column partitioning, makes some comparisons with block SOR methods, and
studies the effect of the parameter to on the convergence of these methods.

First let us recall some results from Elfving (1980). Using the notation:
p p

ERj-- E P(A’r) Air(A’A)-1A,
i=1 i=1

QRJ--I-toER, for the iteration matrix,

(2.3) p(ER) =the spectral radius of ERj,

/Xmax the largest nonzero eigenvalue of ER,

/Xmin the smallest nonzero eigenvalue of ER,

we have the following:
(1) Suppose be (A) and x()(Ar), then the block-row method converges

towards the minimum norm solution if and only if 0< to < min (2, (2/p(ER))).
(2) The giving the optimal asymptotic rate ofconvergence is 2/(max+ min)-

3. The use of other norms. The solution of (1.1), (1.4) can be determined in any
ellipsoidal norm defined by

(3.l) IIxll x Gx
where G is an n x n symmetric positive definite (SPD) matrix.

When doing this, the arguments in 1 still hold, except that a generalized pseudo-
inverse (see Rao and Mitra (1971))

(3.2) A- G-Ar(AG-Ar)-,

50 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

must be defined in addition to corresponding oblique projectors

(G) =I (G)a(G-I(G)1AT) A;--1A and aW’(A) --" (G- A

The solution to

min Ily-xll such that x {x

is then given by

(G)(3.3) x r(A)y+ A-lb.

The block Cimmino algorithm in 2 can be defined in terms of this general norm.
We will now show that the use of G # I can be viewed as a right-hand side

preconditioning of the matrix A.
From (3.1), (3.2), and (3.3), and knowing that any SPD matrix G can be decom-

posed as G1/2G1/2, with G1/2 SPD, it follows that:

(3.4)

Then the iteration matrix becomes:

where

QRG] I-- o)E(G)Rj
p

I- o)G-1/2 P((AiG-1/2)T)G1/2

i=1

G-1/2QRjG1/2

p

(3.6) Q*j I- toE* I- w Z P((AiG-1/2)r)
i=1

Thus the iteration matrix associated with the matrix A and using the ellipsoidal
norm, and the one associated with the matrix AG-/2 and using the two-norm, are
similar. However, in the case of the G-norm, all the convergence properties (which
are determined only by the spectrum of the iteration matrix) can be written in a similar
way to the previous ones (2.3), where block-rows AiG-1/2 are considered instead of
block-rows Ai.

So from now on, to simplify notation and formulae, we will, as in 1 and 2,
usually consider G I, knowing that other choices for G can easily be incorporated.

4. The iteration matrix. Let the QR decomposition of the blocks Air be given by

A/r: QiRi, i= 1,’’’, p where A is an mi x n matrix of full row rank,

Qi n mi, QiTQi= Imim
R m x mi, R nonsingular ,,.rper triangular matrix;

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 51

then"

(4.1)

p

E A (AiAi)-IA
i=1

P
iRi Qi 1RiTQ (RiTQir Ri) Q

i=1

P
y Q’R’(R’TRi)-IRiTQiT

i=1

P

QiQiT

i=l

__(Q1... Qp)(Q1...Qp)T.

But from the theory of the singular value decomposition (see Golub and Kahan
(1965) and Golub and Van Loan (1989)), the nonzero eigenvalues of (Q1... Qp)
(Q1... Qp)7- are also the nonzero eigenvalues of (Q1... QP)T(Q... Qp).

Thus the spectrum of the matrix ERj is the same as that of the matrix

(4.2)

I,,m, QIQ2 QIQt’

Q2Q1 im2xm2 Q2rQ3 Q2Qp
QpQ Impxm,

where the Q QJ are matrices whose singular values represent the cosines of the
principal angles between the subspaces (Ai) and (AT) (see Bjbrck and Golub
(1973)). This implies that a preconditioner, to be successful, should modify the principal
angles between the subspaces t(Ai), in order to make these subspaces as much
orthogonal between each other as possible.

Another implication ofthe previous discussion concerns the choice ofthe partition-
ing (2.1). As stated in Bramley and Sameh (1990), an ill-conditioned matrix A has
some linear combination of rows almost equal to the zero vector. After row partitioning,
these may occur within the blocks or across the blocks. If, in the block Cimmino
algorithm, we assume that we compute the projections on the subspaces exactly, the
rate of convergence of the method will depend only on the conditioning across the
blocks. However, if the method used for solving the subproblems is sensitive to
ill-conditioning within the blocks, we can quickly converge to the wrong solution.
Thus, for a robust algorithm, we must use the most stable algorithm for computing
the projections combined with a partitioning that minimizes the ill-conditioning across
the blocks.

5. Conjugate gradient acceleration. Even when using the optimal w introduced

before, the convergence can still be slow. Thus it is natural to try to accelerate the

iterative scheme.
The equalities in (4.1) show that (I-QRj)=wER is symmetric positive semi-

definite for any o > 0, and is definite if and only if A is square and of full rank. Now,
in the case of ellipsoidal norms as defined in 3, (3.5) and (3.6) ensure that the matrix

G1/(I Q))G-/2 will have these properties. Thus G/2 can be seen as a symmetrization
matrix for the block Cimmino method (see Hageman and Young (1981)), and so the

CG acceleration procedure can be applied to the preconditioned case in the following
manner"

52 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

ALGORITHM 5.1 (conjugate gradient acceleration).
x() is arbitrary, p(o)= 8(o),
and 6(k is the pseudoresidual vector defined, for k 0, 1,- ., by

p
k) QR)X’)- xk)+ tO Ai-C-,bi

i=1

for k 1, 2,..-, until convergence do"

X
(k) X(k-l) + Ak_p(k-)

p(k) (k) + ak(k-1),
(G/, G/:)

ak (G/2(k_), G/2(k-1))

1), G

(-,, (-Q)-,)G

where (.,.) denotes the dot product in the G norm viz.

(x, x) xGx.

The two main reasons for our choice of CG acceleration are:
(1) It can be seen from the above equations that the CG acceleration is independent

of the choice of the relaxation parameter to, in the sense that the sequence of iterates
xck) is the same for any nonzero to (provided the starting point x) is the same). This
is the reason why we did not emphasize the use of to too much in the previous sections.

(2) It is very simple to use ellipsoidal norms in the CG acceleration, because the
only requirement is the ability to compute the matrix-vector product relevant to working
with the dot product in the G norm. The matrix G can thus be generated implicitly or
stored in any appropriate way.

6. Use of augmented systems in solving subproblems. When solving the subproblems
(2.2), the use of the augmented system approach has been chosen for two main reasons.
First, it is more stable than the normal equations approach (see Arioli, Duff, and
de Rijk (1989)) because it avoids building and storing the normal equations for each
block row Ai. This can be useful for two reasons. It is less sensitive to ill-conditioning
within the blocks caused by partitionings where rows within a block are nearly linearly
dependent. Also, the kind of preconditioners (ellipsoidal norms) that will be used in
the experiments introduce some ill-conditioning within the blocks. Second, the use of
ellipsoidal norms and the computation of the corresponding oblique projectors can
be trivially accommodated, as we will see in the following.

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 53

In the augmented system approach, the system

A _Aix

whose solution is

V _(AiG-1AiT)-lr

U G-Air (AiG-1Air)-ri,
is considered.

We solve the augmented systems with the sparse symmetric linear solver MA27
from the Harwell Subroutine Library (see Duff and Reid (1983)). The solver MA27
computes the LDLT decomposition of a permutation of the augmented matrix, using
a mixture of lx I or 2x2 pivots chosen during the numerical factorization. The
resulting L and D factors are then used to solve the augmented systems by forward
and backward substitution in the usual way.

It must be emphasized that the method (2.2) is totally independent of the choice
of the solvers for the underdetermined subproblems. For instance, in some problems
it may be preferable to use a solver adapted to the structure of the block A. In special
cases, several different solvers might be used, one for each different kind of block Ai.

7. Effect of the partitioning. We will now focus on some particular partitionings
of the system (1.1), and show how the algorithm can exploit them.

7.1. Two-block partitioning. Assume that the matrix A is partitioned in two blocks

where and have rn and rn rows, respectively. Assume, without loss of generality,
that ml >- m:. With such a partitioning, the iteration matrix Qm can be considered as
I- to(P1 + P2), where P1 P(Alr) and P2 P(A2T) So, as in 4, the matrix ERj PI.J+ P2
can be reduced to (Q1Q2)(Q1Q2)r, and from (4.2), the spectrum of the iteration matrix
QRJ is the same as that of the matrix

(7.1)
(1 to)I,,
-toQ2TQ (1 to)Im2m/"

Since we know from 5 that the block Cimmino algorithm with conjugate gradient
acceleration is independent of to, we can take to- 1, and matrix (7.1) becomes

QIQ
(7.2, (.__0 m2m2

)
Then, looking at the shape of the rectangular submatrix QlQ2, which has rrl rOWS

and in columns (ml >_--in2) and therefore a rank not greater than rex, it follows that
there are at most 2m2 nonzero eigenvalues.

The finite termination property of the conjugate gradient algorithm suggests that
the block Cimmino algorithm with CG acceleration generally works better for small
m2, and in exact arithmetic takes not more than 2m2 steps for convergence. This is
another reason for the choice of the conjugate gradient acceleration.

7.2. Block tridiagonal structures. We now concentrate on block tridiagonal
matrices, which are quite general patterns very common in partial differential equation

54 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

discretization, and are obtainable from general systems as a byproduct of bandwidth
reduction (see, for example, Duff, Erisman, and Reid (1986, pp. 153-157)). For such
structures, a partitioning equivalent to the two-block one can be introduced and used
efficiently for obtaining fast convergence.

Consider, for instance, a block tridiagonal matrix A with blocks of size l l,
partitioned as follows:

A

A4

A.

where A has ki x rows, ki >= 2, 1, 2, , 5. Then (AiT) and (Ai+2T), 1, 2, 3,
represent orthogonal subspaces, so that

P(AT) + P(Ai+2T) P(AiT))(Ai+2T).

On the one hand, matrices of this form can therefore be easily partitioned in
sufficient blocks to utilize all the processors of the target machine (provided the matrix
A is large enough in comparison with the size of the tridiagonal substructure). On the
other hand, the problem being solved is equivalent, after permutation of the rows of
the matrix A, to the one defined by taking only two blocks B and B2, where

thus

A

B2 A

A4

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 55

Then the nice property of the two-block partitioning discussed in the previous section
is maintained while a good degree of parallelism is obtained.

If ml and me denote the number of rows of B and B2, respectively, we observe
that it is easy to vary the number of zero eigenvalues in the iteration matrix, setting it
close to zero by taking the same size for the A in B as for the A in B2 (ml---m),
or setting it as big as possible (ml >> m2) by taking large blocks A in B, and defining
small interface blocks in B- of size 2 (the minimum required for making the A in
B structurally orthogonal).

A good partitioning strategy must compromise between reducing the size of the
interface block B, with the aim of reducing the number of CG iterations, and
maintaining the degree of parallelism of the method. The degree of parallelism involves
two things" first, the number of blocks in the partitioning compared to the number of
processors of the target machine, and second, the size of these blocks compared to
the amount of work the different processors will have to perform, which affects
granularity and load balancing.

We remember from 3 that we can easily incorporate ellipsoidal norms, replacing
orthogonal projectors by oblique ones. But in this case, when looking for partitionings
leading to a two-block partitioning, we must ensure that the right-hand side precon-
ditioning matrix G-1/2 (see 3) preserves the orthogonality between the subspaces
(AT) in each of the two blocks B and BE of the given two-block partitioning.

8. Block SSOR method. Kamath and Sameh (1988) use a block SSOR iterative
scheme with a two-block partitioning for block tridiagonal structures. They consider,
however, only the partitioning defined by taking equal-sized blocks of the smallest
possible size for a matrix partitioned into two blocks (twice the number of rows of
one block in the block tridiagonal structure). This leads to a high degree of parallelism,
but also to the largest number of nonzero eigenvalues in the iteration matrix.

The block SSOR algorithm with two-block partitioning (as described in 7.2) can
be written in the following way:

ALGORITHM 8.1 (block SSOR method).
Choose x(), set k 0
repeat until convergence

begin
Z X(k)

z z + toB1/(b Bz)
Forward sweep B2+(b2

Z Z
2 "31- (.0 B2z2)

Z Z + toB2+(b2 B2z3)
Reverse sweep z5 z4 + toBl/(b Blz4)

x(g+l) z5, set k k + 1
end

where the current iterate is projected in sequence onto the different subspaces using
the updated value each time.

The iteration matrix for this algorithm can be expressed as a product of projectors
instead of a sum as in the block Cimmino algorithm, viz.,

QRS (I- toa(Br))(l toP(B2r))2(l toa(ar))
where one projection in the central part of the algorithm can be avoided, because of
the idempotency of projectors.

56 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

A detailed study of the block SSOR algorithm and of its iteration matrix is
performed by Bramley (1989) and by Bramley and Sameh (1990). They show that,
even when conjugate gradient acceleration is used, the first projection can also be
avoided, provided that to 1 and that x is such that Blx=b. Therefore, with the
two-block partitioning, one iteration of block SSOR has the same cost in number of
flops as one iteration of block Cimmino.

It was shown by Elfving (1980) that, with to 1, and the same kind of partitioning,
the spectrum of the iteration matrices for the two algorithms are:

/k +COS I3’k, k 1,. ,
for block Cimmino: /k --COS l’k_m:z, k m2 + 1, , 2m2,

/k --0, k 2m+ 1,. ., n;

Ak COS
2 I3’k, k 1, , m,

for block SSOR:
hk =0, k rn2+ 1,. , n

where {k} are the principal angles between (BT) and (B2T).
Thus, with two-block partitioning, the block SSOR algorithm with CG acceleration

should converge in about half the number of iterations as the block Cimmino algorithm
with CG acceleration.

Similar comparisons between block Cimmino and block SSOR can also be found
in Bramley (1989) and in Bramley and Sameh (1990). They show that, in general, the
block SSOR iteration matrix has more eigenvalues collapsed to zero than that of block
Cimmino, which will benefit the convergence of block SSOR. But we must not forget
that the degree of parallelism in the block Cimmino method is higher because all the
projections can be performed in parallel. This is not the case for the block SSOR
method where information must be updated from one subproblem to the next so that
the subspaces must be orthogonal to permit parallelism.

However, when using two-block partitioning on shared memory machines, we
have found experimentally that block SSOR is still faster because memory bank conflicts
prevent block Cimmino from attaining twice the speedup of block SSOR. At any rate,
in the following, results and comments on various two-block partitionings will be given
for the CG accelerated block Cimmino scheme only, because the aim here is not to
compare the two methods in terms of efficiency, but to emphasize our approach to the
implementation of row projection methods, using block Cimmino by way of illustration.
Different techniques have been introduced in the previous sections, e.g., the augmented
system, the ellipsoidal norms that can easily be incorporated in the augmented system
approach, and the varying of the relative sizes of the blocks in the two-block partition-
ings. The experiments are designed to emphasize these novel aspects.

The main reason why we have chosen block Cimmino is that its degree of
parallelism depends only on the partitioning and not on special properties of structural
orthogonality between sets of equations. Thus block Cimmino provides more degrees
of freedom for the choice of any ellipsoidal norm as a preconditioner because it is not
necessary to preserve the structure of the original matrix to maintain the degree of
parallelism.

9. Use of ellipsoidal norms. In this section we introduce a particular kind of
ellipsoidal norm associated with two-block partitioning. This will be used to improve
the convergence on some of the test problems.

Consider a two-block partitioning as shown in Fig. 9.1. The aim is to make the
two subspaces, generated by the two sets of rows, nearly orthogonal so that the

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 57

Preconditioning

II

FIG. 9.1

eigenvalues of the iteration matrix (which are the cosines of the principal angles
between the two subspaces, as shown in 8) will all be small. The solution would then
be obtained rapidly.

The simplest way to make two sets of rows in a matrix orthogonal is to multiply
their overlapping part by zero. But obviously, if we do this, the resulting system can
be rank deficient. In order to avoid this, we instead divide them by a large number a,
as shown in Fig. 9.1. This leads to a diagonal matrix G with a 2 in positions corresponding
to the overlapping columns and 1 elsewhere, remembering from 3 that it is G-1/2

which preconditions the matrix A.
Of course, with such a preconditioner, some numerical instability in the factoriz-

ation of the augmented systems can be expected if a very large value of a is used. We
will see in 10.4 that a value of c 10 gives the best compromise for our test problems
and that much larger values for c introduce numerical instabilities without improving
the rate of convergence. Also, the overlapping part must not involve all the columns
of the matrix, because in that case the preconditioning would be equivalent to a scaling
of the complete matrix, which would not modify the principal angles between the two
spaces at all.

We note that this scaling preserves the block structure of the partitionings, as
required in 7.2, and thus can also be used with the block SSOR method of Kamath
and Sameh (1988). However, it cannot be applied with their particular partitioning,
because it involves a complete overlapping of the two blocks.

58 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

10. Numerical experiments. In this section we present some numerical experiments
for testing the behaviour of our CG accelerated block Cimmino method. We first
describe three different test problems and the particular points we wish to clarify by
means of these tests. Then we analyse the results obtained on the eight-processor
Alliant FX/80 at CERFACS, varying the two-block partitionings. Afterwards, we
present results obtained using preconditioners of the kind discussed in 9 and show
how they decrease the number of iterations and the elapsed time for some of our test
problems. Finally, we introduce a fourth test problem derived from Bramley (1989)
and describe the results obtained using different kinds ofpartitioning from the two-block
ones. These supplementary runs permit the comparison of our approach with the one
of Bramley (1989) and Bramley and Sameh (1990) and an illustration of their
differences.

10.1. The test problems. We will introduce the first three test problems. All are
square problems, although we note that our algorithm does not require this. The first
two problems come from simulation models of real flows developed at CERFACS in
the fluid dynamics team.

The first model, developed by Petrel, concerns the study of a body entering the
atmosphere at a high mach number. It is based on a finite-volume discretisation of the
Navier-Stokes equations coupled with chemistry. For our test, we consider a two-
dimensional problem which leads to three variables per mesh point (energy and two
velocities), plus two species in the chemistry which lead to two density variables per
mesh point, making a total of five variables. The discretization is performed using an
implicit scheme on a curvilinear mesh of 69 60 points. This leads to block tridiagonal
matrices of order 60 x 69 x 5 20,700. The off-diagonal blocks are block diagonal with
69 blocks of 5 5 elements. The diagonal blocks have a block tridiagonal structure.
The test problem solved is taken from the first time step in this time-dependent problem.
The matrix is unsymmetric and nondiagonally dominant. The right-hand side is very
large because the initial guess of the parameters is far from the steady-state solution.
Therefore, a large correction to this guess is expected, and in this case, the solution
need not be very accurate.

The second model, developed by Weinerfelt, is from the study of a two-dimensional
wing profile at transonic flow (with no chemistry effects). It is still based on finite-volume
discretisation, but this time, of the Euler equations. We are also looking for the
steady-state solution, and the discretisation is performed using an upwind and implicit
scheme on a curvilinear mesh of80 x 32 points. This leads to unsymmetric but diagonally
dominant block tridiagonal matrices of order 32xS0x3=7,680. The off-diagonal
blocks are block diagonal with 80 blocks of 3 x 3 elements. The diagonal blocks are
of the same order and have the following block triangular circulant structure:

80x3

::

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 59

This time the test problem solved is close to the steady-state solution, and a very
accurate solution is required.

The other test problem comes from the paper by Kamath and Sameh (1988). It
is obtained by application of the finite-difference method to a two-dimensional partial
differential equation. The right-hand side is computed using a given solution

PROBLEM 3 (Kamath and Sameh (1988)).

Ux Uyy "-{- 1000exYl,lx 1000exytly g, u x + y,

on a 64 x 64 grid. We have selected this problem for the following reasons. First, as
will be shown, it converges very slowly, but we will try to improve the situation using
ellipsoidal norms. Second, this problem is the particular one for which Kamath and
Sameh show that their block SSOR method converges while the iterative solver GMRES
from the Yale package PCGPACK does not. By means of this test, we want to indicate
that our method belongs to the same class of robust iterative solvers as the block SSOR
method of Kamath and Sameh. This is also shown by Bramley and Sameh (1990),
who compare different accelerated row projection methods, including the block
Cimmino method with CG acceleration, with other iterative methods such as GMRES
from PCGPACK, CG on the normal equations, and preconditioned versions of these
two. They also use the previous equation and several other problems on three-
dimensional grids.

10.2. Different partitionings. We now introduce the partitionings by which we
hope to influence the number of iterations as indicated in the discussion in 7. Since
the tests are performed on an eight-processor Alliant, we consider the five following
partitionings.

(1) A single block to provide a comparison with the direct solution of the
augmented system on the overall matrix.

(2) Eight equal-sized blocks, in an attempt to balance the work on the eight
processors of the Alliant FX/80. For this partitioning, however, the sizes of the two
blocks in the equivalent two-block partitioning (after reordering the rows) are equal,
so that the number of nonzero eigenvalues in the iteration matrix is expected to be
maximum.

(3) Five large blocks in B and four minimum-sized blocks in B2. This partitioning
should minimize the number of iterations, but gives a poor balancing of the work. It
is then interesting to see if the gain in elapsed time due to the expected decrease in
the number of iterations can overcome the loss of parallelism in the partitioning.

(4) A compromise between the size of the interface block and the degree of
parallelism. For instance, if we consider a block tridiagonal structure with 32 32
blocks (which is the case for the problem given by Weinerfelt), we can partition by
blocks of rows according to

4 4 4 4 4 1 (AiinB1)
1 2 2 2 2 2 (A in B2)

where we give in sequence the number of block-rows for each partition. Here the size
of the interface B is 11 block-rows, and the work is well balanced, with five processors
handling blocks of size 4 (in number ofblock-rows) and the three remaining processors,
each handling two blocks of size 2, or one block of size 2 plus two blocks of size 1.
Of course, the number of rows in each block is only a rough heuristic for calculating
the amount of work that will be performed by MA27 in the corresponding augmented
systems. However, as we will see from the results, it gives a good estimate.

60 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

(5) The partitioning of Kamath and Sameh (1988), defined by taking equal-sized
blocks of the smallest possible size for a matrix partitioned into two blocks (two times
the number of rows in one block of the block tridiagonal structure). Although this
partitioning also leads to a large interface block and to good load balancing, it has
the added advantage that it minimizes the overall fill-in in the factorization of the
different augmented systems because they are all of the smallest size. This leads to a
smaller elapsed time for the factorization part, which can be of great benefit, especially
in the case where the time for factorization is greater than the time for iterations.

10.3. Results. We will now present the results obtained on the Alliant FX/80. All
the tests are performed in double precision (64 bit words) with machine precision
2.2 10-16.

For each test problem we give two figures, each with a histogram and a graph. In
the first figure the histogram gives, for each partitioning, the number of floating-point
operations for the factorization of all the augmented systems and the number of
floating-point operations for the iterative part (computation of the minimum norm
solutions and CG acceleration), and the graph in the same figure shows the number
of iterations performed to reach the accuracy specified. With this histogram, we can
see whether the factorization or the iteration is the more costly and also the effect of
the partitionings on the number of iterations. The histogram in the second figure gives,
for each partitioning, the total elapsed time for the solution (divided into the elapsed
time for analysis and factorization of the augmented systems and the elapsed time for
the iterative part), and the graph in the same figure gives the speedup of the method
using the eight processors of the Alliant FX/80. The speedup measure used is the ratio
between the elapsed time for execution on one processor and the elapsed time for
execution on eight processors, using the same code. With this histogram, we can see
which partitioning is the best, and also how well the work is balanced. We present, in
tabular form in the Appendix, the results used in generating these figures.

For the stopping criterion of convergence, we use the scaled residual tok defined
by

IlAxk) -bll

For an assigned value of TOL, if, at step k, tok TOL, we stop the process. A small
value for Ok means that the algorithm is normwise backward stable (see Oettli and
Prager (1964)) in the sense that the solution x(k) is the exact solution of a perturbed
problem where the max norm of the error matrix is less than or equal to tOg. The bound

][x(g)-xll--<tOk(n+ 1) [IAI[I[A-1[I + O(tO)

also holds, which gives an estimate of the normwise relative error of the solution.

10.3.1. Problem given by Perrel. In the problem from Perrel, the iterations were
stopped when tOk TOL 10-9 because, as we said in 10.1, we do not need very high
accuracy for this problem. Results for partitioning (1) are not given because the direct
solution of the single augmented system produces too much fill-in for the memory of
the Alliant. We present the results in Figs. 10.3.1 and 10.3.2 and, in tabular form, in
Table A.1 in the Appendix.

The first remark is that the algorithm converges very quickly for this problem
considering that the matrix is of order 20,700 and is not diagonally dominant. As
expected from the discussion in 10.2, the minimum number of iterations is attained

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 61

2000

1800

1600

1400

1200

1000

800

600

400

200

0
3 4 5

Different partitionings

5O

4O

3O

2O

10

Iterations

Number of operations in
iterative part

Number of operations in
factorization

Number of iterations

FIG. 10.3.1. Perrel’ test problem, to <= 10-9.

300

25O

200

150

100

5O

2 3 4 5

Different partitionings

8 Speedup

7
Elapsed time for iterative

6 part

5 Elapsed time for

4 factorization

3 [Elapsed time for analysis

2 - Total speed up of the
method (8 processors)

FIG. 10.3.2. Perrel" test problem. (,o <- 10-9.

by partitioning (3), and partitioning (4) gives a good compromise between the number
of iterations and the balancing of the work between factorization and iteration. In this
problem, the fill-in in the direct solution of the subproblems is very significant and is
more so when the subproblems are larger. Thus a partitioning with the smallest blocks
possible should be the best even if this causes an increase in the number of iterations.
This is illustrated by the results of partitioning (5), which has the least elapsed time
although it has the greatest number of iterations. For such partitionings, we will also
attain a higher speedup because, with the smaller blocks, there will be less cache
conflict when solving the subsystems simultaneously on the different processors.

We also tried to obtain a more accurate solution with tOk 10-14. The results are
summarized in Table A.2 in the Appendix. All the partitionings achieved this accuracy
with partitioning (5) again requiring the largest number of iterations but the least
elapsed time because, even if the gap between the number of iterations for the different
partitionings is increased for such an accuracy (it becomes roughly double that for
the previous accuracy), the time and the amount of work performed during iterations
still remains proportional to the fill-in produced during the factorization.

10.3.2. Problem given by Weinerfelt. In the problem from Weinerfelt, a very accur-
ate solution is needed and so iterations are stopped when tOk TOL 10-14. We present

62 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

160

140

120

100

80

60

4O

20

0
3 4 5

Different partitionings

20

18

16

14

12

10

8

6

4

2

0

Iterations

Number of operations in
iterative part

Number of operations in
factorization

Number of iterations

FIG. 10.3.3. Weinerfelt’s test problem. (o 10-14.

25

20S
e
c 15
o
n 10
d
s

5

2 3 4 5

Different partitionings

8 Speedup

7
Elapsed time for iterative

6 part

5 Elapsed time for

4 factorization

3 r-] Elapsed time for analysis

2 Total speed up of the
method (8 processors)

FIG. 10.3.4. Weinerfelt’ s test problem. (ok <= 10-14.

the results in Figs. 10.3.3 and 10.3.4 and, in tabular form, in Table A.3 in the Appendix.
Again, results for partitioning (1) are not shown in the figures, not because the direct
solution of the augmented system with the original matrix does not fit in the memory
of the Alliant, but because it takes so many operations and so much time that it would
not make sense to display it on the same scales as for the other partitionings. However,
the results from partitioning (1) can be found in Table A.3 in the Appendix.

Again, the algorithm converges very quickly. Additionally, the number of iterations
is not very sensitive to the partitioning. We thus suspect a similar clustering of
eigenvalues for the iteration matrices from the different partitionings, an effect which
may be due to the diagonal dominance of the original matrix. Partitionings (4) and
(5) give a good speedup. This supports what we have said in 10.2, which is that the
number of rows in the blocks is a reliable estimate for the amount of work that will
be performed by MA27 in solving the augmented systems. In this case we cannot say
that the factorization time dominates the time for iteration, but partitioning (5) still
remains the best in terms of elapsed time, because now there is little difference in the
number of iterations for the different partitionings and, of course, partitioning (5) still
yields the least fill-in.

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 63

10.3.3. Problem 3 (two-dimensional PDE on a 64 x 64 grid). Problem 3 is the one
on which Kamath and Sameh (1988) and Bramley and Sameh (1990) show that row
projection methods are more robust than GMRES from the Yale package PCGPACK.
The results, which are given in Figs. 10.3.5 and 10.3.6 and in Table A.4 in the Appendix,
show that the block Cimmino method converges to high accuracy (tOk <-- TOL 10-14),
but the direct solution of the whole system is competitive, even though the solver
MA27 does not exploit parallelism.

M

220 400
200 350
180
160 300

140 250
120

200
100
80 150

60 100
40
20 50

0 0
2 3 4 5

Different partitionings

Iterations

Number of operations in
iterative part

Number of operations in
factorization

Number of iterations

FIG. 10.3.5. Problem 3. to 10-14.

6O

50
S
e 40
c
o 30
n
d 20
s

10-

8 Speedup

Elapsed time for iterative
part

Elapsed time for
factorization

Elapsed time for analysis

Total speed up of the
method (8 processors)

2 3 4 5

Different partitionings

FIG. 10.3.6. Problem 3. O) 10-14.

The time for the iterations now completely dominates the time for factorization,
and partitioning (3) requires the least number of iterations. Partitioning (2) with the
eight equal-sized large blocks is the fastest. We remark that for partitionings (2), (4),
and (5), the number of operations performed decreases and the speedup increases,
respectively, but the elapsed time for reaching the solution increases gradually from
partitioning (2) to (4) and (5). This effect, which is more deeply felt for smaller blocks,
is due to a large number of delayed pivots and 2 x 2 pivots generated by MA27 during
the factorization; the former increases the work involved while the latter disrupt the
vectorization of the factorization and also of the forward and backward substitutions
performed by MA27CD at each iteration.

10.4. Improvements with ellipsoidal norms. In this section we will show improve-
ments to the previous results by using the ellipsoidal norms introduced in 9.

64 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

A wide range of values for the parameter a in the matrix G (see 9) were tried
to improve the results on all of our test problems. This was not very helpful for the
two problems coming from fluid dynamics simulations. For these, the convergence (as
shown in 10.3) was already very fast without the ellipsoidal norm. Thus, on the one
hand, the number of iterations could be decreased by a small amount only and, on
the other hand, more ill conditioned subsystems created more problems for the
factorization. For this reason results are not given in this section for the two problems
of Weinerfelt and Perrel. However, for the test coming from the set of Kamath and
Sameh problems, and for which the convergence was quite slow, the use of ellipsoidal
norms improved the results significantly.

For this test problem, better results, in terms of both accuracy and convergence,
were obtained for all the partitionings on which we could apply this kind of ellipsoidal
norm. These were partitionings (2), (3), and (4). Partitioning (1) is only one block,
and partitioning (5), as we said in 9, is one on which these ellipsoidal norms are
equivalent to a complete scaling of the original matrix by a factor a.

Figure 10.4.1. shows, for Problem 3 with partitioning (4), the convergence for
different values of the parameter a. The tests showed that it was not worth taking a
very large a, but that the best improvements in convergence were obtained for a of
order 10. Larger values for a introduce some oscillations in the convergence curve, as
can be seen in Fig. 10.4.1. This phenomenon is due to the ill-conditioning of the
subproblems when a increases. If iterative refinement (see Arioli, Duff, and de Rijk
(1988)) is used in the computation on the subproblems, then the accuracy reached is
the same, and the convergence behaviour for large a approaches that for a of order
10 but is never better than it.

PROBLEM 3 (N 4096) WITH ROW PARTITIONING 4

10
i0-1 ..vRomomsa..H.a....1.o,

-o eo i l soo so oo oo

FIG. 10.4.1. Effect of ellipsoidal norms. Two-dimensional PDE Problem 3. Partitioning (4).

Table A.5 in the Appendix gives iteration counts, times, and flop counts obtained
using ellipsoidal norms with a 10, on Problem 3 for partitionings (2), (3), and (4),
and for a value of TOL equal to 10-14 in the stopping criterion.

The ratio between the number of flops for factorization before and after the
preconditioning varies with the different partitionings. For example, in Problem 3,
these ratios are 1.54 (partitioning (2)), 1.4 (partitioning (3)), and 1.47 (partitioning (4)).

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 65

10.5. Memory requirements. In this section we give the memory (integer and real)
required by MA27 when solving the subproblems. These numbers do not take into
account the arrays needed in the algorithm to perform all the other stages of the
computations (conjugate gradient acceleration, etc.). These missing numbers can,
however, be directly determined knowing the size of the original matrix and the
partitioning in use.

It can be seen from Table 10.5.1 that the memory required decreases as the size
of the blocks in the partitionings decreases.

TABLE 10.5.1
Memory requirements in thousands ofwordsfor handling the LUfactors

of the different blocks.

Problem Problem 2 Problem 3
N 20,700 N 7,680 N 4,096
NZ 511,050 NZ 113,760 NZ 20,224

Part. Int. Real Int. Real Int. Real

123 4,328 65 697
2 368 4,881 171 611 50 167
3 400 6,328 142 907 55 207
4 430 3,539 187 429 48 103
5 676 1,067 172 375 60 56

We do not want, however, to focus too much on these numbers because the version
of MA27 we are using does not perform well on augmented systems since the analysis
phase assumes that the diagonal of the matrix is full. For instance, the ratio between
the estimated amount of real storage (given by the analysis) and the actual amount of
real storage used, can be as high as 2.5 for Problem 1 with partitioning (3) (the one
with the largest blocks). A new version of MA27 that recognizes and exploits the zeros
on the diagonal and behaves much better in terms of fill-in is being developed now at
Rutherford Appleton Laboratory (Duff et al. (1991)).

Table 10.5.2 shows the memory required with and without the preconditioner,
with a 10, for Problem 3. We see the bad effect on the fill-in due to the ill-conditioning
that our scaling introduces in the augmented systems. In particular, partitioning (3)
gives the least increase in memory requirement when going from the unpreconditioned

TABLE 10.5.2
Memory requirements in thousands of words for handling

the LU factors with and without preconditioning.

Problem 3
N 4,096 NZ 20,224

Unpreconditioned Preconditioned

Part. Int. Real ce Int. Real

2 65 167 10 53 212
3 55 207 10 56 247
4 48 103 10 48 125

66 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

case to the preconditioned one (19 percent more). In this partitioning, the size of the
interface is minimized; therefore, the size of the overlapping part (see 9) is minimized
and the augmented systems are not strongly affected by the scaling.

10.6. More experiments. Bramley (1989) and Bramley and Sameh (1990) describe
implementations of the block Cimmino and block SSOR algorithms that are different
from the ones illustrated here. They test the robustness of these row projection methods
on a set of linear systems coming from the discretization of three-dimensional partial
differential equations by the seven-point formula.

We will now present more tests related to one of their test problems in order to
illustrate the difference between our approach and theirs. Consider the following
three-dimensional partial differential equation defined on the unit cube

Uxx + blyy "JI- blzz + 100xuz -yUy + ZUz nt-
100(x + y + z)u

xyz

where the right-hand side F is computed using the solution

u exp (xyz) sin (Trx) sin (Try) sin (Trz).

=F

The test problem is obtained by discretizing the previous equation by the seven-point
finite-difference formula on a 24 x 24 x 24 mesh. This problem is Problem 3 in Bramley
and Sameh (1990) and Problem 5 in Bramley (1989).

Bramley and Sameh implement block Cimmino and block SSOR using the normal
equations approach for computing the projections instead of the augmented system
approach described in 6. According to this choice, they analyse the most suitable
row partitioning strategies, considering other partitionings than the two-block one. In
fact, taking advantage of the nested level of tridiagonal structures in the seven-point
finite-difference operator matrices, we can define the following row partitionings:

(1) A two-block partitioning of the kind (5) described in 10.2, with 12 blocks
of 2 24 x 24 rows each.

(2) A three-block partitioning (see Kamath and Sameh (1988)) with 24 blocks of
24 24 rows each.

(3) A six-block partitioning, with 24 x 8 blocks of 3 24 rows each.
(4) A nine-block partitioning, with 24 x 24 blocks of 24 rows each.

Partitioning (4) is reported by Bramley and Sameh (1990) as the one giving the best
average performance.

In the runs, the value of TOL in the stopping criterion has been set to TOL 10-1

because it was the value giving results similar to those provided in Bramley (1989,
p. 158) and in Bramley and Sameh (1990) in terms of the residual ([[Axk)-bll) and
the error (llxk)-x[l). For ease of comparison, we give in Table 10.6.1 the values for

TABLE 10.6.1
Behaviour of the block Cimmino method on an Alliant FX/80 (eight processors). Three-

dimensional partial differential equation, tOg <-10-.

Part. No. iter.
Elapsed time (seconds)

Analysis Factorization Iterations IlAxk-bll Ilx<k)-xll

128 6.6 13.8 103.9 1.34E- 5 9.57E- 4
2 127 4.7 6.7 83.8 1.25E 5 8.37E- 4
3 383 7.9 17.3 548.8 1.35E- 5 1.85E- 3
4 205 14.1 20.5 705.4 1.27E 5 7.90E -4

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 67

the errors and the residuals reached in the tests. However, it must be observed that
the value of tOk does not decrease much after it has been reduced to 10-11.

The experiments show that the behaviour of the number of iterations as a function
of the partitioning is quite irregular. Moreover, for this problem and with the partition-
ing (4), Bramley and Sameh (1990) report that the block Cimmino algorithm converges
in 572 iterations when the block SSOR algorithm converges in 666, with a final value
for the residual of 10-5. The considerable difference from our number of iterations of
205 for the block Cimmino algorithm can be explained by the difference in the two
stopping criteria.

The augmented system approach performs very poorly in term of efficiency with
blocks having a small number of rows, as illustrated in the elapsed time of partitioning
(4). However, with bigger blocks, as for partitionings (1) and (2), it takes care of
ill-conditioning within the subproblems and yields the fastest convergence. In par-
ticular, for the augmented system approach, partitioning (2) is the most efficient,
whereas Bramley (1989, p. 69) rejects the same partitioning because of instability
problems in solving the normal equations.

Finally, the elapsed times shown in Table 10.6.1 might be not very attractive
compared to those shown in Bramley (1989, p. 158) where convergence is obtained in
76 seconds. However, the elapsed time obtained using partitioning (2) is only 1.3 times
greater, and significant improvement can be expected from the use of a new version
of MA27 specially tuned for augmented systems.

11. Conclusions. In this paper, we have introduced a method for the solution of
large sparse linear systems. There are many different components to this method, most
of which we have explored here, but some of which warrant further study. The main
components are: the partitioning, the choice of the method for solving the subproblems,
the iterative scheme used, and the scaling (ellipsoidal norm) employed. We have shown
that we can, for block tridiagonal matrices, partition the system cleverly in order to
reduce the number of conjugate gradient iterations, while maintaining a good degree
of parallelism.

Our numerical experiments reinforce what we expect from the theory, showing
that we can vary the number of iterations and tune the speedup, using simple heuristics
like the size of the subblocks in the two-block partitioning.

There are, however, some problems still requiring further work or investigation.
First, the method is very dependent on the behaviour of MA27, which can generate
much fill-in, as in Problem 1, or induce many 2x2 pivots and delayed pivots and
perform poorly, as in Problem 3. This is because MA27 considers all diagonal entries
as nonzero, which is not the case for the augmented systems. It then picks a poor pivot
order at the beginning and corrects it during the factorization. This situation is being
improved at the moment at Rutherford Appleton Laboratory by Duff et al. (1991). We
also need to study the phenomenon of clustering of the eigenvalues, which can be
quite pronounced for some matrices (see Problem 2) and seems to be linked to the
partitioning. We effectively saw in all our tests that partitioning (2) with eight equal-sized
large blocks generally requires the least number of iterations, although the size of the
interface block for this partitioning is the largest.

The results show that the block Cimmino method with conjugate gradient acceler-
ation can be considered a robust iterative solver similar to the conjugate gradient
accelerated block SSOR method of Kamath and Sameh (1988). In fact, since we use
conjugate gradient acceleration, we know that we must converge in exact arithmetic
within at most n iterations, n being the size of the system. Moreover, we know that

68 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

we can estimate the number of nonzero eigenvalues by considering the size of the
interface block. Then, knowing the influence of the spectrum of the iteration matrix
on the conjugate gradient method, we can use this as an upper bound for the number
of iterations in order to stop the iterative process if it will not reach the required
accuracy.

It is also possible to interpret our method as a preconditioned conjugate gradient
method, considering the block Cimmino scheme as an implicit preconditioner and the
use of ellipsoidal norms as an explicit preconditioner. From the experiments, the block
Cimmino method appears to be a good preconditioner for the CG scheme (with respect
to robustness) and, when the convergence would be otherwise slow, the ellipsoidal
norms appear to be good complementary preconditioners. From the behaviour of
the method, we can, as a first conclusion, say that if the time for factorization is much
larger than the time for the iterations, it is better to look for partitionings having small
blocks to minimize the fill-in and increase the speedup. But if the time for iterations
is the larger, then the use of ellipsoidal norms as preconditioners can help greatly. We
still need, however, to study and better understand the effect of these ellipsoidal norms
on the convergence of the method and, if possible, to determine when they work well.

Our iterative scheme appears to be reliable, at least for general block tridiagonal
matrices and is rather friendly, since it is easy to tune the speedup and the number of
iterations. For all the examples, we have separated the time for analysis and the time
for factorization because, in a time-dependent problem, for instance, we can avoid the
analysis after the first time step, setting the block tridiagonal structure and the partition-
ing at the beginning and performing the analysis only once.

A particular strength of our approach is that it is not necessary to have disjoint
blocks in the partitions in order to exploit parallelism, thus widening the set of
applicable partitions. We plan to investigate this further, extending the technique to
more general systems. With these other partitionings, we hope to decrease the ratio of
the number of iterations between block Cimmino and block SSOR, enlarging the range
of applicability of block Cimmino compared to block SSOR. We also need to consider
other kinds of ellipsoidal norms, for instance, for partitionings that involve a complete
overlap of the columns.

Our final goal is to make the algorithm as complete and as friendly as possible,
by designing heuristics for automatically choosing a good partitioning, a good ellip-
soidal norm, or a combination of the two, and also a heuristic which can choose
automatically between block Cimmino and block SSOR.

Appendix. Tables of results of numerical experiments.

TABLE A.1
Behaviour of the block Cimmino method on an Alliant FX/80 (eight processors). Perrel’s test problem.

to 10-9.

No. operations (millions) Elapsed time (seconds)

Part. No. iter. Factorization Iterations Analysis Factorization Iterations Speedup

2 24 709 539 6.7 105.9 51.9 4.0
3 18 1345 519 8.9 234.0 54.9 2.9
4 24 405 405 7.3 64.0 40.0 4.5
5 33 30 214 7.2 12.9 34.4 6.1

A BLOCK PROJECTION METHOD FOR SPARSE MATRICES 69

TABLE A.2
Behaviour of the block Cimmino method on an Alliant FX/80 (eight processors). Perrel’s test problem.

o) 10-14.

No. operations (millions) Elapsed time (seconds)

Part. No. iter. Factorization Iterations Analysis Factorization Iterations Speedup

2 48 709 1058 6.7 105.9 100.6 4.1
3 42 1345 1177 8.9 234.0 125.4 3.1
4 52 405 860 7.3 64.0 85.2 4.6
5 74 30 474 7.2 12.9 76.1 6.0

TABLE A.3
Behaviour ofthe block Cimmino method on an Alliant FX/80 eight processors). Weinerfelt’s test problem.

tok 10-14"

No. operations (millions) Elapsed time (seconds)

Part. No. iter. Factorization Iterations Analysis Factorization Iterations Speedup

2257.2 35.3 14.7 773.6 10.7 1.0
2 16 35.3 49.3 2.2 7.7 6.7 4.9
3 16 76.9 69.4 2.3 12.5 8.2 4.5
4 17 17.1 45.6 2.1 4.3 8.8 5.4
5 19 10.8 44.2 2.0 4.1 7.0 6.1

TABLE A.4
Behaviour of the block Cimmino method on an Alliant FX/80 (eight processors). Problem 3. tog _-< 10-14.

No. operations (millions) Elapsed time (seconds)

Part. No. iter. Factorization Iterations Analysis Factorization Iterations Speedup

110.1 5.7 8.3 49.2 2.3 1.0
2 193 4.4 147.3 1.0 1.6 23.1 6.0
3 182 7.4 168.1 1.5 2.5 31.3 4.6
4 274 1.8 138.0 0.9 1.1 36.5 5.6
5 379 0.4 118.3 0.8 0.9 47.6 6.8

TABLE A.5
Results for Problem 3 with ellipsoidal norms, a 10. tok --<-- 10-14

No. operations (millions) Elapsed time (seconds)

Part. No. iter. Factorization Iterations Analysis Factorization Iterations

2 95 6.8 90.8 1.0 2.0 15.8
3 105 10.3 115.0 1.5 3.3 23.0
4 195 1.3 117.0 0.9 2.6 35.2

70 M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RUIZ

REFERENCES

M. ARIOLI, I. S. DtJFF, AND P. P. M. DE RIJK (1989), On the augmented system approach to sparse
least-squares problems, Numer. Math., 55, pp. 667-684.

A. BJSRCK ANO G. H. GOLUB (1973), Numerical methods for computing angles between linear subspaces,
Math. Comp., 27, pp. 579-594.

R. BRAMLEY (1989), Row projection methodsfor linear systems, Report No. 881, Center for Supercomputing
Research and Development, University of Illinois, Urbana, IL.

R. BRAMLEY AND A. SAMEH (1990), Row projection methods for large nonsymmetric linear systems, Report
No. 957, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL.

S. L. CAM’BE ANO C. D. ME, J,. (1979), Generalized Inverses of Linear Transformations, Pitman,
London.

I. S. DuF ANO J. K. REIo (1983), The multifrontal solution of indefinite sparse linear systems, ACM Trans.
Math. Software, 9, pp. 302-325.

I. S. DUFF, A. M. ERISMAN, AND J. K. REII (1986), Direct Methodsfor Sparse Matrices, Oxford University
Press, London.

I. S. DtJ, N. I. M. GoIO, J. K. Ro, J. A. Scow-r, ANO K. TtN (1991), Factorization of sparse
symmetric indefinite matrices, IMA J. Numer. Anal., 11, pp. 181-204.

T. ELlZVING (1980), Bloclc-iterative methods for consistent and inconsistent linear equations, Numer. Math.,
35, pp. 1-12.

G. H. GOLUB AND W. KAHAN (1965), Calculating the singular values and pseudoinverse of a matrix, SIAM
J. Numer. Anal., 2, pp. 205-225.

G. H. GOLUB AND C. F. VAN LOAN (1989), Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD.

L. A. HAGMAN AND D. M. YOUNG (1981), Applied Iterative Methods, Academic Press, New York, London.
C. KAMATH AND A. SAMEH (1988), A projection method for solvin nonsymmetric linear systems on

multiprocessors, Parallel Comput., 9, pp. 291-312.
W. OETTLI AND W. PRAGER (1964), Compatibility of approximate solution of linear equations with given

error bounds for coefficients and right-hand sides, Numer. Math., 6, pp. 405-409.
C. R. RAO AND S. K. MITRA (1971), Generalized Inverse of Matrices and its Applications, John Wiley,

Chichester, New York, Brisbane, Toronto.
F. SoOOA (1988), A projection method of the Cimmino type for linear algebraic systems, Tech. Report n.

16, Dipartimento di Matematica, University of Bergamo, Bergamo, Italy.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp, 71-87, January 1992

1992 Society for Industrial and Applied Mathematics
004

SPARSE APPROXIMATION FOR SOLVING INTEGRAL EQUATIONS
WITH OSCILLATORY KERNELS*

FRANCIS X. CANNING"

Abstract. An integral equation formulation of Helmholtz’s equation is considered as an example of a
problem with an oscillatory kernel. For such a problem, the field due to a localized source contains a phase
that is a function of position. This allows directional radiation patterns to be produced by using a phase
cancellation when constructing "extended" sources. This directional property may be used in solving the
integral equation. The region containing the sources is decomposed into subregions, each containing many
such extended sources. The directional properties of these extended sources result in an N x N full matrix
having many very small elements (which may be approximated by zero), and approximately Order[N]
large elements. A matrix defining the transformation between localized and extended source formulations
in two dimensions is introduced, and its condition number is calculated. This transformation is effective
whenever a large enough number of the unknowns correspond to "smooth" regions containing the sources.
Numerical examples for a formulation of scattering of waves obeying Helmholtz’s equation are considered
in two dimensions. A sample calculation illustrates that the sparse matrix that results allows a solution with
Order N] operations per iteration. A permutation of matrix rows and columns is introduced and an example
is given in which it moves large matrix elements towards the diagonal. This suggests that incomplete .LU
preconditioning might be quite effective. Even without preconditioning, the resulting method is the most
efficient available for general surface problems using the Helmholtz equation.

Key words, integral equations, sparse matrices, iterative methods, preconditioners, Helmholtz equation

AMS(MOS) subject classification. 65F10

1. Introduction. Integral equations with an oscillatory kernel arise from problems
with a characteristic distance, i.e., a wavelength. Numerical solutions to these problems
by either differential or integral equation approaches become computationally expen-
sive for regions large compared to this wavelength. For example, consider two-
dimensional problems involving "sources" on a surface with a characteristic size of
L. For the exterior problem in an unbounded domain, a differential equation approach
using a local radiation (i.e., absorbing) boundary condition typically requires the outer
boundary to be at a distance away that scales as L [5]. Such a calculation requires a
number ofunknowns, Nd, and a storage, Sd, which scale with the wavenumber k 27r/A
as

1 Nd (kL)2, Sd (kL).
However, an integral equation only requires the surface to be discretized while the
resulting matrix is full, so the resulting number of unknowns N and storage S scale as

(2) N---kL, S.--(kL)2.

This paper gives a method for approximating the usual full matrix by a sparse one,
thus reducing the storage required to be proportional to kL. When iterative techniques
are used to solve the sparse equation, then each iteration for the integral equation
method will only take a time proportional to kL, as opposed to proportional to (kL)2

for the differential equation approach.

* Received by the editors April 5, 1990; accepted for publication February 5, i991. This work was
partially supported by Office of Naval Research contract N00014-91-C-0031.

f Science Center, Rockwell International Corporation, 1049 Camino Dos Rios, Thousand Oaks,
California 91360.

71

72 FRANCIS X. CANNING

The above motivation suggests that we study the full matrix that results from
discretizing an integral equation containing an oscillatory kernel. Consider the generic
form

(3) Zj=e,

where Z is a square N x N matrix of complex numbers, while j and e are N-dimensional
vectors. This form is general enough to apply to both first and second kind Fredholm
equations, etc. It is desired to find a square matrix A such that the new matrix T defined
by

(4) T= AZA*

has of Order IN] large elements and very many elements that are quite small in
magnitude. The resulting matrix problem to solve is

(5) Ti=v, wherej=A*i and v--Ae.

If A and Z are both well-conditioned matrices, then T may be approximated by a
sparse matrix.

At this point some motivation will be given for the type of matrices A chosen
below. Consider a problem involving sources on a one-dimensional surface in a
two-dimensional space. The element (/z, u) of the matrix Z may be found from

(6) (Z),, I g(s,s’)exp[ik(as-a’s’)]t,(s)b(s’)dsds’.

The product of g(s, s’) with the exponential function gives the kernel of the integral
equation to be approximated. The integral operator has an oscillatory kernel, by which
we mean that for the appropriate choices of a and a’, g(s, s’) will be slowly varying
over distances of several wavelengths. The function g(s, s’) and the parameters a and
a’ may be (slowly varying) functions of/z and 9, though we do not explicitly show
these subscripts. The functions t,(s) and b(s’) are used to form the discrete version
of the integral equation. These functions of arc length are each assumed to be nonzero
only for s (or s’) in some interval shorter than a wavelength. If desired, one may let
t,(s) (or b(s’)) be a delta function (or a sum of delta functions) to achieve a
discretization such as that in Nystrom’s method.

The elements of the matrix T are given by an integral similar to that in (6), but
with t,(s) replaced by t;(s) and with b(s’) replaced by b’(s’). In each case the primed
functions are the linear combination of the unprimed functions determined by the
matrix A. In order to motivate a choice for these primed functions (and for the
corresponding A), consider the approximation

(7) (T),g(s,s’) I exp[ik(as-a’s)]t’(s)b’(s’) asas’.

Clearly, a phase cancellation for each integral may be achieved by letting both t’(s)
and b’(s’) be nonzero over some "extended" region, meaning a region of length several
wavelengths or more. An earlier paper [7] contrasted two ill-conditioned choices for

and b’ with a well-conditioned choice. For the ill-conditioned choices, t(s) and
b’(s’) had an approximately constant phase. They resulted in a T with all of the matrix
elements between two different "extended" regions of the "body" being very small.
However, it is known that these regions do interact, so we might hope that the condition
number would be reduced by allowing this interaction to occur through one or more
large matrix elements between these regions. This suggested constructing an A for

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 73

which a small number of extended sources on each region gives rise to (a small number
of) large matrix elements. This is accomplished by allowing the functions t’(s) and
b’(s’) to have a variety of rates of phase evolution as a function of s or s’. A simple
implementation of this idea gives the unitary A described in [7] and [4]. Since the
important interactions are localized to a small (i.e., Order IN]) number of elements
of T, this method might be called the "interaction matrix localization" method.

The physical principle involved is quite simple to state. The scattering body is
(conceptually) broken into many regions, and on each region there are many sources
b’(s’). The subscript , determines both the region where that source is centered and
the rate of its linear phase evolution. The rate of phase evolution determines the narrow
range of directions in which it radiates strongly. The resulting matrix element connecting
such a source with the radiated field as observed by some "testing" function t(s) in
another region will be large or small depending on whether that region is located
within this range of directions. This effect is increased by similarly choosing the
"testing" functions to give them the same directional dependence.

In order to understand the largeness and the smallness of the matrix elements
resulting from this approach, note that for a specific value of the pair (/z, ,), the
parameters a, a’, % 3,’ may be chosen so that integral is in terms of three exponential
functions and the three slowly varying functions g(s, s’), t’(s), and b(s’). The calcula-
tion now is in the form

(8) (T),,, f g(s, s’) exp [ik(as-a’s’)] exp [i3,s]t,(s) exp [i3,’s’]b(s’) ds ds’.

These integrals are over the regions where b’(s) and t’(s’) are nonzero. Clearly, when
the net rate of phase evolution as a function of s or s’ is approximately zero (e.g.,
ka + 3’ 0), then the corresponding integral will give a large answer that may be found
by approximating the integrand by a constant. When this condition is not met, an
approximation to the integral may be found by repeated integration by parts, where
the product of the three exponential functions is integrated at each step. For the integral
involving s, the first integrated part will be zero, provided t(s) is zero at both endpoints
of the integration. Furthermore, if the first derivative of t’(s) is also zero at these
endpoints, then the next integrated part will also be zero, and so on. Thus, requiring
t’(s) to go to zero smoothly may increase the smallness of many matrix elements [7].
These conclusions and many further details are well known to antenna designers.
Indeed, what is being done might be thought of as thinking of the scattering surface
as a collection of antennas where many modes are considered on each antenna. For
our purposes we note that a magnitude taper going smoothly to zero at the edges of
an antenna produces a more distinct beam. Both the form of A and its condition
number depend on this taper. A larger class of candidates for A is introduced in the
next section, and their condition numbers are explicitly evaluated in terms of the taper
used.

If one is dealing with a second kind Fredholm equation, then the matrix Z involves
the sum of a multiple of the identity matrix and a matrix resulting from an operator
with an oscillatory kernel. For various preconditioning strategies, such as incomplete
LU (ILU) decomposition, it is desirable to be able to transform all of Z in the same
way. Fortunately, it can be shown that as long as the functions b’(s) and t’(s’) are
very smooth (i.e., their Fourier series contain only low frequencies), then the matrix
AA* will have Order[N] large elements. However, that issue will not be further
discussed in this paper. The discussion given here is intended only to outline the
motivation for the choice of matrix A. A more extensive discussion, in the context of

74 FRANCIS X. CANNING

a more restrictive class of matrices, was given in [7]. It was predicted there that, for
the two-dimensional case, the number of large matrix elements is Order IN] for an
N x N matrix. The generalization to the matrices A described below is confirmed by
the numerical study presented in 3.

The present method may be contrasted with other fast solution methods for integral
equations. The multilevel scheme of Beylkin, Coifman, and Rokhlin [1 using wavelet
transforms does not apply to problems with an oscillatory kernel (i.e., their coarsest
level must have at least two points per wavelength). The more standard multilevel
methods (e.g., [2]) also have this two points per wavelength limitation. An earlier
method by Rokhlin 12], 13] does apply to the oscillatory kernels of scattering theory
and has an advantage over the present approach in that it does not require any
smoothness property of the scatterer. Rokhlin’s method allows the matrix Z to be
applied to a trial solution in Order IN log N] operations, by expressing Z in terms
of blocks of convolutions, etc. The present method generates a truly sparse matrix that
may allow efficient preconditioning, which is important since scattering by nonpen-
etrable bodies generally results in a Z with a condition number not very different from
N (assuming that the number of points per wavelength is fixed at a small constant as
N varies, which is the standard practice). Thus, although integral equations often
result in better condition numbers than differential equations, the number of iterations
required is still somewhat large. This observation is all the more significant when
problems with multiple right-hand sides (e) are considered (the number of right-hand
sides is proportional to N for some cases of interest). Some iterative results are given
in 4, where a permutation of rows and columns is introduced that may allow effective
preconditioning by ILU decomposition. As will be seen below, an additional advantage
of the present approach is its simplicity, both in itself and as an addition to existing
computer programs.

2. A class of matrices. In this section, transformation matrices A having a general
form are considered. These matrices should be sparse, and the elements of the resulting
T should be easily computed. This leads us to consider matrices where the sources
implicit in the resulting T [7] have linear progressive phase (as a function of arc length
along the surface), since multiplication by the corresponding A may then be accom-
plished using fast Fourier transforms, as described below. A, T, and Z are N x N
matrices of complex numbers, and we choose N to be the product of integers m and
n. The matrix A will be constructed from n blocks by n blocks, where each block is
an m x m matrix.

To construct A, we consider an m x m unitary matrix U and m x m real diagonal
matrices C, D, and E, which are defined in terms of their elements in row a and
column/3 as

(9) (U),, m-1/2 exp {2rri[c -(m + 1)/2][/3 -(m + 1)/2]/m},

(10) (C).,, a.,c, (D).,, a,,d, (E)., a.,,e.
One possible form for A is the block circulant matrix whose (j, k) submatrix is

given by

(11) (A)(j,k) 8j,k+lUC -- tj,kUO + tj,k-lUE,

where the indices on the delta functions arc to bc taken mod n, e.g.,

(12) 6o.. 6o.o 1, 6,.+ 6, 1.

In this paper, only A in the form given above is considered. Clearly, additional
diagonal subblocks could be added to (11), and many of the results in this paper

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 75

immediately generalize to that case. If C and E are taken to be zero matrices and D
is taken to be the identity matrix, then the resulting matrix, which we call A’, is a block
diagonal matrix, where each block describes a discrete Fourier transform of order m.
That is, we define A’ by

(13) (A’)j,k 6j,kU.

Thus A’ is unitary, and when using it for A the 2-norm condition number of the resulting
matrix T is the same as that of the Z it was derived from. Some numerical results using
this matrix were given in [7] and [4].

To find the condition number of A having the general form (11), note that it can
be factored as

(14) A= A’W,

where W is defined to have a submatrix at (L k) given by

(15) (W)(j,) tj,k+lC -- j,kD-- j,k_lE.

Again, here and throughout the rest of this paper, the indices of the delta functions
are to be taken mod n. This makes W block circulant. Since A’ is unitary, the 2-norm
condition number of A is equal to that of W. Forming the product of W with its
transpose,

(wwt)j,k {6j,,[C:z + D2 + E2] + 6j,+l[DC + ED] + 6j,t-l[CD + DE]
(16)

+ ,+[EC] + ,_[C]}.
Transposing W is equivalent to interchanging C and E, so WtW may be found from
the above equation by interchanging C and E. Doing so, and using that C, D, and E
are diagonal and thus commute,

(17) WW’= WtW,
proving that W is normal. This allows the singular values of W to be calculated as the
absolute values of its eigenvalues.

The factorization of A given in (14) allows an efficient method for multiplying A
by an arbitrary N x N matrix. Rather than taking Order N3] operations as for general
matrices, multiplying separately by W and A’ takes Order N:] operations forW (which
has three or fewer nonzero elements per row) plus Order [N log N] for A’, since fast
Fourier transforms may be used. It is also important to notice that each rn x rn block
of T may be calculated from a slightly larger block of Z by using (4) and (14). Thus
if one wants to calculate the elements of T with magnitude larger than some value,
this can be done one block at a time where only the larger elements are saved from
block to block. This implies the total memory required is not that for N2 matrix
elements, but rather only for a small constant times rn: elements (e.g., for a block of
Z and of T) plus the number of large elements saved. We will see in the next section
that typically one chooses rn so that m2 N, giving each block about N elements.
Since the number of large elements saved will also be linear in N, so will the total
memory required in a computer program, even though all N2 of the elements of T
were calculated.

A trial form for the eigenvectors ofW is the vector of length N whose jth segment
is given by (e)j =vz1, where v is a vector of length rn and the complex number z is
defined by

(18) z=exp [2.a’i/n].

76 FRANCIS X. CANNING

Forming the product We, we find that its jth segment is given by

(19) (We)j-- {[j,k+lC -" j,kD’t- j,k_lE]zkl}.
k

For any (integer) value of l, zjl is periodic in j with period n, so the eigenvalue equation
will be satisfied whenever
(20) (Cz-I W D + Ez/)v-- Av.

This shows that the trial form does indeed generate all N of the eigenvectors of W.
The matrix above operating on v is diagonal, allowing a trivial solution for the
eigenvectors and eigenvalues. The N eigenvalues of W are

(21) Al, CsZ-I - d + esZl for 0, ., n 1, s 1, , m.

The (2-norm) condition number of A is thus given by

(22) K(A) =/max Abs (Al.s)}/{minAbs (At.s)}.t. l,s l,s

An alternate method for calculating K(A) would be to notice that the sth column
of W is the pth column of the kth column of blocks, where

(23) s=p+(k-1)m.

If one symmetrically permutes the rows and columns of W so that the sth column of
the permuted matrix is related to the original p and k by

(24) s’=k+(p-1)n,

then the resulting matrix is block diagonal and the blocks are circulant and are
essentially tridiagonal (but with an upper right and lower left element included). This
resulting matrix thus is normal and the elements of its sth block (i.e., c,
immediately give (21). If (11) were generalized to allow additional blocks, then after
the permutation just described the blocks would still be circulant but would then have
more than three nonzero elements per row, so the generalization of (21) would have
more than three terms.

The coefficients cs for s 1,..., m, ds for s 1,..., m, and e for s 1,..., m
taken collectively in this order correspond to the discretely sampled version of the
taper function used on an antenna [7]. Use will now be made of our assumption that
these coefficients are real numbers. One particular case of interest is for

(25) c,es ->0 and ds>cs+es fors=l...m, where n is even,

in which case

(26) <(A)={max[d+cs+e]}/{min[ds-(cs+es)]}.s
The example that will be considered in our numerical calculations is motivated by a
weighting function well known in antenna theory:

(27) f(r)=l+cos[rr/m]=2cos2[rr/2m], -m<r<m,
(28) f(r) 0 otherwise.

This function will be sampled at discrete, uniformly spaced points. When m is odd,
a symmetric choice of sampling points gives

(29) c=f(s-l.5m-0.5) fors=l,...,m,

(30) d=f(s-O.5m-0.5) fors=l,...,m,

(31) es=f(s+O.5m-0.5) fors=l,...,m.

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 77

Sample numerical calculations using this particular form of A were given in [8].
Comparing this with (21) and assuming that n is even we find that

(32) max d(m+l)/2 2,

(33) /min dl- el= cos [7r(-0.5 +0.5/m)]- cos [7r(0.5 +0.5/m)] 7rim.
Since W is normal, this gives a 2-norm condition number

(34) K(A) 2m/Tr.

If n is not even, this is an upper bound on the condition number, as follows from
Gersgorin’s theorem. The result of a numerical calculation of K(A) as a function of n
for several block sizes m is given in Fig. 1. As n increases through odd integers, (A)
slowly approaches the upper bound of (34).

100

/i/ eeeeeeoooeeeeeOooe
_r.

m= 25

m=101

20 40 60 80
NO. OF BLOCKS, n

FIG. 1. The 2-norm condition number, K(A), for A using (27)-(31) is plotted as a function of the number

of blocks n, for several block sizes m. The results of calculations for even values of n are joined together, giving
the horizontal lines. The results of calculationsfor odd values ofn are similarlyjoined together, giving the curves
that increase with n.

The linear dependence of (A) on m in (34) results from the linear behavior of
f(r) in (27) about r= m/2. Since it is theoretically interesting to find transformations
with small n, we consider modifying (27) so that f(r) is still monotonically decreasing
for Abs (r) increasing and Abs (r)< m, but so that for small At,

(35) f(m/2+Ar)const.+(Ar)1/, a> 1.

One can easily check that then satisfies

(36)

While theoretically interesting, this result may not be especially useful in practice,
since (A) along with (Z) gives only an upper bound on (T), and that bound has
been found to be quite pessimistic in several specific examples.

The conclusion that we have just reached is that in practice, the matrix A will be
well conditioned enough so that T will be nearly as well conditioned as Z. It is important
to stress the context in which this conclusion was reached. This paper describes a
method for easing the severe limitations on problem size for computer solutions due
to the storage and execution time restrictions of present and even near future computers.

78 FRANCIS X. CANNING

For this reason, all methods used must be designed to work with the fewest possible
unknowns (e.g., per wavelength) to reduce the order of the matrix to be solved. Thus,
we should not be troubled that the method described here would not work in the limit
that the number of points per wavelength used in the discretization approaches infinity
(in that limit rn approaches infinity and so does K due to (34) or (36)).

3. Matrix element size. To give some numerical examples, we now specialize the
discussion to consider the Helmholtz equation in an unbounded region in two
dimensions with Dirichlet boundary conditions on a region F with boundary OF. When
the field satisfying the Helmholtz equation in the exterior obeys an outgoing radiation
condition and its (one-sided) normal derivative on the boundary exists, an integral
equation for the "single layer source," J(p), producing the field Ei(p) on 0F is

(37) Ei(p)= for H(o2)(klp p’l)J(p’) ds’

where p is any vector on the boundary of the scatterer and p’ is treated as a function
of the arc length s’ along the scatterer [9, 3.5]. The scattered field external to F and
on OF due to the source J is found from

(38) Es(p) Ior Ho(klp p’l)J(p’) ds’.

The sum E + Es evaluated on OF is clearly zero. If E(p) is the value of an incident
electric field at position p, then the total electric field, E + Es, is zero on OF. This
equation would then describe, for example, the scattering of an electric field aligned
in the z-direction by a perfect electrical conductor which is in the shape of a cylinder,
infinite (and uniform) in the z-direction [10]. The cross-section of this cylinder would
be given by OF, which would lie in the x-y plane. The wavenumber k is defined as
2r/h, and H(o2 is a Hankel function of zero order.

Although (37) is ill posed, that fact has not prevented the widespread practical
use of matrix equations based on it in a variety of applications. This situation may
seem strange, since it is well known that second kind integral equations may be
discretized to matrix problems having condition numbers that are independent of N.
At the same time, a first kind equation such as the one above is ill posed, and
discretizations generally have condition numbers that grow with N. However, for the
problem described above with a characteristic dimension L, the number of unknowns
used in practice is nearly always a small constant times kL as kL varies. Thus, the
relevant comparison in practice involves the condition numbers obtained with each
method for the actual numbers of unknowns used.

To further illustrate this point, let the scatterer be a circle of radius a. For one
choice of first and second kind equations the eigenvalues (and hence singular values
since this geometry produces a circulant and therefore normal matrix) are

(39) Js(ka)H((ka)- 1/s as s-ee,

(40) J(ka)H’(ka) 1/(Trka) as

In practice N and therefore the largest s used is proportional to ka; both approaches
give matrices with similar condition numbers. A detailed discussion of the advantages
of each approach including a justification for the discretization step for a first kind
equation is beyond the scope of this paper. However, we do mention that there are
some reasons for using a first kind equation, such as its applicability to both open and
closed structures, its symmetry and the resulting savings in computer memory required

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 79

and operation count [6], and the nonradiating character of the source associated with
the resonant (interior) mode [3] at discrete values of k. While the numerical results
presented here use (37), the method described for generating a sparse matrix is very
general and also applies to second kind equations, etc.

For our calculations we will use a simple though quite crude discretization of
(37), since the goal of this paper is to illustrate how our transformation and subsequent
approximation changes an answer calculated by well-known techniques. This discretiz-
ation may be described as Nystrom’s method with a one-point rectangle rule, except
for the diagonal elements where the asymptotic form of the Hankel function is used
for the singular part. In the "moment method" context this is [10, 3.2] delta function
testing with pulse basis functions, with the same approximations to the integrals as
above. Without examining under what conditions this (admittedly crude) method
converges to the solution of the integral equation (37) as more sample points are taken,
we observe that it has often been used with success at typical sampling densities. The
form of A considered in 2 is appropriate when the sampling density used to generate
Z is kept constant, and the calculations that follow all have this property. Also, for
this form of A, Z should be the discretization of the integral equation in terms of local
unknowns. Using Nystrom’s method, that means the quadrature formulas should
involve only local points; using the moment method, it means the basis and testing
functions (as in (6)) should be nonzero only in a local region, say, smaller than a
wavelength or so. Using a variable sampling density for Z would require that A be
modified so that the T created is the discretization of the integral equation in terms
of expansion functions that have a phase evolution that is approximately linear with
arc length along OF.

It was noted in [7] that the matrix T resulting from A’ may be thought of as giving
the discretization of (37) in terms of an expansion of the sources J(p’) in the following
functions. The scatterer is broken into blocks; each function has a magnitude of one
throughout a given block, and is zero elsewhere. The flth function on a given block
(for/3 1,..., m) is nonzero only on that block and has a uniform phase progression
at a rate determined by/3. Since the above description allows one to think of each
block as an antenna, each of the basis functions with support on a given block radiates
most strongly (i.e., has a main beam) in a different direction. Let D be the size of this
"antenna." For such beams nearly perpendicular to the surface, it is well known in
antenna theory [15, Table 6.1] that the width of the main beam (i.e., the angle between
the two relative minima enclosing it) is approximately 2AID and the first relative
maximum past the main beam has a relative height (i.e., "sidelobe level") of about
10-1"32 (or -13.2 dB). The sidelobe level may be further reduced by tapering the current
to decrease its discontinuity at the edges of the "antenna," although doing so increases
the angular width of the beam. Note, however, that while nonoverlapping antennas
with untapered currents describe A’, the A described by (27)-(31) corresponds to
antennas twice as wide and overlapping. For this taper function, the width of the main
beam is 4A divided by the width of the antenna [15, Table 6.1], which is now 2D,
giving a width of 2A/D as before, while the sidelobe level is now 10-3"2. Since A is
applied to both sides of Z, the typical reduction in matrix element size is expected to
be at least 10-6.4 Numerical results will now be presented that illustrate this reduction
and confirm that it is quite an improvement over that for A’ as found in [7] and [4].
Although the taper function we have used as given by (27) and (28) gives impressive
results, it was chosen in [7] because its analytical form allowed a quick estimation of
matrix element size [7, Appendix]. As described in [14, 9.1.1.1], the taper function
of (27) was popular for antennas before computers were available, while more efficient

80 FRANCIS X. CANNING

functions are now in use. The general framework presented here should aid in the
evaluation and use of such functions.

Before concluding this discussion of expected matrix element sizes, it is useful to
note what would change if a double layer source had been used, as occurs in many
second kind integral equations. A single layer (point) source radiates isotropically,
while a double layer source in two dimensions radiates as sin (0), where 0 is the angle
from tangential to the surface. The angular dependence resulting from an array of
identical sources is the product of the angular dependences of the array and of the
sources. Since the double layer source has a minimum along the tangent to the surface,
the "resulting" part of Z and T would generally have smaller elements near the diagonal
when using a double layer source. (There may be an additional part of Z, e.g., a
multiple of the identity matrix.)

Numerical scattering calculations were performed for F consisting of a J(two-
dimensional) ogive with a blade at its end. The shape of cF may be described by
joining two circular arcs with a radius of curvature of 4.25 at their ends to give a chord
length of 4 and a full width of 1. A blade of length 1 is then attached radially to one
end. The total distance between the ends of F will be denoted L/A, and several such
sizes will be considered. The largest magnitude of an element of the resulting matrix
T (using (29)-(31)) will be denoted % and - will be used to denote a "relative drop
tolerance." The matrix T’(-) may be defined by

(41) (T’(-)), -(T), ifAbs [(T’(’)),]-> ’3,,

(42) (T’(’)), 0 otherwise.

The number of nonzero elements of T divided by that of T’(-) is plotted on Fig. 2 as
the "sparseness factor." This sparseness factor is given for the ogive with blade of
length LA 90 using N 1701 as a function of " for various values of m. When m 1,
the corresponding matrix A is the identity, so in this case T--Z. This matrix does not
have any elements smaller in magnitude than 0.027. Therefore, on Fig. 2, the m 1
curve indicates a sparseness factor of 1 for -< 0.02. However, the situation changes
dramatically as rn increases. When m- 63 the sparseness factors for ’-0.0005 and

120

rn- 6:3
80

m-21

,
40

0
10-6 10-4 10-2

T

FIG. 2. The sparseness factor for T’(’) as a function of relative drop tolerance " for the ogive with blade
described in the text and a chord length L of 90 wavelengths. Results are shown for 1701 unknowns and several
block sizes m.

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 81

0.0001 are 42 and 22, respectively. This transformation is much more effective than
that involving A’, as described in [7] and [4].

An earlier paper [7] argued that for a given (reasonably small) value of " and for
N/(kL) fixed, the number of nonzero elements in T’(’) would be at most linear in N
provided that Nm2 is also constant. This scaling of the number of elements per block
allows the main beam of each "antenna" to decrease in angular extent with increasing
N proportionally to how the angle subtended by the "receiving" block (antenna)
decreases. The discussions above about beamwidths, etc., assume that the receiving
block is in the far field of the antenna (roughly speaking, the far field is where the
approximation of (7) is valid). For an antenna of length D, the distance to the far
field region is a constant times D2/A [15, 6.9]. By varying N with both N/(kL) and
N/mE fixed, one can see that whether the far field condition is satisfied is independent
of N but depends only on which parts of OF are interacting (i.e., where the blocks are
located). Rather than forming analytical estimates of the number of nonzero elements
in T’(-), we now give some numerical results.

Figure 2 gave results for the ogive with blade using m 63 and LA 90 with
N 1701. Keeping N/(kL) constant at 1701/(2r90), we now vary N from 21 to 15,309
by factors of three, and plot the resulting "sparseness factors" on Fig. 3. While in the
previous figure we had NmE-- 3/7, in Fig. 3 the calculations for m satisfying this are
plotted directly above the corresponding value of N; smaller and larger values of m
(in factor of three increments) are plotted to the left and right, respectively. For
example, the calculation for N 1701 and m-63 is given directly above N 1701,
while the results for m 21 and m 189 are immediately to the left and right, respec-
tively. For the values of r of most interest (i.e., all -< 0.01), this choice for m appears
to be the best available (out of the discrete set plotted).

Having verified that N/m2= 3/7 is a good choice for m for this problem, the
sparseness factor for only this value of m is now plotted as a function of N in Fig. 4.

10,000

1,000

100

10

SYMBOL

[] 10"1

10
.2, 10
-3

A 10
-4

10
"5

0 10-6

21 63 189 567 1,701 5,103 15,309

N

FIG. 3. Sparseness factors for T’(’) as a function of m for m varying about m [7N/3]’5. Calculations
are shown for N 21 to 15,309 in factors of three and for " 10-6 to 10-z in factors of ten. The same ogive
with blade is used as in Fig. 2, and its chord length L is given by L NA/18.9.

82 FRANCIS X. CANNING

1000 SYMBOL -c //
A 10-2 I01

- o 10-4 /
O / /10-5 /

//
0- /

/

1
10 100 1000 10000

N

FIG. 4. Sparseness factors for m [7N/3] from Fig. 3 are plotted as a function of N o illustrate how
the storage required for a gioen oalue of scales with N. e dashed lines indicate a linear in N scaling of
torage. e numerical results are steeper than these dashed cures, indicating the required storage is possibly
even less than linear in N.

When rn from this equation would be some integer I times v/3, the average of the
sparseness factors for rn I and m 3I is used. The dashed lines at 45 degrees on
Fig. 4 indicate storage linear in N. The numerical results shown are asymptotically at
least this steep, showing that for fixed r, the storage required scales better than linear
in N. Indeed, for r 10-4, the storage required is less than 100N.

Since " 10-4 produces a sparse matrix, we now examine whether it produces
accurate scattered fields. Fixing N 1701, m =63, and L/A =90, the cross-section for
backward scattering of incident plane waves as a function of incidence angle is
calculated and plotted in Fig. 5. Three curves are given, for " 0.0, 0.0005, and 0.0001.
The " 0.0001 curve is nearly indistinguishable from the usual answer (i.e., for 0.0),
while the " 0.0005 curve is more than accurate enough for most practical applications.
The condition numbers KIT] for m 1 and rn 63, respectively, were 2100 and 9400,
while for rn =63, KIT’(0.0001)] was 9700. Based on the condition number alone, we
cannot say that r 0.0001 will produce accurate scattering results. However, we have
performed similar calculations for scatterers of several shapes and found accurate
scattered fields in all cases examined. Note also that [T]/n[Z] <5, while the bound
on this ratio is 2[A] which is over 100 (see Fig. 1).

4. Iterative results. In this section, first the results of standard iterative methods
are given and then the possibility ofpreconditioning by incomplete LU (ILU) decompo-
sition or one of its variants is discussed. The calculation of Fig. 5 will be used as an
example, with a right-hand side given by a plane wave incident from 0 =0. Using
r =0.0001 the iteration uses T’(0.0001). It was observed that Z is better conditioned
than T for this problem, so it is likely that A-1T’(r)A-* would be a better matrix to
use than T’(’). The factorization of A given by (14) into the product of matrices
involving Fourier transforms and circulant matrices immediately shows how A-1 and
A-* may be applied in a sparse and efficient way. Although this approach is viable
we will instead consider ILU preconditioning below.

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 83

4O

30

2O

-10

-2O

,--T=5xl

= 010--4
0 30 60 90 120 150 180

FIG. 5. The backward scattering cross-sectionfor the ogive with blade, as afunction ofthe angle ofincidence
0 of an incident plane wave. The curves plotted for a standard calculation (" O) and for the approximation
"--10-4 are indistinguishable, while the " 5 10-4 curve differs only slightly. The two approximations that
both used m--63 gave sparseness factors of 22 and 42, respectively.

The integral equation (37) is complex symmetric, and its eigenvalues all have a
real part greater than or equal to zero [11]. When 0F encloses one or more regions,
the interior Helmholtz problem(s) is known to have solutions at discrete values of k.
Away from these values, the real part of the eigenvalues of the operator in (37) is
positive. Since Z is fairly well conditioned, we might for the moment assume that it
also has this property. The transformation to T given by (4) and the fact that A is
nonsingular immediately imply that the eigenvalues of T would also lie in the right
half plane. It is not completely clear if passing from T to T’(0.0001) would preserve
this property, although the modest change in condition number between these two
matrices is certainly encouraging. While this argument does not prove that the eigen-
values of T’(0.0001) lie in the right half plane, it certainly suggests trying an iterative
method such as Orthomin.

The integral equation (37) and our symmetric discretization of it resulted in a
complex symmetric Z. While that symmetry may be used to reduce the required storage
for Z, the transformation (4) resulted in a nonsymmetric T. If the Hermitian conjugate
indicated by in (4) is replaced by simply a transpose, then the resulting matrix would
still be complex symmetric. This complex symmetric form was used in [4], [7] and
[8]. The two matrices (resulting from Hermitian conjugate and transpose) are simply
related to each other by a permutation of columns, and they have the same condition
numbers. However, as Fig. 6 shows, iteration using Orthomin [20] on these two matrices
gives very different results. On the other hand, when using conjugate gradient on the
normal equations the iteration matrix is T*T in one case and PT*TP in the other,
where P gives the permutation of the columns of T mentioned above. These iteration
matrices have identical eigenvalues, their eigenvectors are related by P, and each step
of the iteration corresponds. The results of using (4) and conjugate gradient on the
normal equations are shown on Fig. 6.

These iterative results show that an efficient solution has been demonstrated
compared to other methods when one must solve for only one or a few right-hand
sides. The sparseness of T’(0.0001) allows each iteration to be nearly 22 times quicker
than it would be using Z. For example, on our Vax 6000 the matrix was generated in
six minutes, and 300 iterations of conjugate gradient on the normal equations took an

84 FRANCIS X. CANNING

10"1

10-2

ORTHOMIN (20)
ON BZB

ORTHOMIN (20)
ON BZB*

CG ON NORMAL EQNS

10"3

0 100 200
NO. OF ITERATIONS

FIG. 6. Reduction in residual as a function of the number of iterations for the ogive with blade of length
L 90A using N 1701. Using the matrix T’(0.0001) the conjugate gradient applied to the normal equations
and Orthomin (20) are used. Results also are shown using the corresponding matrix that results from replacing
the Hermitian conjugate (indicated by *) in (4) and (5) by a transpose, and then using Orthomin (20).

additional ten minutes. If enough memory had been available to store Z, then its full
LU decomposition would have taken several hours. In contrast, the ILU decomposition
of T’(0.0001) would take only two minutes.

ILU will be an effective preconditioner only if the large elements of T (or of a
permutation of its rows and columns) tend to be near the diagonal. A discussion of
the structure of the large elements of T is easier with an example to look at. A clear
plot may be generated using N 100 and the scatterer given by a well-known airfoil
shape, an NACA 0012 airfoil. A slight modification (to give a closed body) results in
the shape defined by

(43) y +0.6 [0.2969xl/Z-o.1281x-O.3516x2+O.2843x3-O.lO15x4].
T is calculated using m=25, n =4, and the A defined by (27)-(31), where this airfoil
shape is scaled to have a chord length (tip to tail, in a straight line) of 5A. Figure 7
gives a three-dimensional plot of the magnitudes of the elements of T. The block
structure that appears is not very different from that found for this geometry using A’
to generate A’ZA’tr as shown in [7, Fig. 5]. Unfortunately, in both cases the large
elements in T occur successively further and further away from the diagonal. Fortu-
nately, the spacing is somewhat regular, as we shall see below.

Column c of T may alternatively be identified as element a of block b, where
a 1,. ., m, and b 1,. ., n. A permutation of the columns of T may be defined
by relating the resulting column index c’ to the old index c by

(44) c=a+(b-1)m, c’=b+(a-1)n.

In Fig. 7 large elements occur near the center of each block (i.e., for a-(m+ 1)/2 for
b 1, , n) so we might expect that applying this permutation to both the rows and

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 85

FIG. 7. Three-dimensional plot of the magnitudes of the matrix elements for T using (27)-(31) for the

modified NACA 0012 airfoil of (43) with a chord length of 5A. 100 unknowns are used with m 25 and n =4.

columns of T would group these large elements together. Figure 8 contains a three-
dimensional plot of the permuted T and verifies that this is the case for all of these
peaks. In addition, the large elements that had been on the diagonal are still on it
since the permutation was done symmetrically. Although we do not yet have numerical
results using ILU preconditioning, Fig. 8 strongly suggests that either it or a closely
related method is likely to be highly effective.

FIG. 8. Three-dimensional plot of the magnitudes of the matrix elements of the permutation of the T of
Fig. 7 as described by (44) and the associated text.

86 FRANCIS X. CANNING

The reason for the block structure in Fig. 7 and the size of the bandwidth in Fig.
8 are easy to find. The matrix A’ contains m x m blocks of Fourier transforms and the
mode with highest spatial frequency oscillates about m/2 times in rn points (the spatial
frequency in A is the same as that in A’). If the discretization in Z used p points per
wavelength of arc length, then rn points correspond to a distance of rn!p wavelengths.
Thus, the rate of oscillation of this mode is p/2 times per wavelength, resulting in
tangential propagation described by an effective wavenumber

(45) k, -.(p/2)k.

The wavenumber describing the propagation of this mode perpendicular to the surface
kp satisfies

(46) kp [k2- k2]5 k[1 (p/2)2]5.

Propagating modes require real kp, so in these terms the sampling criterion of two
points per wavelength (i.e., p 2) includes exactly the propagating modes. Since Figs.
7 and 8 used p 10, we would expect that only 2/10, or 20 percent, of the modes are
propagating. That is, for p 10 and for "a" within a peak an approximation is

(47) (m+ 1)/2-O.lm<=a<-(m+ 1)/2+ 0.1 m.

The finite width of the "beams" causes some spillover from this region, which may be
observed in Fig. 8.

Equation (47) has a remarkable consequence on the structure of the permutation
of T and on our ability to solve it quickly. If N unknowns are used with p points per
wavelength, then the permutation of T’(r) for some appropriate r contains nonzero
elements only in a central block of size 2Nip x 2N/p, or on or very near the diagonal.
If this central block is treated as a full matrix, then the time for a direct solution would
be nearly (p/2) times faster than for the usual LU decomposition for large N. However,
as N increases, the total number of elements in this block grows as N2, while the
number of nonzero elements is linear in N. Thus, for very large N, this block itself
becomes sparse, and iterative methods preconditioned by ILU decomposition or related
approaches are likely to be even more effective.

5. Conclusions. A class of transformations of the usual matrix formulations of
integral equations involving oscillatory kernels was presented with the goal of generat-
ing a sparse N x N matrix from a full N x N matrix. In 2 the basic properties of
these transformations, such as their condition numbers, were calculated and the
motivation for the transformations was developed. In 3 the explanation of this
transformation as one that generated a matrix whose elements each represented exten-
ded directional sources in a region interacting with similarly directional receiving
elements was further developed. Numerical calculations based on an integral formula-
tion of the Helmholtz equation in two dimensions showed that for a given smallness
tolerance only a linear in N number of matrix elements need be kept after this
transformation. This allows one to store profoundly larger physical problems with
correspondingly larger numbers ofunknowns in existing computers than has previously
been possible. Sample calculations showed that the approximation of setting small
elements of the transformed matrix T to zero allows good accuracy to be maintained.
A permutation of the elements of T was introduced, which put it in a form allowing
solution by banded matrix techniques orders of magnitude faster than by standard
techniques. Some possible further increases in efficiency for very large N by the use
of preconditioned iteration were also suggested.

SPARSE MATRIX FORM FOR OSCILLATORY INTEGRAL EQUATIONS 87

The method described here should work for other integral equations where the
fractional change in the magnitude of the kernel is small over one wavelength and the
kernel’s behavior is generally smooth. Such kernels may be described as oscillatory.
The numerical results presented here were for a one-dimensional surface in two
dimensions. Similarly, if the sources are spread over a two- or three-dimensional
surface, the additionl integrals might serve to give further reductions in the magnitudes
of the resulting matrix elements. Thus, there is reason to believe that this method will
be useful for a variety of integral equations involving oscillatory kernels both in two
and three dimensions.

The method described here reduces the storage requirements for a computer
program based on an integral equation with oscillatory kernel with N unknowns from
N2 to Order IN]. The number of operations used to generate the matrix from the
usual matrix is Order IN2 log N]. Directly generating this matrix can significantly
reduce this operation count. The number of operations per iteration is similarly reduced
from N to Order IN], allowing the most efficient method found to date storagewise,
and also in terms of execution time, at least when a limited number of incident fields
are considered.

REFERENCES

[1] G. BEYLKIN, R. COIFMAN, AND V. ROKHLIN, Fast wavelet transforms and numerical algorithms I,
Yale Res. Report YALEU/DCS/RR-696, Department of Computer Science, Yale University, New
Haven, CT, 1989.

[2] A. BRANDT AND A. A. LUBRECHT, Multilevel matrix multiplication andfast solution ofintegral equations,
J. Comp. Phys., 90 (1990), pp. 348-370.

[3] F. X. CANNING, Singular value decomposition of integral equations of EM and applications to the cavity
resonance problem, IEEE Trans. Antennas and Propagation, 37 (1989), pp. 1156-1163.

[4] , Reducing moment method storage from Order N to Order N, Electron. Lett., 25 (1989),
pp. 1274-1275. Reprinted in Moment Methods in Antennas and Scattering, R. C. Hansen, ed.,
Artech House, Norwood, MA, 1990.

5] ,On the application ofsome radiation boundary conditions, IEEE Trans. Antennas and Propagation,
38 (1990), pp. 740-745.

[6] , Direct solution of the EFIE with half the computation, IEEE Trans. Antennas and Propagation,
39 (1991), pp. 118-119.

[7] , Transformations that produce a sparse moment method matrix, J. Electromagnetic Waves Appl.,
4 (1990), pp. 893-913.

[8] ., Sparse matrix approximation to an integral equation ofscattering, Comm. Appl. Numer. Methods,
6 (1990), pp. 543-548.

[9] D. COLTON AND R. KRESS, Integral Equation Methods in Scattering Theory, John Wiley, New York,
1983.

[10] R. F. HARRINGTON, Field CompUtation by Moment Methods, Reprint Edition, R. E. Krieger, Malabar,
FL, 1983.

[11] R. F. HARRINGTON AND J. R. MAUTZ, Theory of characteristic modes for conducting bodies, IEEE
Trans. Antennas and Propagation, 19 (1971), pp. 622-628.

12] V. ROKHLIN, Rapid solution of integral equations ofscattering theory in two dimensions, J. Comp. Phys.,
86 (1990), pp. 414-439.

[13] , Rapid solution of integral equations of scattering theory in two dimensions, Yale Res. Report
YALEU/DCS/RR-440, Department of Computer Science, Yale University, New Haven, CT, 1985.

[14] A. W. RUDGE, K. MILNE, A. D. OLVER, AND P. KNIGHT, The Handbook of Antenna Design, Peter
Peregrinus, London, UK, 1983.

[15] S. SILVER, Microwave Antenna Theory and Design, Radiation Laboratory Series, No. 12, McGraw-Hill,
New York, 1949, p. 187.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 88-100, January 1992

1992 Society for Industrial and Applied Mathematics

005

A HIGHLY PARALLEL MULTIGRID-LIKE METHOD FOR THE
SOLUTION OF THE EULER EQUATIONS*

RAY S. TUMINAROt

Abstract. A highly parallel multigrid-like method for the solution of the two-dimensional steady Euler
equations is considered. The new method, introduced in IT. Chan and R. Tuminaro, in Proc. Third Copper
Mountain Conference on Multigrid Methods, 1987, pp. 101-115] as a "filtering" multigrid, is similar to a
standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser
grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with
coarse grid computations to further accelerate convergence. These additional problems are obtained by
splitting the residual into a smooth and an oscillatory component. The smooth component is then used to
form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a
fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required
and that most of the additional work per iteration can be performed in parallel with the standard coarse
grid computations.

In this paper, the filtering algorithm is generalized to a version suitable for nonlinear problems. It is
emphasized that this generalization is conceptually straightforward and relatively easy to implement. In
particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS
multigrid approach). The nonlinear version is illustrated by applying it to the Euler equations and presenting
numerical results. Finally, a performance evaluation is made based on execution time models and convergence
information obtained from numerical experiments.

Key words, multigrid, parallel, Euler equations, filtering

AMS(MOS) subject classifications. 65F10, 65N20, 65W05

1. Introduction. Multigrid methods are among the fastest algorithms for a wide
variety of problems and are now used in many scientific disciplines. Structurally, the
algorithm iterates on a hierarchy of consecutively coarser and coarser grids until
convergence is reached. While critical to its rapid convergence, the coarse grid computa-
tions are more difficult to parallelize efficiently due to the presence of fewer grid points
(and hence less parallelizable work). We therefore consider a highly parallel multigrid-
like method (see [6], [7], and [8] for other types of highly parallel multigrid-like
methods). This new algorithm, "filtering" (proposed in [4]), uses additional fine grid
subproblems to accelerate the convergence of the overall process. More specifically,
these fine grid problems are created by splitting the residual into a smooth and an
oscillatory component. The smooth component is used to form a coarse grid problem
(similar to standard multigrid) while the oscillatory component is used for the fine
grid subproblem. The primary benefit to this approach is that while more work per
iteration is necessary, fewer iterations are required and more of the work within an
iteration is parallelizable. In fact, if the additional work can be performed concurrently
with coarse grid computations, the CPU time per iteration need not rise significantly.

In this paper we generalize the filtering algorithm into a version suitable for
nonlinear problems. This new algorithm is conceptually straightforward and relatively
easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians)

* Received by the editors April 5, 1990; accepted for publication (in revised form) July 23, 1990. The
majority of this work was performed while the author was at the Research Institute for Advanced Computer
Science and was supported under Cooperative Agreement NCC 2-387 between NASA and the Universities
Space Research Association. This work was also supported by the Applied Mathematical Science Program,
U.S. Department of Energy, Office of Energy Research, and was performed in part at Sandia National
Laboratories, operated for the U.S. Department of Energy, under contract DE-AC04-76DP00789.

" Applied and Numerical Mathematics, Sandia National Laboratories, P.O. Box 5800, Albuquerque,
New Mexico 87185.

88

A HIGHLY PARALLEL MULTIGRID-LIKE ALGORITHM 89

needs to be performed (similar to the FAS multigrid approach). We apply the nonlinear
version to the solution of the Euler equations (see [4] and 11 for convergence analysis
of the filtering algorithm for linear model problems). Specifically, we consider the
filtering approach applied to the FLO52 algorithm. FLO52, written by Jameson [9],
is a well-known multigrid code for the solution of the Euler equations describing
transonic flow past an airfoil. The corresponding FLO52-filtering algorithm is similar
to the ORIGINAL FLO52 with the exception of the additional subproblems. We begin
our description of the algorithm with discussions of both the standard and filtering
multigrid methods applied to linear problems in 2 and 3. The generalization of both
the standard multigrid and the filtering approach to nonlinear problems is then
discussed in 4 and 5. We conclude by comparing the convergence of the filtering
and standard FLO52 algorithms on a fluid calculation. Based on these numerical
experiments, as well as a mathematical execution time model, we make some predictions
on the performance of the FLO52-filtering algorithm on massively parallel computers.

2. Standard multigrid algorithm. We begin our discussion with a brief sketch of
the standard multigrid algorithm applied to linear elliptic partial differential equations
(PDEs). More complete introductory material on multigrid methods can be found in
[3] and [10].

Assume that a given elliptic partial differential equation is approximated by a
discrete set of equations (finite differences or finite elements):

(1) Alu=b,

where A1 is a matrix, b is a vector, and u is a vector of unknowns for which we seek
the solution. One iteration of a simple multigrid ("V" cycle) method consists of the
following steps:

relaxation iterations (e.g., Jacobi or SOR methods);
formation of a correction equation for the error in the current approximation;
projection of correction equation onto a coarser grid;
"solution" of a coarse grid system;
interpolation and addition of correction to previous approximation.

A key feature of this procedure is that the solution to the coarse grid equations can
be approximated using the multigrid idea recursively. Thus the general algorithm
consists of processing on a hierarchy of coarser grids (each processed in turn). We
summarize this multigrid algorithm with a pseudocode fragment in Fig. 1.

For the most part, analysis of the two-level multigrid method reveals the general
behavior of the multiple grid version. If we denote the projection operator by R1, the

Proc Multigrid(A, b, u, level)

if (level CoarsestLevel) then u Acb
else

PreRelax(Ai, b, u, level)
ComputeResidual(b, u, level, residual)
ProjectResidual(level, residual, coarse_residual)
Multigrid(Ai+l, coarse_residual, v, level + 1)
Interpolate(level, v, correction)
u u + correction

endif

FIG. 1. Simple "V" cycle multigrid algorithm.

90 RAY S. TUMINARO

interpolation operator by PI, the relaxation iteration operator by G, and the coarse
grid difference operator by A2, we can express the two-grid iteration operator

(2) e(k+l) Te(k

by

(3) T= (A-(l- P1AIR1)A1G,
where e(k denotes the error after k iterations. In the next section, we will contrast this
two-grid operator with that of the two-level filtering method.

3. Filtering algorithm. Conceptually, the filtering algorithm is similar to the stan-
dard multigrid method, the primary difference being that two correction equations are
formed after the relaxation iterations. Specifically, let ul denote an approximate solution
to the linear equation

(4) Alu=b.
Within a standard multigrid method, a correction equation is usually formed by
computing the residual (r= b-Alul) and using this as the right-hand side to a new
equation. Within the filtering algorithm, however, two subproblems are created by
splitting the residual into the two components:

(5) rl=Zr and r2=r-rl,

which are then used as right-hand sides in

C
(1)(6) A1 =rl and A1 c(2=r2.

To approximate the solution of the first subproblem, the equation is projected onto a
coarser grid, as within a standard multigrid method. The error associated with this
approximation (solving the coarse problem exactly) is

(7) el- (A-1- P1Algl)rl,
where A2 is the coarse grid operator. To approximate the solution of the second
problem, q relaxation sweeps are performed on the fine grid. The error for this second
approximation is given by

(8) e2-- SqA-lr2,
where S is the iteration operator of the concurrent relaxation method, and we have
assumed that the initial guess is zero. Thus the two-level algorithm generates one coarse
grid correction (as in the standard multigrid method) and one additional fine grid
problem to be processed by relaxation iterations. Once again, a multiple grid version
of the method can be defined by recursively using the filtering procedure to "solve"
the coarse grid subproblems. This multilevel version is summarized in Fig. 2, where
the "FilterMultigrid ()" and "ConcurrentRelax ()" steps can occur in parallel.

Proc FilterMultigrid(Ai, b, u, level)
if (level CoarsestLevel) then u A[b;
else

PreRelax(b, u, level);
ComputeResidual(Ai, u, b, level, res);
SplitResidual(res, rl, r2);
ProjRes(r,);
FilterMultigrid(A+, , al, level+ 1);
ConcurrentRelax(Ai, rE, U2, level + 1);
Interpolate_and_add(, u2, level, u);

endif

FIG. 2. V cycle version of the filtering algorithm.

A HIGHLY PARALLEL MULTIGRID-LIKE ALGORITHM 91

Finally, an iteration operator for the two-level version of this algorithm is obtained
by combining (7) and (8)"

(9) e(k+l) [(A-1- P1AaR1)Z -t- SqA-l(I- Z)]A1Ge(k),
where we have included the possibility of performing one prerelaxation sweep with
iteration operator G. That is,

(10) r=AiGek).

Note that when the operator Z is the identity matrix, (9) is identical to (3).
Intuitively, the Sq term in (9) damps the high frequencies while the coarse grid

correction damps the low frequencies. A critical element affecting the convergence
behavior of the filtering algorithm is the properties of the splitting operator Z, used
for computing rl and r2. For the most part, this operator should decompose the residual
so that high frequency errors remain on the fine grid while low frequency errors are
projected onto the coarse grid subproblem. This can be accomplished by choosing an
operator that filters out high frequencies in the residual. Many choices are possible.
In this paper we consider only the operator

(11) Z P1R.
This corresponds to first projecting the residual onto the coarse grid and then interpolat-
ing back to the fine grid. See [4] for an alternative filter.

A detailed convergence analysis (via Fourier transform on the iteration operator)
of a two-level filtering algorithm applied to the Poisson equation can be found in [4]
and [11]. Using this analysis, it is possible to determine convergence rates for the
filtering method. Table 1 lists the spectral radius of the two-grid iteration operator as
a function of q when the algorithm is applied to the Poisson equation:

(12) uxx -Jr- Uyy f
The algorithm depicted uses full-weighted restriction, given by the stencil

1
4(13) 1-
2

bilinear interpolation; one Jacobi prerelaxation sweep; q concurrent relaxation iter-
ations of damped Jacobi with damping parameter equal to -; and the exact solution
of the coarse grid equations. Finally, discretization is obtained via central differences
on both the fine grid (32 x 32) and the coarse grid (16 x 16). We note that by comparison,
the corresponding standard multigrid method using one damped Jacobi relaxation
sweep (with optimal damping parameter) has a spectral radius of 0.570. Thus even
with only one concurrent relaxation sweep, the convergence rate is accelerated.

TABLE
Convergence rates of the filtering

algorithm corresponding to a 32 x 32 grid.

q p(Tf)

0.498
2 0.268
3 0.230
4 0.205

92 RAY S. TUMINARO

4. FAS-multigrid method. To apply the multigrid method to a nonlinear problem,
the simple scheme described in 2 must be modified to implement the FAS algorithm.
For the most part these modifications ensure that the correction equations correspond
to physically meaningful subproblems. To describe the algorithm, we consider the
nonlinear systems

(14) Ak(U) =fk,

arising from discretization of a partial differential equation on grid Ck (where k 0
corresponds to the finest grid). We write one iteration of the relaxation scheme as

(15) Uk - RelaX(Uk,fk).

Once again, let Rk denote projection from grid k to grid k / 1. Similarly, let Pk denote
interpolation from grid k to grid k-1. Then the coarse grid subproblem is defined as
follows. Let the initial guess on the coarse grid be given by

(16) Ilk+ <’- RkUk"
On the finest grid, fo corresponds to the discretization of the continuous right-hand
side. The right-hand sides on the coarser meshes are recursively defined by

(17) fk+l - Ak+(Uk+l)--gkrk,

where

(18) rk-fk--Ak(Uk).

Finally, after the solution on the coarse grid is improved (either by relaxation or
recursively applying the multigrid procedure), the solution on the fine grid is corrected
by

(19) Ilk <’- Uk "at- Pk+1 Uk+1 Rktlk)"

Below we summarize a two-grid version of the algorithm using one relaxation
sweep on each grid level:

Uo - Relax(uo, fo)
u Rouo
ro-f,-A,(u,)

fl AI(Ul) Roro
u Relax(u,f)

Uo Uo + P1 u RoUo).

For more than two grids, the algorithm is recursively defined by replacing

ul Relax(ul, f)
with

Ul result of FAS algorithm starting on 1.
Note that when this method is applied to a linear problem, it is mathematically identical
to the method described in 2. See [2] for more on the FAS procedure.

5. FAS-filtering algorithm. Similar to the FAS algorithm, the filtering algorithm
must be modified so that all the subproblems are physically meaningful. To describe
the method, we consider the discrete nonlinear systems defined by (14):

(20) Ak(U) =fk.

A HIGHLY PARALLEL MULTIGRID-LIKE ALGORITHM 93

As with the FAS scheme, a coarse grid subproblem is created after relaxation on k
by first computing the residual on that level. However, in the filtering version this
residual is further split into two components and then the smooth component is used
in forming the coarse grid subproblem. That is,

(21) rk=fk--Ak(uk), Fk=Zrk, and k=rk--k.
The formation of the coarse grid subproblem proceeds in a simlar fashion to that

of a standard FAS algorithm with the exception that k is used instead of rk. That is,
the initial guess on dk+l is

(22) Uk+l RkUk,

and the right-hand side of the coarse grid equations are recursively defined by

(23) f+, Ak+,(uk+,)- RkPk.

(24)

In addition to the coarse grid subproblem, a fine grid problem is created

ak(k) =fk,
which can be processed concurrently with the coarse grid problem. The right-hand
side of this fine grid subproblem is defined by

(25) fk Ak(uk) + k,

and the initial guess to this system is taken to be Uk. Similar to the filtering algorithm
described in 3, a relaxation scheme is used to improve the approximation to (24).
Finally, after the approximations to the coarse grid and fine grid subproblems have
been improved, the solution of the original problem is corrected by

(26) Uk Uk + Pk+ Uk+, RkUk + k Uk).

Below we summarize the two-grid version of the algorithm using one prerelaxation
sweep, one concurrent relaxation sweep on the fine grid, and one relaxation sweep on
the coarse grid"

ro - Zro
u - Rouo
fl - Al(Ul)- Ror"o
Ul - Relax(ul fl)

Uo Relax(uo, fo)

ro fo Ao(uo)

lo- Uo

o ro- ro
fo - Ao(ao) + o
ao Relax(ao, fo)

In the above pseudocode fragment, independent parts of the two subproblems appear
in separate columns. A multilevel version of the above algorithm can be obtained by
replacing

with

U <’- Relax(ul,f)

u result of FAS-filtering algorithm starting on .
We can easily verify that when the operators Ai are linear, the FAS-filtering method
is mathematically identical to that described in 3.

94 RAY S. TUMINARO

It is important to realize the relative simplicity of modifying an FAS method to
implement the FAS-filtering algorithm. One advantage is that no linearization is needed.
Only the splitting operator and the concurrent relaxation operator must now be
developed. For the concurrent relaxation we can use the same (or a similar) routine
as for the prerelaxation. Additionally, no additional work is required to implement
the splitting operator if

Z PkRk
is used as these operators are already defined for the interpolation and restriction. In
fact the only aspects of the filtering algorithm that requires nontrivial modification are
the routines necessary for the allocation of subproblems to different processors.

6. FLO52 and the Euler equations. We consider both the FAS and the filtering
schemes applied to the Euler equations. We begin by describing the Euler equations
and the FLO52 code.

The FLO52 algorithm written by Jameson solves the two-dimensional steady Euler
equations describing flow around an airfoil. It is widely used in research and industrial
applications throughout the world. It produces good results for problems in its domain
of application (steady inviscid flow around a two-dimensional body), and converges
rapidly.

We briefly describe the Euler equations and the FLO52 scheme (see [9] for more
on FLO52). We begin with the unsteady time-dependent two-dimensional equations
written in conservation integral form as

(27) d--- w+ n-F=0,

where n is the outward-pointing normal on the boundary of the region. The variable
w is the vector of unknowns

(28) w (p, ,v, pE)

where p is density, u and v are velocity components directed along the x and y-axes,
respectively, and E is total energy per unit mass. The function F is given by

(29) F(w)(E(w),F(w)),

where

E(w) (pu, pu + p, puv, pull) T,
F(W) (pv, puv, pv2 + p, pvH) r.

Here p is pressure and H is enthalpy. These are defined by

p (3"- 1)piE -(u2 + v2)/2],
H=E+p/p,

Where 3’ is the ratio of specific heats. The integral relation given by (27) expresses
conservation of mass, momentum, and energy which is to hold for any region in the
flow domain.

To produce a numerical method based on (27), the flow domain is divided into
quadrilaterals. On each quadrilateral of the domain, the double integral in (27) is
approximated by the centroid rule and the line integral is approximated by the midpoint
rule. For numerical stability, a dissipation term that is a blend of second- and fourth-
order differences is added.

A HIGHLY PARALLEL MULTIGRID-LIKE ALGORITHM 95

A simple iterative method (such as the Jacobi algorithm) for the steady-state
problem can be viewed as a time-marching method for the time-dependent equations
(27). After spatial discretization, the equations form a system of ordinary differential
equations

dw
(30) td + al(w) =0,

where Al() denotes the nonlinear finite-difference operator corresponding to differ-
encing of spatial derivatives. Thus for the steady-state solution, we are interested in
solving

(31) Al(W) -0.

The application ofboth the FAS-multigrid and -filtering algorithms to this problem
is relatively straightforward. We conclude this section with a description of the relaxa-
tion method used within the algorithm. Specifically, it is a general multistage Runge-
Kutta-like method. Such a procedure can be written in the form

W(O) W
k-1

(32) wk= w-At akjAi(w), fork=l to m,
j=0

Wn+ W(m),
where At, the time step, and akj are chosen so that the multigrid procedure converges
rapidly (and not necessarily to maintain time accuracy). In our experiments we always
use m 4 for both the concurrent relaxation and the prerelaxation. The only nonzero

1.1 Finally, weparameters for the Olkj S are given by O10----, O21--, O32--" 1/2, and O43
mention that a few other acceleration techniques are employed. These include local
time-stepping and a residual smoothing technique (see [1] and [9] for more details).

7. Algorithmic choices and operation counts. To compare the performance of the
filtering approach to the standard FAS multigrid, we modified the FLO52 algorithm
to implement the procedure described in the previous section (denoted FLO52-filtering)
on a serial machine. Using these codes, we compare the number of iterations required
for convergence. Since the code was not implemented on a parallel machine, operation
counts are made for both algorithms to compare the time per iteration. Additionally,
the operation counts are used to determine the number of concurrent iterations that
can be performed in parallel with the coarse grid correction. In this section, we describe
the algorithmic choices and briefly discuss the corresponding floating point operation
counts for each of the FLO52 algorithms.

The operators used in our experiments are the same as those typically used within
the FLO52 code. Specifically, the Runge-Kutta relaxation scheme is used for prerelaxa-
tion and concurrent relaxation. Bilinear interpolation and full-weighted restriction are
used to transfer values between grids. The coarse grid contains one-fourth as many
points as the fine mesh. Coarse grid operators are defined using the same discretization
scheme as on the fine grid. Finally, the operator Z, which splits the residual in the
filtering algorithm, is given by

(33) Z--(PkRk)q,
where q is an algorithm parameter.

We note that this choice corresponds to the standard Runge-Kutta scheme used in the FLO52 code,
which is probably not the best choice for the FLO52-filtering procedure.

96 RAY S. TUMINARO

In estimating the time per iteration of both algorithms, we make a number of
assumptions on the implementation and the architecture of the parallel machine. In
particular, we assume that a hypercube multiprocessor is used and that each processor
is assigned to one of the fine grid points using a binary reflected Gray code (see [5]).
This implies that many processors are inactive when processing coarser meshes in the
FLO52 procedure. In particular, each successively coarser grid contains one-fourth as
many points as the previous grid. Thus the number of idle processors when computing
on dk is given by

(34) P(1 (.25)k),
where P is the total number of processors. For the FLO52-filtering algorithm, we
assume that these inactive processors are used for the concurrent iterations. Specifically,
the following sequence is proposed for a two-level FLO52-filtering algorithm.

(1) Prerelaxation is performed andtheresidual is computedusingthe full hypercube.
(2) The residual is split into two components using the full hypercube.
(3) The coarse grid right-hand side and initial guess are computed.
(4) The right-hand side corresponding to the fine grid subproblem is computed.
(5) The coarse grid right-hand side and initial guess are sent to a processor subcube

(the size of the original hypercube) according to an algorithm of Chan and Saad
(see [5]). At the same time, the right-hand side and initial guess for the fine grid
subproblem are sent to a processor subcube (1/2 the size of the original hypercube).

(6) Initiate processing on both the coarse grid and fine grid subproblems.
(7) Fine grid processing terminates and the correction from this subproblem is

added to the previous fine grid approximation.
(8) The coarse grid processing terminates and the correction is interpolated and

added to the fine grid approximation.
The corresponding FAS method is identical except that steps 2, 4, and 7 are

omitted and that no fine grid computations are necessary in steps 5 and 6. It should
be noted that the communication necessary for initiating the subproblems on the
subcubes is local in nature. Furthermore, contention between the subproblems on the
communication network is avoided (since each is in a different subcube).

By way of example, Fig. 3 illustrates the different subproblems in a FLO52-
filtering algorithm using five grid levels. In the figure, the darker boxes correspond to

ci on g using 8192 processors

ci on g using 4096 processors

ci on g2 using 1024 processors go: 16384 grid points

g 1: 4096 grid points
g2:1024 grid points

g3: 256 grid points

g4: 64 grid points

ci on g3 on 256 processors
time

FIG. 3. Illustration of the subproblems (and processor allocation) for a five-level filtering method.

A HIGHLY PARALLEL MULTIGRID-LIKE ALGORITHM 97

the standard multigrid "V" cycle. Within each box comprising the "V" cycle, the grid
on which processing occurs is indicated. Each element of the first half of the "V" cycle
(except for the coarsest grid) spawns a concurrent iteration problem. This is indicated
by the lighter boxes, which are labeled "ci." Finally, we assume that for each element
ofthe "V" cycle calculation, one grid point is assigned to each processor. The processors
assigned to each concurrent relaxation subproblem are indicated on the figure.2

The operations per iteration of each algorithm are estimated using a timing model
developed for an actual hypercube implementation of FLO52 (see [1]). In Table 2,
we give the operation counts (not including communication operations) corresponding
to a five-grid version of the two methods as a function of the number of prerelaxation
sweeps/x and residual splitting cost q. Note that the filtering algorithm is only slightly
more expensive. This additional cost is primarily due to the residual splitting computa-
tions. Of course, the numbers in Table 2 ignore communication. However, it can be
argued that the additional cost of communication for both algorithms would scale in
a similar fashion. That is, the amount of communication is proportional to the amount
of computation.3

TABLE 2
A comparison ofthe maximum number offloating

point operations performed by any processor as afunc-
tion of prerelaxation sweeps tx and residual splitting
costs q.

FLO52-Filtering

/z FLO52 q q 2 q 3

309 316 323 330
2 526 533 540 547
3 742 749 756 763

In addition to computing the time per iteration, we use the operation counts to
determine the number of concurrent relaxation iterations that can be performed in
parallel with the coarse grid correction. That is, the maximum number of concurrent
relaxations that can be completed during the coarse grid correction is given by:

concurrent iterations on k
(35)

floor [time for coarse grid correction for k]time for one fine grid relaxation on k
In this way, we ensure that the concurrent iterations do not increase the overall time
per iteration of the algorithm. In Table 3 we give the number of concurrent iterations
that can be performed for each subproblem in Fig. 3 as a function of the number of
prerelaxations used, .

8. Performance comparisons. A series of convergence experiments were run on a
serial machine to evaluate the numerical properties of both the FLO52 and the
FLO52-filtering code. For the most part, the relative performance of the two algorithms

Note that for the concurrent iteration problem on grid go, each processor contains two grid points.
This is because there are not enough processors available to assign one processor for each grid point.

This makes the assumption that the additional communication required for sending the fine grid
information to a subcube can be overlapped with the communication necessary to set up the coarse grid
correction.

98 RAY S. TUMINARO

TABLE 3
Number of concurrent iterations performedfor each sub-

problem in Fig. 3 as afunction ofthe number ofRunge-Kutta
prerelaxation sweeps, Ix.

Ix/grid go d 32 q33

2 3 2
2 4 6 4 2
3 6 9 6 3

was fairly consistent for different grids and over a range of MACH numbers. In this
paper we present results obtained from runs on a 256 64 grid. For these experiments
an angle of attack of 1.25 degrees and a MACH number of0.8 was chosen. As previously
mentioned, a five-level multigrid scheme is used. The computation starts on the coarsest
level, 4, using just relaxation until the norm of the residual is reduced below 10-2.
This solution is interpolated to 3 where a multigrid procedure is used to reduce the
norm of the residual to 10-4. The process is repeated for grids 2, 1, and go, reducing
the residual norm to 10-5 10-6 and 10-9 respectively.

Before proceeding with convergence results, we briefly comment on the serial run
time of the filtering algorithm. In particular, we consider the FLO52 algorithm (using
three prerelaxation iterations) and the FLO52-filtering algorithms (using two prerelaxa-
tion iterations, one concurrent iteration, and q 1 for the residual splitting) on a serial
machine. Since prerelaxation is more efficient than concurrent relaxation, it is not
surprising to find that the FLO52 algorithm requires less time than the FLO52-filtering
method (1568 seconds versus 1815 seconds). This inefficiency within the concurrent
relaxation is a consequence of the fact that only the error associated with the fine grid
suproblem is reduced (as opposed to prerelaxation, which reduces the entire error).
Note that while the FLO52-filtering method is slower on serial machines, it is still
competitive.

Of course the motivation for the filtering method is that more of the work is
parallelizable. More specifically, we have argued that the cost per iteration Of FLO52-
filtering is not significantly greater than that of the corresponding FLO52 method when
both are implemented on a massively parallel machine. Therefore, we can obtain a
rough measure of the relative parallel performance of these two algorithms by compar-
ing the number of iterations required for convergence. In Table 4, we present our
results using different numbers of prerelaxation sweeps /z and splitting operators q.4

TABLE 4
Comparisons of multigrid iterations for the

FLO52 and FLO52-filtering algorithms where iter-

ations correspond to the total (including one-, two-,
and three-, four-, five-level multigrid iterations).

FLO52-Filtering
Ix FLO52 q q 2

2 90 78 64
3 53 44 39
4 48 35 33

4 These results are representative of a number of different runs using different grid sizes, Mach number,
and angle of attack.

A HIGHLY PARALLEL MULTIGRID-LIKE ALGORITHM 99

As the table illustrates, the number of iterations required for the filtering algorithm is
significantly less than the number of iterations for the standard method. Furthermore,
the use of the more expensive filter, q 2, yields somewhat better convergence results
than the simpler filter. Additionally, it should be noted that the savings in using the
filtering approach over the standard method is reduced when more prerelaxation is
used:/x > 4. This is to be expected, since the primary function of the new subproblems
is to reduce high frequency errors in parallel with the coarse grid correction. However,
when many prerelaxation sweeps are performed (before forming the new subproblem),
the high frequency error is significantly reduced before the coarse grid correction
begins. Finally, we remark that it may be possible to boost the performance of the
filtering method further by the use of more sophisticated operators. For example, the
prerelaxation and concurrent relaxation operators use the identical Runge-Kutta
coefficients that are used within the standard FLO52 scheme. These coefficients were
specially chosen for the FLO52 method. Thus improvements may be possible if a new
set of coefficients is chosen for the new method. Likewise, a more carefully chosen
splitting operator Z may also yield significant improvements.

9. Conclusion. We have presented an FAS version of the filtering method. The
principle idea is to use processors that could otherwise be idle in a standard multigrid
method to perform relaxation iterations. These additional iterations are performed on
subproblems that are created by splitting the residual into "smooth" and "oscillatory"
components. The "smooth" component is used for the coarse grid correction, while
the "oscillatory" component is used for the new subproblem. By using these otherwise
idle processors, a filtering iteration need not cost significantly more than standard
multigrid iterations. Additionally, we remark that the modifications necessary to imple-
ment a filtering algorithm from an FAS algorithm are relatively straightforward. This
is primarily because no linearization of the operator is necessary.

We have applied the filtering approach to the FLO52 algorithm for solving the
steady two-dimensional Euler equations. Based on numerical experimentation, it has
been determined that this filtering method requires fewer iterations than the standard
method, and consequently, it is an attractive alternative on parallel computers.

REFERENCES

1] E. BARSZCZ, T. CHAN, D. JESPERSEN, AND R. TUMINARO, Performance of a parallel Euler equation
code on hypercube computers, Tech. Memo 102260, NASA-Ames Research Center, Moffett Field,
CA, April 1990.

[2] A. BRANDT, Multi-level adaptive solutions to boundary-valueproblems, Math. Comp., 31 (1977), pp. 333-
390.

[3 W. BRIGGS, Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1987.
[4] T. CHAN AND R. TUMINARO, Design and implementation of parallel multigrid algorithms, in Proc.

Third Copper Mountain Conference on Multigrid Methods, S. McCormick, ed., Marcel Dekker,
New York, 1987, pp. 101-115.

[5] T. CHAN AND Y. SAAD, Multigrid algorithms on the hypercube multiprocessor, IEEE Trans. Comput.,
C-35 (1986), pp. 969-977.

[6] C. DOUGLAS AND W. MIRANKER, Constructive interference in parallel algorithms, SIAM J. Numer.
Anal., 25 (1987), pp. 376-398.

[7] P. FREDERICKSON AND O. MCBRYAN, Parallel superconvergent multigrid, in Proc. Third Copper
Mountain Conference on Multigrid Methods, S. McCormick, ed., Marcel Dekker, New York, 1987,
pp. 195-210.

An alternative filter that distributes more of the middle frequency errors on the fine grid subproblem
may yield better performance.

100 RAY S. TUMINARO

[8] W. HACKBUSCH, A new approach to robust multi-grid methods, in First Internat. Conference on Industrial
and Applied Mathematics, Paris, 1987.

[9] A. JAMESON, Solution of the Euler equations for two-dimensional transonic flow by a multigrid method,
Appl. Math. Comp., 13 (1983), pp. 327-335.

10] D. JESPERSEN, Multigrid methods for partial differential equations, in Studies in Numerical Analysis,
G. Golub, ed., The Mathematical Association of America, 1984, pp. 270-318.

[11] R. TUMINARO, Multigrid Algorithms on Parallel Processing Systems, Ph.D. thesis, Department of
Computer Science, Stanford University, Stanford, CA, 1989.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 101-118, January 1992

1992 Society for Industrial and Applied Mathematics

006

FAST PARALLEL ITERATIVE SOLUTION OF POISSON’S AND THE
BIHARMONIC EQUATIONS ON IRREGULAR REGIONS*

A. MAYO" AND A. GREENBAUM

Abstract. In [SIAM J. Numer. AnaL, 21 (1984), pp. 285-299], a method was introduced for solving
Poisson’s or the biharmonic equation on an irregular region by making use ofan integral equation formulation.
Because fast solvers were used to extend the solution to an enclosing rectangle, this method avoided many
of the standard problems associated with integral equations. The equations that arose were Fredholm integral
equations of the second kind with bounded kernels. In this paper iterative methods are used to solve the
dense nonsymmetric linear systems arising from the integral equations. Because the matrices are very well
conditioned, conjugate gradient-like methods can be used and will converge very rapidly. The methods are
very amenable to Vectorization and parallelization, and parallel and vector implementations are described
on shared memory multiprocessors. Numerical experiments are described and results presented for a
three-dimensional interface problem for the Laplacian on a recording head geometry.

Key words. Laplace’s equation, biharmonic equation, integral equations, iterative methods

AMS(MOS) subject classification. 65

1. Introduction. In this paper we present efficient parallel numerical methods for
solving Poisson’s and the biharmonic equations on general regions. Aside from being
parallel, these methods also vectorize very well. This is in contrast to other methods
for solving these equations on general irregular regions, notably finite element methods.
Finite element methods may require use of a fast scatter/gather operation in order to
efficiently perform a matrix-vector multiply for the large sparse matrix that arises. In
addition, many of the standard preconditioners used in the iterative solution of such
equations require inherently sequential operations (e.g., backsolving with the incom-
plete Cholesky decomposition 12]). This is especially true in the case ofthe biharmonic
equation, and we know of no other effective parallel and vectorizable methods for
solving it.

The methods presented here combine integral equation formulations of the prob-
lems with rapid finite difference methods on a larger rectangular region in which the
irregular region is embedded. Both the integral equation method and the finite difference
method parallelize and vectorize well. By using well-conditioned integral equation
formulations and iterative methods for solving them, the main part of the computation
is reduced to the iterative solution of a dense nonsymmetric matrix equation, instead
of a (much larger) sparse (although symmetric) system of equations with an irregular
pattern of nonzero elements.

The method used is very similar to the method developed in [10]. The main idea
is to use the integral equation formulation to define a discontinuous extension of the
solution to the remainder of the embedding region. All the discontinuities between
the original function and its extension can be expressed in terms of the solution
of the integral equation. These discontinuities are used to compute an approxi-
mation to the discrete Laplacian of the combined function at mesh points near the

* Received by the editors April 5, 1990; accepted for publication (in revised form) May 22, 1991.

" IBM T. J. Watson Research Center, Yorktown Heights, New York 10598. Part of this work was
performed while this author was visiting the Courant Institute of Mathematical Sciences, New York, New
York.

$ Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012. The
work of this author was supported by the Applied Mathematical Sciences Program of the U.S. Department
of Energy under contract DE-AC02-76ER03077.

lOl

102 A. MAYO AND A. GREENBAUM

original boundary. Fast Poisson solvers are then used to compute the extended
function. This method can also be used to solve directly for the derivatives of the
solution, which are usually the physically meaningful quantities.

This combination of integral equation formulations with finite difference methods
on a larger rectangular region overcomes two of the standard problems usually associ-
ated with integral equation methods. First, because the solution is actually computed
using a fast Poisson solver, it is not necessary to compute a costly integral in order to
evaluate the solution at many points. Second, although the kernel of the integral is
singular, and hence difficult to evaluate accurately by quadrature near the boundary,
the solution can be computed very accurately using the fast Poisson solver. In addition,
since the methods make use of integral equation formulations, they are very well suited
to problems on exterior regions. A future aim is to use these methods for solving
nonlinear magnetostatic problems in unbounded domains.

Work described in the current paper differs from that in 10] in several important
respects. One difference is that we use a different integral equation formulation of the
biharmonic equation, which has probably not been applied before in numerical compu-
tations. The other primary difference is the way in which the integral equations are
solved. Conjugate gradient type iterative methods (i.e., the biconjugate gradient/conju-
gate gradient squared method [5], [18]; GMRES [16]; and the conjugate gradient
method applied to the normal equations [6]), with simple diagonal preconditioners,
are used to solve both Laplace’s and the biharmonic equations. Since most of the
operations in these methods consist of matrix-vector products, and since the matrices
are dense, it is easy to see how the calculations can be performed in parallel and each
of the parallel sections can be vectorized. The matrix can be divided into blocks, and
each processor can handle multiplication by that block, while vectorization can be
performed over the rows within the block. This can actually be accomplished using a
level-2 Blas routine [4], and these routines have already been optimized on many
parallel/vector supercomputers.
We also note that the integral equations used for solving both of these problems are

well-conditioned Fredholm integral equations of the second kind, and so the matrices
have eigenvalues and singular values that are bounded independent of the number of
discretization points. Therefore we were able to achieve convergence in a small number
of iterations. In particular, we were able to solve the biharmonic equation on general
nonconvex regions, and, except on very eccentric ellipses, all of the iterative methods
tested converged in fewer than 30 iterations. To solve the biharmonic equation on an

ellipse with eccentricity 10 or 20, required no more than 32 GMRES iterations, provided
enough direction vectors were saved.

In addition to using iterative methods to solve the integral equations, we also
solved equations with different types of boundary conditions than before. Specifically,
we solved a three-dimensional exterior interface problem in magnetostatics that arises
from modeling a recording head, and a two-dimensional Dirichlet problem for Laplace’s
equation on a doubly connected region.

We note that fast Poisson solvers have also been used for solving Poisson’s equation
on irregular regions through the use of capacitance matrix methods [2], [14]. Our
method is, however, better suited to problems on exterior regions. Although, by using
a trick due to Hockney [7] and improved by James [8], it is possible to use capacitance
matrix methods to solve exterior problems, both the operation count and the storage
requirements for the fast solver are significantly increased. More important, capacitance
matrix methods do not allow one to solve for derivatives directly. Moreover, we know
of no implementation of a capacitance matrix method for solving the biharmonic
equation on an irregular region or for solving interface problems.

POISSON’S AND THE BIHARMONIC EQUATION 103

The organization of the paper is as follows. Section 2 presents the integral equation
formulations, and 3 the method used for obtaining solutions to the differential
equations, given the solutions of the integral equations. Section 4 describes results of
numerical experiments carried out on the 8-processor New York University ultra-
computer prototype, on the Cray X-MP and on the IBM 3090.

2. Integral equations.
2.1. Laplace’s equation. Laplace’s equation in two dimensions with Dirichlet

boundary data g(t) prescribed on the boundary curve (x(s), y(s)) is solved in terms
of a double layer density function. In this formulation, the solution u(z) is expressed
as the integral over the boundary of the region of the product of an unknown density
function Ix with the normal derivative of the Green’s function in the plane"

1 In O lg r(s’ z)
ix(s) ds’ z D,(1)

where

If the region is simply connected, the density function Ix satisfies

1 f Ologr(s,t)
Ix(t)+-

,-/7" 30D 0ns
Ix(s) ds 2g(t).

If the region is doubly connected, with boundary curves Lo and L1, then the boundary
values can only be prescribed up to an additive constant. In this case u(z) is the real
part of a single valued analytic function, and the density function satisfies the following
equation [13]:

110 (Olgr(s’t))(2) Ix(t) +-- + a(s, t) Ix(s) ds 2g(t),
D Ons

where

if s and both lie on L1,
otherwise.

These are Fredholm integral equations of the second kind and, if the boundary 0D is
smooth enough, they can be solved very accurately numerically.

Outside D, (1) defines another harmonic function g(z):

1 f Olog r(s, z)
Ix(s) ds.(3) if(z) =- J0o Ons

The function t is, of course, a discontinuous extension of the function u. However,
all the discontinuities between u and can be expressed in terms of the density Ix and
the boundary curve. In 3 we show how to determine the discontinuities and how to
use them to rapidly compute an approximation to the combined function U(z), which
is equal to u(z) inside D, and if(z) outside D.

We can also use (1) to express the conjugate function v(z) to u(z) in terms of
the density Ix. Since the conjugate harmonic function of O logr(s,z)/Ons is
0 log r(s, z)/Os, we have

1 [" Ologr(s,z)
(4) v(z) =-- J0o Os

Ix(s) as.

104 A. MAYO AND A. GREENBAUM

2.2. Interface problems. A similar formulation can be used to solve certain inter-
face problems. In linear magnetostatics, for example, the following problem arises.
One seeks to find a function u(z) defined on a magnetizable region D and on the
infinite exterior region outside D such that

V aVu(z)= qb(z),

where b(z) is the given potential function for the applied field, a is the magnetic
permeability of the region, and u(z) is the unknown potential function for the H field
(i.e., the function satisfying 7u -H). In typical linear problems, a is equal to a large
constant a inside the magnetizable region D, and equal to a small constant ao in the
exterior region. Continuity of the H field and the normal component of the B field
imply that u(z) and au,(z) are continuous across the boundary of D.

It turns out that both inside and outside D, the potential u can be expressed as
the sum of a term involving the applied potential and the integral of a double layer
density function, where the density is the value of the potential on the boundary:

ft + l OG(s, z) dp(z)
(5) Jo u(s)ds+ zD

a o On

(6) u(z) (d+l) fo OG(s, Z)
u(s) ds + (z), z D

where J aa/ao is the relative permeability. See [9]. On the boundary of the region,
the potential u (t) satisfies

_a-1 f OG(s’ t)
u(s) ds=2(t).(7)

+1 Job On

In two dimensions, the kernel (Green’s function) is (1/2)log r(s, z), while in three
dimensions it is 1/4r(s, z). We have solved this integral equation in three dimensions,
in which case the kernel, while in LZ(oD), is unbounded.

2.3. The biharmonic equation. The integral equation formulation used for the
biharmonic equation relies on the representation of a biharmonic function in terms of
Goursat functions. Any two-dimensional biharmonic function W(z) can be expressed
as

(8) w() Re (e6(z)+x(z)),

where (z) and X(z) are analytic functions. The functions (z) and (z)= X’(z) are
known as the Goursat functions. For a given biharmonic function W(z), the Goursat
functions are not uniquely determined. More precisely, ’(z) is determined to within
a purely imaginary additive constant, and so (z) is determined to within an additive
term of the form

iaz+ ,
where a is real and is complex. Similarly, O(z) is not uniquely determined. However,
all the physically meaningful quantities, such as velocities in fluid mechanics or stresses
and displacements in elasticity can be expressed in terms of ceain derivatives of the
Goursat functions, which are uniquely determined. Therefore, it suffices to compute
these two functions, and not the biharmonic function itself. Both of these functions
can be expressed as Cauchy integrals:

1 fo (Sds, (z)=
1 fo (s)-g’(S)ds.(9) (): o-z 2 o -.z

POISSON’S AND THE BIHARMONIC EQUATION 105

The integral equation one uses to determine the density function to(t) depends
on the boundary conditions. We have considered the case in which Wx and Wy (or,
equivalently, W and W,) are prescribed. In previous work 10], the following integral
equation, originally developed by Sherman 17], was used"

to(t)+-- to(s) dO--- tb(s) e2i dO
’71" D 7t" D

(10)
+ Re ds

7rt o (jZ32 :f(t,

where

f(t) Wx(t) -t- iWy(t),

(y(s) y(t))O(s, t) arctan \(i- x(
1 1 t-c

b---+
t-c (’-5)2 ({-e)2’

and c is any point inside the region D. It is important to note that the kernel of this
equation is always bounded.

It is known [13] that if a function to(t) satisfies this equation, then the third integral
in the equation is zero, provided f(t) satisfies the natural compatibility condition
Re (oO f (t) dt) 0. Thus (10) can be replaced by

(11) to(t)+-- to(s) dO--- (s) e2’ dO=f(t).
’71" D ’71" D

We chose to solve this integral equation instead of (10), despite the fact that this
equation need not have a unique solution. This is acceptable for the following reason.
Any solution tOo(t) of the homogeneous equation

too(S) dO _1 I7"I" D
tbo(S e2i dO 0

corresponds to the Goursat functions bo(Z)= iaz and 0o(Z) =0, where a is real [13].
Since b(z) is only determined up to terms of this form, and since the physically
meaningful quantities are not changed by adding terms of this type to b(z), any
solution of the modified equation will provide a physically correct solution. Existence
of multiple solutions is not a problem for the iterative methods we used, as will be
explained in 4. Furthermore, it is easy to show that whenever the kernel O0/Os is
symmetric, the kernel of (11) will be symmetric. This is true, for example, when the
region is an ellipse. A symmetric kernel is an advantage, since in this case the minimum
residual variant of the conjugate gradient algorithm can be used to solve the problem
(and, in fact, the biconjugate gradient method and the (unrestarted) GMRES method
reduce to the minimum residual conjugate gradient algorithm). Conjugacy of direction
vectors is maintained without having to save vectors and explicitly orthogonalize. In
addition, even when the kernel is not symmetric, we found that the kernel of (11) is
closer to being normal than that of (10). Experimental evidence indicated that conver-
gence was always more rapid with (11) than with (10), so it was decided to use this
modified equation.

3. Solving the differential equations. After solving the integral equations of 2 for
the density function /x, we are then able to compute the solution u(z), at points z
within the region D, in the following manner. Discontinuous extensions of the solutions
to the differential equations are defined throughout a larger embedding rectangular

106 A. MAYO AND A. GREENBAUM

region. Specifically, (1) defines the extension of the solution of Laplace’s equation,
and (9) defines the extensions of the real and imaginary parts of the Goursat functions
for the biharmonic equation. These functions are all harmonic, except at the boundary
of the original region. Therefore, their discrete Laplacians are all zero, up to truncation
error, except at mesh points near the boundary. We compute approximations to the
discrete Laplacians at these points near the boundary and approximations to the
extended function at the edge of the embedding region. Then we apply fast Poisson
solvers to obtain approximate solutions to the differential equations, throughout the
domain D.

3.1. Solution of Lalflace’s equation. The integral equation (1) can be used with
the second-order accurate five-point discrete operator A to compute a second-order
accurate solution to Au =0 on an irregular region D with smooth boundary OD=
(x(s), y(s)) on which smooth Dirichlet boundary data u(s)= g(s) is prescribed. The
procedure is as follows.

First embed D in some regular region R, such as a square with a uniform mesh of
width h in the x and y directions. Define a discontinuous extension of u throughout
the region R, using (3). As noted previously, all the jump discontinuities in the
derivatives of u and a can be expressed in terms of the density function and the
derivatives of the boundary curve. Once the discontinuities in the derivatives of the
combined function are known and the distances from the boundary curve to the
neighboring mesh points are computed, it is easy to compute the discrete Laplacian
of the combined function. Knowing an approximation to the discrete Laplacian
throughout the regular region R, a fast Poisson solver can then be used to obtain an
approximation to the solution u.

Define U(z) to be combined function,

u(z) z+D,
U(z)

t(z) z Dc.
The discontinuity between u and ff at a point on the boundary of D is equal to the
value of the density at that point [13]. Therefore, the discontinuity between their
tangential derivatives is equal to the derivative of the density,

U l
ds

There is no discontinuity between their normal derivatives"

Using these two facts and the direction of the curve, we can compute the discontinuities
between u, and ,, and between uy and y"

Ix’(s)y’(s)tx (s)x’(s)
uy(s)-ty(S) x,(s)2+y,(s)2(12) u,(s)-gt,,(s)

x,(s)2+ y,(s)2,

Discontinuities in higher-order derivatives of U can be obtained by differentiating
these expressions.

In two dimensions it is also possible to compute these discontinuities by using
the fact that U(z) is the real part of a Cauchy integral with density function Ix. Let

f(z)=----1 Io Ix(sr--)) ar.
2ri o ’-z

POISSON’S AND THE BIHARMONIC EQUATION 107

The kernel in (1) is the real part of the Cauchy kernel:

(13)

where

1 duds) 1 y’(s)[x(s)-x(t)]-x’(s)[y(s)-y(t)]
Re 2ri - ds -27r (x(s)-x(t))2+(y(s)-y(t))2

1 0log r(s, z)
27r Ons

ds

(s)=x(s)+iy(s), z(t)=x(t)+iy(t).

Therefore u(z)= Re (f(z)) for z in D, and (z)= Re (f(z)) for z outside D. To find
the discontinuities between u and g, we use the known discontinuities of Cauchy
integrals across the boundary curve and the fact that Cauchy integrals are analytic
functions. For details see [10].

These discontinuities are then used to compute approximations to the discrete
Laplacian at mesh points near the boundary of D. Define the mesh function Ui, by

u(xi, yj) (xi, y2) D,u,"J t ll(Xi, yj) (x,, y) Dc.
An approximation to A U, at all mesh points of R can be computed as follows. At
mesh points (i, j) of R, which have all four of their neighboring mesh points (i + 1, j),
(i- 1,j), (i,j+ 1), and (/,j-l) on the same side of OD, set AU,j =0, since u and t7
are harmonic. Consider the set B/ of mesh points that have neighboring mesh points
on both sides of OD. This set consists of two rings of mesh points, one inside and one
outside D. Let p, for example, be a mesh point that is in D but whose neighbor to the
right, p, is not. Let p* be the point on OD on the line between p and p, let h be
the distance between p and p*, and let h: h- ha.

By manipulating the Taylor series at p and p, both evaluated at p*, one can
derive the following expression for g(p)-u(p). (For details see [10].)

7(p) u(p) [7(p*) u (p*)] + h[L(p*) Ux(p*)]

(14)

,/1/2h2[t(p*) u(p*)]/-h2[x(p*)- u(p)]

/h[x(p*)- u(p*)]
5+6hz[,xxx(P*)- Ux,,(p*)]

+ hux(P)+1/2h2uxx(P)+h3uxxx(P)+h4uxxxx(p)

+ --6hSuxxx,x(p)+ O(h6).
Note that the first six terms depend on the discontinuities between u and g and their
derivatives at the boundary. The other terms are the usual Taylor series terms. Therefore,
once these discontinuities are known, the right-hand side of (14) is just the sum of
known quantities and Taylor series terms.

Now let Pw be the point to the left of p. Then we have

U(pw) U(p) {known quantities}-hux(P)+1/2h2uxx(p) 1-gh Ux(p)

+h4tlxxxx(P)---6hSuxxxxx(p)-t O(h6),
where the quantities in braces are zero if Pw is in D. In any case, we have

(15)
U(pw)+ U(pE)-2U(p)= {known quantities}+ h2ux(p)

+ lh4uxxx(p)+ O(h6).

108 A. MAYO AND A. GREENBAUM

If PN is the point above p and Ps is the point below p, then by the same arguments
we have

U(pN)+ U(ps)-2U(p) (known quantities}+ h2uyy(p)
(16)

+lh4uyyyy(P) + O(h6)

Let gi,+j denote the sum of the quantities in braces in (15) and (16). Adding (15)
and (16) and using the fact that uxx(p)+Uyy(p)=O, we obtain

h4

(17) h2A U(p) g,,- +- Uxx,,(p) + Uyyyy(p)] + O(h6).

The same equation holds with u replaced by if p is a point outside D since is
then harmonic at p. (It is important to notice that it is not assumed that either of the
harmonic functions u or can be extended beyond OD. If, however, they could both
be extended one mesh width, then the formulas we would obtain for the discrete
Laplacian clearly agree with those we have derived.)

Therefore, if the integral equation can be solved accurately enough, one can obtain
a fourth-order accurate approximation to h2A U(p) at points of B+. This guarantees
the accuracy of the solution obtained after applying a fast solver. Define Uh to be the
solution of the following set of equations

=o
(18) (A U)i,j gi,-

(xi, y) R B+

(xi, yj) B+

(xi, Yj) eOR

where the boundary values Ui, on 0R are computed by evaluating the integral (3)
using the computed density . In practice, we have used the trapezoid rule as the
quadrature formula for two-dimensional problems.

If the values of gi,+ and Ui, are sufficiently accurate, then U1h will be a second-order
accurate approximation to U. For a proof see [10]. By using a higher-order accurate
approximation to the Laplacian and retaining more terms in the Taylor series, a
higher-order accurate solution can be obtained.

3.1.1. Computation of the conjugate function. The conjugate of a harmonic function
can also be computed at small additional cost. Using the Cauchy-Riemann equations,
the discontinuities in the conjugate function v can be expressed in terms of the
discontinuities in u. For example,

vy y -(uy 5y)
tx’(s)y’(s)

x’(s)2+y’(s)2"

These discontinuities could also be computed using the fact that v is the imaginary
part of the same Cauchy integral that u determines:

1 /x()d = D
v(z)=Im

D --Z OS
as.

Knowing these discontinuities, we can, in the same way as before, compute an
approximation to the discrete Laplacian of v, and then apply a fast Poisson solver to
obtain an approximation to .

3.1.2. Computation of derivatives. An important property of these methods is that
one can easily compute the derivative of a harmonic function directly, without having

POISSON’S AND THE BIHARMONIC EQUATION 109

tO compute the function itself. This follows because all the derivatives of a harmonic
function are themselves harmonic and because one can compute the discontinuities
in all these derivatives.

3.2. Solution of interface problems. Since the integrals in (6) and (7) are also
integrals of double layer density functions, the same method can be used to solve
interface problems.

3.3 Solution of the biharmonic equation. As noted in 2, the solution of the
biharmonic equation can be reduced to the evaluation of two analytic functions that
satisfy (9) and the prescribed boundary conditions. More precisely, the evaluation of
the physically meaningful quantities reduces to the evaluation of the Goursat
functions (8).

Both ofthe Goursat functions can be expressed as Cauchy integrals whose densities
are given in terms of the solution of the integral equation (11). Therefore, it suffices
to be able to evaluate a Cauchy integral g(z)=oo(f(t)/z-t)dt with prescribed
density function f(t). Suppose f(t)=p(x,y)+iq(x,y). The integral g(z) can be
expressed in terms of certain integrals of double layer density functions and their
conjugates:

1 fo (01ogr 01ogr) 1 I0 (01ogr 01o__r)p(s) +i ds+ q(s) -i ds.g(z)
D Otl OS 2r D Ons Os

Therefore, the same methods can be used to evaluate the Goursat functions.

4. Numerical experiments. In this section we report on calculations we have
performed. Parallel implementation of the method is discussed, and details are given
on the performance of the iterative methods used for solving the integral equations.
Accuracy of the method was discussed in detail in [10] and will not be repeated here.

The complete solution method consists of the following steps"
1. The irregular region D is embedded in a rectangle R with a uniform mesh,

and distances from neighboring mesh points to the boundary are computed.
2. The boundary(ies) of the region D are discretized, and the integral operators

are replaced by quadrature formulae. Since the kernels are bounded for the two-
dimensional problems, we used the trapezoid rule, since it is extremely accurate on
periodic regions. For the three-dimensional interface problem, a different procedure
was used since the kernel is unbounded. We triangulated the surface of the region,
which was fiat. We assumed a continuous, piecewise linear density function and
integrated the product of the kernel function with the piecewise linear basis functions
exactly. Explicit quadrature formulae can be found in [9]. (These formulae require
the surface to be fiat.)

3. Having formed the dense, nonsymmetric matrix arising from the integral
equation, the appropriate linear system is then solved for the density / using an
iterative method. Methods that we experimented with include the biconjugate
gradient/conjugate gradient squared method [5], 18], GMRES 16], and the conjugate
gradient method applied to the normal equations [6]. In each case, the diagonal of
the matrix was used as a preconditioner.

4. Approximations to the discrete Laplacian are computed near the boundary OD,
and approximations to the extended function are computed along the boundaries of R.

5. A fast Poisson solver is applied to obtain an approximate solution to the
differential equation.

4.1. Test problems and performance of iterative methods. Although the matrices
that arise from the integral equations of 2 are dense and nonsymmetric, they are also

110 A. MAYO AND A. GREENBAUM

well conditioned and, in most cases, have tightly clustered eigenvalues and singular
values. For this reason, all of the nonsymmetric conjugate gradient-type iterative
methods that we have tried have performed well. In each case, the diagonal of the
matrix was used as the preconditioner. Results are presented primarily for the biconju-
gate gradient (BCG) method, but some of the problems were also solved using GMRES
[16], conjugate gradients on the normal equations (CGNR) [6], and the conjugate
gradient squared (CGS) method [18].

The effectiveness of these iterative methods for solving the double layer integral
equation for Laplace’s equation on simply connected regions is well documented. (See,
for example, 11].) We have performed calculations on doubly connected regions and
have found the results to be similar. In particular, we have tested the biconjugate
gradient method on a region bounded by two nonconcentric ellipses. The outer ellipse
had semiaxes .35 and .40, the inner ellipse had semiaxes .08 and .10, and the center
of the inner ellipse was offset .14 from the center of the outer ellipse along the major
axis. Starting with zero as an initial guess, we iterated until the relative size of the
pseudo-residual was reduced below 10-6:

10-6.

Here M is the diagonal of the matrix, rk is the residual at step k, andf is the right-hand
side of the matrix equation. In all cases, the true residual, f-Axk was computed,
since, for some problems this may differ from the vector rk generated by the biconjugate
gradient algorithm.

Table 1 shows the number of iterations required to satisfy this convergence
criterion, for different values of n, the number of boundary discretization points. Table
2 shows results for a slightly different region. Now the outer ellipse has semiaxes .35
and .15.

The biconjugate gradient method was also used to solve the three-dimensional
integral equation (7) for an interface problem in magnetics. The region D, shown in
Fig. 1, is shaped like a U-shaped recording head, with equal pole tips of width 5

TABLE
Doubly connected Region 1.

Number of BCG
Iterations

50 6
100 6
200 6
360 9

TABLE 2
Doubly connected Region 2.

Number of BCG
Iterations

50 9
100 9
200 9
360 12

POISSON’S AND THE BIHARMONIC EQUATION 111

X-2

FIG. 1. U-shaped recording head.

2.0.01

meters, gap 1 meter, height 30 meters, and uniform depth 10 meters. The function
b(z) was the applied field due to an infinitely long straight wire with 100 amps of
current, and the relative permeability was set to 1000. In one case we used 361 boundary
elements and in another case we used 1086 elements. In both cases our initial guess
for the potential at a point on the boundry was the value of the applied field at that
point. The biconjugate gradient method required 28 iterations to achieve convergence
for the smaller problem, 31 iterations for the larger problem.

What is perhaps more interesting is that good results were also obtained using
iterative methods to solve the integral equation for the biharmonic equation. Table 3
shows the number of iterations required by various iterative methods to satisfy the
convergence criterion on several different regions. We always placed 256 points on the
boundary of the region, so the matrix was of order 512. The crescents mentioned in
the table are nonconvex and are pictured in Fig. 2 and Fig. 3. They are given
parametrically by

x(t) cos + .15 sin2 t, y(t) .5 sin + d cos2 t.

In crescent 1, d .4, and in crescent 2, d .7.
Most of the numbers in the table were obtained by taking the right-hand side of

the equation to correspond to the biharmonic function W(x, y) x2 + y2 + x, and using

112 A. MAYO AND A. GREENBAUM

TABLE 3
Biharmonic equation (11).

Region BCG CGS GMRES (5) GMRES (40) CGNR

1. Circle of radius 4
2. Ellipse with semiaxes and 2 9
3. Ellipse with semiaxes and 10 32 (20)
4. Ellipse with semiaxes and 20 58 (22)
5. Crescent 11
6. Crescent 2 16

3 4 4 4
6 10 9 12

27 (18) 73 (58) 32 (20) 74 (41)
19 (10) 44 (23) 32 (14) 145 (21)

8 12 11 16
11 23 15 26

-0.6

-0.8

-1
-1

Crescent

-0.5 0 0.5

FIG. 2

a random initial guess. In practice, however, it is usually advantageous to use a smooth
initial guess, such as zero or the right-hand side, since the true solution will be similarly
smooth. To determine whether a reasonably chosen initial guess could significantly
reduce the number of iterations, we solved the biharmonic problem for several more
complicated right-hand sides, using a zero initial guess. The results did not differ
significantly from those obtained previously, except on the highly eccentric ellipses.
The numbers in parentheses in Table 3 are iteration counts using an initial guess of
zero, when the biharmonic function W(z) is given by

W(z)= Re (c(z)+x(z)), where

th(z)= (-1) k zk zk
k=O k+l+e, X(z)=

=ok+l

We believe that these convergence rates may be more realistic than those obtained
with a random initial guess, for most applications.

POISSON’S AND THE BIHARMONIC EQUATION 113

Crescent 2

Note that the most difficult problems for the iterative methods (with either initial
guess) were those defined on highly eccentric ellipses. For problems 3 and 4, the
GMRES method converged in 32 iterations (for the random initial guess), provided
all direction vectors were saved (GMRES (40)), but required significantly more iter-
ations when only five direction vectors were saved (GMRES (5)). Similarly, the other
iterative methods were slower to converge on these regions.

It should be noted that some of these iterative methods require more work per
iteration than others. Since the bulk of the work at each iteration is in applying the
dense matrix to a vector, the BCG, CGS, and CGNR methods require almost twice
as much work per iteration as the GMRES method, even when 40 direction vectors
are saved and orthogonalized against at each step. (This is because the matrix is dense
and so a standard matrix-vector multiply requires n 2 operations, compared to about
40n for orthogonalizing. In future work, it is planned to replace this standard matrix-
vector multiply routine by an O(n) method [3]. Still, the matrix-vector multiply will
require significantly more than 40n operations, so the comparison of operation counts
per iteration for the various iterative methods probably will not change.) Thus, to
compare the methods according to total work performed, the iteration counts for BCG,
CGS, and CGNR should be multiplied by two and compared with that of GMRES (5)
and GMRES (40). It can then be seen that the GMRES (40) method is the most efficient,
with CGS or GMRES (5) second. In addition, it may be necessary to compute the
residual directly (as we have done) at each step of the CGS algorithm, since the vector
rk computed by updating may not resemble the true residual. If this is done, then the
number of matrix-vector multiplies per CGS iteration is three instead of two, and the
GMRES methods look even better in comparison. Of course, GMRES (40) requires
almost 40 vectors more in storage than these other methods, and it is difficult to predict
just how many vectors will be needed in order to obtain rapid convergence with
GMRES. The least efficient iterative method for these problems is CGNR.

114 A. MAYO AND A. GREENBAUM

To understand why the iteration counts are as described, we computed the
eigenvalues and singular values for these problems. The 512 singular values for each
region are plotted in decreasing order of magnitude in Fig. 4. The eigenvalues were
very close to the singular values (almost indistinguishable on graphs such as Fig. 4)
and had tiny imaginary parts and nonnegative real parts. This tends to be an advantage
for the GMRES method over, say, CGNR, because the convergence rate of GMRES
is governed by the eigenvalues while that of CGNR is determined by the squared
singular values. We note that in all cases, the eigenvalues and singular values cluster
around 1. For the eccentric ellipses, more eigenvalues and singular values appear near
the ends of the spectrum, causing some difficulty for the iterative methods. The ratio
of the largest to the second smallest singular value for each of the six regions is 2.0,
5.2, 265, 2031, 8.5, and 22.3, respectively.

The presence of a zero singular value does not adversely affect the convergence
rate of the iterative methods. The reason for this is as follows. For each of these

2 Region 2 Reion 2

1.5

0.5

0
0 400

Index

600

1.5

0
0

Index

400 600

1.5

_’k,..

0.5-

0’
0

Region 3

Index

600

1.5

0.5

0
0

Region 4

200 600

Index

2.5

1.5

0.5-

00 200

R.egion 5

400

Index

600

FIG. 4

2.5

1.5

0.5

0
0

Region 6

200

Index

400 600

POISSON’S AND THE BIHARMONIC EQUATION 115

iterative methods, the residual rk satisfies

rk-- Pk(B)r,
where Pk is a kth or 2kth for (CGS) degree polynomial with value one at the origin
and B A for the GMRES, BCG, and CGS methods (actually, M-1A, where M is
the diagonal of A), B AAr for CG on the normal equations. Assuming B has a
complete set of eigenvectors V (which it does for each of these problems), we can
write B VAV-1 and

(19) V-l rk Pk(A) V-l r"

Now suppose some eigenvalue Ai is zero. Since the equations are consistent, the ith
component of V-1 times the right-hand side f of the equation Bx =f must also be
zero; for we have

li(V--lx,)i v--lf)i.

It also follows that the ith component of V-1 times the initial residual r =f- Bx is zero"

V-1 r),- v-if),- A,(V--lxO)i.

It then follows from (19) that the ith component of V-11"k is zero for all steps k, and
it is easy to check that the coefficients computed by each of these iterative methods
are the same as those that would be computed if this zero eigenvalue were not present.
Thus, these methods converge to a solution of the singular linear system at the same
rate as they would converge to the solution of a nonsingular linear system having only
the nonzero eigenvalues.

Table 4 shows the number of iterations needed to satisfy the same convergence
criterion, when we discretized (10) instead of (11). Note that the number of iterations
required was significantly greater for each of the iterative methods. The GMRES (5)
method failed on the crescent problems, stagnating (ceasing to reduce the error) well
before it reached the desired level of accuracy.

4.2. Parallel and vector implementation of the method. The major part of the work
at each iteration of the biconjugate gradient algorithm is in multiplying the matrix and
its transpose by an arbitrary vector. This operation is easily vectorized and/or parallel-
ized, as are the other operations (dot products, saxpy’s, etc.) required for an iteration.
On a machine with both vector and parallel capabilities, different blocks of the matrix
can be assigned to different processors and vectorization can be performed over the
rows within each block. This can actually be accomplished using a level-2 Bias routine

TABLE 4
Biharmonic equation (1 O) (random initial guess).

Region BCG CGS GMRES (5) GMRES (40) CGNR

1. Circle of radius
2. Ellipse with semiaxes and 2
3. Ellipse with semiaxes and 10
4. Ellipse with semiaxes and 20
5. Crescent
6. Crescent 2

8 7 10 8 11
12 9 15 12 17
45 35 76 34 92
86 41 119 50 188
30 30 >200 24 45
50 64 >200 30 82

116 A. MAYO AND A. GREENBAUM

1.6
xl0 Total Time vs. No. of Processors

1.4

1.2

0.8

0.6

0.4

0.2
2 3 4 5 6 7 8

no. of processors

(a)

5.5

4.5

3.5

2.5

1.5

Speedup vs. No. of Processors

2 3 4 5 6

no. of processors

(b)

FIG. 5

POISSON’S AND THE BIHARMONIC EQUATION 117

[4], and these routines have already been optimized on many parallel/vector super-
computers. Another significant part of the work is in applying the fast Poisson solver
after the integral equations have been solved. This is also easily parallelized, with
different processors computing FFTs simultaneously, while the individual FFTs may
be vectorized.

We implemented the entire algorithm for computing a harmonic function, its
conjugate, and its first derivatives on an 8-processor shared memory MIMD machine--
the NYU Ultracomputer prototype--and obtained good speedup over the serial code.
The region was the first doubly connected region bounded by two ellipses described
above. We again placed 200 points on the boundary and used a 33 by 33 rectangular
mesh on the rectangle in which the region was embedded.

In this case the biconjugate gradient routine accounted for about 40 per cent of
the time required by the serial code. To obtain good speedup of the entire code, it
was also necessary to parallelize the other sections of the code--generating the matrix,
computing the Laplacian at irregular mesh points, and applying the fast Poisson solver.
These sections were also easily parallelized, and the use of a parallel DO loop facility,
called DOALL, on the ultracomputer allowed efficient parallelization of the entire
code with only minor modifications to the original serial code. DOALL prespawns
tasks and assigns loop indices to processors dynamically [1]. Different elements of the
matrix were generated in parallel and the Laplacian was computed at irregular mesh
points in parallel. The two-dimensional fast Poisson solver consists of one-dimensional
FFTs, which were also executed in parallel.

Figure 5 shows the time and speedup on one to eight processors for the above
problem. Using eight processors, an overall speedup of about a factor of 6 was obtained,
with the biconjugate gradient routine obtaining about a factor of 7 speedup over its
time on one processor. The time for the parallel code run on one processor was about
5 percent slower than the time for the serial code. A factor of seven speedup on the
ultracomputer appears to be near the best attainable, due to bus traffic.

On the Cray X-MP, we measured the difference between the time required for
the matrix generation only, when vectorized and unvectorized. For this section of the
code, vectorization resulted in a factor of 9 speedup, and its effect on the other sections
appears to be similar.

Acknowledgment. The authors thank the referees for many helpful comments.

REFERENCES

[1] W. BERKE, ParFOR--A structured environmentfor parallel Fortran, Ultracomputer Note 137, Courant
Institute, New York, NY, 1988.

[2] B. BUZBEE, F. W. DORR, J. A. GEORGE, AND G. H. GOLUB, The direct solution of the discrete Poisson

equation on irregular regions, SIAM J. Numer. Anal., 8 (1971), pp. 722-736.
[3] J. CARRIER, L. GREENGARD, AND V. ROKHLIN, A fast adaptive multipole algorithm for particle

simulations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669-686.
[4] J. DONGARRA, J. DuCRoz, S. HAMMARLING, AND R. HANSON, An extended set of Fortran basic

linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1-17.

[5] R. FLETCHER, Conjugate gradient methods for indefinite systems, in Proc. of the Dundee Biennial
Conference on Numerical Analysis, G. A. Watson, ed., Springer-Verlag, New York, 1975.

[6] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res.
Nat. Bur. Standards, 49 (1952), pp. 409-436.

[7] R.W. HOCKNEY, Thepotential calculation and some applications, in Methods in Computational Physics,
Vol. 9, Academic Press, New York, 1970, pp. 135-211.

[8] R. JAMES, The solution of the Poisson equation for isolated source distributions, J. Comput. Phys., 25
(1977), pp. 71-93.

118 A. MAYO AND A. GREENBAUM

[9] D. LINDHOLM, Notes on boundary integral equationsfor three-dimensional magnetostatics, IEEE Trans.
Magnetics, 16 (1980), pp. 1409-1417.

[10] A. MAYO, The fast solution of Poisson’s and the biharmonic equations on general regions, SIAM J.
Numer. Anal., 21 (1984) pp. 285-299.

11 Rapid, high order accurate evaluation of volume integrals ofpotential theory, J. Comput. Phys.,
submitted.

12] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution methodfor linear systems of which
the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[13] S. G. MIKHLIN, Integral Equations and their Applications, Pergamon Press, New York, 1957.
[14] W. PROSKUROWSKI AND O. WIDLUND, O/1 the numerical solution of Helmholtz’s equation by the

capacitance matrix method, Math. Comp., 30 (1976), pp. 433-468.
15] V. ROKHLIN, Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60

(1985), pp. 187-207.
[16] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimum residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
17] I. SHERMAN, The solution of the plane static problem of the theory of elasticity with given externalforces,

Dokl. Akad. Nauk SSSR, 28 (1940).
[18] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist.

Comput., 10 (1989), pp. 36-52.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 119-127, January 1992

1992 Society for Industrial and Applied Mathematics

007

COMPACT MULTIGRID*

VICTOR PANel AND JOHN REIF

Abstract. The bit-complexity is a realistic complexity measure for computations on parallel computers
such as the CONNECTION MACHINE (CM1) and the MASPAR. For a large class of linear PDEs satisfying
some routine assumptions ofthe multigrid methods, the N point discretization of their solution is compressed
to a constant number of bits per discretization point with no loss of information and without introducing
errors beyond the order of the discretization error. Namely, it is shown that the bit-complexity of the
compressed solution is O(N) for the storage space and, if the PDE has (piecewise) constant coefficients,
then also for the total number of bit-parallel operations. The compressed solution is also computed by using
time O(log N) and N/log N bit-serial processors. The known bounds on the bit-complexity (for both
sequential time and storage space) were at least N log N; moreover, the order ofN log N bit-serial processors
was required to support the O(log N) parallel time in the known algorithms. It is believed that this is the
first time when the solution to a linear system has been provably compressed (i.e., the bit-complexity of
storage of the compressed solution is less than the solution size) and also the first case where the use of
data compression provably speeds up the time to solve the system (in the compressed form).

Key words, multigrid, data compression, partial differential equations, low precision computing,
algorithms, complexity

AMS(MOS) subject classifications. 65P05, 65F10

1. Introduction.
1.1. Motivation and limitations. Approximate solution of partial differential

equations (PDEs) is usually obtained by means of their discrete approximation and
by solving a sparse linear algebraic system of equations. Of course, the amount of the
discretization affects the accuracy of the approximation. If N discrete approximation
points have been chosen over a regular (two- or three-dimensional) grid, then for a
very large and important class of linear PDEs, which we will call weakly smooth, the
solution to the linear algebraic systems approximates to the solution of the PDE with
an error of the order of N-g, for some constant g > 0. Such discretization errors have
been well studied by numerical analysts from the 1920s [CFL], [BR], [BS], [FW], [SF].

Thus the approximation gives us, at each discretization point, the first O(log N)
bits of the actual value of the solution to the PDE, and the high accuracy solution of
two- and three-dimensional PDEs requires in particular that the number of discreti-
zation points N grows very large. The computation is often more limited by the storage
constraints than by the time constraints (particularly if it is desired to store the solution
in the primary storage memory without the use of the much slower secondary storage
of the conventional machines). It is therefore important to investigate methods that
substantially reduce this storage by compressing the data in the solution. As we will
see, this is indeed possible in some important cases and is a surprisingly fundamental

* Received by the editors April 5, 1990; accepted for publication (in revised form) December 19, 1990.
f Computer Science Department, State University of New York, Albany, New York 12222 and Mathe-

matics and Computer Science Department, Lehman College, City University of New York, Bronx, New
York 10468. The work of this author was supported by National Science Foundation grant CCR-8805782
and by PSC-CUNY awards 661340, 668541, and 669290.

t Department of Computer Science, Duke University, Durham, North Carolina 27706. The work of
this author was supported by Air Force contract AFOSR-87-0386, Office of Naval Research contract
N00014-87-K-0310, Defense Advanced Research Projects Agency contract N00014-88-K-0458, Office of
Naval Research contract DAAL03-88-K-0195, and National Aeronautics and Space Administration/CESDIS
subcontract 550-63NAS5-30428URSA.

119

120 VICTOR PAN AND JOHN REIF

property of PDEs, which will also lead us to a substantial economization of bit-
operations and (in parallel implementation) of bit-serial or nibble-serial processors
involved. In this paper we will demonstrate the power of our new techniques in the
simplest cases, that is, under the limitations of the linearity of a PDE and of the choice
of simple lattice grids for its discretization; furthermore, to save bit-operations and
bit-processors, we will assume that the PDE has piecewise constant coefficients and
reduces to linear systems that we may solve by using linearly convergent iterations.
Moreover, our present paper addresses special purpose hardware, rather than most of
the existing computers. We believe that all these limitations will be at least partially
relaxed in our further work, and substantial progress will be reported in our next
publication.

1.2. The bit-complexity model. Certain sequential machines (such as the CRAY)
were specifically designed to solve these large linear systems: their processor has the
ability to do sequential arithmetic operations very quickly and also has a relatively
large amount of primary storage. For such a machine, the arithmetic complexity model
has generally been considered appropriate. However, a machine such as the CRAY is
capable of performing a bit-vector operation in one parallel step (for example, it may
perform AND, OR, or NOT operations on hundreds of bits), so that the parallel
bit-complexity of such machines can also be of interest.

On the other hand, fine grained massively parallel machines (such as the MASPAR
and the CONNECTION MACHINE, CM1) have been designed with large numbers
of bit-serial or nibble-serial (4-bit-serial) processors (requiring a relatively long time
to execute an arithmetic operation) and with a very limited memory, which is generally
accessed bit- (or 4-bit-) serially. A complexity model for parallel algorithms must take
into account both the bit-serial nature of the processors and the limited memory
constraints; in particular, we feel that the parallel complexity of computing on such
machines is most reasonably measured by the bit-complexity. In this model, we assume
that each memory cell holds only one bit, and each processor can do a single bit-
operation per step.

1.3. Previous solutions of PDEs. The solution of the linear algebraic systems
approximating PDEs can be computed by means of a number of well-known and now
classical algorithms. For example, for a large class of PDEs, we may apply the standard
linearly convergent iterative solution algorithms, such as Gauss and Siedel’s, and find
the solutions to the auxiliary linear systems up to the maximum accuracy of O(log N)
bits at N points in O(log N) iterations, using N processors. However, each such
iteration generally involves arithmetic operations over the O(log N)-bit numbers and
hence requires at least O(log N) bit-operations per point. Thus the total work is
O(N log N) arithmetic operations or O(N log N) bit-operations.

Various multigrid methods were first proposed by Fedorenko and Bakhvalov in
the 1960s, and then by Astrakhantzev and Brandt in the early 1970s for the solution
ofthese linear systems approximating PDEs (see lAst], [Bak], [Fed], and [Bran2, 3, 4]).
In [Bran2], it was claimed that these multigrid methods required only O(N) arithmetic
operations; this was rigorously proved for a large class of PDEs in [BD] (also see
[Hackl, 2,3], [HT], [McCor2], and [McT]). (Actually, the multigrid methods are
effective even in many cases where the classical iterative algorithms converge too
slowly.) The works of [Branl], [FMc], [CSS], and [McV1,2] all describe parallel
algorithms that take O(log N) arithmetic steps using N processors, and thus use the
order of N log N arithmetic operations, which is off by the factor of log N from the
optimum. Even if the order of s bit-operations sufficed .to add and to multiply two

COMPACT MULTIGRID 121

integers modulo 2s, which is actually a lower estimate, whereas the current record
upper bound is only O(s log s log log s) [AHU], it would follow that the known
multigrid methods require a total of at least the order of N log N bit-operations, and
at least the order of N log N bit-serial processors to support the order of log N time.
The bit-operation bound appears to be unbeatable since the binary representation of
the solution occupies a total of the order of N log N bits.

1.4. Our results. Our main goal is a rigorous study of the bit-complexity of these
linear algebraic systems approximating linear PDEs. In spite of the lack of theoretical
investigation into this area, we feel that the problems are fundamental in nature. In
this paper we will show some surprising properties of the linear algebraic systems
approximating to linear PDEs under some mild assumptions specified below and in 2"

(1) The weakly smooth solutions to PDEs can be significantly compressed to O(1)
bits per solution point (which, by the factor of log N, improves the previous storage
requirements), by using a data structure that we call the Compact Multigrid Data
Structure. (We do not know of any previous provable results for data compression of
the solutions to any class of linear systems.)

(2) For a large class of linear PDEs with constant coefficients, their compressed
solutions can be very efficiently computed (both sequentially and in parallel) by an
algorithm that we also call Compact Multigrid and that only uses O(log N) time,
N/log N bit-serial processors, and a total of O(N) bit-operations, which is optimum
since the size of the compressed solution is of the order of N. This improves by the
factor of log N the bounds on both sequential time and storage space of the known
algorithms and decreases by the factor of log2 N the number of bit-serial processors
supporting O(log N) time.

Note that already the log N factor is significant for even relatively small problems;
for example, this factor is 10 or more for problems of size N> 1000, such as the
three-dimensional grid of size 10 x 10 x 10.

A bit-serial data communication required by our compact multigrid algorithm
happens to be what is known as a pyramid network, consisting of a sequence of grids,
Go, G1," ", Gk, where the grid Gi has about 2di points and where each nonboundary
node of the ith grid is connected to 2d, its neighbors in this grid, and also to the
corresponding nodes of the (i / 1)th and (i 1)th grids.

The weak smoothness assumption, sufficient for property (1) to hold, is just the
very mild and customary bound O(1/NO), for a constant c, on the discretization errors
(see (2.3) below), but even the assumptions required for the property (2) to hold are
still satisfied for a large class of (piecewise) constant coefficient linear PDEs.
Specifically, besides the weak smoothness, for a given linear (piecewise) constant
coefficient PDE, we essentially need only an iterative algorithm (such as multigrid or
SSOR) for solving the auxiliary linear systems over all the grids that use not more
than a fixed constant number of steps on each grid in order to decrease the approxima-
tion error norms by a fixed constant factor--the same for all the grids. This is in fact
a routine assumption of the multigrid methods (cf. [McCorl]).

We may compress a given N point uncompressed solution by using O(log N)
time and N bit-serial processors, for a total of O(N log N) amount of work, which
is optimal since the input solution is of size O(N log N). A very simple decompression
algorithm requires only O(log N) sequential bit-operations to access the full precision
(of O(log N) bits) solution value at any discretization point.

The compressed solution can be stored, and it can be decompressed only when
its values need to be output. In many practical applications the solutions need not be

122 VICTOR PAN AND JOHN REIF

decompressed. For example, in the solution of the time-dependent PDEs, the most
customary solution methods perform at a discrete sequence of, say, T time steps. In
each time step, a PDE is approximately solved, by using an N point discretization of
the PDE fixed at that time value and by using the approximate solution obtained (in
the compressed form) at the previous time step as an initial approximation to the
current solution. Thus the solutions at these time steps need not be decompressed,
except for the solution at the final time step. The total bit-complexity estimate for this
computation, including decompression of the final solution and T calls for compact
multigrid, would be O(N(T/ log N)) bit-operations (requiring O(T log N+ log2 N)
time and using N/log N bit-serial processors). Here we need, in particular, the linear
convergence assumption; if it holds initially, we will preserve it by using sufficiently
small time steps.

1.5. Organization of the paper. We will specify our compression techniques for
PDEs in 2-5. We will simplify our presentation, assuming, in particular, the simple
lattice grids, although our results hold for more general discretization sets. In 6 we
will indicate some further extensions of our results, in particular, to more general
discretization sets. We include Appendix A, where we bound interpolation errors in
terms of discretization errors.

2. Definitions and assumptions. Let a linear PDE on the unit d-dimensional cube
be discretized over a family of d-dimensional grids Go, G1, , Gk, having the distance
hj 2-j between each point of Gj and 2d, its nearest neighbors, so that there are
IGj] Nj(1 + o(1)), Nj 2dj, points in Gj, for j=0, 1,. , k, and Nk N= 2ak, where
k (log2 N)/d. Hereafter, for simplicity, we will ignore the smaller order terms o(1),
corresponding to the "extra" boundary points of the grids.

Let u(x), a function in the d-dimensional vector, denote the solution to a PDE, let

(2.1) Djuj bj,

denote the linear system of the difference equations generated by the discretization of
the PDE over the grid Gj, and let uj(x) for a fixed x Gj denote the respective
component of the IGj[-dimensional vector uj representing the solution to this linear
system, so that Aj(x)= u(x)-uj(x) denote the discretization error functions on Gj,
forx6Gj andj=l,...,k.

Surely, discretization of the linear PDE gives matrices Dj with 0(1) nonzero
coefficients per row as j- cx. Let Uo(X) 0 for x Go, and let j_l(X), j 1, 2," ", k,
denote the prolongation of Uj_l(X) from Gj_I to Gj, obtained by the interpolation
(which usually means just the averaging) of the values of u_l(x) at the appropriate
subarray of points of Gj_I lying near x. Then

(2.2) uj(x) aj_l(X)+ ej(x), x e G, j 1,..., k,

where ej(x) denotes the interpolation error on Gj.
We will assume that the discretization and interpolation errors satisfy the two

following bounds, which we will call the weak smoothness assumption for the PDE:

(2.3) [A(x)l_--< 2-%
(2.4) lea(x)l_-< 2-for all x e G, j 1,..., k, and for fixed c->_ 0 and c >-1. In the Appendix, we will
deduce (2.4) from (2.3), whereas the assumption (2.3) holds for a wide class of PDEs
(see, for instance, [Ame, p. 29], [LP]), including the well-posed linear PDEs, as well
as many nonlinear PDEs. Such an assumption is routinely made in the analysis of the

COMPACT MULTIGRID 123

multigrid methods (e.g., [Bran2, 3, 4], [BD]); in particular, the auxiliary grid problems
are said to be "solved to the level of truncation" defined by (2.3) (see [McCorl, p. 26]).

As a part of the weak smoothness assumption, let us further assume that u(x) has
been scaled so that luj(x)l _-< 1 for x Gj and for all j and that every e(x) is represented
with (that is, rounded off to) a binary bits (digits).

Remark. We may replace the bounds (2.3), (2.4), and lu(x)l-< 1 by the bounds

-<- 2 II,
ej --< 2- uj

for a fixed vector norm, provided that A, ej, and u are considered as [G[-dimensional
vectors with the components A(x), e(x), and uj(x) for x G. This modification would
not change our resulting estimates for the complexity of the Compact Multigrid.

In 4, we will assume (in addition to weak smoothness) interpolation regularity,
which means that the prolongation from G_ to G only requires O(1) time using N
bit-serial processors (which is surely the case for the interpolation by averaging).

In 5, in addition to weak smoothness and interpolation regularity, we will assume
the following:

(1) A fixed iterative algorithm (such as SSOR or a multigrid algorithm) applied
to linear systems with matrices D uses O(1) multiplications of submatrices of Dj by
vectors for every j, in order to decrease, by the factor independent of j and N, the
norm of the error of the approximation to the solution u(x) of the system (2.1) (linear
convergence assumption).

(2) The entries of the matrices D for all j, as well as the components of bj, are
integers having magnitudes O(1) or turn into such integers after the scaling and
truncation of the entries of the system (2.1) (bounded coefficient assumption, which
holds for the constant coefficient PDEs).

Finally, for convenience, we will assume the fixed point binary representation,
although shifting to the floating point representation would not actually lead to any
substantial changes in our estimates.

3. Compression of the output. In this section, we will assume the weak smoothness
relations and will compress approximations to all the values of u(x) on G within
absolute errors of at most _:--, so as to decrease the storage space required.

For the straightforward fixed point binary representation of these values of u(x),
we generally need N [ak- c binary bits.

Alternatively, let us store u(x) on G in the compressed form by recursively
approximating within 2-- to the fixed point binary values ej(x) for x G, j
1,’’ ", k. The storage space of 2d[a C] +a(N2 d- N3+’" "+ Nk)<2d [a-c]+2aN=
O(N) binary bits suffices for this compressed information, which means saving roughly
the factor of 0.5k 0.5 log2 N binary bits against the straightforward representation.

4. Recovery of the solution values from the compressed data. In this section, we
will assume the weak smoothness and the interpolation regularity. To recover Uk(X)
on Gk from the compressed information given by e(x) on Gj for j 1,--., k, we start
with Uo(X)= 0 for x Go and recursively, for j- 1,. ., k, compute the values

(a) _l(X) on Gj, by prolongation of U_l(X) from G-I to G, and then
(b) u(x) on G, by applying (2.2).
Both stages (a) and (b) are performed with precision 2-j-, so that stage (b)

amounts to appending a binary bits of e(x) to the available string of binary bits in
the fixed point binary representation of -l(X) for each x G, and stage (a) amounts
to scanning the values of U_l(X) on Gj_ and to the summation of few fl-bit binary

124 VICTOR PAN AND JOHN REIF

numbers (where, say,/3--O(c)) defined by the/3 least significant binary bits in the
representation of uj_l(x) for appropriate x from Gj_I. Since N O(N), the compu-
tational complexity estimates for stages (a) and (b) stay within the bounds stated in
the Introduction.

5. Computing the compressed solution by compact multigrid. In this section, we
will use all the assumptions of 2, that is, the weak smoothness, interpolation regularity,
linear convergence, and bounded coefficient assumptions. The time complexity of
computing the compressed data structure is dominated by the time required to obtain
the solution vectors e for the linear systems of equations over G for j 1,. , k:

(5.1) Dej r,
where

(5.2) r b Dj
the matrices D and the vectors b are from the linear systems (2.1), and the vectors

e and t_l have components ej(x) and t_l(X) for x G, defined by (2.1) and (2.2),
respectively.

We will follow the routine of the V-cycle multigrid methods (cf. [McCorl] and
[FMc]), and will recursively evaluate the vectors e for j 1,..., k. Initially, we will
let Uo(X) 0 for x Go, and at stage j, we will successively compute for all x G:

(a) t_(x) (by prolongation of Uj_l(X) from G_ to G);
(b) r(x) (by using (5.2));
(c) e(x) (by solving the linear system (5.1) "to the level of truncation");
(d) u(x) in the compressed form (by using (2.2), as in 4).
We may then restrict uj+(x) to u(x) for j k-1,..., 0 (as in some customary

multigrid algorithms) and then recursively repeat such a V-cycle.
The linear convergence assumption means that the errors of the approximations

to u(x) decrease by a constant factor independent of j and N when stages (a)-(d)
are repeated once for all j, even if only O(1) iteration steps are used at stage (c) for
solving linear systems (5.1) for every j. Such convergence results have been proven for
the customary multigrid algorithms applied to a wide class of PDEs (see [BD],
[Hack2, 3], [HT], [McCor2], [McCT], and [FMc2]).

Let us estimate the time complexity of these computations, dominated by the time
needed for solving the linear systems (5.1).

The size N 2d (within O(N/d)) of the linear system (5.1) increases by 2d times
as j grows by 1. Even if we assume that the solution time for the system (5.1) is linear
in IGI, the overall solution time for all the k such systems in terms of the number of
arithmetic operations involved is less than 1! (1- 2-d) times the solution time for the
single system (2.1) for j k, which gives us the uncompressed output values Uk(X) for
x Gk. The bit-operation count is even more favorable to the solution of the systems
(5.1) for all j, as opposed to the single system (2.1) forj k, because the output values
ej(x), satisfying the systems (5.1), are sought with the lower precision of a binary bits.

Furthermore, we solve the linear systems (5.1) by iterative methods where each
step is essentially reduced to a constant number (say, one or two) multiplications of
a matrix D or its submatrices by vectors. Due to the linear convergence assumption
we made, a constant number of iterations suffices at each step j in order to compute
the a desired binary bits of e(x).

The computational cost of multiplication of D by a vector is O(N) arithmetic
operations for a sparse and structured discretization matrix D (having O(1) nonzero
entries in each row). Furthermore, a parallel acceleration to the parallel time bound

COMPACT MULTIGRID 125

O(1) is possible by using N processors (for we multiply a vector by a matrix having
O(1) nonzero entries per row). Thus we arrive at Proposition 1, whose processor bound
follows similarly to the proof of Proposition 2 below.

PROPOSITION 1. O(1og N) parallel arithmetic steps and N/log Nprocessors suffice
to compute the vectors ej for all j, that is, to compute the smooth compressed solution to
a PDE discretized over the grid Gg, under all the assumptions of 2.

Furthermore, we only need O(1) binary bits in order to represent ej(x) for every
x G and every j. Since D has only O(1) nonzero entries per row and since these
entries are integers having magnitudes O(1) (due to the bounded coefficients assump-
tion), it suffices to use O(1) bits to represent r(x) (see (5.1)). (These bits may occupy
not all the positions where the corresponding components of bj have nonzero bits, for
the most significant binary digits of these components may be canceled in subtracting
Djj_I.) Thus, we will perform all the arithmetic operations with O(1)-bit operands
and will arrive at Proposition 2.

PROPOSITION 2. Under all the assumptions of 2, O(log N) steps, N/log N bit-
serial processors, and O(N) storage space under the Boolean model ofcomputation suffice
in order to compute the compressed solution to a PDE by using the Compact Multigrid
algorithm.

Proof. As described above, our algorithm has stages j--1,..., k =(log N)/d,
where at stage j we require O(1) time for each of the N 2dj bit-serial processors.
Thus our parallel algorithm (if naively implemented) appears to take O(log N) time
using N bit-serial processors. However, the first (log N)/ d-log log N stages only
require N/log N bit-serial processors. Thus, at each of the last log log N stages
j, j (log N)/d-log log N+ 1, , (log N)/d, we will slow down the computation to
the time 0(2a log NN), and then we only need N/log N bit-serial processors. The
overall time of our resulting parallel algorithm is then still O(log N).

6. Extensions of the results. Our results can be immediately extended to the case
of more general sequences of the sets So, S1, , Sk of the discretization of the PDEs,
provided that each set S consists of c/r points where 0 < c < cj < c*, tr > 1, c, c*, and
tr are constants (this includes the grids with step sizes that vary depending on the
direction of the steps), and that the required assumptions of 2 are, respectively,
extended to the case of the sets S. We also need to assume that each discretization
point of S has at most O(d) neighbors: this will imply that each equation of the
associated linear algebraic system has at most O(d) nonzero coefficients.

Finally, the presented approach can be further extended to some nonlinear PDEs,
as long as our assumptions (such as (2.3) and (2.4)) hold and as long as dealing with
nonlinear systems of difference equations replacing the linear systems (2.1) remains
relatively inexpensive.

Appendix A. Let us show that the bound (2.3) implies the bound (2.4) assuming
that t_l(X_l) U_l(Xj_l) for X_l G_I and that t_l(X) has been defined on G Gj_I,
say, as the average value U_l(X) at all the points x-i of G-I such that IX_l- xjl gh,
for the minimum g. Then le(x)l <-lu(xj) U_l(X)l for at least one of these points. First
rewrite the bound (2.3) as follows:

(A.1) IA(x)l <-- ah’f x Gj,

where a and 3’ are positive constants, and hj is the length of a side of the mesh G,
so that h_l 2h for the lattices Gj that we have chosen. Let y < 1, x_l G_I, x Gj,
Ixj-xj_ll=h, and le(x)l<=luj(x)-U_l(X_l)l. Then deduce from (A.1)that for some
O, 0=<(R)_--< 1,

126 VICTOR PAN AND JOHN REIF

[u(xj) u(xj_l)[-< a*hf, that is,

(A.2) le(x)l <-_ a*h)’,
a* a(1 + (hj_i/hi) v + glu’(xj + Ohj)lh- _-< (1 / 2V)a + g max lu’(x)lhJ- The bounds
(A.1) and (A.2) turn into the bounds (2.3) and (2.4) for c log2 a*,
and x xj. If xj G_, then we just replace Xj_l by xj above and cancel the term

Acknowledgments. The authors thank the referee and the editor for helpful
comments.

[AHU]

[Ame]

lAst]

[Bak]

[BR]

[BD]

[BS]

[Branl]

[Bran2]

[Bran3]

[Bran4]

[css]

[CFL]

[Fed]

[FW]

[FMcl]

[FMc2]

[Hackl]

[Hack2]
[Hack3]

REFERENCES

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1976.

W. F. AMES, Numerical Methodsfor Partial Differential Equations, Academic Press, New York,
1977.

G. P. ASTRAKHANTZEV, An iterative method of solving elliptic net problem, Z. Vychisl. Mat.
Mat. Fiz., 11 (1971), pp. 439-448. (In Russian.)

N. S. BAKHVALOV, On the convergence of a relaxation method under natural constraints on an

elliptic operator, Zh. Vychisl. Mat. Mat. Fiz., 6 (1966), pp. 861-883. (In Russian.)
R. BANK AND D. J. ROSE, Analysis ofa multilevel iterative methodfor nonlinearfinite-element

equations, Math. Comp., 39 (1982), pp. 453-465.
R. BANK AND T. DUPONT, An optimal order processfor solvingfinite element equations, Math.

Comp., 36 (1981), pp. 35-51.
R. BANK AND m. SHERMAN, Algorithmic aspects of the multi-level solution offinite element

equations, in Sparse Matrix Proceedings, 1978, I. S. Duff and G. W. Stewart, eds., Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1979.

A. BRANDT, Multi-grid solvers on parallel computers, ICASE Technical Report 80-23, Institute
for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, VA, 1980.
, Multi-level adaptive technique (MLAT) for fast numerical solutions to boundary value

problems, in Proc. Third Internat. Conference on Numerical Methods in Fluid Mechanics,
Paris, France, 1972; Lecture Notes in Physics 18, Springer-Verlag, Berlin, Germany, 1984,
pp. 82-89.
, Multi-level adaptive solutions to boundary value problems, Math. Comp., 31 (1977),

pp. 333-390.
, Multigrid Techniques: 1984 Guide, with Applications to Fluid Dynamics, available as

Gesellschaft fiir Mathematik und Datenverardeitung (GMD) Studien Nr. 85, GMD-AIW,
St. Augustin 1, Germany, 1984.

T. F. CHAN, Y. SAAD, AND M. H. SCHULTZ, Solving elliptic partial differential equations on

hypercubes, Hypercube Multiprocessors 1986, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1986.

R. COURANT, K. O. FRIEDRICHS, AND H. LEWY, Uber die partiellen Differenzengleich-ungen
der mathematischen Physik, Math. Ann., 100 (1928), pp. 32-74.

R. P. FEDORENKO, The speed of convergence of one iteration process, Z. Vychisl. Mat. Mat.
Fiz., 4 (1964), pp. 559-663. (In Russian).

G. E. FORSYTHE AND W. R. WASOW, Finite Difference Methods for Partial Differential
Equations, John Wiley, New York, 1960.

P. O. FREDERICKSON AND O. A. MCBRYAN, Parallel superconvergent multigrid, in Multigrid
Methods: Theory, Applications and Supercomputing, S. McCormick, ed., Lecture Notes
in Pure and Applied Math., Vol. 100, Marcel Dekker, New York, 1988, pp. 195-210.
,Superconvergent multigrid methods, preprint, Cornell Theory Center, Cornell University,

Ithaca, NY, May 1987.
W. HACKBUSCH, Convergence of multi-grid iterations applied to difference equations, Math.

Comp., 34 (1980), pp. 425-440.
Multigrid Methods and Applications, Springer-Verlag, Berlin, New York, 1985.

, On the convergence of multi-grid iteration applied to finite element equations, Report
77-8, Mathematics Department, Universitit zu K61n, K61n, Germany, July 1977.

COMPACT MULTIGRID 127

[HT]

[LP]

[McV1]

[McV2]

[McCorl]

[McCor2]

[McCT]

[SF]

W. HACKBUSCH AND U. TROTTENBERG, EDS., Multigrid Methods, Lecture Notes in Mathe-
matics 960, Springer-Verlag, Berlin, New York, 1982.

L. LAPIDUS AND G. F. PINDER, Numerical Solution ofPartial Differential Equations in Science
,and Engineering, John Wiley, New York, 1982.

O. A. MCBRYAN AND E. VAN DE VELDE, Parallel algorithms for elliptic equations, Comm.
Pure Appl. Math., 38 (1985), pp. 769-795.
, The multigrid method on parallel processors, in Multigrid Methods II, W. Hackbusch

and U. Trottenberg, eds., Lecture Notes in Mathematics 1228, Springer-Verlag, Berlin,
New York, 1986.

S. MCCORMICK, ED., Multigrid Methods, Frontiers in Mathematics 3, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1987.

Proceedings of the Second Copper Mountain Multigrid Conference, Appl. Math. Comp.,
19 (1986), pp. 1-372 (special issue).

S. MCCORMICK AND U. TROTTENBERG, EDS., Multigrid methods, Appl. Math. Comp., 13
(1983), pp. 213-474 (special issue).

G. STRANG AND G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood
Cliffs, NJ, 1973.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 128-145, January 1992 008

PARALLEL PERFORMANCE OF DOMAIN-DECOMPOSED
PRECONDITIONED KRYLOV METHODS FOR PDEs WITH

LOCALLY UNIFORM REFINEMENT*

WILLIAM D. GROPP? AND DAVID E. KEYES

Abstract. Preconditioners based on domain decomposition appear natural for the Krylov solution of
implicitly discretized partial differential equations (PDEs) on parallel computers. Two-scale preconditioners
(involving a global coarse-grid solve, independent solves over interfaces connecting the coarse-grid points,
and independent subdomain solves) have been known since the early 1980s to be "near optimal" in the
sense of ensuring a bounded, or at most logarithmically growing, iteration count as the mesh is refined. As
a result, the refinement of the mesh can be chosen locally on the basis of truncation error, and the granularity
of the domain decomposition can be chosen globally on the basis of parallel computing considerations with
only mild effects on the convergence rate of the algorithm. However, overall computational complexity
depends not only on the algebraic convergence rate, but also on the operation counts of the components
of the preconditioner that must be applied at each iteration. The costs of solving the subdomain systems
and the crosspoint system show superlinear growth in their respective (and inversely related) sizes. On the
subdomains, the superlinear terms arise from arithmetic only; in the crosspoint system the cost of nonlocal
data exchange is also superlinear. These factors make the preconditioner granularity and the choice of its
components problem- and machine-dependent compromises.

The tradeoffs involved are illustrated through numerical experiments on both shared- and distributed-
memory computers for convection-diffusion problems. Because of the development of boundary layers,
these problems benefit from local mesh refinement, which is straightforward to accommodate within the
domain decomposition framework in a locally uniform sense, but which introduces load balancing as a
further consideration in selecting the granularity of the preconditioner. In spite of the tradeoffs, cumulative
speedups are obtainable out to at least medium-scale granularity (up to 64 processors in our tests). The
largest problems involve (105) unknowns partitioned into iT(103) subdomains and converge in t(10)
iterations requiring 7(1) seconds on the Intel iPSC/860.

Key words, domain decomposition, elliptic problems, parallel algorithms, mesh refinement

AMS(MOS) subject classifications. 65N20, 65F10, 65W05

1. Introduction. Several tributaries of applied mathematics and computer science
meet at large-scale PDE-based scientific computing applications on parallel computers,
where feasibility and efficiency rank alongside existence, uniqueness, and conditioning
as essential considerations.

Iterative methods based on choosing the best solution in incrementally expandable
subspaces have proved effective in many contexts and have been generalized to
nonsymmetric operators in such archetypal forms as conjugate gradient squared (CGS)
and generalized minimal residual (GMRES). For computational economy, these
methods allow different representations of the underlying operator to be used, ulti-
mately converging to a "high quality" representation, through a series of applications
of the inverse of a "lower quality" representation, called a preconditioner. Though

Received by the editors October 4, 1990; accepted for publication (in revised form) April 20, 1991.
This work is a revision and update of a presentation at the Conference on Iterative Methods, Copper
Mountain, Colorado, April 1-5, 1990, previously co-issued as Argonne National Laboratory preprint
MCS-P147-0490 and Yale University Department of Computer Science Research Report 773, April 1990.

t Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439.
The work of this author was supported in part by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Department of Energy contract W-31-109-Eng-38, by Office of Naval
Research contract N00014-86-K-0310, and by National Science Foundation contract DCR 8521451.

Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520. The work
of this author was supported by National Science Foundation contracts EET-8707109 and ECS-8957475,
by the IBM Corporation, and by the 3M Company.

128

PRECONDITIONED KRYLOV METHODS 129

already advantageous in linear problems and on serial computers, the ability to operate
with multiple representations of the operator proves even more significant in nonlinear
problems and in parallel.

Adaptive discretizations determine the feasibility boundary for many scientific
computing applications. Unfortunately, the irregularity of adaptivity can complicate
the management of parallel resources, a situation that has led to various compromises
of adaptivity with quasi uniformity. Generally, the use of highly structured discretiz-
ations in a modular way at different scales has been favored.

Distributed computation puts a premium on the exchange of information between
cooperating processors, since such operations are generally slower than local
operations. The fact that nearby points usually interact more strongly than distant
points motivates decomposition by domain and allows for a "nearly" local algorithm.
Nevertheless, the physics intrinsic to many PDE-based problems, expressible in the
form of Green’s functions with global support, requires global sharing of information.
Function-space decompositions based on coarsening processes, which propagate infor-
mation on multiple scales simultaneously and even asynchronously, have evolved as
another active research tributary.

This contribution does not push the frontier of any particular one of the
methodologies mentioned above, but lies in their intersection. An implementation in
software of a particular domain-decomposed locally uniform mesh refinement (LUMR)
GMRES method with a two-scale preconditioner is offered as an effective prototype,
which brings various tradeoffs to light. These include adaptivity and convergence rate,
adaptivity and truncation error, and adaptivity and parallel load-balance. Except for
details at the highest and lowest levels, the same code has been successfully ported
from its serial incarnation to both shared- and distributed-memory computers with
little sacrifice on any one machine, relative to a custom implementation for that machine
alone. Our performance results on these machines allow comparisons with other parallel
PDE algorithms, not based on a priori domain decomposition.

The mathematical framework of our domain-decomposed linear solver is described
in 2, followed by a discussion in 3 of the shared and distributed parallel implementa-
tions. Section 4 contains selected performance measurements in the form of tabular
cross-sections of a rather large parameter space. Finally, in 5 we draw some con-
clusions and comment on bottlenecks and desired extensions.

2. GMRES, LUMR, and domain decomposition. The generalized minimal residual
method [21] is the most economical of the Krylov algorithms to which it is equivalent
in the absence of round-off (including GCR [8] and ORTHODIR [25]) and is proposed
for retention in [20] (along with CGNR [12] and CGS [23]) in any systematic
comparative study of the performance of nonsymmetric Krylov methods. For the
purpose of this study it is sufficient to recall the following salient features of GMRES,
when used to solve Ax b in the right-preconditioned form (AB-1)y b, Bx y: (1)
its implementation requires the ability to evaluate the action of the preconditioned
operator (AB-1), but not A-l; (2) it converges monotonically in a number of iterations
related to the number of separated clusters of eigenvalues in the spectrum (or the
pseudo-spectrum; see, e.g., [24]) of the preconditioned operator; (3) its work and
storage estimates are quadratic and linear in iteration count, respectively, because of
the construction and retention of an orthonormalized basis for the Krylov subspace
based on AB-I; and (4) storage estimates and (sometimes) work estimates can be
decreased for many problems by a restarted version of GMRES, which periodically
accumulates the solution updates, discards the Krylov subspace, and starts anew.

130 w.D. GROPP AND D. E. KEYES

The application of A is usually an easily parallelized operation, requiring only
local communication for local discretization schemes (finite differences, finite elements,
finite volumes, etc.). Good choices for B-1, in the sense of producing the clustering
mentioned in (2) above, will generally involve some nonlocal communication, but less
than in parallel direct algorithms for forming the action of A-1. Domain decomposition
is one means of deriving efficient parallel preconditioners for elliptic operators, as well
as other operator types.

Locally uniform mesh refinement is a means of resolving multiple spatial scales
in PDE problems based on local discretizations. LUMR lies in between the extremes
of excess mesh points/low overhead per point, on the one hand, and minimum mesh
points/high overhead per point, on the other. It is motivated by the observation that
threshold levels of certain continuous function(al)s are often good indicators for
enhanced resolution requirements. Hence, adaptively inserted mesh points can be
allocated in quanta of a convenient size and structure without a serious loss of efficiency
through overresolution. In this paper, we assume that the refinement requirements are
specifiable a priori, but this is not an inherent limitation of the technique. Serial
demonstrations of the LUMR concept have been provided by many investigators; see,
e.g., 1], 11] and references therein. In our implementation for a parallel port we are
somewhat more restrictive than is serially natural in basing our quanta on initial
coarse-grid subdivisions called "tiles." Tiles have standard data interfaces with each
other but may support different discretizations and preconditioner modules internally.
They are software analogs of the geometry defining processors (GDPs) of [5] and lead
to a code that is object-oriented in concept, but not competely so in implementation.
By requiring that corners of tiles meet other tiles at corners only (and thus that tiles
are elements of a logically tensor product structure) we greatly simplify the portion
ofthe code that performs interdomain information exchange, with dividends for parallel
efficiency. For standardized "docking," tiles are tensor products of half-open intervals.
On average, in two dimensions, each tile "owns" one of its corners, two of its sides,
and all of its interior. At physical boundaries, a tile may "own" additional pieces of
its border.

The term "domain decomposition" spans many approaches based on a geometric
partitioning of the domain of a PDE, which thus also impose a partitioning on the
matrix representations of A and B-1. In this contribution, we discuss nonoverlapping
partitionings of a two-dimensional region into subdomain interiors, subdomain inter-
faces, and crosspoints at interface intersections. A sample decomposition of an L-
shaped region into many square subdomains is pictured in Fig. 1.

We write A as

tAAoIB AIB 0 IA AB ABC
AcB Ac /l

where the submatrices arise from a simple permutation of a naturally ordered local
discrete operator as follows. A is a block diagonal matrix representing the discretization
of all of the independent subdomain interior problems, also including physical boun-
dary points other than crosspoints. (The boundary points are retained as degrees of
freedom in order to accommodate general boundary conditions, including spatial
coupling and also intercomponent coupling in multicomponent problems.) In a stan-
dard five-point finite difference (FD) discretization of a single two-dimensional PDE,
for instance, the blocks of A (one for each domain) are each smaller five-point
operators with the discrete subdomain diameter as the maximum bandwidth. An is a

PRECONDITIONED KRYLOV METHODS 131

block diagonal matrix representing the discrete coupling along the artificial internal
boundaries induced by the decomposition. In our five-point FD examples, each block
of AB is tridiagonal. The crosspoint matrix Ac is purely diagonal in the case of a local
discretization of a single PDE. (This is based on the design assumption that the
subdomains are too large to be completely spanned by a single discretization stencil,
whatever its order.) The doubly subscripted blocks of A contain the coupling between
the respective different categories of points. When neighboring subdomains are discret-
ized at the same resolution, the appropriate coefficients are unambiguous. When
resolution changes, the finite element method remains unambiguous, and a version of
the finite volume method has been likewise rendered in [18], but special provisions
are required for FD discretizations. In this paper, we use a biquadratic interpolation
scheme (consistent with the best accuracy to be expected from the use of a five-point
FD discretization) in the subdomain interiors, when constructing a fine stencil with
data requirements from a coarse region. When constructing a coarse stencil with data
requirements from a fine region, we employ unweighted injection. This is a consistent
discretization, but not a conservative one.

As a preconditioner, we consider

0 Bc]

where the tilde quantities are related to the correspondingly subscripted blocks of A
according to a variety of prescriptions. A key property of B is its block triangularity,
which represents a compromise between a perfectly parallel block diagonality on one
hand and the structurally symmetric form of A itself on the other. The formal inverse
of B is, of course, also block triangular. The block Bc, solved first, is based on a
coarse-grid discretization of the original PDE. This step requires the exchange of data
between tiles. The resulting solution provides Dirichlet endpoint conditions, through
ABc (= ABc in our examples), for the solution of the independent interface blocks
which together constitute BB. We use for B a discretization of the tangential part of
the operator, defined as those terms that remain when the derivatives in directions
normal to the interface in the local coordinate system are set to zero. Dense but
FFT-implementable interfacial blocks have also been incorporated into B [3]. Finally,
the blocks of Ax are solved independently by using Dirichlet data at all artificial
boundary points, through Am (= AI), and actual boundary conditions at physical
boundary points. In this paper, /x AI, although other less expensive approximate
replacements (such as fast solvers) can (and often should) be employed. Our choices
for the components of B lead to good convergence results but are not the most
convenient ones for convergence proofs of Krylov iteration based on AB-1. A proof
of near-optimality has been given [3] for the case where the blocks of B consist of
the square root of the corresponding one-dimensional discrete Laplacian operator, but
there is no known proof for the case employed herein, where the blocks of BB derive
directly from the tangential terms of the overall operator.

A discussion of the utility of the block triangular form of B (as opposed to a
structurally symmetric B) in the case where A is already nonsymmetric is given in [4],
and a detailed discussion of the preconditioner of this paper is given in [11]. In the
opposite direction, the alternative of a purely block diagonal B is discussed in [10]
and 15] and references therein. It may often, but not always, be dismissed as requiring
too many extra iterations to justify the savings per iteration. Multicomponent problems

132 w.D. GROPP AND D. E. KEYES

in which source terms dominate provide examples in which a block diagonal precon-
ditioning can outperform the coupled alternatives in overall wall-clock time.

3. Shared- and distributed-memory implementations. The tile-based decomposition
described above is motivated partly by its yield of a suitably convergent preconditioned
iterative method and partly by its control of overhead in a LUMR context, but our
main interest in this contribution is its straightforward adaptation to parallel processing.
There are a variety ofways to find independent threads ofcomputation ofcommensurate
size in the tile-based decomposition described above. Indivisible tiles can be parceled
out over an MIMD processor array, or a collection of identical tiles can be broken up
over a vector or SIMD processor array, to be operated on in lockstep. In between
these extremes, an MIMD array can be subpartitioned into SIMD- or vector-like
clusters and different sets of identical tiles allocated to each cluster for lockstep
processing within each. Thus, a workload consisting of a large number of tiles in at
most a moderate number of distinct sizes maps well onto a variety of parallel machines
and hybridizes well on a hierarchical MIMD/SIMD machine. Our implementations
to date are confined to the first type: tiles are not divided over processors, but processors
may be responsible for more than one tile each. The number of processors in simul-
taneous use is therefore bounded below by the number of tiles, but is otherwise
independent of it. In our current implementation, it is determined towards the outset
of execution and held fixed throughout.

In the serial implementation, work arrays for the data structures associated with
each tile are allocated separately, and the tiles are placed on a list that is traversed in
an arbitrary order each time a grid-oriented operation (such as forming the action of
A or B-I, performing a DAXPY, or taking a residual norm) is required. A highly
modular approach is adopted in which each tile has its own local coordinate system
and its own subroutines for problem definition, preprocessing, application of an
iteration step, exchange of data with neighbors, and (as a consequence of all this
flexibility) its own workload estimates for each major iterative phase. The most complex
of these phases is usually B-1. In the examples of this paper, the only aspect of this
modularity that we exploit nontrivially is the data exchange, in which different interface
handling routines mediate the changes in mesh refinement across subdomain boun-
daries. However, we anticipate applying the same code to nonlinear problems such as
reacting or high Reynolds number flows, in which every aspect of this modularity can
purchase a significant work advantage. For instance, fast or frozen kinetics, or Euler
or Navier-Stokes fluid mechanics, could be adaptively selected on each subdomain.

Code development on a serial workstation offers the obvious advantages of
uncontested resources, high graphical display bandwidth, and ease of tracebacks in
debugging. Furthermore, it allows the performance testing of algorithmic options apart
from communication considerations. We mention that iteration-by-iteration contour
plots of solution, error (when knowable), and residual were instrumental in shortening
development time.

3.1. Shared-memory implementation. The port to a shared-memory machine (the
Encore Multimax 320, equipped with 18 processors) required attention to three issues
beyond the serial version" data access, load balance, and work-to-processor mapping.
The Multimax offers its global address space to each processor; thus, when the traversal
of the single sequential tile list is broken up into several simultaneous traversals of
smaller tile lists, access to shared data must be controlled by locks and barriers. In
anticipation of a further distributed-memory port, and in keeping with a structured,

PRECONDITIONED KRYLOV METHODS 133

minimal side-effect programming paradigm, we restricted the use of data sharing to
synchronization variables, accumulation registers (for inner products or max/min
reductions), work arrays for the global crosspoint system, and data buffers at the
artificial interfaces of the decomposition. A list of all tiles allowing neighbor inference
is also shared.

In an earlier shared-memory code series for stripwise domain decompositions of
tensor-product grids (see, e.g., 14], 15]), we shared substantially more data, including
entire unknown fields. In earlier codes, data belonging to neighboring tiles was accessed
by simply supplying an absolute index into the global array. In the current code, a
buffer is maintained around the perimeter of each tile of a width corresponding to the
semibandwidth of the difference stencil in use of that tile. These buffers are refreshed
(by injection or interpolation) at appropriate synchronization points. The miserliness
of the current code in allowing shared access only to interfacial buffers obviously
incurs some unproductive time and space overhead, relative to the earlier versions. It
is therefore natural to question whether this is an optimal shared-memory code or just
a distributed-memory code implemented on a shared-memory processor, and to assess
the impact of the extra overhead on parallel performance.

To quantify the cost of this overhead, we repeatedly executed on the Multimax
a loop consisting of a MATVEC (an application of A to a vector), a vector DAXPY,
and a vector inner product under both globally shared and buffered versions of the
stripped-down code. A five-point FD stencil with hard-coded coefficients was used for
A. This is a very conservative comparison, from the point of view of establishing the
validity of the buffered version as a.reasonable shared-memory implementation for
domain-decomposed elliptic PDE problems, because it includes all but one of the
required forms of nonlocal data access per iterative cycle, together with the minimum
amount of local arithmetic per access. Almost any mix of operations in a typical
preconditioned iteration, except for the solution of the crosspoint system (considered
separately below), will enjoy a better computation to "communication" ratio than
these loops. Nevertheless, the penalty in wall-clock time for the buffered version was
less than 10 percent of the globally shared version. In our judgment, this is a small
penalty for the convenience of a code that is readily ported to distributed-memory
configurations. Of course, this is a machine-dependent conclusion. However, we note
further that many current and anticipated "shared-memory" multiprocessor designs
have memory hierarchies that put an execution efficiency premium on global sharing.
Fast global shared memory is destined to be a scarce resource on loaded multipro-
cessors. The Multimax 320 enjoys the evanescent luxury of a bus that is very fast
relative to the data-sharing requirements of 16 processors cooperating on an elliptic
PDE.

Banded Gaussian elimination, used in the inversion of Bc, does not map as
gracefully onto multiprocessors as do the rest of the algorithmic modules. Its parallel
performance (both factorization and backsolve) has been evaluated separately from
the basic loops above for a five-point stencil Dirichlet problem on the Multimax. The
problem sizes varied from 16 (which corresponds to the crosspoint system of a 3 3
grid of tiles) to 4,096 (a 63 63 grid of tiles), and the processing force from 1 to 16.
For problem sizes up to 1,024 (bandwidth 32) there is speeddown at 16 processors,
and the case of dimension 4,096 is only 45 percent efficient at 16 processors. For our
PDE examples (which employ a maximum of 1,024 tiles), we therefore factor and
solve the crosspoint system with single-threaded code, letting other processors remain
idle. For a sufficiently high tile-to-processor ratio, it will become more important to
parallelize the crosspoint solve itself.

134 w.D. GROPP AND D. E. KEYES

Our load balancing strategy is a primitive and static one that relies on asymptotic
order estimates for the largest complexity terms in both the preprocessing and iteration
phases of the computation. To be specific, to an n x n tile we assign the work estimate

W= n2(I2+I(1+ n)+ n2),
where I is an estimate for the number of (nonrestarted) Krylov iterations that will be
necessary for convergence. The term in 12 represents the cumulative orthogonalization
work of GMRES; the two terms in I the applications of A and B-1, respectively’, and
the remaining n4 term the factorization preprocessing ofthe subdomain interior matrices
of At when a bandsolver is employed. Though this primitive estimate contains
asymptotic leading terms only, for reasons ofgranularity we rarely work with asymptoti-
cally large tiles and would switch to sparse subdomain solvers if we did. In 11 it is
shown, however, that a bandsolver outperforms a sparse direct solver based on nested
dissection for sufficiently small n, such as 8 or 16.

Though I can be estimated more carefully on the basis of experience (4), we
simply set it to 20 in all examples herein. There is obviously considerable room for
refinement of the per-tile work estimate on the basis of a priori or evolving information
about the tile and the overall problem. For sufficiently large tile-to-processor ratios,
very balanced load distributions become possible in spite of the tile-based quantization
of work, and greater effort in work estimation pays dividends.

The question of work-to-processor mapping goes beyond load balancing in the
sense that the objective of load balancing is finding simultaneous executable threads
of execution of comparable durations, while mapping is further concerned with the
data requirements of these threads in relation to the network and memory hierarchies
of the machine. From the viewpoint of overall performance, these considerations are
rarely independent, of course. We chose a fixed allocation of subdomains to processors
based on either of two strategies. The first is tied to the work estimates of the preceding
paragraphs. Tiles are ranked in order of decreasing W and parceled out to processors
without regard to spatial proximity. While tiles remain, the tile with the largest W is
assigned to the processor with the least amount of work, with ties broken by a fixed
but arbitrary enumeration ordering.

The second strategy, called "wrap mapping," is based on the heuristic argument
of 2 that led initially to LUMR, namely, that regions requiring refinement tend to
occur in contiguous clumps in elliptic PDE discretizations. Therefore, the assignment
of tiles based on some regular lexicographic labeling is likely to be as good as a work
estimate-based assignment in the limit of large tile-to-processor ratios. The two
strategies are compared in 4.2. Obviously, the ability to dynamically remap will be
important to either mapping strategy once dynamic levels of refinement are imple-
mented and should be pursued at the next level of coding sophistication.

3.2. Distributed-memory implementation. The tile-based domain decomposition
code has also been tested on the Intel iPSC!860 in a 64-processor hypercube configur-
ation with 8 Mb of memory per node. The port from shared to distributed memory
was relatively straightforward because of the miserly use of shared memory in the
Multimax version. The sharing of data is accomplished by explicit calls to message-
passing subroutines. Since we make no assumptions about the locality in the processor
domain oftiles sharing data, all intertile messages are routed via calls to the send/receive
ethernet subroutines. For small numbers of processors, and hence strong locality of
cooperating tiles, this approach is clearly suboptimal. However, our design is motivated
primarily for extension to large numbers of processors, where going off-board is a
reasonable default.

PRECONDITIONED KRYLOV METHODS 135

The distinctions, rooted in hardware, between "shared" and "distributed" memory
are blurred by software. These should not be regarded as distinct opposites, but as
different extremes on a continuum of memory hierarchies, with various cached memory
designs as intermediates. At one end is the idealized model of a flat time cost for
accessing different pieces of data, and at the other, a (usually nonlinear) time cost
variation based on distance and packet size. The synchronized tile-interface buffering
discussed above is well suited for the distributed-memory model. In order to minimize
redundant storage, data areas used exclusively in a small number of processors should
not be replicated on all processors. This procedure leads to a custom paring on each
processor of the master tile data structure to the minimum size required for neighbor
identification and cooperation in the global crosspoint solves and inner products.
Without such storage optimizations, distributed-memory processors waste significant
memory.

On the iPSC it is even less inviting than on the Multimax to perform the crosspoint
solve in parallel. Experiments (see, e.g., [9], since updated in unpublished form for
new hardware) show that a problem of size 1,024 (bandwidth 32) can be speeded up
slightly by parallelization on up to 32 processors, but at very small efficiency. On the
other hand, the single-threaded execution used on the Multimax is also unattractive,
since it would have to be preceded and followed by significant global communication
to gather the right-hand side and scatter the solution. Our compromise, which dates
back to our earliest hypercube domain decomposition code series [13], is to broadcast
the data required for the right-hand side to each processor, then to solve the crosspoint
system redundantly on each processor. A future optimization for large numbers of
tiles on either shared- or distributed-memory computers is cooperative solution of the
crosspoint system within subclusters of processors. The crosspoint problem is
sufficiently different from the balance of the code in its computation-to-communication
ratio that either extreme of employing one or all processors in it is too restrictive. Like
the coarse-grid solution in multigrid, it can be regarded as a black box which, though
extremely important, is somewhat detachable. Many parallel algorithm designers con-
cern themselves with this black box, and good solutions in the point-per-processor
regime are readily incorporated.

4. Performance on model problems. We select for parallel study two-dimensional
model problems from the suite of ten studied in serial in [11]. The examples are
obtained by taking three different values of the convection, namely, c 0, c -1, and
c 10, in the cylindrically separable reentrant corner convection-diffusion problem:

COU--72U -t-- =0,r Or

u(x,y)=rsin 0-

where r=/(x-1)2+(y -1)2 and

O=arg((x-1)+i(y-1)), 0_-< 0<2r,

Dirichlet data on 01),

1 L-shaped region.

The domain is shown in Fig. 1.
The first of these corresponds to pure diffusion, and the second and third corre-

spond to convection towards the reentrant corner and away from it, respectively, at a

136 W. D. GROPP AND D. E. KEYES

0 0 0 0

0 0 0

0 0

0

0

0

0 0

0 0 0

{al

Z Z 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

O 0 0 0 0 2 2 2 2

2 0 0 0

2: 0 0 0

Z 0 0 0

2 0 0 0

Z 0 0 0

2 0 0 0

2 2 0 0

2222

FIG. 1. The domain fl and sample tessellations for (a) diffusion and inflow problems and (b) outflow
problem. The integer labels in each tile give the logarithm of the maximum refinement ratio employed in that
tile, over all the tests. For the, (indicated) second level of refinement, the finest tiles are 16 x 16 subintervals,
while the coarsest ones are 4 x 4. Some of the test runs are performed at smaller refinement ratios. In first-level
tests, all tiles showing "2" are set to "1" (8 x 8). In zeroth-level refinement, all tiles are set to "0".

rate inversely proportional to the radius (thus satisfying mass conservation). We refer
to them as the diffusion, the inflow, and the outflow problems, respectively. The respective
values of the radial eigenfunction exponent a are , 3, and approximately 10.0442.
Figure 2 displays u(x, y) for the three problems. The first two solutions lack derivatives
at the reentrant corner. The last is everywhere twice differentiable, but the solution is
characterized by steep variation in three of the non-reentrant corner regions, where
r > 1. Some form of local mesh refinement is critical to improving the accuracy of a
finite difference solution. Uniform refinement is somewhat of a brute-force approach
to a problem in which the strength of the singularity is known analytically. Instead of
uniform refinement, or in conjunction with it, a simple change to the finite difference
scheme in the vicinity of the reentrant corner can substantially improve the accuracy
of the solution, as noted below.

4.1. The effect of adaptivity on convergence rate and truncation error. Tables 1
through 3 provide a purely serial demonstration of the value of local uniform mesh
refinement: comparable accuracy in considerably fewer operations, compared with
global uniform refinement. We solve these problems at effective refinement levels of
h- 32, 64, and 128, where h- refers to the number of equal subintervals along one
of the long edges of f. The computations are carried out to a reduction in the residual
of 10-8 so our report of the truncation error is not contaminated by incomplete

(a) (b) (o)

FIG 2. Surface plots of u(x, y) for (a) the diffusion problem, nondifferentiable at r=0, (b) the inflow
problem, the singularity strengthened, and (c) the outflow problem, the singularity eliminated (note the change

of vertical scale).

PRECONDITIONED KRYLOV METHODS 137

TABLE
Number of unknowns N, sup-norm of the error e, iteration count I, and execution time T (sec) for the

diffusion problem, globally and locally refined, along with execution time ratios, for a reduction in the initial
residual of 10-8.

h-1

32
64
128

Global

833 1.30 (-2) 18 1.1
3201 8.30 (-3) 22 4.0
12545 5.25 (-3) 26 24.4

Local

NL eL I/ TL

833 1.30(-2) 18 1.1
1817 8.39(-3) 22 2.6
2409 5.26 (-3) 23 3.9

Ratio

T/TL

1.0
1.5
6.3

h-1

32
64
128

TABLE 2
Same as Table 1, exc

Global

833 6.97 (-2) 18 1.1
3201 5.65 (-2) 23 4.2
12545 4.53 (-2) 28 26.2

Ot for the inflow problem.

Local

NL eL IL TL

833 6.97 (--2) 18 1.1
1817 5.66(--2) 23 2.7
2409 4.58 (--2) 25 4.1

Ratio

TI TL

1.0
1.6
6.4

TABLE 3
Same as Table 1, except for the outflow problem. (The error values are large in absolute terms, but still

small relative to the sup-norm of the solution. See Fig. 2(c) for the scale of the solution.)

h-1

32
64
128

Global

N e I

833 7.35 (-1) 19 1.2
3201 4.15 (-1) 23 4.2
12545 2.19(-1) 29 27.0

Local

NL eL I/ TL

833 7.35(-1) 19 1.2
1609 4.30 (- 1) 22 2.2
4697 2.40 (- 1) 27 9.6

Ratio

T/TL

1.0
1.9
2.8

algebraic convergence. Global refinement results are on the left, and local on the right.
Each of these columns lists the number of unknowns, the sup-norm of the error, the
number of iterations, and the total execution time on a SPARCstation-1. The rightmost
column gives the global-to-local execution time ratios for each refinement level.

Though the particular refinement strategy illustrated in Fig. 1 is by no means
considered optimal, appreciable sixfold improvements in computational work are
available in the first two problems. In the third problem, the number of tiles refined
to a high degree is a substantial fraction of the total, resulting in only a nearly threefold
gain.

The roughly linear behavior of iteration count with each doubling a global
refinement in Tables 1 through 3 is consistent with the logarithmic growth in condition-
ing with h -1 derived in [3].

Case-by-case comparisons between the globally and locally refined results show
that correctly placed local refinement can replace global refinement in representative
problems with essentially no loss in accuracy and with gains in both storage and
iteration count. The gain in iteration count is modest; it may be better to simply
summarize with the observation that iteration count is not significantly affected in the

138 w.D. GROPP AND D. E. KEYES

context of the two-level preconditioner. This result is expected on the basis of theory:
the condition number of the overall system is bounded by the condition number of
the worst-conditioned subdomain, not by the details of the distribution of subdomain
problems. The gain in storage, on the other hand, is potentially very significant and
shows up both in a lower cost per iteration in already feasible problems and in an
enlargement of the class of feasible problems, given a fixed-size memory. These
conclusions are not new; they are stated here to provide self-contained motivation for
the parallel results below, where the tradeoffs between adaptivity and parallel load
balance are addressed.

Before leaving this section, we comment briefly on two means other than ordinary
h-type refinement for improving the truncation error of either the global or the local
discretizations compared above: singularity fitted discretizations and higher-order
upwind discretizations.

As expected in cases where the exact solution is nondifferentiable at the reentrant
corner (Tables 1 and 2), the sup-norm of the truncation error (which is determined
by the data at the corner) shows slow improvement in h when ordinary finite differences
based on Taylor series expansions are employed. As was demonstrated nearly half a
century ago [19], the error can be improved by making a local rediscretization in the
neighborhood of the corner based on an expansion of the solution in most singular
modes of the known local series representation. For this purpose, three special-purpose
tiles (simple rotations of each other) are employed at the reentrant corner, and the
remainder of the discretization is unchanged. A standard Cartesian grid is employed,
but the operator coefficients near the corner are derived from a cylindrical coordinate
analysis. The results are shown in Table 4, the Taylor part of which is repeated from
Table 1 for convenient comparison.

TABLE 4
Number of unknowns N, sup-norm of the error e, iteration count I, and execution time T

(sec) for the diffusion problem, for ordinary Taylor series-based finite differences and for a

discretization fitted to the singularity at the reentrant corner.

h-1

32
64
128

N

833
3201
12545

Ordinary Taylor

e I T

.30 (-) 8 .
8.30 (-3) 22 4.0
5.25 (-3) 26 24.4

Singularity fitted

e I T

1.63 (-3) 17 1.1
1.04 (-3) 22 4.0
6.54 (-4) 26 24.3

We observe that the alternative discretization leaves the convergence rate of the
preconditioned Krylov method and the execution time virtually unchanged, while the
error at each resolution of the grid is a constant eightfold factor better than the
corresponding error of the ordinary discretization. (The error improves with h at the
same rate.)

The first-order accurate upwind treatment of convection leaves its signature in the
truncation error of the outflow problem (Table 3). As was demonstrated in [16],
second-order convergence can be recovered in the overall method by improving A to
second order while leaving the preconditioner B unchanged. This is a very convenient
compromise from the point of view of practical computing, since the preconditioner
is more complex to code and the application of its inverse consumes a higher proportion
of the execution time than does the forward application of the original operator. The

PRECONDITIONED KRYLOV METHODS 139

results are shown in Table 5, the first-order part of which is repeated from Table 3 for
convenient comparison.

We observe that the higher-order discretization of A is not "flee," in that both
the iteration count and the cost per iteration are increased. However, the truncation
accuracy increases more rapidly, so that the computational cost to achieve a given
accuracy is less with the higher-order method. Fortuitously, a direct example of this
advantage is obtained by comparing the second row of the first-order method with the
first row of the second-order method. In both cases, Ilell is 4.15 10-1 (approximately
1.2 percent of Ilull), and the number of iterations is nearly identical as well. The
second-order method achieves this result with one-quarter ofthe gridpoints and one-half
of the execution time, however. Second-order convergence of the sup-norm in h is
clearly visible in the right-hand set of columns.

TABLE 5
Number of unknowns N, sup-norm of the error e, iteration count I, and execution time T

sec) for the outflow problem, for first-order and second-order upwind finite differences.

h-1

32
64
128

N

833
3201
12545

First-order upwind

e I T

7.35 (-1) 19 1.2
4.15(-1) 23 4.2
2.19(-1) 29 27.0

Second-order upwind

e I T

4.15(-1) 24 2.1
9.59 (-2) 29 9.0
2.10(-2) 34 53.0

These examples show that global h-type refinement can be synergistically combined
with singularity fitted and mixed-order discretizations of A and B. Local h-type
refinement can also be so combined; however, full exploitation of discretization
improvements places a greater burden on automatic refinement algorithms.

4.2. Adaptivity and parallel load balance. To prevent the parameter space from
growing unwieldy as multiple processors are added and parallel performance is studied,
we focus on the diffusion problem (c 0) alone. Overall conclusions based on studies
of the inflow and outflow problems are similar, however. Since our attention is not on
truncation error in these tests, we relax our convergence tolerance to a level more
typical of an intermediate step in a sequence of nonlinear iterations" we enforce a
relative reduction of 10-5 in the residual.

In the first set of tests we fix the number of tiles and vary the maximum level of
refinement, h -1, and the number of processors, p (= 2k). In Tables 6 and 7, we present
separately, the time spent on preprocessing ("factor," predominantly factorizing the
interior AI and crosspoint Bc blocks) and the time spent on the GMRES iteration
("solve," which includes the application of the preconditioner in factored form). Actual
times are shown for p 1; for p > 1 we show TI! Tp, where Tp is the maximum time
reported by any of the p processors. For the Encore Multimax, efficiencies (namely,
the tabulated speedups divided by the number of processors) at p 16 range from 21
percent to 48 percent in the preprocessing, and from 33 percent to 51 percent in the
solution. For the Intel iPSC/860, efficiencies at p 16 are worse: from 24 percent to
34 percent in the preprocessing, and from 15 percent to 21 percent in the solution.
With its large ratio of communication to computation rates, the Intel iPSC!860 is not
a very well balanced machine for problems with relatively small tiles. On the earlier
Intel iPSC/2-SX, efficiencies of up to 50 percent, comparable to the shared-memory
Multimax, were achieved.

140 w.D. GROPP AND D. E. KEYES

TABLE 6
Number ofunknowns N, iteration count I, execution times (for p 1), and parallel speedups

(for p > 1) for the diffusion problem, through two levels of refinement on the Encore Multimax

320, for reduction in the initial residual of 10-5

N
I

2
4
8

16

Level 0

833
10

Factor Solve

0.19s 3.55s
1.72 1.79
2.88 3.15
4.23 5.09
6.09 6.41

Level

1817
13

Factor Solve

Level 2

2409
13

0.75s 9.19s
1.88 1.86
3.44 3.50
5.24 5.69
7.60 8.08

Factor Solve

2.24s 13.3s
1.54 1.74
2.94 3.32
3.33 4.52
3.51 5.30

TABLE 7
Same as Table 6, except on the Intel iPSC/860.

N

2
4
8

16

Level 0

833

10

Factor Solve

O.021s 0.217s
2.10 1.40
3.00 1.90
4.20 2.12
4.20 2.38

Level

1817

13

Factor Solve

Level 2

2409

0.049s 0.465s
2.23 1.56
3.77 1.98
4.90 2.67
5.44 3.34

13

Factor Solve

0.094s 0.613s
1.49 1.50
3.13 2.15
3.36 2.69
3.76 3.16

The tests used eight tiles along one of the long edges of (as in Fig. 1) and a
"level 0" global resolution of h-l= 32 (as in the first rows of Tables 1 through 3). The
unrefined cases therefore employ 48 tiles, each 4 4. The uniformity at level 0 makes
load balancing trivial (modulo boundary effects) for p 1, 2, 4, 8, and 16, all of which
evenly divide 48. However, the small size of each tile means short threads between
synchronization points and intrinsic parallel inefficiency resulting from data exchanges
and sequential data dependencies in the crosspoint equation solution are revealed. At
level 1, there are 20 tiles of size 8 x 8 and 28 of size 4 x 4. The relatively better utilization
of multiple processors at this level is due to the longer purely arithmetic threads of
computation on the 8 x 8 tiles, which overcome a modest degree of load imbalance.
At level 2, 3 of the 20 refined tiles at the previous stage are further refined to 16 x 16.
Since there are few of these largest problems, load balance is much more distorted,
but speedups still occur up to 16 processors. Load imbalance shrinks the "paydirt"
region of parameter space for local uniform refinement in the parallel setting. For a
problem in the small tile-to-processor ratio regime, which would otherwise lead to a
lumpy work distribution, a certain amount of extra (numerically unnecessary)
refinement, padding out the work distribution, is "free." The extra storage it requires
is presumed available on a homogeneous distributed-memory array, the extra data

PRECONDITIONED KRYLOV METHODS 141

movement is likely to be masked by comparably sized messages, the solution of the
crosspoint system is independent of the degree of refinement, and the algebraic
convergence rate is likewise unaffected.

The parallel efficiencies quoted above are not impressive, but the usual motivation
for large-scale algorithm design is rapid solution, not linear speedup. Tables 8 and 9
pertain to the same diffusion problem at a finer resolution (h -1= 128) for a variety of
tile sizes and processor numbers. In these tables, we show in three-column groups the
speedups for the factorization and solution phases of the algorithm and the absolute
execution times for the total run. In Table 8 all tiles are uniform, while in Table 9, the
tiles near the corner of the L-shaped domain are refined to level 1. Note that all five
sets of columns in both tables solve the original PDE to nearly identical levels of
truncation error; therefore, the total execution times can be compared directly to
determine the best "bottom line" discretization/decomposition/parallelization combi-
nation. To facilitate such comparisons, we present the unreduced "Total" timings
alongside the speedups for each phase.

The best speedups in both tables are for the coarsest tessellations (48 tiles). These
have the sparsest crosspoint systems and the largest tiles, and hence the smallest

TABLE 8
Number of unknowns N, iteration count I, execution times (italic), and parallel speedups for the diffusion

problem, globally refined to h-l= 128 on the Intel iPSC/860, for reduction in the initial residual of 10-5.

N

2
4
8
16

48 tiles
each 16 x 16

12,545

14

Factor Solve Total

0.91s 3.21s 4.11s
1.98 1.87 2.17s
3.85 3.41 1.17s
7.48 5.63 0.69s
13.7 9.27 0.41s

192 tiles
each 8 x 8

12,545

Factor Solve Total

0.33s 2.23s 2.56s
1.84 1.72 1.48s
3.28 3.02 0.84s
4.94 4.80 0.53s
6.90 6.59 0.39s

768 tiles
each 4 x 4

12,545

Factor Solve Total

0.55s 2.69s 3.24s
1.23 1.15 2.80s
1.41 1.84 1.85s
1.50 2.98 1.27s
1.58 4.09 1.01s

TABLE 9
Same as Table 8 except locally refined (level 1) to h -1 128.

N

2
4
8
16

48 tiles
8x8or 16x16

7,089

14

Factor Solve Total

0.41s 1.77s 2.18s
1.98 1.82 1.18s
3.76 2.99 O. 71s
6.31 4.46 0.46s
9.76 6.00 0.34s

192 tiles
4x4 or 8x8

6,697

11

O. 17s 1.44s 1.62s
1.64 1.55 1.04s
2.85 2.38 0.67s
3.78 3.22 0.49s
4.70 4.42 0.36s

Factor Solve Total

142 w.D. GROPP AND D. E. KEYES

communication-to-computation ratios. However, among the cases in Table 8, the most
parallel-efficient is not the fastest, at any number of processors. The intermediate
tessellation in Table 8 gives the best wall-clock times, in spite of mediocre efficiency.
The last set uses tiles that are too small, and it is choked by the large crosspoint system.
In terms of total execution time, this is the worst case. Similar findings were made in
[11] for a variety of convection-diffusion problems solved on a uniprocessor: the
optimum granularity of tessellation (for a two-scale preconditioner with exact sub-
domain solves) occurs between the extremes of many small tiles (dominated by the
crosspoint system) and few large tiles (dominated by the interior systems).

Among the locally refined cases in Table 9, the preferred tessellation is different
at different numbers of processors, as a result of the interaction of load imbalance
with communication-to-computation ratio. It is interesting to observe that the best time
for this problem, 0.34s, is within 15 percent of the best time on the globally refined
problem of the same effective resolution, though the number of unknowns involved is
over 40 percent less. Load imbalance resulting from a small tile-to-processor ratio
takes away from the advantage of local refinement in parallel.

Finally, we investigate differences between the work estimate and the wrap map-
pings of tiles to processors. This study is presented for a level-1 refinement at the upper
end of the problem sizes we have tested in two dimensions. In Tables 10 and 11 we
consider the L-shaped diffusion problem on the iPSC/860 for effective resolutions of
h -1 256 and h-1= 512 on 768 tiles with up to 64 processors. Since the largest problem
does not fit onto a single processor, absolute speedup data are not available, and we
report relative speedups with each doubling of processors (Tp/Tp/.) under the "Factor"
and "Solve" headings.

TABLE 10
Number of unknowns N, iteration counts I, execution times (italic), and relative parallel

speedups for the tile algorithm based on the work-estimated tile-to-processor mapping.

N

2
4
8

16
32
64

768 tiles
4x4 or 88

25,969

10

Factor Solve Total

0.90s 5. 76s 6. 66s
1.44 1.16 5.61s
1.30 1.75 3.32s
1.15 1.51 2.29s
1.11 1.44 1.67s
1.05 1.29 1.36s
1.03 1.17 1.21s

768 tiles
8x8or16x16

103,201

12

Factor Solve Total

1.74s 7.87s 9.60s
1.67 1.74 5.57s
1.47 1.65 3.44s
1.36 1.49 2.36s
1.18 1.31 1.84s

We observe that neither the work estimate nor the wrap mapping is systematically
better than the other. It is noteworthy that as simple a scheme as wrap mapping
competes as well as it does with a first attempt at a work estimation scheme. Both
schemes suffer from an interesting nonmonotonicity in relative speedup versus p in
going from one to two processors. We attribute this to poor tile-processor locality;
that is, tiles have neighbors in different processors in numbers substantially greater

PRECONDITIONED KRYLOV METHODS 143

TABLE 11
Same as Table 10 except for the wrap mapping.

N

2
4
8

16
32
64

768 tiles
4x4 or 88

25,969

10

Factor Solve Total

O.90s 5. 76s 6.66s
1.42 1.07 6.03s
1.29 2.06 3.1
1.15 1.73 1.94s
1.12 1.41 1.45s
1.05 1.18 1.27s
1.04 1.12 1.16s

768 tiles
88 or 16x 16

103,201

12

Factor Solve Total

1.79s 7.66s 9.45s
1.54 1.77 5.49s
1.51 1.67 3.36s
1.40 1.44 2.35s
1.21 1.33 1.81s

than an optimal decomposition would require. As the number of processors increases,
the amount of off-processor intertile data traffic does not decrease, but more of it can
be overlapped in the larger number of communication channels available.

Finally, we report breakdowns of the factorization and solution times. For the
factorization phase of the largest problem on 64 processors under the work estimate-
based mapping, 79 percent was devoted to factoring the crosspoint system, 20 percent
to the subdomain interior systems, and 1 percent to the interface systems. Of the time
required to iterate it to convergence, 49 percent was spent solving the crosspoint system,
15 percent solving the interior systems, and 1 percent solving the interface systems.
The remaining solution time went into the work of the GMRES algorithm apart from
the inner products (23 percent), the inner products themselves (8 percent), and the
application of A to a vector (4 percent). Execution rates are of interest as measures
of compatibility of the software and the machine hardware and architecture, though
they reveal little about the appropriateness of the algorithm itself. On the 64 processor
run, 362 Mflops (5.7 Mfiops per node) were achieved in the interior block factorization
step, 271 Mflops in the interior solution steps, and 210 Mflops in the matrix-vector
multiply with the A matrix. At the other end ofthe performance spectrum, the crosspoint
factorization garnered only an aggregate 5.3 Mflops and the crosspoint system solution
only 2.0 Mflops. The crosspoint system contributes to a substantial per-tile communica-
tion overhead, the penalty of which we look forward to reducing through faster
communication and perhaps better algorithms. So-called asynchronous algorithms,
allowing simultaneous solution of crosspoint and interior systems within a single
iteration step represent one possibility. The high quality preconditioning resulting in
only 12 iterations to solve an elliptic problem with 103,201 unknowns depends crucially
on the crosspoint system.

5. Summary and shopping list. We conclude with some brief assessments of the
state of parallel domain decomposition algorithms.

The potential advantages ofdomain-decomposed preconditioned iterative methods
for PDE problems with complex geometry, adaptive refinement requirements, and vast
numbers of unknowns are clear. A two-level preconditioner that includes a global
crosspoint solve is capable of maintaining good conditioning, thus providing good

144 w.D. GROPP AND D. E. KEYES

algebraic convergence and preserving the usefulness of double-precision computer
arithmetic in the context of very large problems. The key features to be addressed in
a parallel implementation are the inefficiency of the crosspoint solve itself and load
imbalance and data locality in tile-to-processor mapping.

The communication-intensive crosspoint system is the single largest consumer of
time in both the preprocessing and iteration phases, when the number of tiles is
sufficiently large; and a large number of tiles is often required to realize the advantages
of the method in complex geometry and adaptive refinement contexts. Thus, the
distributed solution of sparse matrix problems should remain the focal point of research
that it is today. It is the importance of having a conveniently structured crosspoint
system that keeps us from a much looser framework for our tessellations. This issue
is described in greater detail in 11]. A preconditioner based only on nearest neighbor
interactions would impose almost no rules on the topology of the decomposition, but
the deterioration in convergence rate in the many tile limit would eventually become
unacceptable, and no further useful parallelism could be found without subdividing
the tile.

It is important to gain experience with domain decomposition algorithms in
three-dimensional problems, since this is the true province of promise for parallel
computing. Motivated by the fact that a two-level hierarchical preconditioner with
crosspoint basis functions that are merely coarsened versions of the fine-grid basis
functions cannot lead to (near) optimal convergence in three dimensions as it does in
two, pioneering works [2], [6], [17] (see also [7]) considered preconditioners with
greater coarse-grid implicitness requiring sequential computations on data associated
with the full "wire basket" of the decomposition. A recent theoretical work written
with an eye toward parallelism in three-dimensional applications is the doctoral thesis
of Smith [22]. In it Smith presents an algorithm valid in two or three dimensions in
which the coarse and multiple fine-grid problems can be attacked simultaneously.

Load imbalance can seriously detract from the parallel performance of an adaptive
algorithm. It is desirable to have mapping algorithms that are superior to the simple
ones employed herein, but they obviously must not be so complex as to begin to
dominate the total execution time themselves. Attention to the processor locality of
frequently cooperating (i.e., neighboring) tiles could also yield important dividends,
depending on the architecture.

Tile subdivision and the clustering of homogeneously refined tiles into larger
rectangular patches (meta-tiles) break the connection between the parallel data structure
granularity and the crosspoint system dimension. These are two extensions that we
have only begun to investigate, although their promise is considerable. Neither would
necessarily replace the indivisible heterogeneous tile algorithm evaluated herein; rather,
they would generalize it to move into parallel realms beyond moderate granularity
MIMD. Tile subdivision accommodates numbers of processors larger than the
maximum useful size of the crosspoint system. Homogeneous tile clustering for all
algorithmic phases other than the multilevel preconditioning accommodates vector
nodes in an MIMD array or in vector-like SIMD clusters within an MIMD array, the
latter hybrid architectures being likely for massively parallel supercomputers because
of their cost-effective use of the silicon.

REFERENCES

1] M. J. BERGER AND J. OLIGER, Adaptive mesh refinement for hyperbolic partial differential equations,
J. Comput. Phys., 53 (1984), pp. 484-512.

PRECONDITIONED KRYLOV METHODS 145

[2] J. H. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction of preconditioners for elliptic
problems by substructuring, IV, Math. Comp., 53 (1989), pp. 1-24.

[3] X.-C. CAI, W. D. GROPP, AND D. E. KEYES, Convergence rate estimate for a domain decomposition
method, Numer. Math., to appear.

[4] T. F. CHAN AND D. E. KEYES, Interface preconditionings for domain-decomposed convection-diffusion
operators, in Proc. Third Internat. Symposium on Domain Decomposition Methods, T. F. Chan,
R. Glowinski, J. P6riaux, and O. B. Widlund, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1990, pp. 245-262.

[5] D. DEWEY AND A. T. PATERA, Geometry-defining processorsfor partial differential equations, in Special
Purpose Computers, Academic Press,. New York, 1988, pp. 67-96.

[6] M. DRYJA AND O. B. WIDLUND, Some domain decomposition algorithms for elliptic problems, Tech.
Report TR 438, Courant Institute, New York University, New York, 1989.

[7] , Towards a unified theory ofdomain decomposition algorithmsfor elliptic problems, in Proc. Third
Internat. Symposium on Domain Decomposition Methods, T. F. Chart, R. Glowinski, J. P6riaux,
and O. B. Widlund, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990,
pp. 3-21.

[8] H.C. ELMAN, Iterative methodsfor large, sparse, nonsymmetric systems oflinear equations, Tech. Report
RR-229, Department of Computer Science, Yale University, New Haven, CT, 1982.

[9] W. D. GROPP, Solving PDEs on loosely-coupled parallel processors, Parallel Comput., 5 (1987),
pp. 165-173.

[10] W. D. GROPP AND D. E. KEYES, Domain decomposition on parallel computers, Impact Comput. Sci.
Eng., (1989), pp. 421-439.

[11] , Domain decomposition methods in computational fluid dynamics, Tech. Report 91-19, Institute
for Computer Applications in Science and Engineering, Hampton, VA, 1991.

12] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res.
Nat. Bur. Standards, 49 (1952), pp. 33-53.

13] D. E. KEYES AND W. D. GROPP, A comparison of domain decomposition techniques for elliptic partial
differential equations and their parallel implementation, SIAM J. Sci. Statist. Comput., 8 (1987),
pp. s166-s202.

14] ., Domain decomposition techniques for nonsymmetric systems of elliptic boundary value problems:
Examples from CFD, in Proc. Second Internat. Symposium on Domain Decomposition Methods,
T. F. Chan, R. Glowinski, J. P6riaux, and O. Widlund, eds., Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1989, pp. 321-339.

15] ., Domain decomposition techniques for the parallel solution of nonsymmetric systems of elliptic
boundary value problems, Appl. Numer. Math., 6 (1990), pp. 281-301.

16] ., Domain-decomposable preconditioners for second-order upwind discretizations ofmulticomponent
systems, in Proc. Fourth Internat. Symposium on Domain Decomposition Methods for Partial
Differential Equations, R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. P6riaux, and D. B. Widlund,
eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1991.

17] J. MANDEL, Efficient domain decomposition preconditioning for the p-version finite element method in
three dimensions, Tech. Report, Computational Mathematics Group, University of Colorado,
Denver, CO, 1989.

[18] S. F. McCORMICK, ED., Multilevel Adaptive Methods for Partial Differential Equations, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[19] H. MOTZ, The treatment of singularities of partial differential equations by relaxation methods, Quart.
Appl. Math., 4 (1946), pp. 371-377.

[20] N.M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, Howfast are nonsymmetric matrix iterations ?
Tech. Report, Numerical Analysis Report 90-2, Department of Mathematics, Massachusetts Institute
of Technology, Cambridge, MA, 1990.

[21] Y. SAAD AND M. H. SHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[22] B. F. SMITH, Domain decomposition algorithms for the partial differential equations of linear elasticity,
Tech. Report 517, Courant Institute, New York University, New York, 1990.

[23] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist.
Comput., 10 (1989), pp. 36-52.

[24] L. N. TREFETHEN, Approximation Theory and Numerical Linear Algebra, Algorithms for Approxima-
tion, J. C. Mason and M. G. Cox, eds., Chapman and Hall, London, 1990, pp. 336-360.

[25] D. M. YOUNG AND K. C. JEA, Generalized conjugate gradient acceleration ofnonsymmetrizable iterative

methods, Linear Algebra Appl., 34 (1980), pp. 159-194.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 146-167, January 1992

1992 Society for Industrial and Applied Mathematics
009

OPTIMAL MULTILEVEL ITERATIVE METHODS FOR ADAPTIVE GRIDS*

WILLIAM F. MITCHELL,

Abstract. Many elliptic partial differential equations can be solved numerically with near optimal
efficiency through the uses of adaptive refinement and multigrid solution techniques. This paper presents a
more unified approach to the combined process of adaptive refinement and multigrid solution which can
be used with high order finite elements. Refinement is achieved by the bisection of pairs of triangles,
corresponding to the addition of one or more basis functions to the approximation space. An approximation
of the resulting change in the solution is used as an error indicator. The multigrid iteration uses red-black
Gauss-Seidel relaxation with local black relaxations. The grid transfers use the change between the nodal
and hierarchical bases. This multigrid iteration requires only O(N) operations, even for highly nonuniform
grids, and is defined for any finite element space. The full multigrid method is an optimal blending of the
processes of adaptive refinement and multigrid iteration. To minimize the number of operations required,
the duration of the refinement phase is based on increasing the dimension of the approximation space by
the largest possible factor, given the error reduction of the multigrid iteration. The algorithm (i) uses only
O(N) operations, (ii) solves the discrete system to the accuracy of the discretization error, and (iii) achieves
optimal convergence of the discretization error in the presence of singularities. Numerical experiments
confirm this for linear, quadratic, and cubic elements.

Key words, finite elements, elliptic partial differential equation (PDE), adaptive refinement, multigrid,
hierarchical basis

AMS (MOS) subject classifications. 65F10, 65N30, 65N50

1. Introduction. The efficient numerical solution of elliptic partial differential
equations (PDEs) has been an important area of research in numerical analysis for
several decades. Over the years, many new methods have been discovered in the areas
both of discretizing the differential equation and of solving the discrete problem. While
every method has restrictions on the subclass of problems to which it is applicable,
the efficiency of the methods has increased manyfold since even the best solvers of 25
years ago. A thorough presentation of most practical methods is provided by Birkhoff
and Lynch [7]. Additionally, the ELLPACK project [22] has provided us with robust
software for many of these methods and a sound environment in which to perform
numerical experiments to determine the relative merits of each method.

Today, we are at a point where many problems can be solved with near optimal
efficiency. Many of the recent improvements have occurred through the uses of adaptive
refinement, multigrid solution techniques, and parallelism. We will not consider
parallelism here but concentrate on adaptive refinement and full multigrid solution.
At first glance, the two concepts seem almost meant for each other. Each is a process
that alternately performs phases of refinement and solution, with one concentrating
on refinement and the other on solution. Yet, when examined more deeply, subtle
difficulties arise in combining them. Most researchers who have attempted to join the
two have maintained the individual structures of the two phases and then developed
strategies to overcome the problems that emerge. It is our goal to develop a more
unified approach to the combined processes of adaptive refinement and multigrid
solution that is so natural that it becomes obvious how to extend these important

Received by the editors April 5, 1990; accepted for publication July 22, 1990. This work was performed
while the author was attending the Department of Computer Sciences, University of Illinois at Urbana-
Champaign and supported in part by the U.S. Department of Energy under grant DOE DEFG02-87ER25026.

f General Electric Advanced Technology Laboratories, Bldg. 145-2 Moorestown Corporate Center,
Moorestown, New Jersey 08057.

146

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 147

techniques to more complicated situations, such as with high order methods and for
three-dimensional problems. This unification and extendability is achieved by interpret-
ing the parts of the method from the viewpoint of the hierarchical basis, in which
successive coefficients represent a change in the solution rather than the value of the
solution. In particular,

(i) adaptive refinement is considered to be the selective enrichment of the approxi-
mation space by adding new basis functions, rather than the division of triangles or
rectangles. Local relaxations that are identical to those of the multigrid iteration are
performed with the addition of each new basis function. The choice of which basis
functions to add is based on how much each potential new basis function will reduce
the error and is determined by approximating the hierarchical coefficients. This com-
putation uses the equations that will be added to the linear system when the space is
enriched by this function, and is the same as the local relaxation.

(ii) the multigrid iteration is defined strictly in terms of the hierarchical basis and
is not restricted to the approximation spaces we consider. Grid transfers are achieved
through the change between nodal and hierarchical bases. Relaxations are performed
in both the nodal and hierarchical bases, essentially supersaturating the approximation
space with an excessive number of directions in which to minimize the error.

(iii) the full multigrid method is a very natural, optimal blending of adaptive
refinement with multigrid iterations. The approximation space is enriched with as many
new basis functions as is possible with respect to the error-reducing power of the
multigrid iteration. This minimizes the number of operations used to obtain a solution
whose accuracy is comparable with the discretization error.
The method is presented in the context ofthe second order selfadjoint elliptic problem

(1.1) Lu=(pu)+(qUy)y+ru=f in

u g on

where f is a polygonal domain in R and p, q, r, f, and g are functions of x and y.
The Galerkin finite element method is used to discretize the problem over a triangular
mesh which covers f exactly. The method will be developed for the higher order
spaces of CO pth degree piecewise polynomials over triangles, where p is any given
positive integer, but the usual space of continuous piecewise linear functions over the
triangles will frequently be used for illustration purposes.

In 2, the adaptive refinement aspect of the method is presented. Triangles are
divided by bisection, similar to the bisection method of Rivara [24], [25] and identical
to that of Sewell [27], [28], the difference between the two being in the method for
determining which side of the triangle is to be bisected, the longest edge or the side
opposite the newest vertex, respectively. Compatibility of the triangulation is
maintained during the refinement process, rather than before, as in Sewell [27], [28],
or after as in Rivara [24], [25] and Bank and Sherman [3], [4]. The error indicator
uses the hierarchical basis to estimate the norm of the change in the solution invoked
by dividing the triangle, similar to that proposed by Zienkiewicz et al. [32] for bilinear
elements. The overall structure of the adaptive refinement algorithm is based on the
division of a small number of triangles, rather than local refinement of the entire grid,
to provide more control over how often multigrid iterations occur.

Section 3 presents and analyzes the multigrid iteration used to solve the linear system
of equations. This multigrid uses a V-cycle, a restricted form of red-black Gauss-Seidel
relaxation, and restriction and prolongation operators which arise naturally from the
hierarchical basis. In the case of uniform grids the method is equivalent to that studied
by Braess [8], [9], [10] and is related to the MGR methods [16], [23]. It is also very

148 WILLIAM F. MITCHELL

closely related to the hierarchical basis multigrid method recently developed by Bank,
Dupont, and Yserentant [6], and to the composite grid methods of McCormick.

In 4 a full multigrid method is presented to combine the adaptive refinement
procedure with the multigrid iteration into a very efficient unified solution method that
is easily extended to high order finite element spaces. The full multigrid method consists
of alternately performing refinement and solution phases. Properties of the convergence
of the discretization error are used to justify basing the frequency of solution phases,
not on the levels of refinement, but on the increase in the number of nodes. Thus, the
refinement phase continues until the number of nodes has been increased by some
given factor. A formula is derived to determine how large this factor can be in terms
of the error reduction factor of the multigrid iteration and the convergence rate of the
discretization error for the finite element space being used.

In 5, the results of numerical experiments are presented to demonstrate the
performance of the method.

2. Adaptive refinement. The use of adaptive refinement to obtain a grid for the
discretization of a partial differential equation has been the subject of much research
in the past decade [2], [3], [14], [17], [18], [20], [25], [27], [32]. The idea is to
automatically construct a grid that is coarse where the solution is well behaved, fine
near singularities, boundary layers, etc., and has a smooth transition between the coarse
and fine parts. Such a grid can dramatically reduce the number of nodes needed to
obtain an accurate solution for marginally smooth problems, and can recover the
optimal order of convergence for nonsmooth problems.

Triangle division. Central to any adaptive refinement algorithm for a finite element
grid is a method for dividing (refining) the elements, triangles in our case. There are
two major methods for dividing triangles in adaptive refinement algorithms. Regular
division divides a triangle into four similar triangles by connecting the midpoints of
the sides. Bank and Sherman [3], [4] show how to use a regular division in an adaptive
refinement algorithm. Bisection division connects one of the vertices of the triangle to
the midpoint of the opposite side. Two approaches are in use regarding the selection
of the vertex to be divided. Rivara [24], [25] chooses the vertex opposite the longest
edge. Sewell [27], [28] chooses the "newest" vertex. The method presented here, newest
vertex bisection, is nearly identical to the method presented by Sewell. Much of the
terminology of this section is due to Sewell.

In bisection division a triangle is divided to form two new triangles by connecting
one of the vertices, called the peak, to the midpoint of the opposite side, called the
base, as in Fig. 2.1. The original triangle is called the parent, and the two new triangles
are called the children. The children are said to have generation + 1 where is the
generation of the parent. The initial triangle is assigned generation 1. The new vertex

bas

peak

FIG. 2.1. Propagation of the peak with newest node bisection.

se

peak

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 149

created at the midpoint of the base is assigned to be the peak of the children, hence
the name newest vertex bisection.

It is easily shown that only four similarity classes of triangles [27] and only eight
distinct angles [19] are created by this method, so the angles satisfy the important
condition of being bounded away from 0 and 7r [1], [15].

Compatibility. One of the difficulties in adaptive refinement is that of maintaining
compatibility of the triangulation. A triangulation is said to be compatible if for any
two triangles and tj, ti f3 tj is either empty, a common vertex, or a common side. In
other approaches, some set of triangles with large error indicators is divided, producing
an incompatible triangulation, and then a second process is performed to regain
compatibility by dividing more triangles. In the approach that follows, compatibility
is maintained during the refinement process, by dividing pairs of triangles rather than
individual triangles, eliminating the need for a separate follow-up process to recover
compatibility.

A triangle is said to be compatibly divisible if its base is either the base of the
triangle that shares that side or part of the boundary of the domain. If a triangle is
compatibly divisible, then divide the triangle and the neighbor opposite the peak (if
such a neighbor exists) simultaneously as a pair. If a triangle is not compatibly divisible,
then after a single bisection of the neighbor opposite the peak, it will be. So in this
case, first divide the neighbor by the same process, and then divide the triangle and
neighbor opposite the peak simultaneously. This is illustrated in Fig. 2.2. This leads
to the recursive Algorithm 2.1, which is easily implemented in FORTRAN by construct-
ing a stack of the triangles that need to be divided. It is easily seen that the length of
the recursion is bounded by the generation of the triangle, since the generation of the
triangles decrease with each recursive call. It can be shown [19] that it is always
possible to assign peaks to the initial triangulation so that every triangle is compatibly
divisible.

FIG. 2.2. Maintaining compatibility during refinement.

ALGORITHM 2.1. divide_triangle(t)
if is not compatibly divisible then

divide_triangle(neighbor of opposite peak)
endif
divide the triangle pair and the neighbor opposite the peak of
return

Error indicator. Another critical element of any adaptive refinement algorithm is
the error indicator, which is used to determine which triangles should be divided.
Several good error indicators have been proposed [2], [3], [5], [23], [32]. Most of
these are based on estimating the discretization error over each triangle. A slightly
different approach is obtained by attempting to determine which admissible basis
functions would reduce the discretization error the most. This becomes a type of error
indicator for pairs of triangles. Mitchell [18] surveyed several error indicators and

150 WILLIAM F. MITCHELL

triangle division methods and compared them in a numerical experiment. He found
that, among the methods considered, there is no universally "best" adaptive refinement
method, and that most of the methods performed approximately the same. The method
described here performed well in that experiment. This method is similar to that
proposed by Zienkiewicz et al. [32] for bilinear rectangular elements. Interpretation
in terms of hierarchical bases makes it possible to define this error indicator for any
finite element space. It will be presented for the spaces of CO pth degree polynomials
over bisected triangles, considering first linear elements, and then extending to arbitrary
degree.

Instead of attempting to divide the triangles over which the error is the largest,
attempt to divide the triangles whose division makes the greatest change in the solution.
Since this change in the solution reduces the error, it is an attempt to divide the
triangles that make the greatest reduction in the error, i.e., reduce the error the fastest
for the number of divisions performed.

To approximate how much of a change in the solution will occur, use the
hierarchical basis, defined in 3. For what follows it suffices to know that when a
function is expanded using the hierarchical basis, the coefficients represent displace-
ments rather than nodal values as with the usual nodal basis, i.e., the coefficient of a
hierarchical basis represents how much change occurs in the approximating function
when the grid is refined by adding the new node.

The division of a pair of triangles, as in Fig. 2.3, by newest vertex bisection
corresponds to the addition of one new basis function. Let vi and bi, i-- 1, 2, 3, and
4 be the vertices of the triangles and corresponding hierarchical basis functions, and

v5 and 45 be the new vertex and basis function. To approximate how much change
would occur if this division were to be performed, approximate the coefficient of b,
a, by assuming that ai, the coefficients of thi, remain unchanged for i-1, 2, 3 and
4. Then

(2.1)
i=1

where (., and (., are the usual inner products used to obtain the stiffness matrix
and load vector, respectively, and f is the right-hand side of the differential equation.
If 1[. is the energy norm defined by]]u]] := (u, u),]]a4]] 2 is the amount by which
the square of the energy norm of the error is reduced by adding c54 to the approximate
solution.]]a4[[is the error indicator for this pair of triangles.

V1

V3 V4

V2

FIG. 2.3. Triangle pair for error indicator.

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 151

The extension of this error indicator to CO pth degree polynomials is straightfor-
ward. The only difference is that there are p2 new basis functions rather than just one,
so the amount of change depends on more than one basis function. Equation (2.1) is
replaced by a linear system of p2 equations in p unknowns. This system can be solved
by Cholesky decomposition in an acceptable number of operations, and one can
compute lie ,,,11, where the sum is over the p: new nodes associated with the
prospective new vertex. Clearly this error indicator can be further extended to any
finite element space with a hierarchical basis.

Refinement process. Given the error indicators for every triangle (or pairs of
compatibly divisible triangles), one would ideally want to select the next triangle to
divide by choosing the triangle with the largest error indicator. However, for an
algorithm to use only O(N) operations it is imperative that the selection of the next
triangle to divide requires only O(1) operations. This means that there is not enough
time to search every triangle to find one with the largest error indicator. Instead, a
triangle whose error indicator is close to the largest will be selected.

Let e be the largest error indicator at the beginning of the refinement phase.
Partition the triangles (only including one triangle from each pair of compatibly
divisible triangles) into Q sets such that each set contains all the triangles whose error
indicators fall in a certain range. Specifically, for a given 0 < c < 1, a triangle is in the
qth set if and only if its error indicator is between cq-le and cq e for 1 <= q <= Q 1 and
is in the Qth set if its error indicator is less than cQ-1 e. The first set contains all the
triangles whose error indicator is larger than ce, and any one of these triangles can be
selected as the next triangle to be divided. The selection of c and Q will determine
the precision with which the correct triangles are selected. Mitchell [19] recommends
Q 4 and c ._f-a-i/2, where f is the factor by which the number of nodes is increased
during the refinement phase, and a is the rate of convergence of the energy norm of
the discretization error.

Combining the material presented in this section into an adaptive refinement
algorithm results in the rather simple looking Algorithm 2.2. What is meant by "enough
refinement" will be discussed in 4. The actual process of dividing a triangle involves
several steps which redefine the grid, change the linear system, provide a first approxi-
mation to the solution and update error indicators. The details of these steps are
presented in [19]. Algorithm 2.3 summarizes the process.

ALGORITHM 2.2. Adaptive refinement
repeat

determine which triangle to divide
divide the triangle

until enough refinement has occurred

ALGORITHM 2.3. Divide triangle pair
change grid specification
add new equation(s) to the linear system
change other affected equations
block relaxation for new nodes
Gauss-Seidel point relaxation for neighboring old nodes
compute error indicators for new triangles and neighboring triangles

3. Multigrid solution. The multigrid method [11], [12], [29] has recently been
established as perhaps the most efficient method for solving the linear systems that
arise from the discretization of differential equations. The popularity of this method

152 WILLIAM F. MITCHELL

can be attributed to the fact that it is optimal in the sense that one multigrid iteration
can reduce the norm of the error of the approximate solution of the linear system by
a factor that is bounded away from 1 independent of N, the size of the linear system,
while using only O(N) operations. This section presents and analyzes a multigrid
iteration suitable for the linear systems that arise from using the finite element method
with low or high order bases on the triangulations generated by the adaptive refinement
algorithm of 2. In the special case of linear elements, uniform grids and certain
domains, the method is equivalent to that studied by Braess [8], [9], [10] and the
MGR methods [16], [23]. The method will be developed in terms of hierarchical bases
from which it will be easy to extend the method to nonuniform grids, more general
domains and high order bases.

Hierarchical bases. The use of hierarchical bases for finite elements has been
considered by Zienkiewicz et al. [32]; Yserentant [30], [31]; Craig and Zienkiewicz
[13]; and Bank, Dupont, and Yserentant [6]. The usual nodal basis, {bi}l, for a
space of piecewise polynomials can be defined on a given grid by

{10 atndei
bi

at all other nodes.

In contrast, the hierarchical basis is defined using the family of nested grids, { T}=I,
from the refinement process. The hierarchical basis begins with the nodal basis on the
initial grid, T1. As refinement proceeds, with each division one or more new nodes
are added, and for each node a new basis function is defined so that it has the value
1 at the new node and 0 at all other nodes, but the existing basis functions remain
unchanged. The level of a basis function is the same as the generation of the elements
created when the basis function is added, i.e., higher level basis functions refer to
those associated with smaller elements.

A 2-1evel hierarchical basis can also be defined by starting with the nodal basis
for the grid TL_I and defining the higher level basis functions as above. The superscripts
(N), (H), and (2) are used to indicate which basis is in use. Thus, (N), ()H), and 2)
represent basis functions from the nodal, hierarchical, and 2-level bases, respectively.

Any function f that lies in the space of piecewise polynomial functions on TL has
an expansion in terms of any of the bases. Forms of c are used to denote the coefficients
in this expansion. Thus

N N N

i=1 i=1 i=1

Conversion between bases is a linear process. S denotes the matrix that converts the
coefficient vector of the hierarchical basis to the nodal basis, thus a (N)= Sa (H) and
a<H= S-la <N. SI denotes the conversion from the 2-level basis to the nodal basis on
an level grid. If the rows and columns of SI are ordered such that rows corresponding
to nodes of the same level are grouped together with lower level rows first, and Sl is
partitioned into two parts corresponding to levels 1 through l-1 and level l, then SI
has the form

and

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 153

t(2)(Xwhere sij ,_j i, y) and x and y are the coordinates of the ith node. Conversion
between bases amounts to multiplying a vector by Sl or S-1. If Nl_l is the number of
nodes in the first l-1 levels

(2)

N_
if node does not have level

(2) if node ihaslevel /.aY) () dpJ)(xi, yi)aj
j=l

With newest vertex bisection refinement and pth degree piecewise polynomials, there
are at most (p+ 1)a nonzeros in the sum. Moreover, the value of bJ2)(xi, Yi) depends
only on p and the relative placements of nodes and j in the same triangle, and is
independent of the triangle shapes and sizes, problem being solved, etc. Thus a small
((p+ 1)axpa) table of these values can be constructed to be used whenever a basis
change is desired.

To multiply a vector by S and S-v the value of a 12) is distributed over neighboring
nodes when node has level l, rather than collecting values from the neighboring
nodes. The process of multiplying by SI and S is summarized in Algorithm 3.1 and
Algorithm 3.2. Here so represents bJZ)(x, yi). Multiplication by S-1 and S- are the
same but with +sj changed to -s.

ALGORITHM 3.1. Multiply a by SI
for each node with level

for each neighbor j of with level <l
a <-- a + soa

next j
next

ALGORITHM 3.2. Multiply a by S
for each node with level

for each neighbor j of with level <l

next j
next

As with S, the rows and columns of the stiffness matrix, A, are ordered so that
rows corresponding to nodes of the same level are grouped together, and smaller levels
come first. The stiffness matrix will be called the nodal matrix or hierarchical matrix
when we need to indicate which basis is in use. Yserentant [31] showed that the
hierarchical matrix can be obtained from the nodal matrix by A(H) sTA(N)s. Algorithm
3.3 shows how to change the basis of the matrix from nodal to 2-level.

ALGORITHM 3.3. Replace A by SAS
for each node with level

for each neighbor j of with level <l
row j *- row j / sii * row
column j - column j + s0 column

next j
next

Relaxation operator. The basis of the relaxation operator is the red-black Gauss-
Seidel iteration. The red phase is done first, where the red nodes are those that are in
the current grid, but not in the next coarser grid. Vl iterations of the relaxation operator
are performed before coarse grid correction and v2 iterations after, allowing v and va
to be multiples of 1/2, where half an iteration means only the red phase. Bank, Dupont,

154 WILLIAM F. MITCHELL

and Yserentant [6] use V 1)2 1/2, i.e., they perform relaxations at the red nodes only.
This V-cycle is equivalent to a symmetric Gauss-Seidel iteration using the hierarchical
matrix. The condition number of the hierarchical matrix is O(L2), where L is the
number of refinement levels [30], [31]. Since L _-> log N and the number of Gauss-Seidel
iterations depends on the condition number, their method requires at least O(log N)
iterations to reduce the error by a given factor. To overcome this difficulty, use vl =
and v2 1 by adding in relaxation at the black nodes after the coarse grid correction.
This is a special case of the values of Vl and v considered by Braess [10]. He uses
Vl v2-1/2, but performs the black phase first if Vl is an integer. Braess shows that by
using Vl 1/2 and v 1, the V-cycle reduces the error by at least a factor of .5 independent
of N for certain convex polygonal domains. Strong evidence is provided later in this
section that for a square domain and uniform grid, the error is reduced by a factor of
at least .125.

While the use of red-black Gauss-Seidel with V ---1/2 and 1.’2"--1 is an effective
relaxation operator for uniform grids, it presents a problem with nonuniform grids,
because the number of nodes might not grow exponentially with the number of levels.
Suppose that the number of new nodes in each level, nl, grows polynomially, i.e.,
tl! O(1p-l) for some power p >- 1. Then the total number of nodes in each level, NI,
satisfies NI O(lP). The number of operations used for relaxation with vl 1/2 and v2 1
is

L L

Z O(Ip-1) + E O(IP) O(Lp+I) O(NI+I/P)
/=1 /=1

This can be as bad as O(N2), which is unacceptable. To overcome this problem, the
amount of relaxation performed must be restricted so that the number of operations
used for the relaxation on one grid is proportional to the number of red nodes in that
grid, not the total number of nodes. To achieve this, Bank, Dupont, and Yserentant
perform the relaxation only at the red nodes. However, as noted earlier, this restriction
is too strong and destroys the N-independence of the convergence. We propose the
weaker restriction of performing the black phase only at black nodes that are immediate
neighbors of red nodes. We call this local black relaxation. Since each red node has at
most four black neighbors, the number of operations in the relaxation is proportional
to the number of red nodes.

The relaxation operator is easily extended to higher order finite elements with
only one minor change. To be specific, consider the spaces of Co pth degree polynomials
over triangles. The difference for the higher order spaces is that the basis functions of
the same level are not mutually orthogonal, as with the linear basis, so a simple red
phase of red-black Gauss-Seidel does not solve the subsystem exactly. However, for
the spaces considered, the submatrix is block diagonal with blocks of size p2, so the
subsystem can still be solved exactly by solving many small systems. For high order
finite elements the bisection of a pair of triangles adds one new vertex, p2 new nodes
and p2 new basis functions. These new nodes are the red nodes in the relaxation. Note
that there are (p+ 1)2 black nodes associated with each group of p2 red nodes as
illustrated in Fig. 3.1. The p2 basis functions associated with the new vertex are not
orthogonal to each other, but are orthogonal to all other basis functions of the same
level, hence the block diagonal structure ofthe submatrix. Since the size ofthe symmetric
positive definite diagonal blocks depends only on p, these small subsystems can be
solved using Cholesky decomposition in a constant (with respect to N) number of
operations and the O(N) operation count for relaxation is maintained. Algorithms 3.4
and 3.5 give the red and black relaxation algorithms, respectively.

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 155

FIG. 3.1. Red nodes ((C)) and black nodes (0) associated with a new vertex (cubic elements).

ALGORITHM 3.4. Red relaxation
black list - empty
for each vertex of level

set up and solve system for p2 associated red nodes
if black relaxation will follow then

for each associated black node
if black node is not on the black list then
add to black list

endif
next black node

endif
next vertex

ALGORITHM 3.5. Black relaxation
for each black node on the black list of Algorithm 3.4

point Gauss-Seidel relaxation at this node
next node

Transfer operators. The other main parts of a multigrid algorithm are the two
transfer operators, which are used to move between fine grids and coarse grids. The
restriction operator I transfers the problem from the fine grid to the coarse grid and
the prolongation operator Ifc transfers the problem from the coarse grid to the fine
grid. The transfer operators proposed turn out to be those of the Galerkin approach
[29]. In this approach the restriction and prolongation operators are adjoint and the
coarse grid operator, Ac, is related to the fine grid operator, Af, by Ac IAflfc. In
this presentation the change between the nodal and 2-level hierarchical bases is used
to describe the transfer processes. Since the definition of the transfers depends only
upon the basis change, this method applies to any finite element space with a hierar-
chical basis. The resulting operators are very natural and ofthe correct order of accuracy
for the approximation space being used.

Let the nodal matrix for the linear system be

[All Air27A=
[A12 A22j

and the nodal solution vector and right side be x [Xl x2]v and b [bl b2]v, where
the partition is such that the second part contains values corresponding to basis
functions of the highest level. Let ,, etc., be the corresponding entities using the 2-level

156 WILLIAM F. MITCHELL

basis, S be the matrix that converts from the 2-level basis to the nodal basis, and s be
the lower left submatrix of S. From / STAS and the equivalence of Ax b and
STASS-lx STb, it follows that = S-ix and /= STb. Since the lower level of the
2-level basis is the nodal basis of the coarse grid, All is the nodal matrix for the coarse
grid. To obtain the coarse grid problem, use the lower level part of the 2-level basis
fine grid problem, i.e., extract the equations corresponding to the coarse grid nodes.
This is

[,, .] =[b,].

So the problem to be solved on the coarse grid is

This process is summarized in Algorithm 3.6. Recall that the algorithms for the basis
changes were given earlier.

ALGORITHM 3.6. Restriction

A - STAS
X <-- S-1X
b STb
bl,_.b T--A12x2

coarse grid problem is AlX b

From this derivation, it is not clear that this coarse grid problem is equivalent to
the standard multigrid coarse grid problem, nor is it clear what the transfer operators
are. In [19], an alternate derivation of this method is provided by using the Galerkin
approach

(IAfIfc)(x, 3ld) I(b AfxTM)

with the transfer operators

I=[I sT] and Ire
s

The prolongation process is simply to restore the part of the solution due to the
high level basis functions and return the system back to the nodal basis. The changes
made in x by solving the coarse grid problem are carried into x as corrections during
the basis change x S). The prolongation process is given in Algorithm 3.7.

ALGORITHM 3.7. Prolongation

bl (’-- bl + Aq2x2
b S-Tb
x-Sx
A -- s-TAs-1

This provides all the necessary components for a multigrid iteration. Algorithm
3.8 performs one V-cycle using v---1/2 and v2- 1. L is the number of levels in the grid.
The exact solve on level 1 can be performed by Cholesky decomposition or a sufficient
number of Gauss-Seidel iterations.

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 157

ALGORITHM 3.8. V-cycle
for level L downto 2

red relaxation
restriction

next level
exact solve on level 1
for level- 2 to L

prolongation
red relaxation
black relaxation

next level

It is not sufficient to just know that a method requires only O(N) operations; if
the constant of proportionality is extremely large, the method is useless. Table 3.1
contains the asymptotic constants of proportionality for one multigrid iteration. It
contains the constants for each part of the method, and for the complete V-cycle. In
addition to the counts of the number of multiplications (equal to the number of
additions) for each of linear, quadratic, and cubic elements, the count of the number
of multiplications and additions for a specialized implementation of linear elements
for Poisson’s equation are provided, where one can take advantage of properties of
the discrete operator.

Convergence of the multigrid iteration. In order to determine how many V-cycles
are required to keep the solution error (the difference between the current solution
vector and the exact solution of the discrete problem) of the same order as the
discretization error (the difference between the exact solution of the discrete problem
and the true solution of the continuous problem), it is necessary to know the factor
by which one iteration reduces the error. In particular, the worst case reduction of the
error in the energy norm is ofinterest, because the energy norm relates the error-reducing
power of the multigrid iteration to the convergence of the discretization error through
the orthogonality of the discretization error to the approximation space. This will be
used in 4.

Let V be the iteration operator for an/-level V-cycle, i.e., erie Veold, where eola
and ene are the solution errors before and after the V-cycle, respectively. Let I]" be
the energy norm defined by [Ix[]= xVAx, where A is the stiffness matrix. Also let [[.
denote the subordinate matrix norm. Define cr to be VII, and r, the rate ofconvergence
of the multigrid iteration, to be cr- sup_> r. cr is a bound on the amount by which
the energy norm of the error will be reduced by one V-cycle. The following proposition
is proven in 19].

TABLE 3.1
Number of multiplications per node for the multigrid iteration.

Poisson Linear Quadratic Cubic
mults adds elements elements elements

red relaxation 4 5 18 37 5/9
local black relaxation 1-4 4-16 9-36 14-37 1/4 19 2/3-43 1/9
right side basis change 2 2 4 6 2/9
solution basis change 2 2 4 6 2/9
matrix basis change 0 0 12 56 167 5/9

V-cycle total 6-9 18-30 49-76 174-197 1/4 448 5/9-472

158 WILLIAM F. MITCHELL

PROPOSITION 3.1. Let Xo not be orthogonal to the dominant eigenspace ofVTAVA-1,
and Xi+l VTAVA-lxi for >= O. Then

lim "T+IXi

As a consequence, trl can be computed numerically using the power method. The
matrix V in Proposition 3.1 can be any linear operator, so this procedure can be used
to compute the rate of convergence of both the V-cycle and the 2-grid iteration, which
can be compared to the known theoretical 2-grid error reduction. Table 3.2 presents
the theoretical and computed 2-grid iteration error reductions and the computed V-cycle
error reduction. The computed 2-grid values agree with the theoretical values, and the
V-cycle also appears to be bounded by 1/2. Table 3.3 shows the reduction of the energy
norm of the error by one V-cycle for linear, quadratic, and cubic elements. The rate
of convergence slows as the order of the elements is increased, and o- is approximately
.31 for quadratics and .38 for cubics.

4. Full multigrid with adaptive refinement. The multigrid iteration provides a
method for reducing the error between the approximate solution and the exact solution
of the discrete problem by a factor which is bounded away from 1 independent of N
using O(N) operations. From an arbitrary initial guess, however, it would take

TABLE 3.2
Reduction ofenergy norm oferror by one cyclefor the model problem using

linear elements.

Level 2-grid 2-grid
of grid theoretical computed V-cycle

2 .12500 .12500 .12500
3 .04419 .04419 .07329
4 .12500 .12500 .12500
5 .09857 .09857 .10297
6 .12500 .12500 .12500
7 .11793 .11793 .11823
8 .12500 .12500 .12500
9 .12320 .12320 .12330
10 .12500 .12500 .12500
11 .12455 .12455 .12463

TABLE 3.3
Reduction of energy norm of error by one V-cycle for the model problem

using higher order elements.

Level Linear Quadratic Cubic
of grid elements elements elements

2 .125 .289 .333
3 .073 .291 .349
4 .125 .297 .363
5 .103 .301 .371
6 .125 .302 .375
7 .118 .303 .377

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 159

O(log N) iterations to reduce this error to the order of the discretization error. The

full multigrid method provides a means to keep the solution error on the same order
as the discretization error with O(N) total operations. The basic idea of the full
multigrid method [29] is to begin with a very coarse grid and alternately perform
refinement and solution phases. At the end of each solution phase the solution error
should be less than the discretization error.

For uniform grids, full multigrid is now a well-established method. The refinement
phase consists of one uniform refinement of the grid (divide each triangle once) to
obtain a grid of one level higher. This reduces the grid spacing h by a factor of x/ or
2, depending on the type of refinement used, and increases the number of nodes by
about a factor of 2 or 4, respectively. Using linear elements and a refinement that cuts
h in half as an example, the discretization error is cut in half. The solution phase must
then perform enough cycles to cut the solution error at least in half, which can be
done by a fixed number of cycles of the multigrid iterations. Since the number of nodes
grows like 4 where is the number of levels, the total amount of work for this is about
the amount of work done on the final grid, which is O(N).

For adaptive grids, the number of nodes need not grow geometrically with the
number of levels. If one used the full multigrid method the way it is used for uniform
grids, the number of operations can be larger than O(N). In the worst case where the
number of nodes is proportional to the number of levels, the operation count is O(N2).
In the usual approach used to overcome this [4], [26], the grid is refined to get one
level higher, but if the number of nodes has not been increased by a factor of 2 or 4
(depending on the type of refinement used) the refinement is repeated rather than
moving on to the solution phase. While this approach does result in an O(N) algorithm,
it does not flow smoothly, has unnecessary overhead in starting and ending refinements,
and may overshoot the target increase factor of 2 or 4.

Since the basic step of the refinement of 2 is the division of one pair of triangles
and compatibility is always present, a more elegant approach to the full multigrid
method can be taken. The refinement phase proceeds until the number of nodes has
been increased by exactly some given factor f Moreover, there is no reason for f to
be the factor 2 or 4 from uniform refinement, so f can be any real number larger than
1. The solution phase consists of performing v V-cycles (multigrid iterations) where v
is large enough to keep the solution error smaller than the discretization error.

The crucial missing element of the algorithm is a method for determining when
to switch from one phase to the other, i.e., a way of determining reasonable values for
f and v. The most efficient values off and v in terms of a, the rate of convergence of
the discretization error, and or, the rate of convergence of the multigrid iteration, are
determined in this section.

For uniform grids, the rate of convergence of the discretization error is usually
given in terms of h, a measure of the size of the triangles. A method is said to have
order 2a if the energy norm of the error decreases like O(h) as h gets small. For
adaptively refined grids, h is not such a meaningful entity, but N can be used to
measure the rate of convergence of the discretization error. For a uniform grid,
N O(h-) so the error decreases like O(N-) as N gets large. Thus, a is said to be
the rate of convergence of the discretization error if a is the largest value such that the
discretization error is O(N-), i.e., u- II- cN for some constant c, where u is
the true solution of the differential equation, un is the exact solution of the discrete
problem with N nodes, and 1[. is the energy norm. Normally, a =1/2, 1, and for
linear, quadratic, and cubic elements, respectively. Recall that r is the rate of conver-
gence of the multigrid iteration defined to be a bound on the factor by which the

160 WILLIAM F. MITCHELL

energy norm of the solution error is reduced in one V-cycle of the multigrid iteration,
where the solution error is N- uN and fin is the approximate solution.

THEOREM 4.1. Let a be the rate of convergence of the discretization error andf be
the factor by which the refinement phase increases the number of nodes. Then, asymptoti-
cally, the solution error will remain less than the discretization error if the solution phase
reduces the solution error by a factor of at least (2f2- 1)-1/2.

Proof The true solution of the partial differential equation, u, lies in a Hilbert
space H endowed with the energy inner product (.,.) and the subordinate energy
norm [l" I]. Let SN c__ H be the space of Co piecewise pth degree polynomials over the
triangulation with N nodes, and SN be the space associated with the refined triangula-
tion with fN nodes. SN S since the triangulation with fN nodes is a refinement
of the triangulation with N nodes. Let uN be the exact solution of the discrete problem
in Su, i.e., uN is the unique function in SN such that (u- UN, W)--0W SN, and let
uyu be the exact solution of the discrete problem in Sf. Let tN be the approximate
solution in SN. We assume that ,, u =< u u II. We then wish to find a tTf Syu
such that ty uy <- u uy so that the solution phase will keep the solution error
smaller than the discretization error.

From the definition of a, we obtain

u-u c(fN)
I1-,11 N

Thus u u f u u [I.
Since ff s and ff S, we have the Pythagorean identities

and
Ila u I1=+ tin- ull=-- 117- nil =

and thus, using

a, u 2 a, u 2/ u u, 2 -II u u 2

--< 211u u

(2f= a)llu u,ll2.
Therefore, to insure that 7 u, --< u u, we must reduce the error 7, -um
by a factor of (2f-- 1)

COROLLARY. For given a, tr and number of V-cycles v, f must be bounded by

Let Nr clf be the number of nodes in the triangulation after r refinement phases,
c2N be the (asymptotic) number of operations used by one V-cycle on a triangulation
with N nodes and the final triangulation be the result of R refinement phases. Then,
the number of operations used by the full multigrid solution is

R R fR 1 f
C2clfR Vf

fZ VC21fr VC2Clfr’- VC2Cl f__ 1 V"f 1 ’’i c2NR.
r=l r=l

For given v, the operation count is minimized by using the largest possible f Thus
one should choose f= ((cr-2V + 1)/2)1/2% The most efficient choice of v is then given

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 161

by the v that minimizes v(f/(f- 1)) with this choice off. Clearly, this is an increasing
function of v when v is sufficiently large. Thus, for given a and o-, one can compute
v(f/(f- 1)) for a few small positive integer values of v to determine the most efficient
choice for f and v. Usually, v 1 is best. Table 4.1 gives these values for linear,
quadratic, and cubic elements. The last column contains the value of v(f/(f-1)).
This represents the amount of work required with respect to one V-cycle on the finest
grid, e.g., with quadratic elements the full multigrid is slightly faster than two V-cycles.

5. Numerical results. The method described in this paper has been implemented
in a FORTRAN program to solve (1.1). Computations were performed on a Pyramid
90x with a floating point accelerator operating under the Pyramid Technology OSx
3.1 Operating System, which is a dual port of AT&T Bell Laboratories’ System V
Release 2.0 and the University of California, Berkeley’s 4.2BSD. The Pyramid Tech-
nology Optimizing FORTRAN 77 compiler was used with single precision, which has
about seven decimal digits.

Three sample problems were solved to demonstrate the method. The first two
problems contain a singularity in the solution; the third problem illustrates a compli-
cated differential operator.

Problem 1. Laplace’s equation on the L-shaped domain of Figure 5.1(a) with the
Dirichlet boundary conditions chosen so that the true solution is r2/3 sin (20/3). Both
x and y range from -1 to 1 and the reentrant corner is located at the origin. Figure
5.1(a) shows a sample adaptively refined grid with the initial six triangles in bold. The
solution exhibits the leading term of the singularity due to the 270 reentrant corner.

Problem 2. Laplace’s equation on the hexagonal domain of Fig. 5.1(b). The domain
has a slit along the positive x axis. x ranges from -1 to 1 and y from -,//2 to ,f/2.
The Dirichlet boundary conditions are chosen so that the true solution is r1/2 sin (0/2).
The reentrant corner is located at the origin. Figure 5.1(b) shows a sample adaptively
refined grid with the initial six triangles in bold. The solution exhibits the leading term
of the singularity due to the 360 reentrant corner.

Problem 3. This is Problem 54 in the elliptic PDE population of Rice et al. [21],
[22]. The differential equation is

((1 + x2)u,), + ((1 + a2)Uy)y (1 + (8y X 4)2)u =f
on the unit square, where A =4y2+.9. The right-hand side and Dirichlet boundary
conditions are chosen so that the exact solution is

2.25x(x-A)2(1-D)/A3+ 1/(l+(8y-x-4))
where

B=max{O,(3-x/A)3}
C max {0, x A}

{0e if C<.02
D= -B/c if C->_.02.

TABLE 4.1
Optimal choices for v andffor the model problem.

Type of elements o- v f vf/(f-1)

linear .5 .125 32.5 1.03
quadratic 1.0 .31 2.39 1.72
cubic 1.5 .38 1.58 2.72

162 WILLIAM F. MITCHELL

(a)

(c)

FIG. 5.1. Domains and sample grids for (a) Problem 1, (b) Problem 2, (c) Problem 3.

Figure 5.1(c) shows a sample adaptively refined grid with the initial eight triangles in
bold. A contour plot of the solution can be found in [21] or [22]. The solution has a
ridge in the vicinity of y .6-.7.

Convergence of the discretization error. With uniform refinement, the rate of
convergence of the discretization error depends on the smoothness of the solution.
For Problems 1 and 2, the best one can hope for is a 1/2 and -14, respectively, no matter
what degree polynomials are used. It is possible for adaptive refinement to recover
the optimal rate of convergence. Problems 1 and 2 were solved using linear, quadratic,
and cubic elements with both uniform and adaptively refined grids. For these solutions,
one V-cycle was used for the solution phase, and the number of vertices was increased
by the factorf 4, 2.39, and 1.58 for linear, quadratic, and cubic elements, respectively,
except for Problem 2, where f 2 was used for quadratics, f 4 was used instead of
32.5 for linear elements to give a sufficient number of data points for the graphs. The
results are presented in Figs. 5.2, 5.3, and 5.4 for Problems 1, 2, and 3, respectively.

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 163

The data points on the graphs are labeled with A, B, and C for linear, quadratic, and
cubic elements, respectively, for the uniform grids, and 1, 2, and 3 for linear, quadratic,
and cubic elements, respectively, for the adaptive grids. The observed rate of conver-
gence is given by the slope of a linear least squares fit of the data. When appropriate,
some of the first data points were discarded in determining the slope. These slopes
are given in Tables 5.1 and 5.2.

For uniform grids, the rate of convergence is about 1/2 and for Problems 1 and 2,
respectively, for all three polynomial degrees. For adaptive grids, the rate of conver-
gence is about 1/2, 1, and for linear, quadratic, and cubic elements, respectively, for
both problems. For Problem 3 the rate of convergence is slightly larger than 1/2, 1, and
for linear, quadratic, and cubic elements, respectively, for both uniform and adaptive

grids. Although the uniform grids achieve the optimal order of convergence for Problem
3, the adaptive grids have a smaller constant of proportionality. The convergence of

i0

i0
-I_

g
Y

10-2-

-3-

E

i0

10
-1_

g
Y

10-2_

10.3-

i0 i0 i0 i0 i0 i0

Number of nodes CPU Time

FIG. 5.2. Results for Problem 1.

i0

I0

g
Y i0

-I_

i0

E

g
Y 10

-1_

-2
I0

II
I0 I0 i0 i0
Number of nodes

-2
I0

i0 i0
CPU Time

FIG. 5.3. Results for Problem 2.

i0

164 WILLIAM F. MITCHELL

I0

E

i0
0_

g
Y

1_10-

--I?

I0

E

i0
u_

g
Y

mr 10-l-

I0-2--

I0 I0 i0

Number of nodes
i0 10 I0 I0

CPU Time

FIG. 5.4. Results for Problem 3.

TABLE 5.1
Observed order of convergence with uniform grids.

Linear Quadratic Cubic
Problem elements elements elements

.355 .355 .349
2 .284 .273 .264
3 .697 1.131 1.555

TABLE 5.2
Observed order of convergence with adaptive grids.

Linear Quadratic Cubic
Problem elements elements elements

.540 1.011 1.633
2 .542 .967 1.496
3 .616 1.159 1.680

the error with CPU time is also of optimal order for the adaptive grids, illustrating
the optimality of the full multigrid method.

In numerical experiments that compare low and high order methods with uniform
grids for problems with well-behaved solutions (e.g., [22]) it is usually observed that
for very low accuracy it is more efficient to use linear elements, but for moderate and
high accuracy the high order elements are more efficient. The same result is observed
when using adaptively refined grids for Problems 1 and 2.

Convergence of the multigrid iteration. The effect of several factors on the rate of
convergence of the multigrid iteration was also considered. Proposition 3.1 was used
to determine the rate of convergence for the L-shaped domain of Problem 1 with linear
elements. This was computed using both a uniform grid and an adaptively refined grid.
For the adaptive grid three forms of relaxation are compared:

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 165

(i) full black, in which relaxtion is at all the black nodes after solving the coarse
grid problem (vl 1/2, v2 1);

(ii) local black, in which relaxation is at the black nodes that are neighbors of
red nodes as discussed in 3;

(iii) no black relaxation (Vl 1/2, v2 1/2).
The results of these computations are presented in Table 5.3.

Note first that the reentrant corner has a pronounced effect on the rate of
convergence. The only difference between the uniform grid here and the V-cycle in
Table 3.2 is the shape of the domain, yet the rate of convergence has slowed from
0.125 to about 0.2. The use of a nonuniform grid has almost no effect on the asymptotic
rate of convergence. Using local black relaxation slows the rate of convergence very
slightly. The difference is small enough to ignore, especially when one considers that
the full black relaxation requires more than O(N) operations for a highly nonuniform
grid. When no black relaxation is performed, the rate of convergence deteriorates
rapidly. The experiments show that the rate of convergence behaves like 1-
O(1/log N), so it is not bounded away from 1, and, in fact, O(log N) iterations are
required to reduce the error by a given constant.

6. Conclusion. In this paper, we presented a unified multilevel adaptive refinement
method for elliptic PDEs. The adaptive refinement is done by bisecting pairs oftriangles,
corresponding to the addition of a hierarchical basis function. An estimate of the
coefficient of the new basis function is used as an error indicator to select triangle
pairs for division. The multigrid iteration uses the change between the nodal basis and
2-level hierarchical basis for the grid transfers. Red-black Gauss-Seidel relaxations
are used, with local black relaxations performed only at black nodes that neighbor red
nodes, to keep the operation count at O(N). The full multigrid alternately performs
refinement and multigrid iterations, with the amount of refinement and number of
iterations determined to be optimal while keeping the solution error smaller than the

TABLE 5.3
Rate of convergence of the multigrid iteration with the L-shaped domain and linear elements.

Uniform grid Adaptive grid

Levels Nodes tr Nodes Full black Local black No black

3 21 .081 13 .081 .081 .188
4 33 .127 18 .070 .075 .217
5 65 .137 20 .081 .093 .256
6 113 .154 25 .084 .097 .273
7 225 .165 27 .090 .103 .289
8 417 .177 40 .086 .109 .347
9 833 .187 53 .105 .129 .419
10 1601 .196 78 .118 .143 .498
11 3201 .205 82 .120 .146 .498
12 114 .141 .162 .544
13 116 .135 .163 .544
14 155 .139 .168 .580
15 159 .136 .169 .580
16 312 .178 .200 .645
17 316 .173 .201 .645
18 443 .192 .212 .679
19 459 .186 .212 .679
20 606 .194 .217 .705

166 WILLIAM F. MITCHELL

discretization error. The method was developed for the high order finite element spaces
of Cpth degree piecewise polynomials. Numerical computations were performed with
linear, quadratic, and cubic elements to demonstrate the optimality of the adaptive
grids in the presence of singularities, and the optimality of the full multigrid solution
method.

REFERENCES

[1] I. BABUgKA AND A. K. AzIz, On the angle condition in the finite element method, SIAM J. Numer.
Anal., 13 (1976), pp. 214-226.

[2] I. BABUKA AND W. RHEINBOLDT, Error estimates for adaptive finite element computations, SIAM J.
Numer. Anal., 15 (1978), pp. 736-754.

[3] R. E. BANK AND A. n. SHERMAN, The use ofadaptive grid refinementfor badly behaved elliptic partial
differential equations, in Advances in Computer Methods for Partial Differential Equations III, R.
Vichnevetsky and R. S. Stepleman, eds., IMACS, 1979, pp. 33-39.

[4] An adaptive multilevel method for elliptic boundary value problems, Computing, 26 (1981),
pp. 91-105.

[5] R. E. BANK AND A. WEISER, Some a posteriori error estimators for elliptic partial differential equations,
Math. Comp., 44 (1985), pp. 283-301.

[6] R. E. BANK, T. F. DUPONT, AND H. YSERENTANT, The hierarchical basis multigrid method, Preprint
SC-87-1, Konrad-Zuse-Zentrum fiir Informationstechnik, 1987.

[7] G. BIRKHOFF AND R. E. LYNCH, Numerical Solution of Elliptic Problems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1984.

[8] D. BRAESS, The contraction number of a multigrid method for solving the Poisson equation, Numer.
Math., 37 (1981), pp. 387-404.

[9] D. BRAESS AND W. HACKBUSCH, A new convergence prooffor the multigrid method including the
V-cycle, SIAM J. Numer. Anal., 20 (1983), pp. 967-975.

[10] D. BRAESS, The convergence rate of a multigrid method with Gauss-Seidel relaxation for the Poisson

equation, Math. Comp., 42 (1984), pp. 505-519.
11] A. BRANDT, Multi-level adaptive solutions to boundary-valueproblems, Math. Comp., 31 (1977), pp. 333-

390.
12] Multi-level adaptive techniques (MLAT) for partial differential equations: Ideas and software, in

Mathematical Software III, J. R. Rice, ed., Academic Press, New York, 1977, pp. 277-318.
[13] A. W. CRAIG AND O. C. ZIENKIEWICZ, A multigrid algorithm using a hierarchical finite element basis,

in Multigrid Methods for Integral and Differential Equations, D. J. Paddon and H. Holstein, eds.,
Clarendon Press, Oxford, 1985, pp. 301-312.

[14] J. P. De, S. R. GAGO, D. W. KELLY, O. C. ZIENKIEWICZ, AND I. BABU;KA, A posteriori error analysis
and adaptive processes in the finite element method: Part IImAdaptive mesh refinement, Internat. J.
Numer. Methods Engrg., 19 (1983), pp. 1621-1656.

[15] I. FRIED, Condition offinite element matrices generated from nonuniform meshes, AIAA J., 10 (1972),
pp. 219-221.

[16] D. KAMOWITZ AND S. PARTER, On MGR[v] multigrid methods, SIAM J. Numer. Anal., 24(1987),
pp. 366-381.

17] D.W. KELLY, J. P. DE, S. R. GAGO, O. C. ZIENKIEWICZ, AND I. BABUgKA, A posteriori error analysis
and adaptive processes in the finite element method: Part ImError analysis, Internat. J. Numer.
Methods Engrg., 19 (1983), pp. 1593-1619.

[18] W. F. MITCHELL, A comparison of adaptive refinement techniques for elliptic problems, ACM Trans.
Math. Software, 15 (1989), pp. 326-347.

19] Unified multilevel adaptive finite element methods for elliptic problems, Ph.D. thesis, Report No.
UIUCDCS-R-88-1436, Department of Computer Science, University of Illinois, Urbana, IL, 1988.

[20] W. C. RHEINBOLDT, On a theory of mesh-refinement processes, SIAM J. Numer. Anal., 17 (1980),
pp. 766-778.

[21] J. R. RICE, E. N. HOUSTIS, AND W. R. DYKSEN, A population of linear, second order elliptic partial
differential equations on rectangular domains, Math. Comp., 36 (1981), pp. 475-484.

[22] J. R. RICE AND R. F. BOISVERT, Solving Elliptic Problems Using ELLPACK, Springer-Verlag, New
York, 1985.

[23] M. RIES, U. TROTTENBERG, AND G. WINTER, A note on MGR methods, Linear Algebra Appl., 49
(1983), pp. 1-26.

MULTILEVEL METHODS FOR ADAPTIVE GRIDS 167

[24] M.C. RIVARA, Mesh refinement processes based on the generalized bisection ofsimplices, SIAM J. Numer.
Anal., 21 (1984), pp. 604-613.

[25] Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, Internat.
J. Numer. Methods Engrg., 20 (1984), pp. 745-756.

[26] Design and data structure offully adaptive, multigrid, finite-element software, ACM Trans. Math.
Software, 10 (1984), pp. 242-264.

[27] E. G. SEWELL, Automatic generation of triangulations for piecewise polynomial approximation, Ph.D.
thesis, Purdue University, West Lafayette, IN, 1972.

[28] A finite element program with automatic user-controlled mesh grading, in Advances in Computer
Methods for Partial Differential Equations III, R. Vichnevetsky and R. S. Stepleman, eds., IMACS,
1979, pp. 8-10.

[29] K. STBEN AND U. TROTTENBERG, JMultigrid methods: Fundamental algorithms modelproblem analysis
and applications, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds., Springer-Verlag,
Berlin, 1982, pp. 1-176.

[30] H. YSERENTANT, Hierarchical bases give conjugate gradient type methods a multigrid speed of conver-
gence, Appl. Math. and Comput., 19 (1986), pp. 347-358.

[31] On the multi-level splitting offinite element spaces, Numer. Math., 49 (1986), pp. 379-412.
[32] O. C. ZIENKIEWICZ, D. W. KELLY, J. GAGO, AND I. BABUKA, Hierarchicalfinite element approaches,

error estimates and adaptive refinement, in The Mathematics of Finite Elements and Applications
IV, J. R. Whiteman, ed., Academic Press, New York, 1982, pp. 313-346.

SlAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 168-193, January 1992

1992 Society for Industrial and Applied Mathematics
010

ROW PROJECTION METHODS FOR LARGE NONSYMMETRIC
LINEAR SYSTEMS*

R. BRAMLEY AND A. SAMEH?

Abstract. Three conjugate gradient accelerated row projection (RP) methods for nonsymmetric
linear systems are presented and their properties described. One method is based on Kaczmarz’s
method and has an iteration matrix that is the product of orthogonal projectors; another is based on
Cimmino’s method and has an iteration matrix that is the sum of orthogonal projectors. A new RP
method, which requires fewer matrix-vector operations, explicitly reduces the problem size, is error
reducing in the two-norm, and consistently produces better solutions than other RP algorithms, is
also introduced. Using comparisons with the method of conjugate gradient applied to the normal
equations, the properties of RP methods are explained.

A row partitioning approach is described that yields parallel implementations suitable for a wide
range of computer architectures, requires only a few vectors of extra storage, and allows computing
the necessary projections with small errors. Numerical testing verifies the robustness of this approach
and shows that the resulting algorithms are competitive with other nonsymmetric solvers in speed
and efficiency.

Key words, iterative methods, nonsymmetric linear systems, Kaczmarz, Cimmino

AMS(MOS) subject classifications. 65, 15

1. Introduction. Over the last few years much research effort has been invested
in developing iterative solvers for nonsymmetric linear systems Ax b, where A
is large, sparse, and nonsingular. These solvers can be grouped roughly into the
four categories of matrix splitting, CG-like, residual polynomial, and symmetrization
methods.

Matrix splitting methods and their acceleration via CG include the earliest iter-
ative techniques for solving linear systems, and are based on splitting the coefficient
matrix as A M-N. This category includes the Jacobi, Gauss-Seidel, and successive
overrelaxation methods, and convergence is assured if the spectral radius p(M-1N)
is less than 1. This condition can often be shown to hold if, e.g., A is irreducible
and diagonally dominant. Hageman and Young [18] describe many of these splitting
techniques and provide other conditions on A that imply convergence.

The second category, CG-like methods, was motivated by the success of the con-
jugate gradient (CG) method for symmetric positive definite systems. Generalized
conjugate residuals (GCR), Orthomin, generalized minimum residual (GMRES), Ax-
elsson’s method, and Orthodir are included in this category (see Saad and Schultz [31]
for a summary of these methods). Like CG, these solvers generate a Krylov subspace
K using only matrix-vector products with A and then enforce some minimization or
orthogonality property on K; they differ primarily in how the basis of K is formed
and which inner product is used to define orthogonality or minimality. Since com-
putation and storage grow with the iteration number for these methods, they ’are

most often used in a truncated or restarted form. In 1982, Elman [14] proved that
restarted versions of many of these methods converge provided that the symmetric
part (A + AT)/2 of A is positive definite. In spite of this restriction, the restarted

Received by the editors October 2, 1989; accepted for publication (in revised form) October
24, 1990. This work was supported by Department of Energy grant DE-FG02-85ER25001; AT&T
grant AFFL-67-SAMEH; Air Force Office of Scientific Research grant AFOSR-85-0211; National
Science Foundation grants NSF-MIP-8410110, NSF-CCR-8717942, and CCR-900000N(NCSA); and
the Digital Equipment Corporation.

Center for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801.

168

ROW PROJECTION METHOD 169

GMRES(k) algorithm in particular is currently one of the more popular nonsymmetric
solvers.

The second category generates residuals rk b- Axk that satisfy

(1) rk =pk(A)ro,

where r0 is the initial (restarted) residual and Pk(A) is a residual polynomial, i.e.,
pk(0) 1. A third category, residual polynomial methods, directly uses this idea
by finding a convex region in the complex plane containing the eigenvalues of A.
Iterates are then formed that satisfy (1) for some class of polynomials. Chebyshev
polynomials [3], [27], [28] use ellipses for the convex region and Chebyshev polynomials
to define Pk(). Least squares polynomial methods [32] use an approximation of the
convex hull cvx (a(A)) of the extremal eigenvalues of A for the enclosing region and
polynomials Pk() that minimize a weighted sum of squares on the boundary of cvx

(a(A)) Because of the restriction pk(0) 1, residual polynomial methods fail when
the origin is in cvx (a(A)).

All three categories above are thus restricted in applicability, requiring, e.g., A +
AT to be positive definite or the spectrum of A to lie on one side of the imaginary
axis. Symmetrization methods, the fourth category, implicitly or explicitly create a
related symmetric positive definite system and then use one of the powerful iterative
methods applicable to such systems. The most popular such approach is to use CG
on the normal equations ATAx ATb. Actually forming ATA can cause a loss of
information and entail a large preprocessing cost as well as increased storage. Even if
this is not done, a more serious problem is that the condition number a(ATA) is the
square of a(A). This can lead to outright failure of the solver.

In general, most nonsymmetric solvers either require storage and computation
that grow excessively with the iteration number, special spectral properties of A to
assure convergence, or a symmetrization process with potentially disastrous effects on
the coefficient matrix. One group of methods that avoids these difficulties is that of
accelerated row projection (RP) algorithms. Partition A E NN into m block rows:

(2) AT [A1, A2,’", A,],

and partition the vector b conformally. A row projection (RP) method is any algorithm
that requires the computation of the orthogonal projections Pix Ai(ATAi)-IATx
of a vector x onto range(Ai), i 1, 2,..., m. Note that the nonsingularity of A implies
that Ai has full rank and so (ATAi)- exists.

This paper presents three such methods and describes their properties. The first
(KACZ) has an iteration matrix formed from the product of orthogonal projectors.
A new method (V-RP) is derived from KACZ to reduce the number of matrix-vector
operations needed and to reduce the problem size explicitly. The third RP method
(CIMM) uses the sum of orthogonal projectors. Conjugate gradient (CG) acceleration
is used on all three, and for KACZ this is shown to allow a reduction in the amount
of work needed per iteration, while for V-RP an error-reducing algorithm results.
Most importantly, the underlying relationship between RP methods and CG applied
to the normal equations is shown. This provides an explanation for the behavior of
RP methods, a basis for comparing them, and a guide for their effective use.

Possibly the most important implementation issue for RP methods is that of
choosing the row partitioning that defines the projectors. An approach is shown for
three-dimensional elliptic partial differential equations that yields algorithms with
large scale parallelism, requires only a few extra vectors of storage, and allows the

170 R. BRAMLEY AND A. SAMEH

computation of the necessary projections with small errors. Numerical testing shows
that the algorithms have superior robustness and can be competitive with other non-
symmetric solvers in speed and efficiency.

2. Three row projection methods.

2.1. Row projection method KACZ. The simplest RP method can be de-
rived geometrically. Let H (x" ATx b} be the affine set of solutions to the ith
block row of equations. The solution x* to Ax b is the unique intersection point of
those affine sets, and the method of successive projections gives the iteration

(3) xk+l Q,xk + bu (I P,)(I Pm-1)’’" (I P)xk + bu,

where

bu Dm + (I- Pm)Dm- + (I- Pm)(I- Pm-)Dm-2 +...
+(- p)... (- p)/,,

and A(ATA)-b.
In 1939 Kaczmarz [20] proposed iteration (3) and proved convergence for the

m N case where each block row AT consists of a single row of A. Since then
many authors [10], [11], [19], [29], [30], [37] have examined the convergence of related
iterative methods. The theoretical robustness of (3) is remarkable and the iteration
converges even when A is singular or rectangular. However, as with any linear sta-
tionary process, the rate of convergence is determined by the spectral radius of
and can be arbitrarily slow. For this reason Elfving [12] and Bjhrck and Elfving [4]
proposed symmetrizing Q by following a forward sweep through the rows with a
backward sweep, and introduced an iteration parameter to get

(4) xk+ Q(w)x + T(w)b,

() Q() (z P)(P)... (P)... (P)(P1),

with T(w) defined by (8). When A is nonsingular and 0 < w < 2, the spectrum
a(I- Q(w)) lies in the interval (0, 1] and so the CG method can be applied to solve

(6) (I Q(w))x T(w)b.

Also, (4) is equivalent to applying block SSOR to

(7) { AATy b
x ATy

where the blocking is that induced by the row partitioning of A [12]. This gives a
simple expression for T(w)"

(8) T(w) AT(D + wL)-TD(D + wL)-,
where AAT L + D + LT is the usual splitting into block lower triangular, diagonal,
and upper triangular parts. This also shows that solving (6) using the CG algorithm
can be placed in the category of symmetrization methods.

Although BjSrck and Elfving tested an accelerated RP algorithm, their work con-
centrated on the single row (m N) case applied to weighted least squares problems.

ROW PROJECTION METHOD 171

Previous work dealing with the use of block forms is given by Kamath and Sameh
[21], [22]. Using sample problems drawn from two-dimensionM nonselfadjoint ellip-
tic partial differential equations, they numerically examined the issues of suitable
row partitionings and methods for the numerical solution of the induced projections,
primarily for the m 2 or 3 case. By comparisons with CG-like methods and pre-
conditioned CG applied to the normal equations, they showed that the RP algorithm
solved selected problems for which most of the other methods failed.

The first implementation issue is the choice of w in (6). Normally the "optimal"
w is defined as the dmin that minimizes the spectral radius of Q(w). In [22] 02min 1
is proven for the case where A is partitioned into two block rows, i.e., m 2. This is
no longer true for m > 3, as can be seen by considering

A=110= AT
1 0 1 A3T

For Q(w) defined in (4) it can be proven that

p(Q(1))
p(Q(0.9))

_
(7 + x/)/16 0.69519 + 10-5,
0.68611 :k 10-5 < p(Q(1)),

and so Wmin 1.
Throughout this paper, however, w 1 will be used for three reasons. Because

CG acceleration is to be applied, the entire distribution of the spectrum must be
considered, not simply the spectral radius. When w 1, many of the eigenvalues of
the system matrix in (6) are exactly 1:

F cv 2.1. At rank(A) of of
Proof. (I-P1)x 0 for x E range(P1) range(A). From the definition of Q(w),

null(I P c_ null(Q(1)).
Since CG acceleration requires in exact arithmetic a number of iterations equal

to the number of distinct eigenvalues, this suggests that numerically fewer iterations
are needed as compared to when w : 1. A second reason is that numerical experience
shows p(Q(w)) is not sensitive to changes in w. This matches classical results for
SSOR iterations, which are not as sensitive to w as the corresponding SOR methods.
The small improvement that does result from choosing Wmin is more than offset by
the introduction of extra nonzero eigenvalues. The third reason for using w 1 is
given by Fact 2.2.

FACT 2.2. When w 1 and xo O, AT xk b holds in exact arithmetic on
every iteration of (4).

Proof. Using the definition Pi Ai(ATAi)-IAT, (8) can be expanded to show
that the ith block column of T(1) is given by

(9) (I-Pj) I+II(I-Pj) H (I-Pi) (A/T)
j=l j=i j--m--1

The first product above should be interpreted as I when 1 and the third product
should be interpreted as I when i m- 1 and 0 when i m, so that the first
summand in forming T(1)b is [I + (I- P1)"" (I- P,)... (I- P2)](AT1)bl. Since

AT (I- PI) O, AT x A(AT)b b. The succeeding iterates xk are obtained
by adding elements in range(Q(1)) c_ range(/- P) null(AT) to Xl. D

172 R. BRAMLEY AND A. SAMEH

Later we show that this continues to hold when CG acceleration is used. This
feature means that when w 1 equations deemed more important than the others
can be put into the first block and kept satisfied to machine precision.

The most important reason for choosing w 1 is an a posteriori one; the resulting
algorithm works well. For the remainder of the paper Q Q(1) and T T(1) will
be used. The resulting system,

(10) (I Q)x
(11) Q (I-
(12) Tb,

will be called the KACZ system.

2.2. Row projection method V-RP. A new RP iteration with computational
and theoretical advantages over (11) is now introduced. Let Ai QiUi be the QR
decomposition of Ai for 1,2,...,m. Note that Pi QiQT in this case. Let
AAT L + D + LT be the decomposition of AAT into the strictly lower block
triangular, block diagonal, and strictly upper block triangular parts induced by the
block row partitioning. As shown in [18, p. 31], the block SSOR iteration for AATy b
can be written as

Yk+l [I W(2 w)(D + wL)-TD(D / wL)-IAAT]yt:
/ w(2 w)(D / wL)-TD(D / wL)-lb.

For w 1 this can be viewed as an iteration to solve the system

(13) [(D + L)-TD(D + L)-IAAT]y (D + L)-TD(D + L)-lb.

The KACZ system is obtained by replacing ATy with x and premultiplying by AT,
or equivalently applying a similarity transformation with W AT to the coefficient
matrix in (13) to yield

(14) [AT(D + L)-TD(D + L)-IA]x AT(D + L)-TD(D + L)-lb.

In [4], applying a similarity transformation using W D-1/2(D + L)T was proposed;
when CG acceleration is used this has the desirable property of being an error re-
ducing process in the two-norm, instead of reducing the error in an elliptic norm.
Unfortunately, computing 0-1/2 is only practical in the m N case where each A/T
is a single row of A.

However, the triangular factors Ui can be found in the block case either from an
orthogonal decomposition of Ai or a Cholesky factorization of ATiAi. Let

Z diag(U1, U2,.", Um) e .NxN

and consider applying a similarity transformation using W Z-T(D + L)T to (13).
The resulting system is

(5) Z(D + L)-IAAT(D + L)-TZTz Z(D + L)-lb

with z z-T(D + L)Ty and

(16) x ATy AT(D + wL)-TZTZ.

ROW PROJECTION METHOD 173

The motivation for proposing this new system follows. Suppose for convenience
that each A/T contains the same number N/m of rows of A; in this case the KACZ
system has at least 1/m of its eigenvalues equal to 1. When CG is applied to I- Q,
implicitly a system only (m- 1)/m the size of the original system is being solved.
Can this reduction in problem size be made explicit? Using (15) and some algebraic
manipulation, the coefficient matrix can be written as V SSv, where

(17)
Sv AT(D + L)-TZT

[Q, (I P)Q2,’.’, (I P)... (I Pm-)Qm].

Since Q1 has orthonormal columns, the (1,1) block entry of SSv is QTIQI I, and
the (1,i) block is

,_1)
Since QT (I- P) QT QT QQT O, and SSv is symmetric, the first row and
column are zero except for the (1,1) block entry. For the case m 3, e.g., this implies
that I- V has the form

(18)
I 0
0 Q:T(I P)Q:
o Pi)Q

0]Q2T(I- P)(I- P2)Q3
Q3T(I- P2)(I- P)(I- P2)Q3

Clearly, the first block of unknowns requires no iterations to find, and so the CG
algorithm only need be applied to a reduced system. An important point is that this
reduction has no detrimental effect on the spectrum of the iteration matrix. This is
because (11) and (15) have matrices with identical eigenvalues since they are similar
to the system matrix in (13). The resulting system,

(19)

(20)

(I V)z bv,
Y I- Z(D + L)-AAT(D + L)-TzT,
x AT(D 4- L)-TZTz,

by Z(D + L)-lb,

will be called the the V-RP system.
Similar to KACZ, V-RP keeps the first block of equations exactly satisfied when

used as a linear stationary iteration, but without requiring x0 0.
THEOREM 2.1. For any starting vector zo, the iteration zk+ Vzk+Z(D+L)-b

yields iterates xk that satisfy ATl Xk 51, where xk satisfies (16).
Proof. Let the vector z (z(), ,z(m)) be partitioned conformally with the

row partitioning of A. Referring to the system matrix shown in (18), note that z(k) is
simply the first block of the modified right-hand side Z(D + L)-lb. (D 4- L) is block
lower triangular with its (1,1) block equal to ATA1, so the first block of Z(D 4- L)-lb
is Z(k1) UI(ATxA1)-b UI(UFU1)-lbl UTbl. From (17), (16), A1 Q1U1,
and QT(I1 P1) 0,

AT xk UTQT1 [Q1, (I P)Q2, (I P1)... (I Pm-1)Qm] zk
rrTz(1) uT1UTbl 51vl k

174 R. BRAMLEY AND A. SAMEH

TABLE 1
Comparison of system matrices :for four methods.

Method[WT

CGNE

CIMM

KACZ

V-RP

[A1, A2, ,Am]

Q, (I P1)Q2, (I P)(I P2)Q3, I-Iim__-z(I Pi)Qm

2.3. Row projection method CIMM. The third RP method can be derived
as a preconditioner for the CG algorithm. Premultiply the system Ax b by
[AI(AT A1)-I,A2(AT2 A2)-I,. ,Am(ATmA,)-] to obtain

(21) (P1 + P2 +"" + Pm)x tb.

This system can also be derived as a block Jacobi method applied to the system (7);
see [11]. For nonsingular A this system is symmetric positive definite and the CG
algorithm can be applied. The advantage of this approach is that the projections
can be computed in parallel and then added. In 1939 Cimmino [9] first proposed an
iteration related to (21), and since then it has been examined by several others [1], [11],
[12], [15], [25], [26], [38]. Later we will show how the individual projections can, for
a wide class of problems, be computed with parallelism. In this case, the Cimmino
method allows computations to proceed with two levels of parallelism, making it
especially suitable for hierarchical memory machines such as Cedar [24].

2.4. Connection between RP systems and the normal equations. Al-
though KACZ and V-RP can be derived as a block SSOR, and CIMM as a block
Jacobi, method for (7), a more instructive comparison can be made with CGNE, con-
jugate gradients applied to the normal equations ATAx ATb. All four methods
consist of CG applied to a system with coefficient matrix WTW, where WT is shown
for the four methods in Table 1. Intuitively, an ill-conditioned matrix A has some lin-
ear combination of rows approximately equal to the zero vector. For a row partitioned
matrix, near linear dependence may occur within the blocks, that is, some linear com-
bination of the rows within a particular block is approximately zero, or across the
blocks, that is, the linear combination must draw from more than one block row A/T.
Now let Ai QiUi be the orthogonal decomposition of Ai, and note that both Qi
and Pi QiQ have the perfect condition number of 1. Examining the matrices W
shows that CGNE works on ATA, and the ability to form a near linear dependence
from both within and across blocks enters into the system matrix. CIMM replaces
each Ai with Qi, which has orthonormal columns. Hence CIMM removes the ability
to form linear dependence within the blocks, but has no effect on that between the
blocks. V-RP also replaces each Ai with the perfectly conditioned Qi and then goes a
step further by recursively orthogonalizing between blocks in the following way: The
first block column of WT is orthogonal to the others since Q1 (I- P1) 0. If the
orthogonalizing I- P factor is removed from the other block columns of WT, then
the second block column is orthogonal to the remaining ones since Q2(I- P2) 0.
This process continues until the last block is reached. The recursive nature of this
partial orthogonalization can be seen by rewriting WT for V-RP as

WT [Q1, (I- P)[Q2, (I- P2)[Q3, (I- P3)"" [Q,-, (I- P,_)Q,]...]]].

ROW PROJECTION METHOD 175

KACZ has the same effect as V-RP, since PT(I- Pi) 0 in the same way that
Qi(I- Pi) 0.

Several implications follow from this heuristic argument. First, the system matrix
spectrum for KACZ and V-RP should be better than that of CIMM, which in turn
should be better than that of CGNE, where "better" means having fewer small eigen-
values and many more eigenvalues near the maximal one. Section 4 will show that
for m 2 the first comparison is true, and the second comparison holds if condition
numbers are used to measure "better." Furthermore, by computing the spectra for
small grid sizes we have found these comparisons are valid for the problems in 6,
where m 9.

A second implication of this argument is that RP methods will require fewer
iterations for matrices A where the near linear dependence comes primarily from
within a block row rather than between block rows. A third implication of the heuristic
argument for the relative performance of RP methods is that the number of block rows
should be kept as small as possible. The reason is that the partial orthogonalization
between blocks in the W of Table 1 becomes less effective as more block rows appear.
In terms of the heuristic, progressively more orthogonalizing factors I- Pi must
be stripped away before the orthogonalization effect between block row i and the
succeeding block rows is felt. Keeping the number of block rows small can also be
seen to be important because, e.g., for the m N case all of the ability to form a
near linear dependency between rows of the system matrix occurs between the block
rows, where the outer CG acceleration method must deal with it.

3. CG acceleration. Although the CG algorithm can be applied directly to the
row projection systems, special properties allow a reduction in the amount of work
required by KACZ and provide another advantage of V-RP. CG acceleration for RP
methods was proposed in [4] and tested in [7], [21], [22]. The reason that a reduction
in work is possible and ATxk bl on every iteration of CG applied to KACZ follows
from Theorem 3.1.

THEOREM 3.1. Suppose that the CG algorithm is applied to the KACZ system
and let rk (I Q)xk be the residual and dk be the search direction. If xo is
chosen as the starting vector, then rk, dk E range(/- P1) for all k.

Proof.

ro - (I-Q) Q
(I PI)(I P2)’’’ (I Pm)"" (I P2)(I P)b e range(/- P1).

Since do r0, the same is true for do. Suppose the theorem holds for k- 1. Then
dk-1 (I- P)dk-1 and so

wk =-- (I- Q)dk-1
(I- P)dk- (I- Pi)(I- P2)""" (I- Pro)"" (I- P2)(I- P1)dk-
range(I P1).

Since rk is a linear combination of rk-1 and Wk, rk range(/- P1). Since
dk is a linear combination of dk-1 and rk, dk range(/- P). The result follows by
induction. U

This reduces the requisite number of projections from 2m 1 to 2m 2 because
the first multiplication by (I-P) when forming (I--Q)dk can be omitted. For V-RP,
the next section will show that the algorithm can be implemented so that effectively
only 2m- 2 projections are required on each iteration, for any starting vector. Using
x0 b for KACZ also keeps the first block of equations satisfied in exact arithmetic.

176 R. BRAMLEY AND A. SAMEH

COROLLARY 3.2. If Xo b is chosen in the CG algorithm applied to the KACZ
system, then ATl Xk bl .for all k >_ O.

Proof. The proof of Fact 2.2 shows that e (AT)bl + range(/- P1). Since

AT (I- P1) AT (I- A1A) 0, ATxo AT (AT)bl bl because A1 has full
column rank. For k > 0, dk-1 e range(/- P1), so

ATl Xk ATI (Xk-1 At" Okdk-1) ATl Xk-1 ATl Xo bl.

V-RP has already been shown to allow an explicit reduction of the problem size.
Its second major advantage is that when accelerated by CG, the resulting algorithm
is error-minimizing in the two-norm.

THEOREM 3.3. Suppose CG acceleration is applied to the V-RP system and let
x* be the solution to Ax b. Then the kth iteration minimizes x- x* over all

X*x e Sz * span[x0 x*,...,xk-1], where Sv is defined by (17).
Proof. Recall that Xk AT(D + L)-TZTzk SVZk, where V I- SSv. The

CG algorithm minimizes the quadratic form [16]

zT(I- V)z- 2zTby zTSSvz- 2zTSA-lb

Since x* 2 is a constant, this is equivalent to minimizing x- x* II 2. The subspace
over which this minimization occurs is

span[ro,..., rk-1] span[STvA-b- SSvzo,..., SzA-lb- SSvzk-l]
S * span[x* x0,’", x*

In contrast, CG acceleration in the KACZ system minimizes S(xk- x*) over
the subspace SvS span[x0 x* Xk-1], a result established in [4].

In summary, CG acceleration for KACZ allows one projection per iteration to be
omitted and one block of equations to be kept exactly satisfied, provided that x0 b
is used. CG acceleration for V-RP minimizes the two-norm rather than the A-norm
of the error.

4. The m 2 case. When m 2 is chosen, the matrix A is partitioned into
two block rows, and a complete eigenanalysis of RP methods is possible using the
concept of the angles Ok between the two subspaces Li range(Ai), i 1, 2. The
definition presented here follows that of Bjhrck and Golub in [5], but for convenience,
L1 and L2 are assumed to have the same dimension. The smallest angle 01 E [0, r/2]
between L1 and L2 is defined by

COS 1 max max uTv
nELl vEL2

subject to u v 1.

Let ul and vl be the attainment vectors; then for k 2, 3,-.., N/2 the remaining
angles between the two subspaces are defined as

cos 0k max max uTv
u@L1 v@L2

subject 0, i 1,2,...,k- 1.

Furthermore, when ui and vj are defined as above, uvj 0, = j also holds. From
this one can obtain the CS decomposition [16], [36], which is stated below in terms of
the projectors Pi.

ROW PROJECTION METHOD 177

THEOREM 4.1 (CS Decomposition). Let Pi E NN be the orthogonal projectors
onto the subspaces Li, for i 1, 2. Then there are orthogonal matrices U1 and U2
such that

C diag(cl, c2,’", CN/2),
(22) S diag(s, s2,’.., SN/2),

I C2 + S2,
1 Cl C2 ’’" CN/2 O.

In the theorem Ck COS0k and Sk sin 0k, where the angles 0k are defined above.
Now consider the nonsymmetric RP iteration matrix Qu (I- wP)(I- wP2).
Letting c 1 -w, and substituting in the expressions for P and P2 from the CS
decomposition gives

Q, U aS C

Applying a similarity transformation using the matrix U2T gives

[c2C2--O/S2 (1-- a)CS]C +
Since each block in the above 2 2 matrix is diagonal, U2TQuU2 has the same eigen-
values as its scalar 2 2 principal submatrices. These eigenvalues are given by

(24) (1 a)2 2

for i 1, 2,..., N/2. For a given a the modulus of this expression is a maximum
when c is largest, i.e., when c c. The spectral radius of Qu can then be found by
taking c c and the positive sign in (24). Doing so and minimizing with respect
to a gives Wmin 1 -Omin 2/(1 + sl) and a spectral radius of (1 s1)/(1 + s).
The same result was derived in [12] using classical SOR theory. The benefit of the CS
decomposition is that the full spectrum of Q is given and not simply the eigenvalue
of largest modulus. In particular, when w 1 the eigenvalues of the nonsymmetric

RP iteration matrix Qu become {c, c,---, cv/2 0} with 0 repeted N/2 times. Now
applying the CS decomposition to the symmetrized RP iteration matrix Q(w) gives

Q(w) (I wP)(I wP2)(I wP)

)cs +C Ulr,

where again a 1 -w. When w 1, the eigenvMues of the symmetrized matrix
are identical to those of the unsymmetrized matrix Qu. One objection to the sym-
metrization process is that Q(w) requires three projections while Qu only needs two.
The previous section, however, showed that when w 1, KACZ can be implemented
with only two projections per iteration.

When m 2 the value w 1 minimizes the spectral radius of Q(w), as was shown
in [22]. This result can be obtained from the representation (25) in the same way as
(23) was obtained.

178 R. BRAMLEY AND A. SAMEH

The CS decomposition also allows the construction of an example showing that
no direct relationship need exist between the singular value distribution of A and its
related RP matrices. Define

(26) A= A S C

where each block is N/2 N/2, C and S satisfy (22), and D diag(d, d2,..., dN/2).
The projectors become

PI=[] and P2 CS] [C S],

and the eigenvalues of I- Q(1) are (s,s2,...,S2N/2,1}, while those of A are

[ci +/- (c / 4sidi) /2]/2. A is nonsingular if and only if each si and di is nonzero.
If the s’s are chosen to be close to 1 while the di’s are chosen to be close to 0,
I- Q(1) has eigenvalues clustered near 1 while A has singular values close to both 0
and 1. Hence A is badly conditioned while I- Q(1) is very well conditioned. Con-
versely, if the di’s are chosen to be large while the si’s are close to 0 in such a way that
disi is near 1, then A is well conditioned while I- Q(1) is badly conditioned. Hence
the conditioning of A and its induced RP system matrix may differ greatly. Although
this example is contrived, 7 presents two PDEs with induced matrices A that have
identical singular values but drastically differing spectra for the corresponding RP
matrices.

In 2.4 a heuristic argument was given implying that the eigenvalue distribution
for the KACZ and V-RP systems is better for CG acceleration than that of CIMM,
which in turn is better than that of CGNE, CG applied to ATAx ATb. For m 2,
the eigenvalues of KACZ and V-RP are {s2, s22, S2N/2, 1} while those of CIMM are

easily seen to be {1 c,. ., 1 CN/2, 1 + CN/2,’’’, 1 + C}, verifying that KACZ and
V-RP have better spectral distribution than CIMM. The next theorem shows that in
terms of condition numbers the heuristic argument is valid when m 2.

THEOREM 4.2. When m 2, a(ATA) >_ a(P + P2) >_ (I- (I- P)(I-
P2)(I- P)). Furthermore, let c cos be the canonical cosine corresponding to the
smallest angle between range(A) and range(A2). Then a(P1 + P2) (1 + c)2a(/-
(I- P)(I- P2)(I- P)).

Proof. Without loss of generality, suppose that range(A) and range(A2) have
dimension N/2. Let U [G, G2] and U2 [U, H2] be the matrices defined in
Theorem 4.1 so that P GG, P2 HHT, and GTH C. Set X GTA and
Y HTA2 so that A PA GGTA GX and A2 HY. It is easily verified
that the eigenvalues ofP+P2 are l:t:ci, corresponding to the eigenvectors gi:i:hi where
G [g, g2,’", gN/2] and H [hi, h2,..-, hN/2]. Furthermore, Ggi Hh e
and Ghl Hg ce, where e is the first unit vector. Then ATA AAT +
A2AT2 GXXTGT +HyyTHT so (g /h)T(ATA)(g/h) (I+c)2eT (ATA)e
and (g h T(ATA (g h (1 c 2eT(ATA)e The minimax characterization
of eigenvalues gives

.max(ATA)
_

(1 + c)2eT (ATA)e/(g + hl)T(gl + h)
(1 + c):eT(ATA)e/2(1 + c)= (1 + c)eT(ATA)e/2

and Ami(ATA)<_ (1- c)eT(ATA)e/2. Hence a(ATA) >_ (1 + c)/(1- c)-
a(P/P2), proving the first inequality. For the second, from the CS decomposition the

ROW PROJECTION METHOD 179

82 2 1 2eigenvalues of (I-(I-P1)(I-P2)(I-P1)) are (1,s,...,S2g/2, 1}, where s -ci
are the canonical sines and 1 is of multiplicity N/2. Then

(P1 + P2) 1 + cl 1
.’- (1 + cl) 2. [:]

Note that (1 + cl) 2 is a measure of the lack of orthogonality between range(A1)
and range(A2), and so measures the partial orthogonalization effect described in 2.4.

5. Implementation for three-dimensional elliptic PDEs. The primary im-
plementation issue for RP methods is how to partition the rows of A. Since any row
partitioning gives a convergent algorithm, the criteria for choosing one can be based
on computational considerations. This section describes the set of test problems,
outlines the row partitioning criteria, and presents the row partitioning used in the
testing.

5.1. Test problems. Test problems are obtained from the seven-point centered
difference operator [35] for elliptic partial differential equations

(27) auxx + buyy + CUzz + dux + euy + fUz + gu F

where a g are functions of (x, y, z) and the domain is the unit cube [0, 1] x [0, 1] x
[0, 1]. Dirichlet boundary conditions are imposed in a manner described later. When
discretized using n grid points in each direction the resulting system is of order N
n3

This class of test problems is chosen for four reasons. First, it includes important
applications such as computational fluid dynamics and structural mechanics. Second,
by refining the mesh the problem size grows rapidly with n, allowing test problems
that can be scaled up to realistic sizes. Results are shown for problems of order
216000, corresponding to a 60 60 x 60 mesh. Third, by selecting the coefficient
functions of the partial differential equation, matrices A can be created with or without
properties such as diagonal dominance, definite symmetric part, eigenvalues on both
sides of the imaginary axis, or extreme ill-conditioning. Fourth, the problems provide
a specific example on how to select m, partition the rows into blocks, and analyze the
subproblems that define the projectors.

The collection of test problems and their predetermined solutions follows. These
are generalized versions of two-dimensional problems from a variety of sources [13],
[22], [23], [34]. Each test problem has boundary conditions chosen to give a prede-
termined solution to the partial differential equation, so that the norm of the error
vector as well as that of the residual vector can be checked.

PROBLEM 1. /u + 1000ux F.
PROBLEM 2. /ku -t- lO00exp(xyz)(u + uy uz) F.
PROBLEM 3. /ku + lOOxux yuy + ZUz + 100(x + y + z)u/xyz F.
PROBLEM 4. /ku- 105x2(ux + uy + Uz) F.
PROBLEM 5. /u- 1000(1 + x2)ux + lO0(Uy + Uz) F.
PROBLEM 6. /ku- 1000 [(1 2x)u + (1 2y)uy + (1- 2z)uz] F.

Problem 1 has the preassigned solution u xyz(1 x)(1 y)(1 z), Problem 2 has
u x+y/z, and Problems 3-6 have u exp(xyz)sin(rx)sin(ry)sin(rz). These test
problems exhibit properties that cause difficulties for nonsymmetric iterative solvers,
as summarized in Table 2 for a 12 12 12 grid. "Re (A) > 0" indicates whether or
not the eigenvalues lie in the right half plane of the complex plane; if this does not

180 R. BRAMLEY AND A. SAMEH

TABLE 2
Properties of A for N 1728

Re(A) > 0 Yes Yes No Yes Yes Yes
A + AT Definite Yes No No No No No
Estimated (A) 9 57 40000 4786 36 77

hold, then residual polynomial methods will fail. "A + AT definite" indicates whether
or not the symmetric part of A is definite; if the answer is yes, then the sufficient
conditions for GMRES(k) to converge hold. (A) is an estimate of the condition
number obtained by applying the LINPACK routine DPOCO to ATA.

5.2. Row partitioning goals. The first criterion for a row partitioning is that
the projections Pix Ai(ATAi)-IATx must be efficiently computable. One way to
achieve this is through parallelism: if AT is the direct sum of blocks Cj for j E Si, then
Pi is block diagonal [22]. The computation of Pix can then be done by assigning each
block of Pi to a different processor on a multiprocessor machine, or by vectorizing
the computations across the blocks on a vector machine. The second criterion is
storage efficiency. The additional storage should be (.9(N), that is, a few extra vectors,
the number of which must not grow with increasing problem size N. The third
criterion is that some bound on the condition number of the subproblems induced
by the projections should be provided. The need for this is clear when rn 1 and
A is partitioned into a single block of rows; in this case KACZ simply solves the
normal equations ATAx ATb, an approach that can fail if (A) is large. More
generally, when m > 1, computing y Pix requires solving a system of the form

AAiv w. Hence the accuracy with which Pi can be computed depends on (ATAi),
and potentially large errors might occur in the projections if that condition number is
large. A practical and cheap numerical way of bounding (ATAi) for a given problem
should be available. The fourth criterion is that the number m of projectors should be
kept as small as possible, and should not depend on N. One reason was presented in
Fact 2.1: when the block rows have equal numbers of rows of A, 1/m of the eigenvalues
of the system matrix are exactly 1. For V-RP the possible reduction in problem size
also decreases with increasing m.

In summary, the row partitioning should allow parallelism in the computations,
require at most O(N) storage, give well-conditioned subproblems, and have rn a small
constant. One of the more useful results of this paper is that all four goals can be
achieved simultaneously for important classes of problems.

5.3. Row partitioning of test problems. Row partitioning schemes ranging
from rn 4 up to rn 27 have been tested on the test problems. For brevity,
only one, an rn 9 partitioning generalized from a scheme in [22], is presented.
Consider an n n x n mesh, and for convenience assume that n is a multiple of 3 and
that lines in the mesh are numbered within each plane in the natural order. Place
equations corresponding to nodes on lines 1, 4, 7,..., n- 2 on the planes numbered
1, 4, 7,.-., n-2 into the first block row AT. Then assign those on lines 2, 5, 8,..., n- 1
on the planes numbered 1, 4, 7,-.., n- 2 into the second block row A2T. In general,
AT consists of nodes on lines l, q- 3, + 6,..., on planes p,p-b 3, p + 6,..., where

(i + 2) mod 3 q- 1 and p J + 1. Figure 1 shows this scheme for a 6 x 6 x 6
grid, with each node marked by the number i of its assigned block row AT.

Because each line of nodes assigned to AT is separated from the others by at least

ROW PROJECTION METHOD 181

9 9 9 9 9 9

6 6 6 6 6 6

5

3 3 3 3 3

9 9 9 9 9 9

6 6 6 6

3 3 3 3 3 3

2 2 2 2 2 2

1 1 1 1 1 1

3 3 3 3 3 3

2 2 2 2 2 2

1 1 1 1 1 1

6 6

5

4

6

5

4

8

7
9

8

7

3 4

2 6

1 5

3 4

2

1

Z

9

8

7

FIG. 1. Row partitioning for m 9.

two other lines or planes, their seven point difference stars do not intersect and so AT
consists of n2/9 separate subblocks of n coupled equations each. Each projector Pi
can then be computed with a parallelism of n2/9. What of the other row partitioning
criteria? Let the subblocks of AT be denoted C", for j E Si, where S is an index set
of cardinality n2/9. Dropping the subscripts temporarily, a typical C" has the form

(28) CT [0, D1,0, D2, T, D3, 0, D4, 0]

with D a diagonal and T a tridiagonal matrix. The matrix CTC is positive definite
because when A is nonsingular each subblock is necessarily of full rank n. More
importantly, CTC is pentadiagonal and so its Cholesky factor R consists of three
diagonals, and the Cholesky factors for all of the subblocks for all of the block rows

AT can be stored using only three additional vectors.
Surprisingly, the third requirement that each subproblem be well conditioned also

is generally satisfied by the m 9 partitioning. The details can be found in [6], but
this can be seen intuitively because CTC consists of the normal equations of T in (28),
with the squares of the diagonal blocks D added to the main diagonal of TTT, making
it strongly diagonally dominant. This suggests that good bounds for the extremal
eigenvalues of CTC can be obtained from Gerschgorin estimates. However, for some

182 R. BRAMLEY AND A. SAMEH

TABLE 3
maxj (Cj) for n 48.

Problem 1 2 3 4 5 6
Estimated 7.94 1.92 74.9 1608 12.9 2.19
Actual 4.93 1.87 61.2 518 8.56 2.13

problems the Gerschgorin Disk Theorem provides an estimate)min(CTC)

_
O. In

these cases a better bound on the smallest eigenvalue comes from an application of
the minimax characterization of singular values.

THEOREM 5.1. Suppose that CT [D1 0 D2 T D3 0 D4], where each Di E nn
is diagonal, and let mink IDlkk. Then

2
min(C)=)min(CTC) -t- -t- + .

Proof. Let z e Tn, z I]= 1. Then

(29) Cz 2 Dlz 2 + D2z 2 + II Tz 2 + D3z 2 + Daz 2

> DlZ + + + I1 > + + +
Minimizing Cz over all such z gives the stated result. D

When C corresponds to a line of nodes at the top or bottom of a plane, or is within
the first or last plane of the grid, one or more of the 5i’s is zero but the theorem is
still valid. Table 3 shows results for the test problems on a 48 x 48 x 48 grid with the
Gerschgorin estimate of the smallest singular value replaced by that of Theorem 5.1
when it is larger. The actual condition numbers are calculated using routines from
Eispack. Clearly the subproblems are well conditioned, so the row partitioning with
m 9 satisfies all of the criteria for a suitable row partitioning.

The testing results show that the approach taken here for partitioning A is ex-

tremely effective. However, it is of limited use if applicable only to seven-point dif-
ference operator matrices. The reasoning for selecting the partitioning is based on
a natural decoupling induced by the computational molecule used. This decoupling
still occurs if, e.g., the domain is irregular or a 27-point difference operator is applied.
Extensions to Neumann or periodic boundary conditions are also possible, again by
considering the decoupling available on the mesh. Although more complicated, such a
decoupling occurs with finite element methods applied to partial differential equations
since usually the elements are chosen to have common support with only a few other
elements. What determines the storage requirements of 3N for all of the Cholesky
factors is that the longest line in the computational star contains three nodes. More
generally, if the longest line in the computational star has nodes, the Cholesky fac-
tors require only 1N storage. The scheme used here for row partitioning can thus be
extended to other, less simple, problems.

5.4. Other approaches. Recently, Arioli, Duff, Noailles, and Ruiz [2] experi-
mented with a block Cimmino method for more general sparse systems. Their ap-
proach is to reorder the matrix into a block tridiagonal form, and then to use a row

partitioning into two block rows. In this case the goal is not to have equal-sized
blocks for load balancing, but rather to have few nonzero columns in the blocks of A1T
shared with the nonzero columns in the blocks of A2T. This allows the use of a novel
block diagonal right preconditioner that damps out the overlap between the shared
nonzero columns and thereby increases the angles between the range of A1 and A2.

ROW PROJECTION METHOD 183

This reduces the number of CG iterations (cf. 2.4) but at the cost of making the
subproblems more ill conditioned. Arioli et al. then handle this by using a direct
method applied to an augmented system for solving the subproblems.

5.5. Implementation details. The crucial operations in the RP algorithms
are the preprocessing stage, computation of the modified right-hand side vectors, and
forming the matrix-vector products needed for the acceleration schemes. V-RP also
requires a postprocessing stage to recover the solution x from the auxiliary unknown
z. For convenience, an n n n grid is used, with n a multiple of 3.

Preprocessing for RP methods consists of computing the necessary Cholesky fac-
tors Rj. As 5.3 showed, each Cj is well conditioned, so the procedure is to explicitly
form the normal equations and then perform an LDLw factorization. Recalling that
S is the set of indices j for which C is a subblock of Ai, this stage consists of n2/9
parallel tasks.

Cholesky Factorization:
For i 1, 2,..., 9 and j E S (in parallel)

Form R C T(Cj) vectorized)
Perform LDLw factorization on Rj, overwriting Ry with the result (sequential)

End For

Ry is stored as three vectors, and the diagonal is stored as (Dj) -1 so that the
backsolves can be performed using multiplication rather than division. The LDLw
factorization is an inherently sequential process, unsuitable for vector machines. For
those computers the order of the loops is reversed, that is, the operations are vectorized
across the blocks Cj rather than parallelized between the blocks.

To compute the KACZ modified right-hand side b, let Ui diag(Rjl, Rj.,...,
Rj2/9) for jk E S. By overwriting, can be found using a temporary vector wT

(wT, w, ..., WTm) of length N and 4m 2 triangular solves with U or UT, 2m 2
multiplications by U or UT, 3m multiplications by A, and m2- m by AT. The
predominant expense is the triangular solves. Furthermore, each of the matrix-vector
operations is implemented with n2/9 parallelism.

Computation of b from b for RP-m
w--b
For i- 1,2,...,m

b Aw
For j i + 1, + 2,...,m
w w A

End For
End For
For i- 1,2,...,m- 1

End For
For i re, m- 1,..., 1

Aw
For j 1,2,...,i- 1

w wj A
End For
If i > 1, w-i (uT_Iu-I)-w-

184 R. BRAMLEY AND A. SAMEH

End For
AlWl

For i-- 2,3,...,m
[, , + Aw

End For

The V-RP modified right-hand side bv can be computed at a slightly lower cost,
requiring 3m- 2 triangular backsolves by UT or Ui.

Computation of by from b for V-RP:
For i-- 1,2,...,m

(bv)i u:Tb
End For
w A,UI(bv)m
For i m- 1, m- 2,...,2

(by)i (by)i u(-TAT w
w w + AUI(bv)i

End For
(by)l (by)l uTATlw

For KACZ the matrix-vector products needed by CG cost 4m-2 triangular solves
with Ui or UT and 4m-2 multiplications by Ai or AT. For CIMM, this number is 2m.
V-RP can be implemented with 4m- 5 of each operation, if the following algorithm
is used.

Computation of v (I- V)d for V-RP:
w AmUldm
For i- m- 1,...,3,2

w w + AiU-I(di u(TAw)
End For
w w- AI(UITU)-AT w
For i- 2,...,m- 1

vi u(’TAT w
w w- AiU(vi

End For
--T Tv,=Uj A,w

Note that this only uses the block components numbered from 2 to m of the
vectors d and v, reflecting the explicit reduction in the problem size allowed by V-
RP. V-RP must also retrieve x from the auxiliary vector z, and this requires 2m- 1
triangular solves and 2m- 2 multiplications by A or AT.

6. Testing results. Tests were run on three machines to examine different as-
pects of the algorithms. First, problems of order N 13824 were run on one processor
of the University of Illinois’ National Center for Supercomputing Application’s Cray
X-MP in order to test the robustness and vectorization of the methods. Then prob-
lems of order N 216000 were tested on one processor of the NCSA Cray-2 to
verify that the results are valid for larger problem sizes. Finally the RP methods were
tested on an eight-processor Alliant FX/8 at the Center for Supercomputing Research
and Development to demonstrate that the algorithms can be implemented efficiently
on a shared-memory multiprocessor. This section describes the other nonsymmetric
solvers to which the RP methods are compared and the stopping tests used, and

ROW PROJECTION METHOD 185

briefly summarizes the results comparing the methods. Fuller details of the results,
including tables showing numbers of iterations, times, and residual and error norms
are provided in [6].

6.1. Description of other methods tested. The RP algorithms are compared
to two other basic methods, GMRES(10) (see [31] for references to this and the other
Krylov subspace methods of this section) and CGNE, CG applied to ATAx ATb.
GMRES(10) is from the PCGPAK library and has been optimized for the Cray-X/MP
by Scientific Computing Associates [33], with portions written in Cray Assembly
Language. The fixed value of k 10 is chosen because larger values do not improve
the robustness of GMRES(k) until k becomes a significant fraction of the problem size,
and because iterative algorithms with C0(N) additional storage are of primary interest
in this paper. Whenever GMRES is referred to without an argument, GMRES(10)
is understood. The reasons for selecting GMRES instead of another Krylov subspace
method are the popularity of GMRES, and that Orthomin and GCR give similar
results.

GMRES is also implemented with ILU and MILU preconditioners [17]. Because
only GMRES is implemented with these preconditioners, the combination of GMRES
with ILU preconditioning is abbreviated ILU, and similarly for MILU. PCGPAK al-
lows the user to pass a shift parameter r/to the preconditioning routine that helps
guard against failure of the preconditioner by factoring A 4-I instead of A. This
parameter is set to 0 in the experiments because in practice several tries at the in-
complete factorization may be necessary to find a workable value for the parameter.

CGNE is also implemented with a preconditioner, found by performing an ILU*
factorization on A to get A LU. Then CG is applied to the normal equations
of the left-preconditioned system (LU)-IAx (LU)-Ib. When combined with this
preconditioner, CGNE is denoted as ILCG. This is not the same as forming the normal
equations ATA and then performing an incomplete Cholesky factorization of ATA;
earlier work [7] with such a preconditioner for CGNE applied to two-dimensional
problems showed that it also suffered robustness problems.

6.2. Stopping tests. The primary stopping test used is

(30) Axk -b]12<_ 10-9.

For KACZ, the algorithm checks the pseudoresidual - (I- Q)xk. When it is less
than ep, the true residual b- Axk is checked. If the true residual is small enough,
the algorithm stops. Otherwise the CG tolerance is adjusted by the assignment % -(0.7%/ II Ax -b 112)e. Initially the tolerance for the pseudoresidual is equal to that
on the true residual, i.e., ep 10-9. Thus if the pseudoresidual’s norm is 10 times
smaller than the true residual’s norm, the tolerance is decreased by 0.07, where the
additional factor 0.7 is present to prevent the adjustment being made too often. Once
this is done, the CG iteration resumes. The same procedure is used for CIMM and V-
RP. However, since V-RP works on an auxiliary vector Zk, the corresponding Xk must
be retrieved each time the true residual is computed. The preconditioned PCGPAK
routines use the residual of the preconditioned system as the stopping test, so the
same tolerance adjustment procedure is used with them. When resumed this way, the
preconditioner is not recomputed.

Additional stopping tests, corresponding to failure conditions, are also imposed.
A maximum number of iterations is set to 4001, except for CGNE which is allowed
8001 iterations. These limits are generous and when a method fails because the
maximum allowed iterations are reached, iterating further has little effect.

186 R. BRAMLEY AND A. SAMEH

TABLE 4
Failures among methods.

Method

V-RP
CIMM
GMRES
ILU
MILU
CGNE
ILCG

N- 13824 N 216000
1 2 3 4 I, 5,,,I 6

MX MX
MX

RS RS RS TM
RS RS RS RS UP UP UP

RS RS RS RS RS RS UP RS
MX MX MX MX

UP MX MX MX UP TM UP

RS UP

TM

For the test problems there is no guarantee that the preconditioners will exist or
provide a better system. The preconditioner is called unstable if a zero pivot occurs
during the factorization, or if the iterations experience overflow because of the use of
a preconditioner.

The PCGPAK routines have one more stopping criterion. If the residual does not
change by a difference of at least 10-6 over the course of ten successive iterations, the
residual is said to stagnate. Omitting or relaxing this test simply changes the reason
for failure from stagnated residual to maximum iterations reached.

Finally, for the problems with N 216000 a maximum CPU time limit of 20
minutes is set for all of the methods. This is done for budgetary reasons. These error
conditions are summarized and given the following codes in the tables of results:

MX: Maximum iterations reached,
UP: Unstable preconditioner,
RS: Residual stagnates,
TM: Maximum allowed CPU time reached.

6.3. Comparison of RP methods with other methods.

6.3.1. Robustness. Robustness results are shown in Table 4. KACZ is the only
algorithm tested that succeeds in all cases, while CIMM and V-RP follow with only
one and two failures, respectively. All the other methods fail at least in four cases.
Furthermore, KACZ is the only method that solves Problem 3 for N 216000.

Problems with large off-diagonal elements were the source of most of the failures of
the preconditioned methods. A possible explanation is that ILU and ILCG ignore fillin
positions when forming the incomplete factors and for matrices with large entries far
from the central dense band of A, those positions can be large. MILU accounts for the
fillin positions by moving their contributions to the main diagonal, but it failed in ten
cases. For the test problems MILU still provides incomplete factors that are not good
approximations to the factors of A, which is revealed by noting that the initial residual
of the preconditioned system often is many orders of magnitude larger than that of
the unpreconditioned system. Unpreconditioned GMRES fails on Problems 3 and 4,
for which A has an indefinite symmetric part, but it succeeds on Problems 2, 5, and 6,
which also have indefinite symmetric parts. This confirms that positive definiteness of
A / AT is sufficient but not necessary for convergence. Unpreconditioned CGNE fails
on Problems 3 and 4, which have a poor distribution of eigenvalues for the conjugate
gradient algorithm, viz., they have many small eigenvalues.

Can the robustness of the GMRES(k)-based methods be improved by increasing
the number k of vectors stored? To answer this, these algorithms were run again on

ROW PROJECTION METHOD 187

the test problems of size N 13824, for which they failed. Values of k up to 40
give no improvement in the robustness. Furthermore, since for some problems the
GMRES(k)-based methods report a stalled residual after only a few iterations, those
problems were also tested again by letting them run for as long a time as consumed
by the successful RP methods. This resulted in no significant change in the error or
residual norms, even when several hundred additional iterations were performed.

Why are RP methods more robust than GMRES algorithms? Each iteration of
GMRES(k) minimizes the components of the residual contributed by the eigenvectors
of A restricted to a Krylov subspace. If the residual is orthogonal to that subspace,
the method stalls. Even when the residual is not orthogonal to the Krylov subspace,
the minimization is over a subspace of dimension k, which becomes negligible for
large N. However, every projection of KACZ and V-RP minimizes the residual on
a subspace of dimension N/9, a fixed fraction of the problem size. Although each
iteration requires more work than one iteration of GMRES(k), a more robust method
results.

It should be noted that the test problems were chosen partly to be difficult for
Krylov subspace methods and may not represent a fair mix of problems normally
encountered. It should also be noted that some of the problems with robustness could
possibly be obviated by using modified upwind differencing. However, the results
show that such a change is unnecessary if RP methods are used. Furthermore, if a
nonlinear PDE is being solved and a problem similar to the test problems is generated
in the nonlinear iteration, it may not be easy or practical to change the differencing
scheme adaptively.

6.3.2. Accuracy. The final residual and error norms are shown in Figs. 2 and
3, respectively, where for each problem the three points plotted are the smallest norm
from the RP methods, the smallest from the GMRES-based methods, and the smallest
from CGNE or ILCG. No point is plotted for the GMRES methods for Problem 3
or for CGNE or ILCG for Problem 4, because the final norms produced are (9(1) or
larger. CGNE produces the smallest residual norm on 8 of the 12 cases, while KACZ
does so in two cases and CIMM and MILU in one each. V-RP and CGNE produce
the smallest error norm in four cases, GMRES in one case, and ILU in three cases.
Although V-RP fails on Problem 3 for both problem sizes by using the full number of
iterations allowed, it produces a smaller error norm than all of the other methods, even
though its residual norm is larger than that of the successful solvers. An explanation
of this behavior lies in Theorem 3.3, which states that V-RP minimizes the error,
while KACZ minimizes the error in an elliptic norm.

6.3.3. Speed and efficiency. The robustness property is expected, since RP
methods were designed to achieve it. The pleasing result is that in spite of the greater
amount of work done per iteration, RP methods are the fastest of the solvers tested
on 8 of the 12 experiments with the N 13824 problems run on the Cray X-MP and
the N 216000 problems run on the Cray-2. In the other four experiments, an RP
method is still competitive with the fastest solver. Figure 4 shows the execution times
for problems of size N 13824, where for each problem the three points plotted are
the fastest of the RP methods, the fastest of the GMRES-based methods, and the
fastest of CGNE or ILCG. Since no Krylov method solved problem 3 and CGNE and
ILCG failed on both Problems 3 and 4, those data points are omitted.

The speed of RP methods is caused by their parallelism. Roughly 85 percent of
the computation time of KACZ is consumed in computing the matrix-vector products
needed for the CG acceleration, and this has a natural parallelism or vector length

188 R. BRAMLEY AND A. SAMEH

Final
Residual
Norm

10-4

’A" "’i CGNE Methods

10--(
1 2 5 6 3 4

Problem Number

FIG. 2. Best residual norms for N 13824.

of n2/9, where N n3. GMRES computes the matrix-vector product with a vector
length of only 7. Even though more parallelism is available for GMRES, since each
row can be handled separately, the parallel tasks are small. This is partly because of
the data structure that PCGPAK uses to store A, and GMRES can run faster if the
matrix-vector product is performed by diagonals rather than rows. However, GMRES
benefits by having crucial parts written in Cray Assembly Language, while the RP
methods are written exclusively in Fortran. For CGNE, relatively poor performance
results primarily from the large number of iterations it requires.

6.3.4. Multiprocessor results. The preceding results were obtained on single
processors of Crays using vectorization across the n2/9 block rows C" that comprise
a block row A/T. The algorithms can also be implemented on a shared-memory mul-
tiprocessor by treating the n2/9 subproblems defined by a projector as separate tasks
to be assigned to different processors, with vectorizaton available in each subtask from
the matrix-vector multiplications. The RP methods were implemented this way on
an eight-processor Alliant FX/8. Figure 5 shows the ratio of execution time on one
processor of the Alliant FX/8 to that on p processors for KACZ, averaged over all six
problems. For comparison, a dashed line with slope 1 is included showing the ratio
corresponding to ideal parallelism. On eight processors KACZ runs between five and
six times faster, and the efficiency is 63 percent-75 percent.

7. Discussion and summary. Section 2.4 presented an explanation for the
properties of RP methods in terms of the ill-conditioning of a matrix arising from

ROW PROJECTION METHOD 189

Final
Error
Norm

10-’

i0_ = ,:-_.- ,-.. .:

.GMRES Methods CGNE ethods

RP Methods

lO-S ,,,
1 2 5 6 3 4

Problem Number

FIG. 3. Best error norms for N 13824.

TABLE 5
Number of iterations required for N 13824.

Method i’I 2 3 4 5 6

KACZ 8 109 666 715 20 33
V-RP 9’ 113 4001 813 20 33
CIMM 17 343 572 2000 51 92
CGNE 90 682 8001 8001 325 114

within and across block rows AiT. One implication of that argument is proven for
the two block row case by Theorem 4.2, which says that KACZ should require fewer
CG iterations than CIMM, which in turn should require fewer than CGNE. Table
5 shows that this relationship also holds for the m 9 case tested here; the only
exception is that CIMM required fewer iterations than KACZ on Problem 3 with
N 13824. Generally, CIMM requires two to three times as many iterations as
KACZ, while CGNE requires so many iterations on some problems that it uses the
maximum number allowed.

Another implication of the heuristic explanation of RP properties is that fewer
iterations are needed for a given RP method when rows that make small angles with
each other are placed in the same block row instead of in different block rows. This
is confirmed by considering the following problem.

PROBLEM 1. Au + 1000lty F.
This is the same as Problem 1 but with the first derivative term Uy instead of

190 R. BRAMLEY AND A. SAMEH

Time
(sec)

CGNE Methods

GMRES Methods#

RP Methods

1 5 6 2 4 3

Problem Number

FIG. 4. Fastest times for N 13824.

TABLE 6
Number of iterations for Problems 1 and 1’.

Problem KACZ V-RP CIMM GMRES CGNE
2 o

I’ 269 90

ux. The resulting matrix A has the same spectrum as that of Problem 1, but the
number of iterations required increases for the RP methods while remaining constant
for GMRES and CGNE, as shown in Table 6 for N 13824. For both Problems 1
and 1’ it can be shown that each row as of A makes a small angle with at most two
other rows. For Problem 1 these other two rows are located in the same block row
as as, while for 1 they are located in different block rows. For Problem 1 the RP
methods remove this near linear dependence by implicitly replacing As with Q, an
orthonormal basis matrix for range(As). For Problem Y, the near linear dependence
is across block rows and must be handled by the outer CG iteration.

The usefulness of this explanation of RP properties is that it indicates how one
should partition the matrix and number the nodes for a given problem. For example,
the grid for CFD problems should be arranged so that the lines of nodes that form
the block rows AT are aligned in the direction of predominant flow; this occurs in
Problem 1 but not in Problem 1. Furthermore, RP methods like other iterative
solvers work well if the system is diagonally dominant. If there are large off-diagonal
elements in the diagonal closest to the main diagonal, RP algorithms can still work

ROW PROJECTION METHOD 191

Ratio 4

0 ,I ,I

0 2 4 6 8

Number of Processors

FIG. 5. Ratio of times for p processors on Alliant FX/8.

well. Although every worker in the field of RP methods has recognized the importance
of having the angles between the block rows large, this seems to be the first guideline
on how to achieve it for practical problems without having to actually compute the
angles involved.

Although the testing results of this paper are for the structured sparse systems
arising from seven-point centered differences, Arioli, Duff, Noailles, and Ruiz [2] have
recently applied block Cimmino to more general sparse systems and introduced an
innovative preconditioner with good results. In [2] they report on this approach and
include tests on some of the problems from this paper.

In summary, CG accelerated row projection methods can have a robustness un-
matched by other nonsymmetric solvers, and successfully solve large systems with
indefinite real parts and eigenvalues arbitrarily distributed in the complex plane. The
row partitioning scheme described here allows large scale parallelism suitable for both
vector and multiprocessor machines and yields algorithms competitive in speed with
other solvers. The new method V-RP is error minimizing and gives better solutions
than the other methods, as well as explicitly reducing the problem size. Finally, the
relationship with conjugate gradients applied to the normal equations is shown and
an explanation for the behavior of RP algorithms is provided. This explanation is
verified both theoretically and numerically.

192 R. BRAMLEY AND A. SAMEH

REFERENCES

[1] R. ANSORGE, Connections between the Cimmino-methods and the Kaczmarz-methods
for the solution of singular and regular systems of equations, Computing, 33 (1984),
pp. 367-375.

[2] M. ARIOLI, I. DUFF, J. NOAILLES, AND D. RuIz, A block projection method for general
sparse matrices, SIAM J. Sci. Statist. Comput., this issue, pp. 47-70.

[3] S. ASHBY, Chebycode: A Fortran implementation of Manteuffel’s adaptive Chebyshev
algorithm, Report No. UIUCDCS-R-85-1203, Department of Computer Science,
University of Illinois, Urbana, IL, May 1985.

[4] A. BJSRCK AND W. ELFVING, Accelerated projection methods for computing pseudo-
inverse solutions of systems of linear equations, BIT, 19 (1979), pp. 145-163.

[5] A. BJRCK AND G. GOLUB, Numerical methods for computing angles between linear
subspaces, Math. Comp., 27 (1973), pp. 579-594.

[6] R. BRAMLEY, Row projection methods for linear systems, CSRD Tech. Report 881, Cen-
ter for Supercomputing Research and Development, University of Illinois, Urbana,
IL, 1989.

[7] R. BRAMLEY AND A. SAMEH, A robust parallel solver for block tridiagonal systems,
CSRD Tech. Report 806, Center for Supercomputing Research and Development,
University of Illinois, Urbana, IL, 1988.

[8] , Row projection methods for large nonsymmetric linear systems, CSRD Tech.
Report 957 (revised), Center for Supercomputing Research and Development, Uni-
versity of Illinois, Urbana, IL, 1990.

[9] (. CIMMINO, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, Ric.
Sci. Progr. Tecn. Econom. Naz., 9 (1939), pp. 326-333.

[10] P. EGGERMONT, G. HERMAN, AND A. LENT, Iterative algorithms for large partitioned
linear systems, with applications to image reconstruction, Linear Algebra Appl., 40
(lSSl), . -6.

[11] T. ELFVING, Group-iterative methods for consistent and inconsistent linear equations,
Report LITH-MAT-R-1977-11, Department of Mathematics, LinkSping University,
LinkSping, Sweden, 1977.

[12] , Block iterative methods for consistent and inconsistent linear equations, Numer.
Math., 30 (1980), pp. 1-12.

[13] H. ELMAN AND G. GOLUB, Iterative methods for cyclically reduced non-self-adjoint lin-
ear systems, UMIACS-TR-88-87, CS-TR-2145, Department of Computer Science,
University of Maryland, College Park, MD, 1988.

[14] H. ELMAN, Iterative methods for large, sparse, nonsymmetric systems of linear equa-
tions, Res. Report 229, Department of Computer Science, Yale University, New
Haven, CT, 1982.

[15] P. GILBERT, Iterative methods for the three-dimensional reconstruction of an object
from projections, J. Theoret. Biol., 36 (1972), pp. 105-117.

[16] G. GOLUB AND C. VAN LOAN, Matrix Computations, The John Hopkins University
Press, Baltimore, MD, 1983.

[17] I. GUSTAFSSON, Modified incomplete Cholesky methods, in Preconditioning Methods:
Theory and Applications, D. Evans, ed., Gordon and Breach, New York, 1983,
pp. 265-293.

[18] L. HAGEMAN AND D. YOUNG, Applied Iterative Methods, Academic Press, New York,
1981.

[19] G. HERMAN, A. LENT, AND P. LUTZ, Relaxation methods for image reconstruction,
Comm. ACM, 21 (1978), pp. 152-158.

[20] S. KACZMARZ, Angeniiherte Aufl6sung yon Systemen linearer Gleichungen, Bull. Intern.
Acad. Polonaise Sci. Lettres (Cracouie); Class Sci. Math. Natur.: Seira A. Sci.
Math., (1939), pp. 355-357.

[21] C. KAMATH, Solution of nonsymmetric systems of equations on a multiprocessor, CSRD
Tech. Report 591, Center for Supercomputing Research and Development, Univer-
sity of Illinois, Urbana, IL, 1986.

[22] C. KAMATH AND A. SAMEH, A projection method for solving nonsymmetric linear sys-
tems on multiprocessors, Parallel Computing, 9 (1988/1989) pp. 291-312.

ROW PROJECTION METHOD 193

[23] D. KINCAID AND D. YOUNG, Adapting iterative algorithms developed for symmetric
systems to nonsymmetric systems, in Elliptic Problem Solvers, M. Schultz, ed.,
Academic Press, New York, 1981, pp. 353-359.

[24] D. KUCK, E. DAVIDSON, D. LAWlIE, AND A. SAMEH, Parallel supercomputing today and
the Cedar approach, Science, 231 (1986), pp. 967-974.

[25] A. KYDES AND R. TEWARSON, An iterative method for solving partitioned linear equa-

tions, Computing, 15 (1975), pp. 357-363.
[26] A. LAKSHMINARAYANAN AND A. LENT, Methods of least squares and SIRT in recon-

struction, J. Theor. Biol., 76 (1979) pp. 267-295.
[27] T. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear systems, Numer.

Math., 28 (1977), pp. 307-327.
[28] , Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev

iteration, Numer. Math., 31 (1978), pp. 183-208.
[29] S. NELSON AND M. NEUMANN, Generalizations of the projection method with applica-

tions to NOR theory for Hermitian positive semidejnite linear systems, Numer.
Math., 51 (1987), pp. 123-141.

[30] W. PETERS, LLsung linearer Gleichungssysteme dutch Projektion auf Schnittriiume
yon Hyperebenen und Berechnung einer verallgemeinerten Inversen, BeLt. Numer.
Math., 5 (1976), pp. 129-146.

[31] Y. ShAD AND M. SCHULTZ, Conjugate gradient-like algorithms for solving nonsymmetric
linear systems, Math. Comp., 44 (1985), pp. 417-424.

[32] P. SAYLOR, Leapfrog variants of iterative methods for linear algebraic equations, J.
Comp. Appl. Math., 24 (1988), pp. 169-193.

[33] PCGPAK User’s Guide, Scientific Computing Associat.es, Inc., New Haven, CT, 1987.
[34] A. SHERMAN, An empirical investigation of methods for nonsymmetric linear systems,

in Elliptic Problem Solvers, M. Schultz, ed., Academic Press, New York, 1981,
pp. 429-434.

[35] G. SMITH, Numerical Solution of Partial Differential Equations: Finite Difference
Methods, Clarendon Press, Oxford, 1978.

[36] G. STEWART, On the perturbation of pseudo-inverses, projections, and linear least
squares problems, SIAM Rev., 19 (1977), pp. 634-662.

[37] K. TANABE, A projection method for solving a singular system of linear equations,
Numer. Math., 17 (1971), pp. 203-214.

[38] W. WHITNEY, R. MEANY, Two algorithms related to the method of steepest descent,
SIAM J. Numer. Anal., 4(1967), pp. 109-118.

[39] J. WILKINSON, Modern error analysis, SIAM Rev., 13 (1971), pp. 548-568.

SIAM J. ScI. STAT. COMPUT.
Vol. 137 No. 1, pp. 194-226, January 1992

1992 Society for Industrial and Applied Mathematics
011

A SET OF NEW MAPPING AND COLORING HEURISTICS FOR
DISTRIBUTED-MEMORY PARALLEL PROCESSORS*

CLAUDE POMMERELLt, MARCO ANNARATONEt, AND WOLFGANG FICHTNERt

Abstract. New mapping and coloring heuristics are developed to parallelize preconditioned
conjugate-gradient-like methods on distributed-memory parallel processors (DMPPs). All these
heuristics are fast, with a "quasi" linear time complexity. These schemes are evaluated by solv-
ing several systems of linear equations from two-dimensional and three-dimensional semiconductor
device simulation on irregular finite-element grids. The benchmarks have been carried out on a
simulated 64-processor DMPP with fast communication channels that is under development at the
Integrated Systems Laboratory of the Swiss Federal Institute of Technology. The linear systems
involved had between 2000 and 75000 unknowns. Depending on the problem under consideration,
speedups between 42 and 54 were obtained. Mapping heuristics that use geometric information given
by the embedding of the problem graph into physical space were found to be superior to heuristics
based solely on the topological information of adjacency structure. Coloring heuristics for vector
computers or shared-memory parallel computers were not sufficient for effective parallelization on
DMPPs. Coloring strategies for DMPPs had to balance the load for each color, taking into account
the mapping and exploiting the locality corresponding to it.

Key words, preconditioned iterative methods, mapping, coloring, distributed-memory parallel
processors, finite elements, semiconductor device simulation

AMS(MOS) subject classifications. 65F10, 65W05

1. Introduction. The efficient solution of large sparse linear systems lies at the
heart of many scientific computing problems. Such solutions usually account for the
major part of the computing resources needed, both in CPU cycles and memory. The
systems themselves arise from the application of appropriate discretization schemes
(e.g., finite elements) to partial differential equations, and may exhibit rather irregular
sparsity patterns.

While direct solution techniques based on Gaussian elimination have proved to be
extremely robust and stable, they are no longer competitive with iterative methods
for problems with large numbers of unknowns, as in three-dimensional (3-D) applica-
tions [30]. Apart from these reasons, iterative schemes offer unique opportunities to
better exploit advanced computer architectures such as parallel and vector machines.
Among the wide variety of methods published, preconditioned conjugate-gradient
schemes [52], [16] have become popular in recent years.

The vectorization and parallelization of iterative methods applied to irregular
problems are more difficult than similar program transformations on dense or regu-
larly structured matrices. While some work on efficient parallelization of these irreg-
ular problems has been carried out for shared-memory multiprocessors and for vector
processors [54], a similar effort for distributed-memory parallel processors (DMPPs) is
still lacking. Moreover, as we shall show in this work, new methodologies are needed
when the implementation on DMPPs is considered. The problem grid has to be
mapped onto the DMPP’s interconnection topology to lower the interprocessor com-
munication overhead. As for shared-memory machines, coloring allows parallelization
of preconditioning and/or vectorization of operations running on one processor.

The paper focuses on aspects of mapping and coloring as they might apply to
implementations of iterative methods on DMPPs. First, we present a short overview

Received by the editors April 5, 1990; accepted for publication (in revised form) July 20, 1990.
Integrated Systems Laboratory, Swiss Federal Institute of Technology, CH-8092 Ziirich, Switzer-

land.

194

MAPPING AND COLORING FOR DMPPs 195

of the implementation details of sparse matrix solvers; this will allow us to introduce
the notation used throughout the study. Second, related results are discussed to
review the current state-of-the-art. Third, and before going into the implementation
details, we summarize the most important contributions our work gives to the research
in this field. Then, the mapping and coloring schemes we developed will be presented,
discussed, and analyzed. Finally, we evaluate the efficiency of the methods we devised
by applying them to realistic problems stemming from two- and three-dimensional
simulation of semiconductor structures.

2. Problem statement.

2.1. Sparse systems of linear equations. A system of N linear equations
Ax b in N unknowns x is called sparse if most of the entries aij of the (square)
matrix A are zero. We call M the total number of nonzeros in A, and D M/N the
average number of nonzeros per row in A.

A symmetric or structurally symmetric sparse matrix is often represented as an
undirected graph [23]. Each pair of off-diagonal nonzero entries aij and aji of the
matrix A corresponds to an edge between the vertex i and the vertex j in the graph.
There are N vertices and (M- N)/2 edges in the graph, and the average degree of a
vertex is equal to D- 1.

In many applications with sparse systems this graph corresponds to a spatial
discretization. Two vertices in the physical discretization that are close to each other
are more likely to be connected by an edge than vertices that are physically far apart.
The matrices are not always symmetric, but usually structurally symmetric, that
is, aij is nonzero if and only if aji is nonzero. Graphs derived from finite-element
discretizations can be quite irregular, featuring a much finer discretization in some
regions than in others. A consequence of Euler’s polyhedron formula [29] is that
D < 7 in two-dimensional triangular grids. Values of D between 7 and 27 are typical
for three-dimensional finite-element grids.

2.2. Direct solution methods. A sparse system can be solved by direct meth-
ods such as Gaussian elimination where A is decomposed into the product of the
triangular matrices L and U. The lower and upper triangular matrices L and U are
generally much denser than A [23], [49]. This fact is known as the problem of "fill" or
"fill-in." Fill causes severe storage requirements that are difficult to estimate because
of their strong dependence on the sparsity structure of A. The execution time of
a direct solver also depends strongly on this unpredictable fill. Ordering techniques
(such as the minimum degree algorithm [51], [25], [41], [24]) have been developed
to reduce the fill on sequential computers. However, for very large problems (with
several hundreds of thousands of unknowns) the storage requirements make the use
of direct methods prohibitive [10], [30].

2.3. Iterative solution methods. Iterative solvers have a known storage over-
head (generally, fewer than ten N-vectors and one matrix with the sparsity structure
of A). The execution time depends on and can be controlled by the accuracy require-
ments imposed.

While there is a wide range of iterative methods reported in the literature [28], we
focus our results on preconditioned conjugate gradient methods. These schemes are
derived from the basic Conjugate-Gradients algorithm [31], [26], [27] for symmetric
positive-definite systems. Several variants have been developed for nonsymmetric
systems, such as Biconjugate Gradients [18], Conjugate Gradients Squared (CGS) [58],
ORTHOMIN [60], ORTHODIR [61], GMRES [55], etc.

196 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

All the above methods share the same basic operations. Each iteration involves
multiplications of the sparse matrix A by a vector, linear operations on vectors (scal-
ing and addition of vectors), vector dot products, scalar divisions, and a test for
convergence. The Biconjugate Gradients method requires also a multiplication of the
transposed matrix AT by a vector in each iteration.

2.4. Preconditioning for iterative solvers. Preconditioning improves stabil-
ity and accelerates convergence [27]. A preconditioner Q is an approximation of A,
such that Q-1A I. In addition to the operations mentioned in the previous sec-
tion, a system Qz r must be solved in each preconditioned iteration. Therefore,
the preconditioner Q must be easy to invert. Figure 1 shows one way of writing the
preconditioned conjugate gradients algorithm [27].

r0 := b- Axo;
Zo := Q-iro;
k:--0;
while no convergence loop

if k 0 then
p0 :-- z0;

else
Tzk rkk"- T

Zk_lrk-1

Pk := zk + kPk-1;
end if;

Tzk rk
ak’-- TApk;Pk
Xk+l :-- Xk - kPk;

rk+l :-- rk OkApk;

Zk+ :-- Q-rk+l;
k := k + 1;

end loop;

FIG. 1. The preconditioned conjugate gradient method.

Incomplete factorizations are often used as preconditioning methods; here, Q is
the product of two sparse triangular matrices L and U. The sparsity structure of
L + U is generally chosen to be identical to that of A. Solving a system with Q then
reduces to one forward and one backward substitution step, with the same amount of
computation as a sparse matrix-vector product. L and U must be set up before the
first iteration starts. ILU, MILU, SSOR, ICCG(0) are examples of such schemes [17],

3. Parallelization and vectorization of preconditioned conjugates-gradi-
ent-like methods. An efficient implementation of these methods must focus on the
four basic operations mentioned above [54]. Both the sparse matrix-vector prod-
ucts and the substitution steps in the incomplete factorization preconditioner require
O(M) operations. The linear operations on vectors and the vector dot products re-
quire O(N) operations each.

We summarize below the state-of-the-art in this field.

MAPPING AND COLORING FOR DMPPs 197

3.1. Vector and shared-memory parallel computers. Linear operations on
vectors and vector dot products can be efficiently implemented on these machines.
Sparse matrix-vector multiplication is also efficient on vector computers if gather and
scatter hardware supports the execution of vector operations with irregular address
patterns [7], [38].

Vectorization of the solution of sparse triangular systems with incomplete factor-
ization preconditioners is more difficult. Figure 2 shows the forward substitution to
solve the system Lx b, where L is a sparse lower triangular matrix. The inner loop
(the summation) can be vectorized, but it requires on average only D/2 multiplica-
tions and additions. The outer loop features a data dependence on x: the value of x
depends on some xj with j < i.

i 1;
while i _< N loop

1(xi "= bi-

i :-- i + 1;
end loop;

FIG. 2. Sparse forward substitution.

The outer loop can only be vectorized if the sparsity structure of L is exploited.
A set of contiguous values x8 to xt can be computed in parallel if they are mutually
independent in Lx b, that is, the submatrix

must be diagonal.
In the associated graph the vertices in the set c {s,..., t} must be independent.

There is no edge connecting any vertex in c to another vertex in c. In graph theory
a partitioning of the vertices of a graph into sets of independent vertices is called
coloring.

After coloring, the outer loop of the substitution can be vectorized color by colon
The achievable performance depends on the relationship between the size of the color
sets and the startup latency of the hardware vector pipeline(s). In general, vector
processors benefit from color sets that are as large as possible. Finally, note that
finding a coloring scheme that provides minimum number of colors in an arbitrary
graph is an NP-complete problem [22].

Similar considerations apply also when parallelizing incomplete factorization pre-
conditioners on shared-memory multiprocessors.

The coloring approach suggested by Schreiber and Tang in 1982 [57] has been used
by several researchers to vectorize and parallelize the solution of triangular systems
resulting from regular grids, like 5-point or 9-point stencil meshes [34], [1], [45], [50],
[6], [10]. Red/black coloring is a well-known technique to create sets of independent
vertices in finite difference meshes using a 5-point stencil [28].

Poole and Ortega [50] compare several patterns for 4-coloring regular 9-point
stencil meshes. They define a continuous coloring rule to obtain maximum vector

198 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

lengths for a given number of colors on a two- and three-dimensional rectangular
grid.

Melhem and Ramarao [47] describe a technique to color irregular meshes of tri-
angular elements. The algorithm proceeds by constructing a level structure [23] of
the graph. Each level is an outerplanar graph (a planar graph that can be embedded
in a plane such that all the vertices lie on a contour and all the edges lie inside this
contour) and can be 3-colored. If two sets of three colors are used for M1 the odd and
even levels, a 6-coloring is obtained. The coloring algorithm can be extended by a
more extensive backtracking scheme to obtain a 4-coloring.

Bank et al. [10] use a simple greedy algorithm [2] to color irregular finite-element
meshes, using at most one color more than the maximum vertex degree in the graph.

Lichnewsky [40], [39] uses steps of nested dissection [23] to split the graph into
2 subdomains that can be processed in parallel on 2 processors. The vertices on
the separators are handled serially at the end.

Several of the above authors report a degradation in the convergence rate of
multicolor preconditioned iterative methods. However, we are not aware of any gen-
eralizable results concerning systems with irregular sparsity patterns. In [30], we give
some preliminary results on the influence of coloring and ordering on the convergence
rate for problems in semiconductor device simulations.

3.2. Distributed-memory parallel processors. The following aspects arise
in the parallelization of preconditioned conjugate-gradient-like methods on distributed-
memory parallel processors.

3.2.1. Data distribution. Linear operations on vectors (multiplication of a vec-
tor by a scalar and addition of vectors) can be executed without any communication if
for each component of the result vector computed on processor P, the corresponding
components of the operand vectors are also available on P. It is therefore convenient
to partition the components of 11 vectors in the same way. In terms of graphs, each
vertex holds one component of each vector. We can assign at most [N/P vertices to
each of the P processors in order to achieve the optimum load balance for the linear
operations.

The vector dot product is computed as follows: First, the processors compute in
parallel the dot product on their local vectors. This part of the computation is again
load balanced with the vector partitioning above. Then, the partial results are added
up globally. Finally, the result is made available to all the processors.

The sparse matrix A, as well as the sparse factors of the preconditioner, should
be distributed to parallelize the matrix-vector multiplication and the substitutions.
The rows or the columns of the matrices can be partitioned the same way as the
vector components. In graph terms, row partitioning corresponds to storing each arc
together with its source vertex, and column partitioning corresponds to storing each
arc together with its destination vertex. The computational load for the two O(M)
operations is balanced if the number of arcs is also distributed equally among the
processors.

Because global communication and processor synchronization is required, the vec-
tor dot product is dominating the execution time on message-passing DMPPs that
feature relatively large message startup time, like the iPSC [8], [42]. Aykanat and
)zygiiner [8], and Aykanat, zgiiner, Ercal, and Sadayappan [9] propose to overcome
this bottleneck by modifying the basic conjugate-gradient algorithm. Their "coarse
grain" algorithms require fewer vector dot products, at the expense of some overhead

MAPPING AND COLORING FOR DMPPs 199

in the local computation. Annaratone, Pommerell, and Riihl [5] showed that the syn-
chronization overhead of the vector dot product can be neglected in DMPPs with low
latency communication channels, such as those used in systolic communication.

3.2.2. Mapping. When performing a matrix-vector multiplication, the proces-
sors must access some nonlocal components of the operand vector, depending on the
sparsity pattern of the local rows. In terms of graphs, the computation for one vertex
requires data from all its adjacent vertices.

If the matrix is partitioned row-wise as described above, the whole communication
can be performed before the actual computation starts. The processors send the
components of their local vectors to all the processors that need them, that is, to
those processors with nonzero entries in the corresponding columns of their local
sparse matrix. After having received the missing parts of the vectors, a processor can
multiply its local matrix by the extended vector (locM vector and received nonlocal
parts), yielding the local part of the resulting vector.

The assignment of adjacent vertices to processors determines the communication
requirements:

1. If both vertices Vl and v2 incident to an edge are allocated to the same
processor P1 (Fig. 3), no communication is required by the data dependence
represented by this edge.

Fxa. 3. Two adjacent vertices on the same processor.

2. If two adjacent vertices vl and v2 are located on neighboring processors P1 and
P2 (Fig. 4), their values have to be exchanged through the channel connecting
P1 and P2.

FIG. 4. Two adjacent vertices on neighboring processors.

3. If two adjacent vertices vl and v2 are located on non-neighboring processors
P1 and P3 (Fig. 5), the communication overhead to exchange their respective
values increases with the number of hops separating the two processors. The
two vertices should therefore be allocated onto neighboring or close processors.

4. The value of a vertex Vl (located on processor P1) that is needed by two or
more vertices v2, v3, on the same other processor P2 (Fig. 6) has to be
sent only once to P2.

5. The value of a vertex Vl (located on processor P1) that is needed by two
or more vertices v2, v3, on different processors P2, P3, (Fig. 7) need

200 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

FIG. 5. Two adjacent vertices on non-neighboring processors.

FiG. 6. Two adjacent vertices to a vertex that are assigned to another processor.

not be sent directly to all these processors, but can be forwarded by those
processors on the shortest path.

!.....

i-"

Pl P2 P3

FIG. 7. Two adjacent vertices to a vertex that are assigned to two other processors.

6. A set of values to be sent from one processor P1 to another processor P2
(Fig. 8) can be packed together into a larger message. This is particularly
important on message-passing architectures (e.g., hypercubes) where the over-
head for message creation is large.

The problem graph has to be mapped onto the interconnection topology to mini-
mize the communication overhead. This mapping still needs to ensure equal load bal-
ance as specified above. While this is easy to accomplish for finite-difference graphs,
finding an optimal mapping of a complex structure--like a finite-element graph--is
NP-complete [22].

The graph is often not mapped onto the full interconnection topology offered by
the parallel architecture, but onto a linear array or onto a regular two-dimensional
(2-D) mesh (hypercubes or tori contain these topologies). One reason is that the
problem domain (the physical space that is discretized by the graph) is usually only
two- or three-dimensional.

Sadayappan and Ercal [56] describe a heuristic technique to map square meshes
and irregular graphs into a one-dimensional (l-D) array of processors. Vertices are
assigned to processors in the order they appear in a level structure partitioning the
graph. Load balance is assured, and only local communication is necessary. By using
the intersections .of two 1-D mappings starting from sets of vertices on orthogonal
boundaries of the problem domain, they obtain an unbalanced mapping onto a 2-D
mesh of processors. The latter is then rebalanced by local refinement. Aykanat,
giiner, Ercal, and Sadayappan [9] evaluated these mapping strategies on 1-D and

MAPPING AND COLORING FOI DMPPs 201

FIG. 8. Multiple edges between the vertices of two processors.

2-D topologies embedded into an Intel iPSC/2 hypercube. More values have to be
exchanged in 1-D mappings, but they are packed into a smaller number of messages.
Because of the large overhead in message creation, the 1-D mappings are preferred
for realistic problem sizes.

Fox [20], [19] describes several mapping strategies that use only the topological
information given by the graph adjacencies, and no geometric information on the
embedding of the graph in the physical problem domain. Simulated annealing and
an approach based on neural networks yield the best mappings at the expense of
execution time for the mapping heuristic itself. Orthogonal recursive bisection (ORB)
recursively cuts the graph into two subgraphs by ordering the vertices according to
the difference of their distance to two sets of vertices. The quality of the mapping
depends to a large degree on heuristics to obtain orthogonl cuts.

Other strategies have been proposed and tested on small graphs by Bokhari [13],
Lee and Aggarwal [37], and Berger and Bokhari [12].

3.2.3. Coloring. The total amount of computation in the two substitution steps
for incomplete factorization preconditioning is similar to the matrix-vector product.
The total communication requirements are of the same order of magnitude. However,
there is much more synchronization required to solve sparse triangular systems.

If two vertices i and j are allocated on two different processors Pi and Pj, and if
xj depends on xi (that is, if j 0 or u 0), the processor P has to wait until it
receives the new value x from P before it can update xj. There are up to 2N such
synchronization points required to perform both forward and backward substitution.

These synchronization points must be grouped together to reduce this unaccept-
able synchronization overhead. The way to achieve this is again through coloring.
Each color is distributed to all the processors. Processors handle the same color con-
currently. Between the processing of two colors, the needed values from the latest
colors are exchanged. If C is the number of colors, a total of (2C- 2) such synchro-
nization points are required to perform the two substitution steps.

Coloring on DMPPs differs from coloring for shared-memory parallelization or
vectorization in the following aspects:

1. Dependent vertices allocated on the same processor can be processed in the
same color since no communication is required. The edges between local
vertices need not be considered for the coloring of the graph.

2. The vertices of each color have to be distributed equally onto the processors,
in addition to the distribution requirements mentioned in 3.2.1.

3. The number of colors must be as small as possible to reduce the synchroniza-
tion overhead.

This is not true, however, if the nodes of the DMPP are vector processors and if we want to
exploit the vector capabilities of each single node.

202 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

4. Coloring and mapping (3.2.2) should be combined to ease the coloring task
and to potentially reduce the number of colors that are required.

Because of this, the coloring strategies for shared-memory parallelization and
vectorization described in 3.1 can only be partially applied to DMPPs.

Coloring for regular 5-point or 9-point stencil meshes has been described by several
researchers, for instance by Shad [53], O’Leary [48], and Lai and Liddell [36].

Tseng [59] used maximum color renumbering to parallelize sparse substitution
on a systolic computer. Melhem [43], [46] defines a systolic network for triangular
system solution where the sparse matrix is striped [44], and each cell handles one
stripe. Both these approaches can be applied to irregular sparse systems, and both
schemes pass a whole vector through all processors (and through the host in the Warp
implementation [3]), so that the communication overhead for each processor is o(g).

4. Mapping and coloring schemes for DMPPs. In this section we describe
the mapping and coloring schemes we use to solve sparse systems of equations on a
DMPP. The quality of the various schemes for real problems will be compared in 5.
In the description of each heuristic we put a shorthand name as (HEUR), which will
be used to refer to this method in the tables.

Note that most of the heuristics described in this section are novel approaches
for mapping and coloring on DMPPs. Only woPl-1, GEO2-R, and GREEDY have been
used before, albeit in another context.

We are mainly interested in mapping and coloring irregular graphs used in 2-D or
3-D finite-element analysis. Besides the requirements developed in 3.2, we want our
mapping and coloring heuristics to be fast; all our schemes must execute in "almost"
linear time, i.e., their time complexity must be smaller than O(N1+) for any e > 0.
In fact, all our heuristics have a time complexity of

(1) O(Dg / N log N / N log P + CN),

where N is the number of vertices in the graph, D the average degree of the vertices,
P the number of processors, and C the number of colors in the coloring.2

4.1. Mapping heuristics. Our mapping heuristics can be classified by the fol-
lowing criteria:

1. The type of information used. The heuristic can be based either only on
topolo9ical information as given by the adjacency structure of the graph, or
it can use 9eometric information given by the embedding of the graph into
physical space. The latter is available, for instance, in a finite-element graph,
where the physical position of the vertices (which are the corner points of
elements) is already required to assemble the matrices.

2. The target topology. 1-D mappings map the graph onto a linear array of P
processors, while 2-D mappings map it onto a Ph P.-mesh of processors.
The mappings can be compared for P PhP,.

We write a mapping .4 as an ordered list of sets tp, where each jtp denotes the
set of vertices assigned to the processor p. In particular,

A (Ao, A1,""" ,.Ap-1)

is a partitioning of the set of vertices of the graph V(G). We define the (absolute)
imbalance 2"(jr) of a mapping as the maximum number of vertices assigned to a

2 There is one exception to this rule. If P is not a power of two, one oi the heuristics executes in

O(N log N log P) time. See 4.3.1 for more details.

MAPPING AND COLORING FOR DMPPs 203

processor minus the average number of vertices assigned to processors:

N
p P

:/’(4) corresponds to load imbalance in any kind of operation where the amount
of computation required for each vertex is the same. If the vertices can be treated
independently from each other--e.g., no communication is required--the imbalance
can be used to estimate the speedup:

Ns:

Equation (2) gives an estimation for the speedup of linear operations on vectors
assigned to the processors of a DMPP according to j[. If we assume, moreover, that
all rows of the sparse matrix have about the same number of nonzeros, (2) can also
be used to estimate the speedup of a matrix-vector product.

A necessary condition for Z(jt) to be zero is that the number of processors P
divides the number of vertices N. In the general case, we say that a mapping is
perfectly balanced if its imbalance is smaller or equal to 1:

:Z’(A) < 1.

Theorem 4.1 follows immediately.
THEOREM 4.1. A mapping is perfectly balanced if no processor is assigned more

than [] vertices.
All our mapping heuristics try to find a perfectly balanced mapping with minimal

communication overhead. In the following, we give a short discussion of the various
mapping schemes investigated in this study.

4.1.1. 1-D geometric mapping (GEO1). Geometric mapping onto a linear ar-
ray of processors is straightforward. We sort the vertices by their x-coordinate and
assign the first NIP vertices of the sorted list to the first (leftmost) processor, the
next NIP vertices to the second processor, and so on. Instead of sorting according to
the x-coordinate, we can choose any direction vector in physical space and sort the
vertices according to their projection on this direction.

4.1.2. 2-D geometric mapping (GEO2-S, GEO2-R). We have implemented two
schemes to map a graph onto a Ph x Pv-mesh using geometric information.

The first method works on the two dimensions separately (GEO2-S). First, the
vertices are sorted according to their x-coordinate. This sorted list of vertices is
partitioned by Pv 1 vertical cut lines into P sets of N/P vertices each, and each
of these sets is assigned to one row of the mesh of processors. Then each set is sorted
again according to the y-coordinate and partitioned by Ph- 1 horizontal cut lines
into Ph sets, and each of these sets is assigned to one processor of this row.

The second method proceeds by recursively splitting the graph with dimensions
alternating (GEO2-R). Let us assume for a moment that the target mesh is square
and the number of processors is a power of two: Ph P 2. The vertices are
first split into two sets by one vertical cut line. Then each of these two sets is split
by one horizontal cut line, so that we have now four sets of vertices. Each of these
four sets is again partitioned by a vertical cut line and then by horizontal cut lines.
This procedure is executed recursively , times, so that at the end there are P sets of
vertices to be assigned to the P processors.

204 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

The latter approach is similar to the one that Berger and Bokhari [12] described
and tested on some very small graphs. For convenience, we extended it also to the
case where the processor mesh is not square and where the number of processors is
not a power of two.

Note also that instead of using the x- and the y-coordinate, we can use the
projection of the vertex onto any pair of independent vectors in the physical space as
partitioning criteria for both our schemes.

4.1.3. 1-D topological mapping (TOPI-I TOP1-2). If geometric information
from the physical embedding of the problem graph is not available, we need another
way to extract the concepts of position and distance in the graph.

The (graphica distance between a vertex v and a vertex w is usually defined as
the length of the shortest path from v to w [29]. Let S be a (nonempty) subset of the
vertices of G. We define the distance of a vertex v from the set S as the minimum
distance of v to any vertex in S:

s)

We can now sort the vertices by their graphical distance from the set S. Then
we can map this sorted list of vertices onto a linear array of processors in the way
discussed 4.1.1, assigning the first NIP vertices of the sorted list to the first (leftmost)
processor, the next NIP vertices to the second processor, and so on (woPl-1).

This type of 1-D topological mapping has been used by Sadayappan and Ercal [56]
and by Fox [19] to map sparse graphs onto a ring embedded in a hypercube.

Several vertices will have the same graphical distance from the set S. For a 2-D
finite-element graph the number of vertices having the same distance from a small set
S is O(V). For a 3-D finite-element graph this number is 0(N2/3). Thus a variant
of the 1-D topological mapping is to use the distance from a second subset of vertices
T as a second sorting criterion for all the vertices having the same distance from the
first set S (TOP1-2).

4.1.4. 2-D topological mapping (TOP2). The idea of using the distance of
each vertex from two starting sets S and T can be used to derive a 2-D mapping
of the graph onto a Ph Pv-mesh. The distances from the two sets S and T form
a two-dimensional coordinate system in the graph, attributing to each vertex v its
position relative to S and T by the pair (d(v, S), d(v, T)). Note that different vertices
can have the same position.

The same procedure as in 2-D geometric mapping can thus be applied. We first
sort the vertices according to their distance to S. We partition this sorted list into

Pv sets of N/Pv vertices each and assign each of these sets to one row of the mesh of
processors. The vertices of each set are then sorted according to their distance to T,
and they are mapped to the row of processors in a similar way to the one shown in

4.1.3.
4.2. Coloring heuristics. Coloring is used to partition the vertices into sets

(colors) of independent vertices. As pointed out in 3.2.3, local dependences need not
be considered, that is, vertices assigned to the same processor of a DMPP can have
the same color. We can define three categories of coloring strategies, depending on
their relationship with the mapping strategy:

1. Mapping and coloring are done independently of each other. In this case,
the above property is not exploited, and all vertices in one color must be

MAPPING AND COLORING FOR DMPPs 205

independent of each other regardless of their assignment to processors. We
can thus use the mapping heuristics that have been developed for vector
processors and shared-memory multiprocessors described in 3.1.

2. Coloring is done after mapping. After the mapping heuristic has assigned pro-
cessors to vertices, the edges between vertices mapped on the same processor
can be identified and ignored in the coloring heuristic. The first requirement
for mapping strategies mentioned in 3.2.2 ensures that as many edges as
possible can be deleted this way.

3. Coloring is done before mapping. Pairs of adjacent vertices that have received
the same color must be assigned to the same processor in the later mapping
stage. The mapping scheme has to be adapted to satisfy this additional
requirement.

We have implemented the five following coloring heuristics.

4.2.1. Greedy coloring (GREEDY). This scheme colors the graph indepen-
dently of the assignment of vertices to processors. The algorithm has been described
by Aho, Hopcroft, and Ullman [2]. For each color it sweeps once through the whole
set of vertices (in the order they are numbered). If a vertex is not yet colored and is
not adjacent to any vertex having this color, it is assigned this color. The maximum
number of colors is equal to one plus the maximum degree of any vertex, but usually
fewer colors are needed to color all the vertices of the graph. Greedy coloring has
been used by Bank et al. [10] to color irregular finite-element meshes for vectorization
and shared-memory parallelization.

4.2.2. Greedy coloring after mapping (GRAFT). We now map first, then
remove all edges between vertices assigned to the same processor, and apply greedy
coloring to this reduced graph. As fewer edges restrict the coloring sweeps, possibly
fewer colors are needed than in independent greedy coloring.

4.2.3. Balanced greedy coloring (BALANCED1, BALANCED2, BALANCED3).
The previous scheme addresses the first and the third points we made about coloring
on DMPPs in 3.2.3, ignoring local dependences and reducing the number of colors.
The present scheme now addresses point 2 by trying to balance the distribution of
the vertices of each color, even if this increases the number of colors.

In extension to the notation introduced in 4.1, let C be the set of vertices colored
with the cth color. Let A be the set of vertices of color c assigned to processor p:

,A 4p NCc. The coloring imbalance of color c,/:c(,4, C), is defined as the maximum
number of vertices of color c assigned to a processor minus the average number of
vertices of color c assigned to processors:

p p

In a balanced coloring scheme, we put an upper bound /:max on the coloring
imbalance, forcing

Vc 2:(A,) _< Zmx.

The resulting number of colors might be larger than in a coloring where the
coloring imbalance is not limited.

Our balanced greedy coloring is implemented as follows: for each color, we try
to color at each stage one vertex of each processor. We accept at most 2"max stages

206 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

where we could not color vertices from all processors before passing to the next color.
This coloring has to be performed after the mapping anyway, so we disregard local
dependences in the mapping (BALANCEDI with 2?max 1, BALANCED2 with Imax 2,
and BALANCED3 with ’max 3).

4.2.4. Level coloring (LEVEL). This and the following coloring schemes are
performed before a suitable mapping scheme is carried out.

Let S Lo(S) be a (nonempty) subset of the vertices of the graph G. For each
k >_ 1, the set Lk(S) is called kth level around S, defined recursively as being the set
of all vertices of G that are adjacent to a vertex in previous level Lk-1 (’), but do not
belong to any of the levels Lo(S),... ,L_I(S).
The collection of sets

(S)- (Lo(S),LI(S),’.’, Le(v)(S))
is a level structure around S of G. S is called the starting set of the level structure.
See Appendix A for a more rigorous derivation of the properties of level structures.

Level coloring colors all the vertices of the even-numbered levels with a first color
and all the vertices of the odd-numbered levels with a second color. Isochromatic
vertices in different levels are not connected because of Theorem A.2. Two vertices
inside the same level, however, may be connected by an edge. This is why we have
to map whole levels together so that these dependences inside a level are local to a
processor.

A 1-D mapping heuristic on a level colored graph can be derived from our first
1-D topological mapping scheme TOP1-1 described in 4.1.3. We need to assign all the
vertices having the same distance from the set S together. Each level that was par-
titioned on more than one processor in the original mapping is now entirely assigned
to the processor that had the most of the vertices of this level (TOPl-1").

The resulting mapping may not be perfectly balanced, but its imbalance cannot
be larger than the largest level of the level structure:

2"(4) _< m.ax

4.2.5. Level intersection coloring (INODE). Two level structures of the same
graph can be combined into a double level structure :(S,T), defined as being the
collection of the sets formed by the intersections of the levels of :(S) and/:(T). The
intersections Lij(S, T) Li(S) N Lj(T) are called I-nodes.

Level intersection coloring colors all the vertices that belong to the same I-node
(that is, that have the same distances to the sets S and T) with the same color.
Two I-nodes that are included into adjacent levels of either/:(S) or :(T) are colored
differently. In Appendix B we show how four colors can be used to obtain this coloring.
As all the vertices of an I-node have the same color, we have to assign whole I-nodes
together to the same processor when mapping the intersection level colored graph to
a DMPP.

We can derive 1-D and 2-D mappings for intersection level colored graphs from
all our three topological mapping heuristics in 4.1.3 and 4.1.4. For our first 1-D
topological mapping scheme TOP1-1, we can proceed as in 4.2.4, assigning whole
levels together, so that I-nodes will certainly not be split (TOP1-1*). For the two
schemes based on the graphical distance to two sets TOP1-2 and TOP2, each I-node
will now be assigned to the processor that had most of the vertices of this I-node in
the original topological mapping (TOP1-2* and TOP2*).

MAPPING AND COLORING FOR DMPPs 207

Again, we do not necessarily obtain a perfectly balanced mapping. The imbalance
of the mapping based on I-nodes cannot be larger than the size of the largest I-node:

I(A) <_ m .ax

Note that no I-node can be larger than any level of the two level structures (S)
and :(T) it is derived from. Therefore, this upper bound on the imbalance of the
mapping of the intersection level colored graph is certainly less than or equal to the
smallest bound on the imbalance of the mappings of the graph level colored by any
of these level structures.

4.3. Implementation. We will show now how all the heuristics presented above
can be implemented with the complexity bound (1) fixed at the beginning of this
section. The construction of data structures that support the data exchange during
the parallel execution of the algorithms with fixed mapping and coloring requires
an even harder implementation effort than these mapping and coloring heuristics.
However, we will not go into these implementation details.

4.3.1. Geometric mappings. The 1-D geometric mapping heuristic (GEO1)
only needs to sort all the N vertices according to a direction. To achieve this, stan-
dard sorting algorithms like Quicksort or Heapsort, which have a time Complexity of
O(Ylog N) [35], can be used.

The first 2-D geometric mapping heuristic (GEO2-S) also starts by sorting the N
vertices according to the first dimension. In a second step, it has to sort Pv arrays of
N/Pv vertices each according to the second dimension. The overall time complexity
is still O(N log N).

Calculating the complexity of the second 2-D geometric mapping heuristic, recur-
sive splitting (GEO2-R), is a bit more complicated. Assume that, in the first stage,
we split the graph into P1 subsets of equal size. We can again do this by sorting the
N vertices and cutting the sorted array into P1 pieces. In the second stage, we split
each of these P subsets into P2 subsets, and we do this by sorting P arrays of size

NIPs. This procedure is repeated recursively until we have P sets of vertices that
can be assigned to the processors. Let us assume it takes r recursive stages, and we
split into P, P2, P3, Pr pieces at each stage. The total number of operations
will be a constant multiple of

N N N
log

N
noper- N log N + P1 log +... + PP2... Pr- pp2... P- P1P2"’" P-

N(rlogg- (r- 1) logP (r- 2) log P2 log P_I).

The product of the number of subsets Pk generated at each stage k must be equal
to P:

The Pk’s are integers, and none of them can be smaller than 2. The number
of stages can therefore not be larger than the logarithm base two of the number of
processors:

r

_
log2 P.

This implies a bound on the complexity of the implementation:

noper _< N log P log N.

208 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

This is the case mentioned in footnote 2 in the introduction of 4, and it does
not satisfy the bound (1). If P is a power of 2, however, we need not sort the array
completely at each stage: We rather use the find algorithm [32] to find the median
element of the array. This algorithm, which uses the same divide-and-conquer strategy
as Quicksort, executes in linear time and has the side effect that:it reorders the array
such that all the keys that are smaller than the median precede the median, and all
the keys that are larger than the median succeed it. The bound then becomes

noper _< N log P,

which satisfies (1).
4.3.2. Topological mappings and level structures. The construction of a

level structure can be derived directly from Corollary A.5 in Appendix A, as depicted
in Fig. 9.

Lo(S) := S;
R := V(g) S;
k:=0;
while R - loop

k:=k+l;
Lk(S) := 0;
for each vertex v E Lk-1 (S) loop

for each vertex w Adj(v) loop
if w R then

Lk := Lk (2 {w};
R:=R-{w};

end if;
end loop;

end loop;
end loop;
e(S) := k;

FIG. 9. Construction of a level structure.

The algorithm in Fig. 9 takes O(DN) time, as the inner loop is executed (on the
whole) at most DN times, once for each edge.

If we put the vertices of G into a list in the order we remove them from the set
of remaining vertices R, this list can be used directly for both level coloring and our
first 1-D topological mapping scheme.

The distances to the two starting sets S and T, as they can be read from the two
level structures/:(S) and/:(T), form a discrete two-dimensional "coordinate system"
in the graph. In this coordinate system we can again use the same 2-D geometric
mapping schemes to generate our second 1-D and our 2-D topological mapping scheme
as well as our level intersection coloring scheme.

4.3.3. Greedy-type coloring schemes. Figure 10 shows a possible implemen-
tation of the greedy coloring algorithm described by Aho, Hopcroft, and Ullman [2].
After execution, the integer C holds the number of colors needed, and the sets Cc
hold the vertices for each color c.

MAPPING AND COLORING FOR DMPPs 209

R := V(a);
c "= 0;
while R # loop

:=
I := R;
while I # loop

select a vertex v E I
:=

:= I-
R:=R-{v};
for each vertex w Adj(v) loop

if w I then
I := I- {w};

end if;
end loop;

end loop;
c:=c+l;

end loop;
C:-c;

FIG. 10. The greedy coloring algorithm.

The outer loop in Fig. 10 is executed C times (where C is the number of colors),
the second loop is executed N times on the whole, and the inner loop is executed DN
times on the whole. The set assignment inside the outer loop takes at most O(N)
time, so the complexity of the basic greedy algorithm is O(DN + CN).

The algorithm for greedy coloring after mapping is very similar to the simple
greedy coloring algorithm, one just has to put an additional guard in the inner con-
dition statement.

Figure 11 shows an implementation of the balanced greedy algorithm with a given
mapping jr. The complexity analysis is the same as for the simple greedy algorithm,
except that the innermost loop on the processors may execute up to CP:max times
more. We ignored this term in our upper bound on the complexity (1), assuming that
it is smaller than the other terms in (1).

5. Evaluation.

5.1. Description of the experiments. We will now quantify the quality of
the different mapping and coloring schemes by comparing the speedups obtained on
conjugate-gradients-like methods applied to a set of test problems. The following
parameters characterize our experimental environment:

In each experiment, we applied all possible combinations of our mapping and
our coloring schemes and then ran the same number of iterations of the same
CG-like algorithm on the same DMPP (same topology and same architecture)
to solve the same problem. Speedup comparisons are relative to the same
algorithm without coloring on a single processor with the same architecture.
All our examples are systems of linear equations used for 2-D or 3-D semicon-
ductor device simulation with irregular finite-element grids. We used conju-
gate gradients (CG) to solve the symmetric (not necessarily positive-definite)

210 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

for each processor p loop

R := t;
end loop;
c := O;
while Ro t2 R t2 t2 Rp_ # loop
c .=;
for each processor p loop

:= R;
end loop;
flag := false;
while Icurr </max loop

for each processor p loop
if Ip then

flag := true;
else

select a vertex v E Ip
c := c {v};
I := I- (};

:= {v};
for each vertex w Adj(v) loop

find p, such that w jtp
if p,#pANDwIp then

I :=
end if;

end loop;
end if;

end loop;
if flag true then

Icurr :- Icurr + 1;
end if;

end loop;
c := c + 1;

end loop;
C:=c;

FIG. 11. The balanced greedy coloring algorithm.

systems for the solution of the Poisson equation for the electrostatic poten-
tial, and biconjugate gradients (BiCG), conjugate gradients squared (CGS), or

ORTHOMIN(1), all with ILU or MILU preconditioning, to solve the nonsym-
metric systems for the solution of the continuity equations for the carrier con-
centrations. We used the right preconditioned versions of all the algorithms.
The preconditioner was ILU. For symmetric positive definite matrices, ILU
preconditioning is equivalent to incomplete Cholesky preconditioning, so our
CG algorithm is nothing but ICCG(0).
We measured the execution time for ten iterations of the respective algorithm,
regardless of the accuracy achieved. We will explain in 5.5 why we selected
this standard of comparison rather than comparing the execution times to

MAPPING AND COLORING FOR DMPPs 211

achieve a given accuracy.
The topology we used is a 2-D mesh of 8 rows by 8 columns of processors.
Each processor communicates with its four neighbors in the mesh via send
and receive statements. Sending or receiving one number to or from a neigh-
bor processor takes half the time of one multiply-add operation on one pro-
cessor. The processors are AMD 29000 microprocessors with floating-point
coprocessor. These numbers reflect the hardware of a DMPP currently under
development at our Laboratory [4]. The choice of the topology is justified by
the results from the works of Dally [15] and Johnsson [33], who sho that
a two-dimensional topology represents a natural choice for a DMPP with 64
processors.
Our experiments were carried out on the K9 simulator [11]. Besides repro-
ducible timing measurements, it delivers detailed information about the pro-
cessor utilization and the communication volume. Although the K9 timing
model for the hardware under development is accurate within :t:8 percent, we
will present here only relative results.
We are aware of the risks associated with the use of simulators to predict
speedup results. Note, however, that DMPPs supporting systolic commu-
nication tend to be easier to model than those employing message-passing.
This is typically due to the former’s high degree of synchronism in the com-
munication and deterministic latency in information transfer.

Section 5.2 presents in detail the results obtained on one particular 2-D problem.
Execution times will be broken down into the time required for the different kinds
of operations, and also in the contributions of computation, communication, and
idle time due to synchronization. Section 5.3 shows in a similar way the results for
one particular 3-D problem. Section 5.4 summarizes the results obtained on other
experiments.

5.2. A 2-D problem.

5.2.1. The problem. The problem we used in this experiment arises in the two-
dimensional simulation of the electrical behavior of a short-channel MOSFET. The
system of linear equations (whose sparsity structure is reflected by a rather irregular
grid) has N 2674 unknowns and M 18404 nonzeros in the sparse matrix, with
an average of 6.88 nonzero elements per row.

5.2.2. Obtained speedups. As an example, Table 1 shows the speedups ob-
tained for preconditioned BiCG using different pairs of a mapping and a coloring.
Each column of a table lists the values for the same mapping scheme, and each row
lists the values for the same coloring scheme.

The first observation we can make concerns the type of information used for
the mapping heuristic. Our geometric mapping strategies achieve significantly better
results than our topological ones. The choice of the target topology, that is, whether
the graph is mapped onto a 1-D array of 64 processors or onto an 2-D mesh of 8 by 8
processors, influences the speedup only marginally. The same holds true for the two
variants for 2-D geometric and 1-D topological mapping. The effort of balancing the
coloring pays off, and the improvement in speedup is noticeable. The level and level
intersection coloring heuristics deliver some speedup, but are outperformed by the
other schemes.

5.2.3. Analysis of relative contributions. We will now justify the speedup
results by a detailed analysis. As we stated in 2.3 and 2.4, the basic operations used

212 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

TABLE 1
Speedup obtained on a 64-processor torus for 10 iterations of preconditioned BiCG on a 2-D

problem. With the exception of the numbers in italics, all the results refer to the novel mapping
and/or coloring techniques presented in this study.

Coloring GEO1 I..GEO2-S GEO2-R TOP1-1 TOP1-2 TOP2

GREEDY 41.04 36.02 35.99 21.00 21,44 25.39
GRAFT 40.74 35".16 33.40 20.69’ 21.90 26.02

BALANCED1 44.74 44.68 43.37 22.34 23.11 26.87
BALANCED2 44.63 44.90 43.61 22.66 23.32 27.14
BALANCED3 44.03 44.10 43.45 22.93 23.58 27.14

LEVEL 8.92
INODE 10.64 16.97 16.12

in all these methods are linear operations on vectors, vector dot products, multiplica-
tions of the sparse matrix A or its transpose AT by a vector, and solutions of systems
of the type Qz r with the preconditioner Q. Table 2 shows the relative percentages
of the execution time of the serial implementation of the different algorithms taken
by the different types of operations.

TABLE 2
Decomposition of the execution time of the serial algorithms (2-D problem) into linear opera-

tions ((v -w), vector dot products (vTw), matrix-vector products (Av), transposed matrix-vector
products ATv) and preconditioning operations Q- v)

Type of Contribution to
operation C(CGS BiCG ORTHOMIN(1)
v + w 13.16% 14.06% 16.72% 16.00%
vTw 8.19% 5.95% 5.99% 13.91%
Av 35.14% 35.74% 17.99% 31.32%
ATv 16.97%
Q-iv 43.50% 44.24% 42.32% 38.77%

We will now examine the speedups that can be obtained on each of these basic oper-
ations.

5.2.4. Linear operations and vector dot products. For linear operations
on vectors and vector dot products, we stated above that the achievable speedup
depends only on a single parameter of the mapping, which is the imbalance 2:(jr)
defined in 4.1. Almost all our mappings are perfectly balanced. The only exceptions
are the specialized variants of topological mappings used for level and level intersection
coloring. Table 3 shows the speedups obtained for a linear operation (the SAXPY
operation v v + cw) and for the vector dot product and compares them to the
theoretical speedup computed from (2).

Besides confirming our estimation for the speedup of linear operations, Table 2
reinforces the assertion made by Annaratone, Pommerell, and Riihl [5] mentioned
in 3.2.1 that the vector dot product does not hamper the parallelization of CG-like
algorithms on a DMPP with fast interprocessor communication channels.

5.2.5. Sparse matrix-vector products. The efficiency of sparse matrix-vector
products and transposed matrix-vector products depends only on the mapping. Ta-
ble 4 lists the speedup of the matrix-vector product as well as the overhead caused
by communication and load imbalance. The communication overhead is expressed by
the average percentage of the total execution time that the processors spend actively

MAPPING AND COLORING FOR DMPPs 213

TABLE 3
Estimated and obtained speedup of linear operations on vector and vector dot products for

balanced mappings and for specialized non-balanced mappings (2-D problem).

II 1 Theretical
Mapping Z(speedup

(balanced) 0.2 63.67

TOP1-2* 41.78
TO2* II 2:2 43.13

Obtained speedup
v v -- (W vTw

6.8 15.55
4x.60 36.56

371442.94

communicating. The load imbalance overhead is expressed by the average percentage
idle time of the processors. Such idle times occur in part during the data exchange if
the communication is not perfectly synchronous, and are in part due to the unequal
distribution of nonzeros, even if the unknowns are equally distributed.

TABLE 4
Speedup, communication time, and synchronization overhead (idle time) for sparse matrix-

vector product (2-D problem).

Mapping II Speedup

GEO1 47.57
GEO2-S 47.06
GEO2-R 45.37
TOP1-1 24.07
TOP1-2 24.49
TOP2 28.36

TOP1-1* 12.14
TOP1-2* 21.77
TOP2* 24.59

Communication] Idle

6.1% 5.3%
5.1% 9.6%
5.0% 12.7%
12.7% 23.2%
12.5% 23.1%
8.0% 30.4%
2.’3% 73.9%
10.9% 32.4%
6.8% 40.2%

Here we see the reason for the bad performance of the topological mappings
compared to the geometric mappings. The pure communication time is not the only
factor that limits the speedup, but the synchronization overhead due to idle time
in the communication pattern is substantial. Had we used a DMPP architecture
with slower communication and large setup times for message creation, our results
would show a clearer advantage in using 1-D mappings, the increase in communication
volume being more than compensated for by decomposition of the communication into
fewer pieces. Note that these considerations are independent from whether or not the
DMPP permits the overlap of communication with computation, as some message-
passing architectures do.

The implementation of the transposed matrix-vector products involves the same
amount of communication, but some additional arithmetic operations between the dif-
ferent communication steps are required. This increases the synchronization overhead
slightly, so that transposed matrix-vector multiplication is slower than the nontrans-
posed version. This explains why the speedup for biconjugate gradients, the only
algorithm that requires transposed matrix-vector products, is slightly smaller than
that of the other algorithms.

5.2.6. Preconditioning operators. The operator for incomplete factorization
preconditioners involves one forward and one backward substitution step to solve
sparse triangular systems of linear equations. The parallelization depends both on
the mapping and on the coloring. Table 5 shows the speedups obtained for each
viable combination of a mapping and a coloring.

214 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

TABLE 5
Speedups for the preconditioning operator (Q-iv) (2-D problem).

GREEDY 35.16 28.88 28.97 18.40 18.81 22.65
GRAFT 34.78 27.71 25.61 17.69 19.70 23.31

BALANCED1 42.25 42.75 41.67 20.91 21.82 25.48
BALANCED2 42.03 43.33 41.89 21.37 22.17 26.15
BALANCED3 41.03 41.93 41.79 22.05 22.76 25.81

LEVEL 6.80
INODE 8.84 13111 10.76

The parallelization of the preconditioning operator turns out to be the least ef-
ficient part of the algorithms, thus dominating their total efficiency. Comparing Ta-
bles 4 and 5, we see that the quality of the mapping gives a major contribution to the
speedup of the preconditioning.

During the execution of the substitution steps, one color is processed after the
other, and data have to be exchanged between two colors. Table 6 shows the number
of colors obtained for each coloring heuristic.

TABLE 6
Number of colors (2-D problem).

Coloring

GREEDY

GRAFT

BALANCED1
BALANCED2
BALANCED3

LEVEL

INODE

7 7 7 7 7 7
5 4 4 5 5 5
7 7 6 9 8 8
6 6 6 7 7 7
6 5 5 6 5 6

2
4 4 4

From the number of colors, we see that the communication inside the precondi-
tioning operator is very fine-grained. On the average, only one to two numbers are
exchanged with each neighbor between two colors. The number of colors alone does
not explain the impact of the coloring on the performance of the preconditioning. Ta-
ble 7 shows the total coloring imbalance, which is the sum of the coloring imbalances
It(jr, C) of all the colors, as defined in 4.2.3.

TABLE 7
Total coloring imbalance Z(jt, C)- ’cZC(.4, C) (2-D problem).

Coloring

GREEDY 24.2 40.2 45.2 39.2 31.2 29.2
GRAFT 35.2 46.2 53.2 54.2 44.2 44.2

BALANCED1 1.2 1.2 1.2 2.2 2.2 1.2
BALANCED2 3.2 3.2 3.2 4.2 3.2 4.2
BALANCED3 6.2 3.2 4.2 5.2 4.2 4.2

LEVEL 278.2
INODE 229.2 116.2 138.2

The total coloring imbalance is the final parameter that controls the quality of a

MAPPING AND COLORING FOR DMPPs 215

coloring with a given mapping. Our balanced greedy coloring scheme (and any other
balanced scheme based on another basic coloring heuristic) achieves the best results
by minimizing this parameter. The number of colors is a smaller issue. As long as it
is chosen small, the parameter Zmax of the heuristic does not influence the efficiency
significantly.

5.3. A 3-D problem.

5.3.1. The problem. This sparse system arises in the 3-D simulation of a bipo-
lar transistor. The transistor is discretized using bricks, tetrahedra, pyramids, and
prisms [14]. The sparse matrix involved has N 20412 rows and M 252074
nonzeros, or, on the average, 12.35 nonzeros per row.

We will limit the discussion here to the presentation of only those results that
may add new insight to the problems discussed so far.

5.3.2. Obtained speedups. Table 8 shows the speedups obtained for CGS with
ILU preconditioning (the tables for other algorithms are similar).

TABLE 8
Speedup obtained on a 64-processor torus for 10 iterations of preconditioned CGS on a 3-D

problem. With the exception of the numbers in italics, all the results refer to the novel mapping
and/or coloring techniques presented in this study.

Coloring
Mapping

o o-s 0- ro,- rol- :0’
GREEDY 29.62 47.79 48.28 27.94 29.91 36.48
GRAFT 29.70 46.03 45.94 27.74 29.85 34.37

BALANCED1 33.26 51.88 51.27 32.14 32.07 40.76
BALANCED2 33.23 51.87 51.30 32.10 ’32123 40.75
BALANCED3 33.38 51.77 51.06 32.13 32.19 40.85
"’LEVEL 7.68
INODE 9.16 15.92 17.95

While for the 2-D example, 1-D mappings were almost as successful as 2-D map-
pings, this is not true anymore for this 3-D example. 1-D mappings are now signif-
icantly worse than 2-D mappings. Also, the performance gap between topological
and geometric mappings is here reduced. Level and level intersection colorings still
perform poorly.

5.3.3. Analysis of relative contributions. The relative contributions of the
matrix-vector products and the preconditioning operations to the total execution time
of the algorithms are 2 to 5 percent higher than for the 2-D problem. This is due to
the higher number of nonzeros per row.

5.3.4. Linear operations and vector dot products. The speedups and speed-
up predictions for the linear operations on vectors are about the same as in Table 3.
As the problem size has increased, the vector dot product suffers even less from com-
munication and synchronization overhead and shows a speedup of 61.72 on balanced
mappings.

5.3.5. Sparse matrix-vector products. Table 9 shows the speedup of the
matrix-vector product and the overhead caused by communication and synchroniza-
tion in a similar manner as in Table 4.

The reason for the relatively poor performance of 1-D geometric mapping is that
each of the 64 "slices" is not dense enough to separate the graph. The values of

216 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

TABLE 9
Speedup, communication time, and synchronization overhead (idle time) for sparse matrix-

vector product (3-D problem).

GEO1
GEO2-S
GEO2-R
TOPI-1
TOP1-2
TOP2

TOPI-I*
TOP1-2*
TOP2*

Communication Idle

32.32
51.71
51.49
31.23
31.80
40.06
10.33
24.23
30.18

10.8%
4.2%
3.8%
6.7%
6.8%
5.5%
1.0%
6.6%
4.0%

16.9%
6.4%
7.4%
28.0%
27.7%
20.7%
80.8%
42.4%
40.7%

almost all vertices have to be transmitted to the four processors around the processor
to which they are assigned.

5.3.6. Preconditioning operators. Table 10 shows the speedups obtained for
each combination of mapping and coloring. The results of this table confirm the
results in 5.2.6.

TABLE 10
Speedups for the preconditioning operator (Q-iv) (3-D problem).

Coloring
Mapping

GEO1 GEO2-S ’l GEO2-R TOP1-1 TOP1-2 TOP2

GREEDY 23.59 41.57 42.59 21.80 24.70 30.06
GRAFT 23.32 38.66 38.82 21.53 24.69 25.77

BALANCED1 29.75 48.96 48.40 28174 28.21 37.06
BALANCED2 29.70 48.95 48.46 28.71 28.50 36.77
BALANCED3 29.95 48.83 47.99 28.76 28.43 36.90

LEVEL 5.70
INODE 7.67 10.48 11.40

5.4. More problems. Table 11 summarizes the results from the above and other
simulations. All statements made above apply also to these problems. We listed the
best speedup we obtained, and the mapping and coloring for which this speedup
occurred.

TABLE 11
Summary of the results obtained on a 64-processor torus for preconditioned CGS on a set of

problems. LDD is the 2-D problem discussed in detail before, BIPOL20K is the 3-D problem discussed
in detail before.

Name
BBIG

LDD
BIPOL4K
DR15

BIPOL20K
DRAM0
DRAM1
BP25C

N D mesh] speedup mapping

2069 6.8 2-D 44.99 GEO2-R
2674 6.9 2-D 47.28 GEO2-S
4913 12.0 3-D 42.60 GEO2-S
15564 8.6 3-D 49.42 GEO2-R
20412 12.3 3-D 51.88 GEO2-S
22680 24.’4 3-D 54.25 GEo2-S
22680 6.6 3-D 54.52 GEO2-S
76926 20.1 3-D 43.80 GEO1

Best
coloring

BALANCED2
BALANCED2
BALANCED1
BALANCED1
BALANCED1
BALANCED1
GREEDY

BALANCED2

Two-dimensional geometric mapping together with balanced greedy coloring with

MAPPING AND COLORING FOR DMPPs 217

coloring imbalance 1 or 2 turned out to give best speedups in most cases. On the
DRAM1 experiment, greedy coloring performed slightly (less than 1 percent) better
than the balanced variant. This experiment was carried out on a regular 7-point stencil
grid, where the greedy heuristic was the only one to find the optimal 2-coloring. The
BP25C experiment involved three unknowns per grid point on a 3-D grid.

5.5. A note on convergence. Our speedup figures above are computed by
running exactly 10 iterations of each method on the problem, regardless of the accu-
racy achieved. As coloring reorders the rows of the matrix, it modifies the fill of a
complete factorization and thus modifies the quality of the incomplete factorization
preconditioner. As a consequence, the convergence properties of the preconditioned
algorithms change with coloring.

In normal application a user is not interested in how long it takes to perform a
certain number of iterations of an iterative solver, but how long it takes to achieve a
certain accuracy in the result. Since coloring modifies the convergence behavior of the
preconditioned iterative method, the number of iterations to achieve a given accuracy
will differ from one coloring scheme to another or to a sequential implementation, so
that the user sees a different speedup value than the speedup over a fixed number of
iterations.

At first glance, one should assume that we should give speedup results that com-
pare the time to achieve a given accuracy in the result, rather than just comparing a
fixed number of iterations. However, what accuracy should be selected?

In (transient) semiconductor device simulation, the application our examples
come from, a great number of linear systems with the same sparsity structure have
to be solved. These systems fall into four classes: the three types of systems derived
from the three semiconductor drift-diffusion equations, and the coupled systems in-
volving the three equations. The first three types of systems involve one unknown per
discretization grid point. The latter type involves three unknowns per grid point. Its
matrix is written as a block matrix with the same sparsity structure as the matrices of
the single systems, but with blocks of size 3 x 3. The matrices of one of the first three
classes are symmetric positive definite and can be solved using Conjugate Gradients,
all the other systems are nonsymmetric, and CGS is the fastest solution method (see
Heiser, Pommerell, Weis, and Fichtner [30] for details).

In Fig. 12 we plotted the speedup as a function of the desired accuracy. The
accuracy is expressed as the relative reduction of the norm of the residual, and is
varied from 1 to 10 digits of precision. The speedup is computed by dividing the time
required to achieve this reduction of the error norm on a single processor by the time
required on 64 processors. The sequential implementation uses the initial ordering of
the unknowns produced by our grid generator [14], the parallel implementation uses
GEO2 mapping and BALANCED1 coloring. The four curves represent one system out
of each of the four classes mentioned above. All these systems stem from the same
simulation of a trench DRAM cell on an irregular 3-D grid with 15564 unknowns, and
thus all have the same sparsity structure.

The strong variations in the curves of Fig. 12 show the difficulties if we base our
speedup calculations on the time to achieve a given accuracy. If we want three digits
of precision in the residual for the fourth (coupled) system in Fig. 12, our 64-processor
implementation shows a speedup of 130 over the 1-processor implementation. If we
want one digit more, the speedup drops to less than 12. Note also how the speedup
figure varies as we choose a different system with the same sparsity structure. For
very high accuracies (higher than required for the surrounding nonlinear solver), these

218 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

Speedup

130

120

110

100

90

80

7O

60

50

4O

3O

2O

10

drl5 (seq=atc)

2 4 6 8 10

Poisson(CG)

Electrons(CGS)

nlsas3
Coupled(CGS)

Digits of precision

FIG. 12. Speedup as a function of the desired accuracy, for four different matrices with the
same sparsity structure. The sequential implementation uses the ordering as produced by the grid
generator.

speedups approach the value of 49, as predicted from the speedup on 10 iterations.

The fact that sometimes the parallel implementation requires fewer iterations
should not lead to precipitate hopes, however. The convergence of the sequential
implementation can be improved by other reordering techniques. For instance, using
a natural ordering on the grid points (i.e., sorting the grid points by one of their
coordinates) can reduce the number of iterations. Figure 13 shows the speedup as a
function of the desired accuracy, as in Fig. 12, but uses the sequential implementation
with natural ordering as the basis for comparison.

6. Summary of the findings derived from the experiments presented.
The findings of the detailed analysis presented in 5 are summarized below:

1. The mapping should be kept perfectly balanced.
2. Geometric mappings perform better than topological mappings.

MAPPING AND COLORING FOR DMPPs 219

Speedup
drl5 (seq=nat)

55.00

50.00

45.00

40.00 ,

35.00 ."11

30.00 i

25.00 1

20.00

15.00

10.00

5.00

0.00

/

2 4 6 8 10

Poisson(CG)
Electrons(CGS)
Holes(CGS)
Coupled(CGS)

Digits of precision

FIG. 13. Speedup as a function of the desired accuracy, for four different matrices with the
same sparsity structure. The sequential implementation uses a natural reordering of the grid points.

3. For problems on 2-D meshes, 2-D geometric mappings do not bring much
improvement over 1-D geometric mappings. On 3-D meshes, however, the
improvement is significant.

4. The difference between the two variants for 2-D geometric and for 1-D topo-
logical mapping is small.

5. Level coloring and level intersection coloring perform generally much worse
than the various greedy schemes.

6. Coloring can speed up the preconditioning operator almost up to the speedup
of the matrix-vector multiplication, as long as each color is distributed equally
to the processors.

We think that, whenever possible, geometric information on the physical location
of a vertex of the sparse graph should be exploited in the mapping heuristic. Extract-
ing good mappings from the adjacency structure only is much more expensive. 2-D
mappings are never worse than 1-D mappings.

220 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

Load balancing is the most important aspect in parallelizing this type of operation
on a DMPP. A good approximation to this is to balance carefully the data involved
in each computation step. Balanced coloring schemes are the answer to obtain high
speedups on distributed incomplete factorization preconditioning.

We cannot make any statement about the impact of the coloring on convergence.
In some of our experiments, some colorings degraded seriously the convergence of the
algorithms, while in other experiments, some colorings even improved it. These effects
will be the topic of a future study.

7. Further improvements.

7.1. Topological mappings and level structures. Our current heuristic for
choosing the starting sets for the level structures is quite simple. The first starting
set S simply contains a single vertex at a corner of the problem domain. The second
starting set T is then a single vertex lying in the middle level of/:(S).

Further refinement would improve the quality of the topological mappings as well
as of the level-based colorings:

More edges local to the same level, thus reducing the communication volume.
Smaller maximum size of a level or of an I-node, thus reducing the map-
ping and the coloring imbalances. For I-nodes this means that the two level
structures should be more or less orthogonal to each other.

It is not clear whether these refinements can be easily implemented, and more
experimentation is therefore necessary.

Sadayappan and Ercal [56] propose to use the vertices of orthogonal boundaries
of the problem as starting sets to obtain orthogonal level structures, but this strategy
failed on our case studies.

Some of the ideas presented by Fox [19] could be used to achieve these refinements.
His ORB scheme could also extend our set of 2-D topological mapping heuristics.

7.2. Geometric mappings. In the experiments we only used the projections
of the vertices onto the x- and y-axes as partitioning criteria. We could vary the
projection vectors to obtain a slightly better mapping.

7.3. Mappings in general. Our current geometric mapping schemes use only
geometric information and ignore the adjacency structure of the graph. We could
experiment with mixed heuristics that use both topological and geometric sources of
information.

We define the imbalance only by looking at the number of vertices assigned to
each processor. However, vertices with many neighbors require more computation
than vertices with few neighbors. We can include the degree of each vertex into our
definition of imbalance.

7.4. Coloring after mapping. We derived our balanced coloring schemes from
the greedy coloring algorithm. The ideas we presented here could be included into
other general coloring algorithms, like the one proposed by Melhem and Ramarao [47].

8. Conclusions. We proposed and evaluated a set of fast mapping and coloring
heuristics for the implementation of preconditioned conjugate-gradients-like methods
on a DMPP. Most of these heuristics were new approaches to the problem. We eval-
uated the quality of the generated mappings and colorings using systems of linear
equations stemming from semiconductor device simulation. Depending on the prob-
lem under consideration, we achieved speedups between 42 and 54 on the simulator
of a 64-processor DMPP currently under development.

MAPPING AND COLORING FOR DMPPs 221

We found that mapping heuristics that use geometric information given by the
embedding of the problem graph into physical space were superior to heuristics relying
only on the topological information given by the nonzero structure of the system
matrix. Coloring heuristics devised for vector computers or shared-memory parallel
computers were not sufficient for the efficient implementation on a DMPP. Mapping
and coloring had to be combined to yield best performance. The best approach was
to map first and then to use a coloring heuristic that balances the number of vertices
per processor for each color.

A. Level structures. Most of the theory in this section is well known [23]. We
included it here as an introduction to the new notions presented in Appendix B.

Recall the notion of distance of a vertex from a set of vertices introduced in 4.1.3.
The eccentricity of a vertex v E V(G) is the maximum distance of v from any vertex
of G. We call the maximum distance of any vertex of G to S eccentricity of the set S:

e(S)= max {d(v,S)}.
vev(G)

We call kth level around S the set Lk(S) of vertices whose distance to any vertex in
Sisk"

Lk(S) {v E V(G) d(v,S) k}.

The following properties derive immediately:

(3) Lo(S) S,

(4) Lk(S) :/: 4: 0 <_ k <_ e(S),

j = Li(S) N Lj(S) O,

Lo(S) U L1 (S) U U Le(s)(S) V(G).

The collection of sets

.(S)--(Lo(S),LI(S),... ,Le(s)(S))
is a level structure around S of G. It follows from (4), (5), and (6) that (S) is a
partitioning of V(G). S is called the starting set of the level structure.

LEMMA A.1. Any vertex adjacent to a level lies either in the preceding or in the
succeeding level:

Vk Adj(Lk(S)) c Lk-l (q) Lk+l (q).

Proof. Let v L(S) and w Lk(S) be adjacent to each other. Then we know
that d(v, S) i and d(w, S) k.

If i= k, then v e Lk(S), so v Adj(Lk(S)) (by definition).
If i < k- 1, there is a path of length i + 1 from a vertex in S to w going
through v. This leads to a contradiction:

d(w, S) <_ (i + 1) < k.

222 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

If i > k 4- 1, there is a path of length k + 1 from a vertex in S to v going
through w. This also leads to a contradiction:.

d(v, S) G (k + 1) < i.

It follows that if v 6 Adj(Lk(S)), i can only be equal to k- 1 or k 4- 1. cl

Theorem A.2 states a fundamental property of level structures, which follows
immediately from Lemma A.1.

THEOREM A.2. Two distinct nonsubsequent levels are not adjacent:

Vi, j "li Jl > 1 = Adj(L(S)) Cl Lj(S) L(S) C Adj(Lj(S)) .
The level Lk(S) can be viewed as the vertices of the quotient graph G/.(S), where

L(S) is adjacent to nj (S) only if some vertex of L(S) is adjacent to some vertex of
Lj(S) in G [23]. Theorem A.2 can be formulated as the following corollary.

COROLLARY A.3. G/(S) is a path.
Finally, Theorem A.4 and Corollary A.5 give hints on how to construct a level

structure.
THEOREM A.4. Lk+I(S) is the set of vertices adjacent to Lk(S) that are not in

Lk_I(S).

Vk Lk+ (S) Adj(Lk(S)) Lk-I (S).

Proof.
Subtracting Lk-1 (S) on both sides of the set inequality in Lemma A.1 leads
to

Adj(La(S)) La-1 (S) c Lk+I (S).

Let v e Lk+l (S). There is a shortest path from v to S of distance k + 1. The
first internal vertex on this path is at distance k from S, thus v is adjacent to
Lk(S)" Lk+I(S) c Adj(Lk(S)). As Lk- and Lk+l are disjunct (5), we can
write

Lk+(S) C Adj(L(S))- L_(S).

The same proof applies to Corollary A.5.
COROLLARY A.5. Lk+I(S i8 the set of vertices adjacent to Lk(S) that are not

in a former level Li(S) with < k:

Vk Lk+l (S) Adj(La(S)) (Lo(S) U L1 (S) U U Lk(S)).

Theorems A.2 and A.4 justify the term adjacent levels for two subsequent levels
nk(s) and Lk+I(S). Furthermore, we will call nonadjacent levels independent.

The quotient graph G/(S) has the interesting property that it is 2-colorable.
The vertices are assigned the two colors alternatively, as shown in Fig. 14.

B. Double level structures. Two level structures of the same graph can be
combined into a double level structure (S, T), defined as being the collection of the
sets formed by the intersections of the levels of (S) and (T)"

(S, T) {Lid(S, T)" 0 <_ i <_ e(S), 0 _< j _< e(T)},

MAPPING AND COLORING FOR DMPPs 223

FIG. 14. 2-coloring of a path.

where Lij(S, T) (hereafter abbreviated Lij) is defined as

Lij Li(S) V Lj(T).

As levels are disjunct (5), so are their intersections:

(7) (i, j) (k,) = Lij V Lkt O.

The following property follows from the construction and from (6)"

(8) Loo U Lol U t2 Lo t2 t2 Le(s)e(T) V(G).

Some intersections in (S, T) may be empty, but the set of nonempty intersec-
tions in :(S, T) is a partitioning of V(G). The concept of independent levels from
Theorem A.2 extends to independent intersections.

THEOREM B.1. Two intersections from independent levels in (S) or in (T)
are independent:

Vi, j,k, "li Jl > 1 V Ik / > 1 = Adj(Lij) V Lkt Lij N Adj(Lkt) O.

The intersections Lij can be viewed as vertices (called from now on I-nodes) of
the quotient graph G/(S, T). Theorem B.1 can then be formulated as the following
corollary.

COROLLARY B.2. G/.(S, T) is a subgraph of a 9-point stencil mesh.
We define a 9-point stencil mesh with r rows and c columns Afro as a graph with

the following properties:
V(Afrc) contains rc vertices numbered vii, with 0 <_ i < r and 0 _< j < c.
A pair of distinct vertices vj and vkt is connected by an edge only if

(li-kI<_1) and (IJ-t]<-l).

15. 4-coloring of a 9-point stencil mesh.

224 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

A 9-point stencil mesh is 4-colorable. Figure 15 gives one of the possible color
assignments. Of course, any subgraph of such a graph, like the quotient graph
G/(S, T), is also 4-colorable and can be colored similarly.

Acknowledgments. We thank Josef Biirgler, Paolo Conti, and Gernot Heiser
for providing us with the real data used in semiconductor device simulators. Stefan
Ludwig implemented one of the mapping heuristics.

REFERENCES

[1] L. ADAMS, M-step preconditioned conjugate gradient methods, SIAM J. Sci. Statist. Comput.,
6 (98), .

[2] A. V. AHO, J. E. HOPCROFT, AND Z. D. ULLMAN, Data Structures and Algorithms, Addison-
Wesley, Reading, MA, 1983.

[3] M. ANNARATONE, E. ARNOULD, T. GROSS, H. T. KUNG, M. LAM, O. MENZILCIOGLU, AND

J. A. WEBB, The Warp computer: Architecture, implementation, and performance, IEEE
Trans. Cornput., C-36 (1987), pp. 1523-1538.

[4] M. ANNARATONE, M. FILLO, K. NAKABAYASHI, AND M. VIREDAZ, The K2 parallel proces-
sor: Architecture and hardware implementation, in Proc. 17th IEEE-ACM Symposium on
Computer Architecture, Seattle, WA, June 1990.

[5] M. ANNARATONE, C. POMMERELL, AND R. ROHL, Interprocessor communication speed and per-

formance in distributed-memory parallel processors, in Proc. 16th IEEE-ACM Symposium
on Computer Architecture, Jerusalem, June 1989, pp. 315-324.

[6] C. C. ASHCRAFT AND R. G. GRIMES, On vectorizing incomplete factorization and SSOR pre-
conditioners, SIAM J. Sci. Statist. Comput., 8 (1988), pp. 122-151.

[7] C. C. ASHCRAFT, R. G. GRIMES, J. G. LEWIS, B. W. PEYTON, AND H. D. SIMON, Progress
in sparse matrix methods for large linear systems on vector supercomputers, Internat. J.
Supercomput. Ap..pl., 1 (1987), pp. 10-30.

[8] C. AYKANAT AND F. OZGJNER, Large grain parallel conjugate gradient algorithms on a hyper-
cube multiprocessor, in Proc. 1987 International Conference on Parallel Processing, S. K.
Sahni, ed., Aug. 1987, pp. 641-644.

[9] C. AYKANAT, F.)ZGNER, F. ERCAL, AND P. SADAYAPPAN, Iterative algorithms for solution of
large sparse systems of linear equations on hypercubes, IEEE Trans. Comput., C-37 (1988),
pp. 1554-1568.

[10] R. E. BANK, W. M. COUGHRAN, 3R., M. A. DRISCOLL, R. K. SMITH, AND W. FICHTNER,
Iterative methods in semiconductor device simulation, Comput. Phys. Comm., 53 (1989),
pp. 201-212.

[11] P. BEADLE, C. POMMERELL, AND M. ANNARATONE, K9: A simulator of distributed-memory
parallel processors, in Supercomputing ’89, ACM-IEEE, Nov. 1989, pp. 765-774.

[12] M. J. BERGER AND S. H. BOKHARI, A partitioning strategy for nonuniform problems on mul-
tiprocessors, IEEE Trans. Comput., C-36 (1987), pp. 570-580.

[13] S. H. BOKHARI, On the mapping problem, IEEE Trans. Comput., C-30 (1981), pp. 207-214.
[14] P. CONTI, N. HITSCHFELD, AND W. FICHTNER, --an octree-based mixed element grid alloca-

tor for adaptive 3d device simulation, IEEE Trans. Comput.-Aided Design of Integrated
Circuits and Systems, CAD-10 (1991).

[15] W. J. DALLY, Performance analysis of k-ary n-cube interconnection networks, IEEE Trans.
Comput., C-39 (1990), pp. 775-785.

[16] C. DEN HEIJER, Preconditioned iterative methods for nonsymmetric linear systems, in Simu-
lation of Semiconductor Devices and Processes, K. Board and D. R. J. Owen, eds., 1984,
pp. 267-285.

[17] H. C. ELMAN, Iterative methods for large, sparse nonsymmetric systems of linear equations,
Res. Report 229, Department of Computer Science, Yale University, New Haven, CT, 1982.

[18] R. FLETCHER, Conjugate gradient methods for indefinite systems, in Proc. Dundee Biennial
Conference on Numerical Analysis, G. A. Watson, ed., Springer-Verlag, New York, 1975.

[19] G. C. Fox, A graphical approach to load balancing and sparse matrix vector multiplication
on the hypercube, in Numerical Algorithms for Modern Parallel Computer Architectures,

MAPPING AND COLORIN(3 FOR DMPPs 225

M. Schultz, ed., Springer Verlag, New York, 1988, pp. 37-61.
[20] , A review of automatic load balancing and decomposition methods for the hypercube, in

Numerical Algorithms for Modern Parallel Computer Architectures, M. Schultz, ed., New
York, 1988, Springer-Verlag, pp. 63-76.

[21] G. GAMBOLATI, G. PINI, AND G. ZILLI, Numerical comparision of preconditionings for large
sparse finite element problems, Numer. Methods Partial Differential Equations, 4 (1988),
pp. 139-157.

[22] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of
NP-Completeness, W. H. Freeman, New York, 1979.

[23] A. GEORGE AND J. W. H. LIU, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[24] ., The evolution of the minimum degree ordering algorithm, SIAM Rev., 31 (1989), pp. 1-
19.

[25] A. GEORGE AND E. NG, On the complexity of sparse QR and LR factorization offinite-element
matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 849-861.

[26] (3. H. GOLUB AND D. P. O’LEARY, Some history of the conjugate gradient and Lanczos algo-
rithms: 1948-1976, SIAM Rev., 31 (1989), pp. 50-102.

[27] G. H. (3OLUB AND C. F. VAN LOAN, Matrix Computations, The John Hopkins University Press,
Baltimore MD, 1983.

[28] L. A. HAGEMAN AND D. M. YOUNG, Applied iterative methods, in Computer Science and
Applied Mathematics, Academic Press, New York, 1981.

[29] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[30] G. HEISER, C. POMMERELL, J. WEIS, AND W. FICHTNER, Three dimensional numerical semi-

conductor device simulation: Algorithms, architectures, results, IEEE Trans. Comput.-
Aided Design of Integrated Circuits and Systems, CAD-10 (1991).

[31] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards., 49 (1952), pp. 409-436.

[32] C. A. R. HOARE, Proof of a program: Find, Comm. ACM, 14 (1971), pp. 39-45.
[33] S. L. JOHNSSON, Communication eJficient basic linear algebra computations on hypercube ar-

chitectures, J. Parallel Distributed Computing, 4 (1987), pp. 133-172.
[34] D. KINCAID, T. OPPE, AND D. YOUNG, Vector computations for sparse linear systems, Tech.

Report CNA-189, Center for Numerical Analysis, The University of Texas, Austin, TX,
1984.

[35] D. E. KNUTH, Sorting and Searching, The Art of Computer Programming, Vol. III, Addison-
Wesley, Reading, MA, 1973.

[36] C. H. LAI AND H. M. LIDDELL, Finite element using long vectors of the DAP, Parallel Comput.,
8 (1988), pp. 351-361.

[37] S.-Y. LEE AND J. K. AGGARWAL, A mapping strategy for parallel processing, IEEE Trans.
Comput., C-36 (1987), pp. 433-442.

[38] J. G. LEWIS AND H. D. SIMON, The impact of hardware gather/scatter on sparse Gaussian
elimination, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 304-311.

[39] A. LICHNEWSKY, Sur la rdsolution de systmes lindaires issus de la mdthode des dldments
finis par une machine "multiprocesseur", Rapport de Recherche 119, INRIA, Centre de
Rocquencourt, F(vrier, France, 1982.

[40] , Some vector and parallel implementations for preconditioned conjugate gradient al-
gorithms, in High-Speed Computation, J. S. Kowalik, ed., NATO ASI Series, Vol. F7,
Springer-Verlag, Berlin, Heidelberg, 1984, pp. 343-359.

[41] J. W. H. LIU, Modification of the minimum-degree algorithm by multiple elimination, ACM
Trans. Math. Software., 11 (1985), pp. 141-153.

[42] O. A. McBRYAN AND E. F. VAN DE VELDE, Hypercube algorithms and implementations, SIAM
J. Sci. Statist. Comput., 8 (1987), pp. s227-s287.

[43] R. MELHEM, Determination of stripe structures for finite element matrices, SIAM J. Numer.
Anal., 24 (1987), pp. 1419-1433.

[44] Iterative solution of sparse linear systems on systolic arrays, in Proc. 1987 Internat.
Conference on Parallel Processing, S. K. Sahni, ed., 1987, pp. 560-563.

[45] , Toward eJficient implementation ofpreconditioned conjugate gradient methods on vector
supercomputers, Internat. J. Supercomput. Appl., 1 (1987), pp. 70-98.

[46] , Parallel solution of linear systems with striped sparse matrices, Parallel Comput., 6
(1988), pp. 165-184.

[47] R. G. MELHEM AND g. V. S. RAMARAO, Multicolor reordering of sparse matrices resulting
from irregular grids, ACM Trans. Math. Software, 14 (1988), pp. 117-138.

[48] D. O’LEARY, Ordering schemes for parallel processing of certain mesh problems, SIAM J. Sci.

226 C. POMMERELL, M. ANNARATONE, AND W. FICHTNER

Statist. Comput., 5 (1984), pp. 620-632.
[49] S. PISSANETZKY, Sparse Matrix Technology, Academic Press, Orlando, FL, 1984.
[50] E. L. POOLE AND J. M. ORTEGA, Multicolor ICCG methods for vector computers, SIAM J.

Numer. Anal., 24 (1987), pp. 1394-1418.
[51] D. J. ROSE, A graph-theoretic study of the numerical solution of sparse positive definite systems

of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press,
New York, 1972, pp. 183-217.

[52] Y. SHAD, The Lanczos biorthogonalization algorithm and other oblique projection methods for
solving large unsymmetric systems, SIAM J. Numer. Anal., 19 (1982), pp. 485-506.

[53] , On the design of parallel numerical methods in message passing and shared memory
environments, in Supercomputing, A. Lichnewsky and C. Saguez, eds., INRIA, North-
Holland, Amsterdam, 1987, pp. 253-274.

[54] , Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 1200-1232.

[55] Y. ShAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[56] P. SADAYAPPAN AND F. ERCAL, Nearest-neighbor mapping of finite element graphs onto pro-
cessor meshes, IEEE Trans. Comput., C-36 (1987), pp. 1408-1424.

[57] R. SCHREIBER AND W. TANG, Vectorizing the conjugate gradient method, in Proc. Syrup. CY-
BER 205 Applic., Control Data Corporation, Colorado Springs, CO, 1982.

[58] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Statist. Comput., 10 (1989), pp. 36-52.

[59] P. S. TSENG, Sparse matrix computations on Warp, CMU, 1988.
[60] P. K. W. VINSOME, ORTHOMIN--an iterative method for solving sparse sets of simultaneous

linear equations, in Proc. Fourth SPE Symposium on Reservoir Simulation, Los Angeles,
CA, Society of Petroleum Engineers, 1976, pp. 149-160.

[61] D. M. YOUNG AND K. C. Jnh, Generalized conjugate-gradient acceleration of nonsymmetric
iterative methods, Linear Algebra Appl., 34 (1980), pp. 159-194.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 227-242, January 1992

1992 Society for Industrial and Applied Mathematics
012

MULTILEVEL FILTERING PRECONDITIONERS:
EXTENSIONS TO MORE GENERAL ELLIPTIC PROBLEMS*

CHARLES H. TONGt, TONY F. CHAN:, AND C. C. JAY KUO

Abstract. The concept of multilevel filtering (MF) preconditioning applied to second-order
selfadjoint elliptic problems is briefly reviewed. It is then shown how to effectively apply this concept
to other elliptic problems such as the second-order anisotropic problem, biharmonic equation, equa-
tions on locally refined grids and interface operators arising from domain decomposition methods.
Numerical results are given to show the effectiveness of the MF preconditioners on these problems.

Key words, multilevel preconditioners, elliptic problems, conjugate gradient method, domain
decomposition

AMS(MOS) subject classifications. 65F10, 65N30

1. Introduction. Preconditioned conjugate gradient (PCG) methods have been
a very popular and successful class of methods for solving large systems of equations
arising from discretizations of elliptic partial differential equations. With the advent
of parallel computers in recent years, there has been increased research into effective
implementation of these methods on various parallel computers. Since effective pre-
conditioning plays a critical role in the competitiveness of the PCG methods, many
classical preconditioners have been proposed and studied, especially for second-order
elliptic problems. Among these are the Jacobi preconditioner (diagonal scaling), the
SSOR preconditioner, the incomplete factorization preconditioners (ILU and MILU),
and polynomial preconditioners. Many such preconditioners have been very successful
in giving high performance, especially when implemented on sequential computers.

In the parallel implementation of PCG methods, the major bottleneck is often
the parallelization of the preconditioner. The rest of the PCG methods can usually
be parallelized in a straightforward way (the inner product computation is also con-
sidered a bottleneck but its wide applicability in other methods has prompted many
parallel computer manufacturers to develop a highly optimized and efficient code for
it). Unfortunately, for many of the classical preconditioners, there is a fundamental
trade-off in the ease of parallelization and the rate of convergence. A principal ob-
stacle to parallelization of many preconditioners that are effective in improving the
convergence rate (e.g., SSOR, ILU, and MILU) is the sequential manner these pre-
conditioners use in traversing the computational grid--the data dependence implicitly
prescribed by the method limits the amount of parallelism available. Reordering the
grid traversal (e.g., from natural to red-black ordering) or inventing new methods

Received by the editors October 4, 1990; accepted for publication (in revised form) October 25,
1990. This work was supported in part by the Department of Energy contract DE-FG-03-87-ER-
25037, the Army Research Office contract DAAL03-88-K-0085, and the National Science Foundation
grant contract FDP NSF ASC 9003002.

Sandia National Laboratories, Livermore, California 94551-0969 (chtong@snll-arpagw.llnl.gov).
The research of this author was supported by a Defense Advanced Research Projects Agency-
sponsored graduate research assistantship (award 26947F) through the University of Maryland In-
stitute of Advanced Computer Studies.

Department of Mathematics, University of California, Los Angeles, California 90024
(chan@math.ucla.edu).

Department of Electrical Engineering-Systems, University of Southern California, Los Angeles,
California 90089 (cckuo@sipi.usc.edu). The research of this author was supported by the University
of Southern California Faculty Research and Innovation Fund and a National Science Foundation
Research Initiation Award.

227

228 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

(e.g., polynomial preconditioners) to improve the parallelization alone often has an
adverse effect on the rate of convergence [8].

The fundamental difficulty can be traced to the global dependence of elliptic
problems. An effective preconditioner must account for the global coupling inherent in
the original elliptic problem. Preconditioners that use purely local information (such
as red-black orderings and polynomial preconditioners) are limited in their ability
to improve the convergence rate. On the other hand, global coupling through a
naturally ordered grid traversal is not highly parallelizable. The challenge is therefore
to construct effective global coupling that is highly parallelizable. We are thus led to
the consideration of preconditioners that share global information through a multilevel
grid structure (ensuring a good convergence rate) but perform only local operations on
each grid level (and are hence highly parallelizable). Preconditioners of the multilevel
type for second-order selfadjoint operators have been proposed recently by several
researchers, including Bramble, Pasciak, and Xu [6]; Axelsson [1]; Vassilevski [25];
Axelsson and Vassilevski [2]; [3]; Kuo, Chan, and Tong [13]; and Kuznetsov [14].

The main goal of our paper is to employ the main ideas in [6] and [13] to develop
algorithms for more general problems, such as second-order anisotropic problems,
the biharmonic equation, problems on locally refined grids, and interface operators
for domain decomposition methods. Our approach can be viewed as adapting the
projection operators and eigenvalue estimates in [6] to more general problems. On the
other hand, the filtering framework of [13] offers the flexibility in designing the filters
(or projection operators), which improves the performance substantially in several
cases (e.g., the anisotropic case). In particular, the second-order anisotropic problems
and problems on locally refined grids can be solved more efficiently by using different
types of filters, while the the biharmonic equation and interface operator can be solved
efficiently by using different eigenvalue estimates. To the best of our knowledge, two
of these extensions (i.e., the biharmonic and the domain decomposition.applications)
are novel. While a general theory is lacking at this point, we demonstrate numerically
that these algorithms perform very well, at least for model problems.

The multilevel preconditioners mentioned above are similar in spirit to the clas-
sical multigrid method. They are designed to capture the mesh-dependent spectral
property of a discretized elliptic operator. The variations in the coefficients are han-
dled in most cases by the conjugate gradient method, which also makes the iteration
more robust. In [13], we presented some experimental results comparing several mul-
tilevel preconditioners with a multigrid cycle as a preconditioner. However, further
tests are needed to decide whether this new class of multilevel preconditioners offers
practical advantages over the classical multigrid methods.

2. The concept of MF preconditioners. We shall motivate the construction
of the MF preconditioner by first considering the following one-dimensional Poisson
equation on F/= [0, 1]:
(1) f(x)
subject to zero Dirichlet boundary conditions. A standard second-order discretization
of the above equation on a uniform grid with grid size h 1/(n + 1) gives rise to
a linear system of equations denoted by Au f, where A, u, and f correspond to
the discrete Laplacian, the solution and the forcing functions, respectively, and A is a
tridiagonal matrix with diagonal elements -1/h2, 2/h2, -1/h2. It is well known that
the matrix A can be diagonalized as

A WAWT

MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 229

where W is an orthogonal matrix with elements

(W)ij 2x/sin ijrh,

and

A diag(Ak),
4 kTrh

Ak - sin2
2

The main idea of the MF preconditioning is to approximate this eigendecompo-
sition of A. First, the eigenfunctions of A are grouped into subsets corresponding to
different frequency bands. In matrix form, for n 2L 1, we partition W into L
bands so that

where

Wl [w2-l,-",w2_l],

with wj being the jth column of the matrix W. Thus, for example, W1 and WL
correspond to the lowest and highest frequency bands, respectively.

Using the notations introduced above, we can rewrite

L

/=1

where

A diag(At), Ai diag()t2-,...,)2-).

The first approximation comes in when we replace all the eigenvalues (At) within
each band by a constant ct. Thus, we have a preconditioner M such that

L Btv
/--1 l

where

B,

Note that we have the following property for Bt
V

Btv 0
if v E range {Wt}
if v range {Wt}+/-

Hence, Bt can be considered as an ideal spatial bandpass filter. Thus, applying the
preconditioner//to a vector (i.e., M-v) consists of three phases" projection of v into
the subspace corresponding to each band (operator Bt), scaling by the corresponding
approximate eigenvalues ct, and synthesizing the scaled components (summation).

Since the implementation of ideal filters is computationally expensive, requiring
many global operations (e.g., sine transforms), we seek the approximation of ideal
filters with nonideal ones that are computationally more efficient. For the construction

230 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

of efficient nonideal filters, we borrow ideas from standard digital filtering theory [13].
Typically, a bandpass filter is constructed by taking the difference of two lowpass
filters, one that filters out all frequencies higher than the highest ones in the band
and the other one that lets through all frequencies lower than all frequencies in the
band. In turn, the lowpass filters can be approximated by cascading a sequence of
elementary filters H’s, which are simple averaging operators over a small fixed number
of grid points separated by spacing proportional to the wavelength of the band W.

Mathematically, the effect of using nonideal filters can be summarized by replacing
B with approximations/ in the definition of to get our final preconditioner M

L lVM-IV Z
l--1 Cl

In the rest of the paper, we use the following two filters
The first order filter defined by

1
(vy_- + 2vy + v+:-)(Hl,1)j -where (.)j denotes the jth element of the argument, and v is extended peri-

odically by

v_j ---v, and vn+ ----Vn..t-2--j

The filter Hi,2 obtained by applying Ht,1 twice"

(H,2)j 6 (vj_2L-z+l + 4vj_2L-,. / 6vj / 4vj+2- / vj+2-+l).

We call the method introduced above the single grid multilevel filtering (SGMF)
preconditioner, which involves computation on the same number of grid points n at all
levels (corresponding to the frequency bands). Since there are L log2(n + 1) levels
and O(n) operations are required per level, the total number of operations required
per iteration is thus O(nL).

To further improve the efficiency, we introduce a multigrid version of our precon-
ditioner, which we called the multigrid multilevel filtering (MGMF) preconditioner.
This is motivated by the fact that waveforms consisting only of low wavenumber
components can be well represented on coarser grids. To incorporate the multigrid
structure, the operators I+1 and I_1, which are the down-sampling and up-sampling
operators, respectively, are introduced. Note that in the multigrid literatures these op-
erators are commonly known as restriction and interpolation operators. Using the con-
cept of MGMF, we construct a sequence of grids t of sizes ht 0(2i-t h), 1

_ _
L,

to represent the decomposed components. With MGMF, the total number of opera-
tions per iteration is O(n), a reduction by a factor of log2 n compared to SGMF.

We allow variations in designing the filtering scheme. Several preconditioners,
which will be used in the later sections, are defined specifically as follows:

MGMFI the MGMF preconditioner with 9-point (27-point) filter for two-dimensional
(three-dimensional) problems (i.e.,

MGMF2 a modified version of MGMF in which the 9-point (27-point) filter is
applied twice (i.e., Hi,2).

MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 231

MGMF3, another modified version of MGMF in which the 9-point (27-point) filter
is applied once at the finest grid level (to give a smaller amount of work
compared to MGMF2) and twice at other grid levels (to achieve a convergence
rate between MGMF1 and MGMF2 but close to MGMF2).

We summarize the MGMF1 preconditioning algorithm as follows:

Algorithm MGMF1 input r, output z M-lr
Decomposition

VL :--r
for L- 1,...,1

vt "= I[+lHt+l,lVt+l
end for

Scaling
for 1- 1,...,L

Wl :-- Vl -i- Cl
end for

Synthesis
Zl :-- Wl
for 2,...,L

Zl := Wl nt- Hl,lI[_lZl-1
end for
Z---ZL

end MGMF1

As it stands, this definition of the preconditioner can be extended to higher di-
mensions, more general elliptic operators and finite element meshes, as long as we
have appropriate definitions for the elementary filters Ht’s, the restriction and in-
terpolation operators I+1 and i+1, and the cl’s. For example, filters for the high
dimensional cases can be constructed from the tensor product of one-dimensional fil-
ters. Moreover, it is well known that the eigenvalues k in the wavenumber band Bt
behave like O(h-2) for general second-order elliptic problems, where ht denotes the
grid spacing for level [21]. Therefore, a general rule for selecting the scaling constant
ct at grid level is ct O(h-2). For quasiuniform meshes with a refinement factor of
2 (so that ht 2hi+l), this leads to the recurrence relation Cl+l 4Cl.

By appealing to the framework in [6], it is also possible to construct filters for
quasi-uniform structured finite element meshes. This relationship was briefly dis-
cussed in [13]. Basically, the projection operator from the fine grid onto a coarser
grid used in [6] can be interpreted as a low-pass filter on the fine grid. Therefore, on
the one hand the elementary filters Ht’s can be derived from the basis functions on
the grid hierarchy. On the other hand, the projection operators in [6] can be adapted
to special features of a particular problem, with the insight provided by the filtering
framework (e.g., for anisotropic problems).

The MF preconditioner is designed to capture the mesh-dependent spectral prop-
erty of a discretized elliptic operator, but not the variation of its coefficients. In order
to take badly scaled variable coefficients into account, we use diagonal scaling [10].
Suppose that the coefficient matrix can be written as

A D1/2D1/2

where we choose D to be a diagonal matrix with positive elements in such a way that

232 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

the diagonal elements of A are of the same order. Then in order to solve Au f, we
can solve an equivalent problem], where t D1/2u and]- D-i/2f, with the
MF preconditioner.

The SGMF preconditioner on uniform meshes can be easily analyzed exactly using
Fourier analysis, and the predictions agree quite well with experimental results [13],
[23]. However, the Fourier analysis is only meant to be used as a tool for deriving and
gaining insights into the algorithms and cannnot be extended as a basis for a general
convergence theory. While the Fourier analysis is rigorously applicable only for model
problems, the derived algorithms are applicable in a more general setting. Fourier
analysis does provide precise convergence rate estimates and eigenvalue distributions,
which supplements the more general theory. For this reason, it has been used by many
authors in studying iterative methods [27], [11], [26]. The MGMF preconditioner on
uniform and quasi-uniform grids can be analyzed using the same finite element analysis
framework used in [6], although we will not pursue that in this paper.

On a uniform mesh there is an obvious connection between our multilevel filter-
ing idea and wavelets [20], [12]. Wavelets are orthonormal basis functions for square-
integrable functions and are defined on a multilevel structure. These basis functions
have compact support in space and almost compact support in the Fourier domain.
Thus, wavelets can be considered as efficient bandpass filters. We are currently ex-
ploring the use of wavelets in our multilevel filtering preconditioner framework.

3. MF preconditioners for anisotropic problems. In this section, we extend
the concept of multilevel filtering to the second-order anisotropic problems. To achieve
a high degree of efficiency, the preconditioning step requires some modifications in
the design of filters (or the use of a different multilevel nodal basis). We first provide
justification for such modifications and then show the condition number as computed
by Fourier analysis. Numerical experiments are also included.

Consider the following two-dimensional second-order anisotropic problem:

(2) auxx uyy f(x, y) in t [0, 1] 2,

where a > 1, with zero Dirichlet boundary conditions. The discretization of the
equation using a uniform square mesh with h 1/(n + 1) gives a block-tridiagonal
matrix A with an equation of the form Au f. In the Fourier domain, we can express
this as

(3) t(j,k)ftj,k]j,k, j,k-- 1,2,...,n- 1

where

(4)
n/ y. U,m sin(jrlh) sin(krmh), -- l=l m=l

and

(5)

such that

(6) (j, k) (2 + 2a) 2(a cos jrh + cos krh).

MULTILEVEL FILTERING PRECONDITIONERS" EXTENSIONS 233

We can observe from the eigenvalue spectrum of that for a >> 1 the variation
in magnitudes of the eigenvalues in the k-direction is relatively small compared to
that in the j-direction. To maintain uniform variation of eigenvalues within each
band, we divide more wavenumber bands in the j-direction than in the k-direction.
We call this technique directionally adaptive filtering. This can be done in practice
by first performing one-dimensionM filtering in the j-direction for a number of levels
(say, the number of levels -y), then resuming two dimensional filtering. This is
in contrast to performing two-dimensional filtering for all the levels for the nearly
isotropic problems described in the last section. Here q, depends on c as well as the
problem to be solved. For second-order elliptic problems with quasi-uniform grid and
ht 2h/+1, it is sufficient to use /- round(log4 (). Suppose a 4. Then -y 1 and
the modified Hi,1 for the finest grid level takes the following stencil form

1

while the filters for the other coarse grid levels have a two-dimensional stencil (tensor
product of one-dimensional filter, i.e., Hi,1 Ht,).

Note that if the finest level is defined on a (n + 2) (n + 2) grid, then for 7 >_ 1
the next coarse level is defined on a ((n + 1)/2 + 1) (n + 2) grid instead of a
((n + 1)/2 + 1) ((n + 1)/2 + 1) grid for 7 0. It should also be noted that this
modified filtering scheme is analogous to the idea of semi coarsening in the multigrid
literature.

We performed Fourier analysis of the single grid version of this scheme (called
SGMFla) on the two-dimensional anisotropic problem with different a and h. The
condition numbers of the preconditioned system are given in Table 1. For comparison
purposes, the condition numbers of the preconditioned system using the unmodified
SGMF1 preconditioner are also included. Table 1 shows that this modified scheme is
quite effective. For example, for a 1000 the condition number grows slowly with n,
while this is not true for the unmodified SGMF1 preconditioner.

TABLE 1
Condition number for different (and n.

a I0 a 100 c 1000
SGMFla SGMF1

3.8 13
4.3 21
5.4 28
6.6 34
8.2 40
9.7 46

103
414
1659
6639
26560

SGMFla SGMF1

3.8 38
4:7 117
5.8 233
6.8 328
7.9 395
9.0 454

103
414

i659
6639
26560

SGMFla SGMF1

’3.8 47
4.7 216
5.9 849
6.9 2142
8.0 3480
9.0 4396

The MGMF1 preconditioning algorithm for the above anisotropic problems can
be summarized as follows"

234 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

Algorithm MGMFla input r, output z M-lr
VL :--r

Decomposition
count
for L- 1,..., 1

if (count 0) then
t := x-filterl (v+l)
v := y-filterl(tl)

else

end if

Scaling

count count- 1
v :- x-filterl(v+)

end for

for 1- 1,...,L
Vl :-- Vl -- Cl

end for
Synthesis

tl :: Vl
for 2,...,L

tl :-- vl + Hl,iI[_ltl-1
end for
z :-- tL

end MGMFla

Next we show numerical results using the multigrid MF (MGMFla) precondi-
tioner in conjunction with the conjugate gradient method. Again, we use the standard
5-point discretization on a uniform square mesh with h 1/(n + 1) and the forcing
function f(x, y) is such that the solution is u x(x- 1)y(y- 1)exy. The stopping
criterion used is [I rk [I/II rO II < 10-5 and the initial guess is 0. The iteration counts
for different h and a are shown in Table 2.

TABLE 2
Iteration counts for different c and n

7 23
15 48
31 97
63 197
127 405
255 839

a=10
MGMFla MGMF1

11 18
13 26
15 32
16 36
19 41
20 45

41
90
187
388
812

100
MGMFla MGMF1

7 19
10 41
12 64
13 83
15 95
17 106

a 1000
A MGMFla MGMF1

13
27
63
126
258
608

2O
9 44
12 84
13 140
15 193
17 224

The numerical results show that this scheme works very well for a wide range of. A similar scheme can be applied to the case when < 1. It should be noted that
the algorithm can also be applied to.more general anisotropic problems (e.g., variable
coefficients) in the same way that the semicoarsening technique in MG is used (e.g.,
by averaging coefficients) [18].

MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 235

4. MF preconditioners for the biharmonic equation. Consider the follow-
ing biharmonic equation in two dimensions:

(7) -A2u=f in t [0,1] 2

with first boundary conditions:

(8) u(x, y)Ir g(x, y)

OU
(9)

We discretize this equation using a 13-point second-order centered finite difference
approximation with h 1/(n + 1):

20u,j 8(u+ ,j + u_ ,j + u,j+ + u,y
+ 2(u+,j+ + u_l,j+ + u+,_ + u_,_l)
+ u+2,j + u-25 + u,j+2 + u,j-2 h4f, j

for i, j 2, n- 1. The difference equation for i 1, and j 3,..., n- 2 is:

21u,j 8(u2,j + u,j+ + u,j_l) + 2(u25+1 + u2,j-) + u3,j + u5+2 + u,j-2

h4(j,j + 8g0, 2(g05+ + g0,j-1) 2hb0,)

since

Ou Ou
onx=0.

On Ox

Using central differencing, we get

(Ul,j U--I,j)
2h

Also, at i j 1, we have

22U1,1 8(U2,1 - Ul,2) -- 2(U2,2) " U3,j -- Ul,3

h4(f,j + 8(g05 + g,0) 2(g0,j+ + g0,y- + g2,0) 2h(b0, + 51,0)).

The difference equations for other near boundary grid points can be derived similarly.
To derive MF preconditioners, we have to estimate the eigenvalues of the bihar-

monic operator. To do so, we apply Fourier analysis to the operator with modified
boundary conditions, namely,

02U
u(x,y)]r O and

On2 =0.

Based on analyzing this problem, we can estimate the eigenvalues of by

(10) .(j, k) 4- 2(cos(irh) + cos(jrh))2

which is the square of that for the Poisson equation.

236 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

TABLE 3
Condition number for SGMF preconditioning for the biharmonic equation.

n I[No preconditioning

7 690
15 1.1 x 104
31 1.7 x 105
63 2.8 10
127 4.4 x I0
255 7.0 x 10s

SGMFlb SGMF2b SGMF3b

25 5.3 17
108 5.6 66
438 7.2 256
1814 8.7 1017
7367 10.2 4061

29705 11.7 16238

Since the eigenvalues in Bl for this equation behave like O(h/-4), a natural ex-
tension of the MF preconditioner involves changing the scaling recurrence cl+l 4c
to ct+l 16ct (again, ht 2hl+l is assumed). In Table 3, we show the result
of the Fourier analysis on the MF-preconditioned biharmonic equation. In the ta-
ble, SGMFlb, SGMF2b, and SGMF3b represent the original SGMF1, SGMF2, and
SGMF3 preconditioners with the new scaling.

We see that the condition number of A grows about 16 times with each halving
of h. The use of SGMFlb has effectively helped to reduce the condition number.
Nevertheless, SGMF2b helps to reduce the condition number even more dramatically.

To verify the Fourier results, we implement the SGMFlb, SGMF2b and SGMF3b
preconditioners for the biharmonic equation where the f(x, y), g(x, y) and b(x, y) are
such that the solution is u x(x- 1)y(y- 1)sin(rx)sin(ry). The stopping criterion
is. rk I[/II r < 10-6 and the initial guess is zero. The iteration counts are shown
in Table 4.

TABLE 4
Iteration counts for SGMF-preconditioned PCG for the biharmonic equation.

n No preconditioning

7 10
15 42
31 160
63 586
127 2218
255 8587

SGMFlb SGMF2b SGMF3b

9 10 9
17 12 16
36 14 3O
82 17 57
177 23 113
366 33 220

Next we show (in Table 5) the iteration counts when the multigrid formulation
of SGMFlb, SGMF2b, and SGMF3b (i.e., MGMFlb, MGMF2b, and MGMF3b) are
applied to the same problem.

TABLE 5
Iteration counts for MGMF-preconditioned PCG for the biharmonic equation.

n No preconditioning

7 10
15 42
31 160
63 586
127 2218
255 8587

MGMFlb MGMF2b MGMF3b

10 10 10
27 22 24
4O 29 32
56 30 37
80 35 40
120 43 48

We observe a close correlation between the numerical and Fourier results for the
SGMF preconditioners. Indeed, SGMF2b improves significantly over SGMFlb with

MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 237

only a little increase in cost per iteration. SGMF3b improves somewhat over SGMFlb
but is still not good enough compared to SGMF2b. Therefore, SGMF2b requires the
fewest operation counts out of the three. Looking into the numerical results for the
MGMF preconditioners, we first observe that both MGMFlb and MGMF3b give
better convergence rates than their SGMF counterparts. We cannot explain why this
is the case, nor can we explain why MGMF3b performs much better than predicted
by the corresponding Fourier results. Finally, with a little arithmetic, it is not difficult
to show that MGMF3b gives the fewest overall operation counts.

5. MF preconditioners for problems with locally refined grids. In this
section, we shall consider the application of the MF preconditioners to second-order
elliptic problems with local mesh refinement. Such mesh refinements are necessary for
accurate modeling of problems with various types of singular behavior. We consider
the discretization scheme for locally mesh refined grids by McCormick and Thomas
[16]. This discretization scheme was motivated by the desire to preserve the highly
regular grid structure (to maintain efficiency on parallel computer architectures), as
well as to satisfy the need for local resolution in many physical models. For example,
the mesh in Fig. 1 would be effective if the forcing function f(x, y) behaves like a 5
function distribution at the points (1, 1) and (n, n) (both lower left and upper right
corners).

FIG. 1. Locally refined grids--an example.

The Fourier analysis cannot be applied here because of the presence of nonuni-
form grids. However, as was shown in our previous paper [13], the parallel multilevel
preconditioner proposed by Bramble, Pasciak, and Xu [6] can be considered as a spe-
cial case of MF preconditioners with appropriately chosen filters. We can borrow the
finite element analysis result from them and we would expect the MGMF precon-

238 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

ditioners to be effective also for meshes with local refinement. Below we show the
MGMF algorithm for this problem. Here i and/:/ are restriction (or interpolation)
and elementary filtering operators restricted to the locally refined grids only. More-
over, we can use the same recurrence relation c 4c+1 and we have the following
algorithm:

Algorithm MGMFlc input r, output z M-ir
Decomposition

VL :--r

(* filtering at refined levels *)
for L-1,...,J- k

vl i[+,Hi+,,,vi+,
end for
(* filtering on uniform grid levels *)
for 1- L-k- 1,..., 1

vl "= I[+IH+,ivg+i
end for

Scaling
for 1- 1,...,L

Vl :-- Vl "- C1
end for

Synthesis
Z :-- Vl
for 2,...,L- k

zg := v + Hl,I[_ zl_

end for
for L- k + l,...,L

+
end for
Z--ZL

end MGMFlc

We solve a Poisson equation on the grid

shown in Fig. 1 but with refinement only at the upper right corner and the
forcing function is f(x, y) 2-t(1 h, 1 h), and
shown in Fig. 1 and the forcing function f(x, y) 2-((h,h)-(1-h, l-h)),
where is the number of level of refinements used and h is the grid size for
the nonrefined grid.

We use the discretization scheme for the domain and the interfaces proposed by
McCormick and Thomas [16] for aligned grids. The stopping criterion and initial
guess are the same as before. The iteration counts for different number of levels and
different h are given in Tables 6 and 7. The iteration counts for the unpreconditioned
conjugate-gradient (CG) method and the parallel multilevel preconditioner (BPX) [6]
are also included for comparison purposes.

The tables show the effectiveness of the MF preconditioner compared to the un-
preconditioned CG method and the PCG method with parallel multilevel precondi-
tioner (BPX). The convergence rates seem to be quite insensitive to the number of
refinement levels used.

MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 239

TABLE 6
Iteration counts for the Poisson equation with refinements at upper right corner only.

,n [I No. of levels cG’ MGMFlc I’BPX
15
15
15
15

31
31
31
31

63
63
63
63
127
127
127
127

0 26
1 37
2 45
3 53

9 12
10 14
1i 16
i2 17

0 48 9 13
1 ’70’ I0 ’15
2 88 11 17
3 109’ ’i2 i8

0 84 10 14
1 126 11 15
2 166 11 17
’3 ".’2’10 1 i9

0 133 10 14
1 ’219 1i 1’5’
2 3’09 12 i7
3 395 13 i9

TABLE 7
Iteration counts for the Poisson equation with refinements at both corners.

I, 11 No. of levels co,,l MGMFlc BPx,,
15 0 26 9 12
15 1 54 11 15
15 2 63 12 17
15 ’3 75 16 18
31

31.
31

0 48 9 13
1 86 1i i6
2 "1i7 1 17
3 140 13 19

63 0 84 10
63 1 126 12
63 2 190 12
63 3 235 14

14
16
18
19

127 0 133 10 14
"’127 1 204 12 16’
127 2 297 13 18
127 3 391 14’ 20

6. MF preconditioners for Schur complement systems. Consider solving
a two-dimensional second-order elliptic problem on a domain divided into two sub-
domains by an interface. If we use a 5-point discretization and order unknowns in
the subdomains D1 and -2 first followed by those on the interface F3, we obtain the
following linear system:

Au 0 A2 A23 u2 f2
A31 A32 A3 u3 f3

By applying block Gaussian elimination to eliminate the unknowns ul and u2, we
obtain the following system for the interface unknowns u3:

SU3 13

240 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

where

S A3 A31AIA13 A32AlA23
and

]3 f3 A31Alf1 A32AIf2
A standard approac_h in domain decomposition methods is to solve the Schur com-

plement system Su3 f3 with the preconditioned conjugate gradient method. Many
preconditioners have been proposed in the literature [7]. A typical one is Dryja’s pre-
conditioner [9], which is defined to be the square root of the negative one-dimensional
Laplacian and which can be inverted by the use of FFTs in O(n log n) time, where
n is the number of unknowns on the interface. Recently, Smith and Widlund [19]
proposed a hierarchical basis preconditioner for S which is cheaper than Dryja’s pre-
conditioner, requiring only O(n) work per iteration. Here we propose to use the MF
preconditioner for S. To do this, we can retain the multilevel filtering framework and
we only need to modify the scaling constants ct’s. We know that the eigenvalues for
the Schur complement in the frequency band Bt behaves like O(h1) [9]. Therefore,
it is sufficient to use the recurrence Ct+l 2ct. In Table 8 we compare the num-
ber of iterations to obtain convergence for different n for the Poisson equation on a
rectangular 2n n grid decomposed into two equal subdomains.

TABLE 8
Iteration count versus n.

n II Noprecond. Dryja MGMF1

7 4 4 4
15 8 6 7
31 16 6 9
63 27 6 9
127 39 6 9

MGMF2 HB
4 4
6 7

7 10
7 12

We observe that MGMF2 performs better than MGMF1 and the hierarchical
basis (HB) preconditioner. All but the HB preconditioner seem to show convergence
rates independent of n. Although we cannot prove spectral equivalence for the MGMF
preconditioners, an O(log n) upper bound for the condition number for the MGMF1
preconditioned system can be proved and details of such a proof can be found in [24].
We also observe that the MGMF2 preconditioner performs almost as well as Dryja’s
preconditioner. The MGMF appears to offer convergence rates comparable to Dryja’s
preconditioner and at the same time is relatively easy to use and costs about the same
as the HB preconditioner.

7. Conclusion. In our previous paper [13] and the first part of the present paper
we show the competitiveness of the MF preconditioners compared with some other
preconditioners such as the hierarchical basis preconditioner, multigrid preconditioner
and others. In this paper we have further demonstrated the ease with which we
can extend the MF preconditioners to effectively solve other more general elliptic
problems. The flexibility of filter and scaling block design offers different ways of
achieving a high degree of efficiency for these problems.

MULTILEVEL FILTERING PRECONDITIONERS: EXTENSIONS 241

REFERENCES

[1] O. AXELSSON, An algebraic framework for multilevel methods, Report 8820, Department of
Mathematics, Catholic University, Toernooiveld, 6525 ED Nijmegen, the Netherlands,
1988.

[2] O. AXELSSON AND P. VASSILEVSKI, Algebraic multilevel preconditioning methods, I, Report
8811, Department of Mathematics, Catholic University, Toernooiveld, 6525 ED Nijmegen,
the Netherlands, 1988.

[3] , Algebraic multilevel preconditioning methods, II, Report 1988-15, Institute for Scientific
Computation, University of Wyoming, Laramie, WY, 1988.

[4] R. E. BANK, T. F. DUPONT, AND H. YSERENTANT, The hierarchical basis multigrid method,
Numer. Math., 52 (1988), pp. 427-458.

[5] G. BIRKHOFF AND R. E. LYNCH, Numerical Solutions for Elliptic Problems, Society for Indus-
trial and Applied Mathematics, Philadelphia, 1984.

[6] J. H. BRAMBLE, J. E. PASCIAK, AND J. Xu, Parallel multilevel preconditioners, Math. Comp.,
55 (1990), pp. 1-22.

[7] T. F. CHAN, R. GLOWINSKI, J. PERIAUX, O. B. WIDLUND, EDS., Domain Decomposition Meth-
ods for Partial Differential Equations, Society for Industrial and Applied Mathematics,
Philadelphia, 1989.

[8] T. F. CHAN, JAY C. C. Kuo, AND C. H. TONG, Parallel elliptic preconditioners: Fourier
analysis and performance on the Connection Machine, Comput. Phys. Comm., 53 (1989),
pp. 237-252.

[9] M. DRYJA, A capacitance matrix method for Dirichlet problem on polygon region, Numer.
Math., 39 (1982), pp. 51-54.

[10] A. GREENBAUM, C. LI, AND H. Z. CHAO, Parallelizing preconditioned conjugate gradient algo-
rithms, Comput. Phys. Comm., 53 (1989), pp. 295-309.

[11] W. HACKBUSCH, The frequency decomposition multi-grid method, Numer. Math., 56 (1989),
pp. 229-245.

[12] V. E. HENSON AND W. L. BRIGGS, Wavelets: What are they and what do they have to do
with Multigrid?, Copper Mountain Conference on Iterative Methods, April 1-5, Copper
Mountain, CO, 1990.

[13] C.-C. J. Kuo, T. F. CHAN, AND C. H. TONG, Multilevel filtering elliptic preconditioners, SIAM*
J. Matrix Anal. Appl., 11 (1990), pp. 403-429.

[14] Y. A. KUZNETSOV, Multigrid domain decomposition methods for elliptic problems, Proceedings
VIII International Conference on Computational Methods for Applied Science and Eng.
Vol. 2, Versailles, France, 1987, pp. 605-616.

[15] R. E. LYNCH AND J. R. RICE, A high-order difference method for differential equations, Math.
Comp., 34 (1980), pp. 333-372.

[16] S. MCCORMICK AND J. THOMAS, The fast adaptive composite grid (FAC) method for elliptic
equations, Math. Comp., 46 (1986), pp. 439-456.

[17] S. McCORMICK, Multilevel Adaptive Methods for Partial Differential Equations, Society for
Industrial and Applied Mathematics, Philadelphia, 1989.

[18] W. A. MULDER, Multigrid Alignment and Euler’s Equation, in Proc. Fourth Copper Moun-
tain Conference on Multigrid Methods, Society for Industrial and Applied Mathematics,
Philadelphia, 1989, pp. 348-364.

[19] B. SMITH AND O. WIDLUND, A domain decomposition algorithm using a hierarchical basis,
SIAM J. Sci. Statist. Comput., 11 (1990), pp. 1212-1220.

[20] G. STRANG, Wavelets and dilation equations A brief introduction, SIAM Rev., 31 (1989),
pp. 614-627.

[2:[] G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall Set.
Automat. Comput., 1973.

[22] CHARLES H. TONG, The preconditioned conjugate gradient method on the connection machine,
Internat. J. High Speed Comput., 2nd Issue: Scientific Applications of the Connection
Machine, 1989.

[23] C. TONG, T. F. CHAN, AND C. C. J. Kuo, Multilevel filtering preconditioners--extension to
more general elliptic problems, UCLA CAM Report 90-12, University of California, Los
Angeles, CA, 1990

[24] , A domain decomposition preconditioner based on a change to the multilevel nodal basis,
UCLA CAM Report 90-20, University of California, Los Angeles, CA, 1990.

[25] P. VASSILEVSKI, Iterative methods for solving finite element equations based on multilevel split-
ting of the matrix, Bulgarian Academy of Science, Sofia, Bulgaria, 1987, preprint.

242 C.H. TONG, T. F. CHAN, AND C. C. J. KUO

[26] P. WESSELING, A survey of Fourier smoothing analysis results, Third European Conference on
Multigrid Methods, Oct. 1-3, 1990.

[27] D. M. YOUNG AND B. R. VONA, Parallel multilevel methods, CNA-243, University of Texas,
Austin, TX, May 1990.

[28] H. YSERENTANT, On the multi-level splitting of finite element spaces, Numer. Math., 49 (1986),
pp. 379-412.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 243-258, January 1992

() 1992 Society for Industrial and Applied Mathematics
013

DOMAIN DECOMPOSITION ALGORITHMS FOR INDEFINITE
ELLIPTIC PROBLEMS*

XIAO-CHUAN CAIt AND OLOF B. WIDLUND$

Abstract. Iterative methods for linear systems of algebraic equations arising from the finite
element discretization of nonsymmetric and indefinite elliptic problems are considered. Methods
previously known to work well for positive definite, symmetric problems are extended to certain
nonsymmetric problems, which can also have some eigenvalues in the left half plane.

This paper presents an additive Schwarz method applied to linear, second order, symmetric
or nonsymmetric, indefinite elliptic boundary value problems in two and three dimensions. An
alternative linear system, which has the same solution as the original problem, is derived and this
system is then solved by using GMRES, an iterative method of conjugate gradient type. In each
iteration step, a coarse mesh finite element problem and a number of local problems are solved on
small, overlapping subregions into which the original region is subdivided. The rate of convergence
is shown to be independent of the number of degrees of freedom and the number of local problems if
the coarse mesh is fine enough. The performance of the method in two dimensions is illustrated by
results of several numerical experiments.

Two other iterative methods for solving the same class of elliptic problems in two dimensions is
also considered. Using an observation of Dryja and Widlund, it is shown that the rate of convergence
of certain iterative substructuring methods deteriorates only quite slowly when the local problems
increase in size. A similar result is established for Yserentant’s hierarchical basis method.

Key words. Schwarz’s alternating method, domain decomposition, nonsymmetric and indefi-
nite, elliptic equations, finite elements

AMS(MOS) subject classifications. 65N30, 65F10

1. Introduction. Domain decomposition techniques are powerful iterative meth-
ods for solving linear systems of equations that arise from finite element problems. In
each iteration step, a coarse mesh finite element problem and a number of smaller lin-
ear systems, which correspond to the restriction of the original problem to subregions,
are solved instead of the large original system. These algorithms can be regarded as
divide-and-conquer methods. The number of subproblems can be large and these
methods are therefore promising for parallel computation. The central mathematical
question is to obtain estimates on the rate of convergence of the iteration by deriving
bounds on the spectrum of the iteration operator. We are able to establish quite
satisfactory bounds if the coarse mesh is fine enough.

We work with two triangulations of the region: (1) partitioning the region into
subregions, also called substructures, which define a coarse, global model; (2) parti-
tioning the region into elements of a finite element model. As in the positive definite
case considered previously (see Cai [3], [4]; Dryja [6]; and Dryja and Widlund [7], [8]),
the coarse problem provides interchange of information among the different parts of
the region. It is known that without such a coarse subproblem the rate of conver-
gence is considerably slower, cf. [24]. This part of the approximate solver plays an
additional role in the indefinite case. We can interpret the main results of this paper
by saying that if the eigenfunctions corresponding to the eigenvalues in the left half

Received by the editors April 5, 1990; accepted for publication March 7, 1991.
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506. The work of

this author was supported in part by National Science Foundation grants NSF-DCR-8521451 and
NSF-ECS-8957475, while in residence at Yale University.

Courant Institute of Mathematical Science, New York University, New York, New York 10012.
The work of this author was supported in part by National Science Foundation grant NSF-CCR-
8903003 and in part by the U.S. Department of Energy contract DE-AC02-76ER03077-V at the
Courant Mathematics and Computing Laboratory.

243

244 X.-C. CAI AND O. B. WIDLUND

plane are approximated well enough on the coarse mesh, then the spectrum of the
preconditioned linear system of equations lies in a fixed bounded subset of the right
half plane. This is important for the rate of convergence of the iterative method. The
least favorable situation for iterative methods of conjugate gradient type is the case
where the origin of the complex plane is surrounded by eigenvalues of the iteration
operator. Here we are able to avoid such a situation.

The additive Schwarz algorithms, introduced in [7], cf. also [6], [8], [9], [18],
provide a means of constructing preconditioners for many problems in terms of a
partition of a given finite element space into a sum of subspaces. The use of such
a preconditioner involves solving, exactly or approximately, the restriction of the
original problem to the different subspaces. The residual, which plays a central role in
the iteration, is computed as a sum of terms from the different subspaces. These terms
can be computed in parallel. We note that it has been shown in Dryja and Widlund
[9] that many domain decomposition methods can be viewed as additive Schwarz
methods. For recent work on the case of more than two levels of triangulation, see
Dryja and Widlund [10] and Xu [25].

In the symmetric, positive definite case, the iterative method most commonly
used to solve the transformed (preconditioned) equations is the conjugate gradient
method. For the cases considered here symmetry is always lost. In our experiments,
we have used a generalized conjugate residual method GMRES; see [22]. Since the
spectrum of the operator is confined to the right half plane, Manteuffel’s Chebyshev
algorithm would also be successful, cf. [17]. Since we can show that the symmetric
part of the operator is uniformly positive definite, with respect to a suitable inner
product, and that the spectrum is uniformly bounded, we can guarantee a rate of
convergence that is independent of the mesh size and the number of subregions.

Other methods for indefinite, elliptic problems are discussed in [2], [14], [16], [27],

The paper is organized as follows. In 2, we introduce a class of indefinite, elliptic
boundary value problem, the two triangulations of the domain, and a Galerkin finite
element method. We briefly review the GMRES method in 3. In 4, we present
two variants of the additive Schwarz method and a detailed analysis of their rates of
convergence. Our analysis is based on previous work on the positive definite case, see

[3], [4], [6], [7], [8], and a result due to Schatz [23]. Schatz’s work, in turn, is based on
Grding’s inequality and the Aubin-Nitsche trick, see Ciarlet [5] or Nitsche [21]. In
5, we discuss some numerical results. Finally, in 6, we show that, for problems in
the plane, ourresult can be extended to iterative substructuring and hierarchical basis
algorithms discussed in Dryja and Widlund [8], [9] and Yserentant [26], respectively.

2. The elliptic problems. Let D be an open, bounded polygonal region in
Rd, d 2 or 3, with boundary 0D. Consider the homogeneous Dirichlet boundary
value problem:

Lu f in D,
u 0 on 0.

The elliptic operator L has the form

d 0 /
i,j--1

Ou(x)+
i=1

+

DOMAIN DECOMPOSITION ALGORITHMS 245

All the coefficients are, by assumption, sufficiently smooth and the matrix {aid(x)}
is symmetric and uniformly positive definite for all x E fl. The right-hand side

f e L2([I). We also assume that the equation has a unique solution in H(Ft).
Let (., .) denote the usual L2 inner product and I1" or I1" IlL the corresponding

norm. The weak form of (1) is: Find u e H(fl) such that

(2) B(,)= (f,), W e H(n).

The bilinear form B(u, v) is defined by

a

i O__U_U O_.V__v a

in Ou SB(u, v) i,j flaiJ Oxj Oxi
dx "[- Ei:l 2 bi-xivdx ’[- glc%tvdx

or

<
f Ou Ov

B(u, v) j a Ox Ox
i,j-1

gt
--dx +E bi--v + + 5uvdx.

= Ox a

Here, 5(x) c(x) y]d Obi(x)/Oxii-1
We also use two other bilinear forms

d

E ii,j=l fl

and

S(u, v) .= bi--VOxi + O(biu) vdx

which correspond to the second-order terms and the skew-symmetric part of L, re-
spectively. The bilinear form A defines a norm, which we denote by I1" IIA. Under the
assumptions on the coefficients aid, this norm is equivalent to the HI norm. It is also
easy to verify that

s(,) -s@,), w, e H0 (a).

Throughout this paper, c and C, with or without subscripts, denote generic,
strictly positive constants. They are independent of the mesh parameters h and H,
which will be introduced later in this section.

Using elementary, standard tools, it is easy to establish the following inequalities:
(i) B(u v)I_ C[]UI[A[[VI[A, VU, V e H(fl).
(ii) Grding’s inequality: There exists a constant C, such that

(iii) There exists a constant C, such that

IS(u,)I< CIIIIAIIII:), W, v e H(U).

246 X.-C. CAI AND O. B. WIDLUND

We note that the bounds for B(., .) and S(., .) are different, since each of the
terms in S(., .) contains a factor that is of zero order. This enables us to control the
skew-symmetric term and makes our analysis possible.

We also use the following regularity result, cf. Grisvard [13] and NeSas [19].
(iv) The solution w of the adjoint equation

B(,), v e HI
satisfies

where /depends on the interior angles of 012, is independent of g, and is at least 1/2.
We approximate (2) by a Galerkin conforming finite element method. For sim-

plicity, we consider only continuous, piecewise linear, triangular elements in R2 and
tetrahedral elements in Ra.

To define the additive Schwarz algorithms, we need two levels of triangulation
that have already been introduced in [3], [4], [6], [7], [8], and [9]. We first partition

into substructures {i}, i 1,..., N, which provide a regular finite dement trian-
gulation of . The i are nonoverlapping, d-dimensional simplices. They satisfy all
the standard rules of finite elements, cf. Ciarlet [5]. This is the coarse mesh and it
defines a mesh parameter H max{H,... ,H}. The triangulation is assumed to
be shape regular, i.e., Hi, the diameter of i is bounded uniformly in terms of the
diameter of the largest inscribed ball in i.

In a second step, we divide each substructure i into smaller simplices, denoted
by { r, j 1,... }. They form a shape regular, fine mesh (h-level) finite element
triangulation of with the mesh parameter h mi,j {h{ }. Here h{ is the diameter
of r.

We can now define the piecewise linear finite element spaces over the H-level and
the h-level triangulations of .

VH {vH continuous on , vH linear, vH 0 on

and

vh= {vh[continuous on gt, vhl.,. linear, vh= 0 on 012}.

The Galerkin approximation of (2) is defined by: Find uh E Vh such that

(3) B(uh, vh) (f, vh), Vvh e Vh.

If the mesh size h is small enough, it follows from a result by Schatz [23] that
this problem has a unique solution. By using nodal basis functions to span the finite
element space, (3) is transformed into a linear system of algebraic equations that is
large, sparse, nonsymmetric, indefinite, and relatively ill-conditioned.

3. A brief discussion of the GMRES method. Among the possible iterative
methods to solve the linear system, we have only used one, the GMRES method, cf.
Saad and Schultz [22] and Eisenstat, Elman, and Schultz [11]. This is a generalized
minimum residual method, which in practice has proven quite powerful for a large
class of nonsymmetric problems. The GMRES method is described in [22] and the
theory developed in L2(gt) can be found in [11]. Both the algorithm and the theory

DOMAIN DECOMPOSITION ALGORITHMS 247

can easily be extended to an arbitrary Hilbert space, see Cai [3]. In developing our
theory and in the numerical results that are discussed in 5, we have exclusively used
the A-norm introduced in 2. Here we briefly describe the GMRES algorithm and
state a theorem without proof.

Let P be a linear operator in the finite dimensional space Rn with an inner
product [., .], and a corresponding norm I1" II, chosen to take advantage of the special
properties of P. (In our applications, P is the preconditioned stiffness matrix and the
A-norm is used.) P is not symmetric but is positive definite with respect to [.,-]. The
GMRES method is used to solve the linear system of equations

Px b,

where b E Rn is given. We begin from an initial approximation x0 E Rn and the
initial residual ro b Pxo. In the mth iteration, a correction vector Zm is
computed from the Krylov subspace

m(ro) span{ro, Pro,’",Pm-lro},

which minimizes the norm of the residual. In other words, Zm solves

min lib P(xo / z)ll
z.(r0)

The ruth iterate is Xm xo + Zm.
The exact solution would be reached in no more than n iterations if we use exact

arithmetic.
Following Eisenstat, Elman, and Schultz [11], the rate of convergence of the GM-

RES method can be characterized in terms of the minimal eigenvalue of the symmetric
part of the operator and the norm of the operator. They are defined by

Cp inf
[x, Px]

0 Ix x]
and Cp sup IIPxl--

By considering the decrease of the norm of the residual in a single step, the
following theorem can be established.

THEOREM (Eisenstat, Elman, and Schultz). If Cp > O, then the GMRES method
converges and after m steps, the norm of the residual is bounded by

Ilrmll _< 1-
Cp2

4. Algorithms on overlapping subregions. In this section, we introduce two
variants of an additive Schwarz algorithm and provide bounds on their convergence
rates, see Theorem 1 in the following discussion. The analysis is valid for both two
and three dimensions.

We first form a basic decomposition of the domain into overlapping subregions
and then introduce the projections that define our algorithms.

We use the H-level subdivision {gt} of . Each subregion is extended to a
larger region ti, i.e., ti C Fti. The overlap is generous in the sense that there exists
a constant a > 0, such that

distance(0t N Ft, 0t N gt) _> aH,

248 X.-C. CAI AND O. B. WIDLUND

We assume that 0’i does not cut through any h-level elements. We use the same
construction for the subregions that intersect the boundary 0f except that we cut off
the part that is outside f.

We also use the notation f0 ft.
We note that the larger c is, the fewer iterations can be expected. However, if

we increase the overlap, the size and hence the cost of the subproblems increases. It
is an important practical issue to balance the total number of iterations and the cost
of solving the subproblems.

For each ti, i > 0, a regular finite element subdivision is inherited from the h-level
subdivision of f. The corresponding finite element space is defined by

Vih H f’i n Vh

The elements of this subspace of Vh can be extended continuously by zero to the
complement of gti. We also use the subspace

goh vH

It is easy to see that our finite element function space Vh can be represented as
the sum of the N + 1 subspaces,

+ +...+

We can now define the projection operators, which are the main building blocks of
our algorithms. These operators map the finite element space Vh onto the subspaces
Vh and are defined in terms of the bilinear forms B(-, .) and A(., .).

DEFINITION. For i 0,..., N:
For any wh E Vh, Qiwh Yih is the solution of the finite element equation

B(Qwh, v) B(wh, vh), Vvh Vh.

For any Wh Vh, Piwh Yih is the solution of the finite element equation

A(PiTh, vh B(wh, vh), Vvh Vh.

We now introduce the two operators that define our transformed equations

Q(1) Qo + Q1 +"" + QN

and

Q(e) Qo + P1 +"" + PN.

Our main effort goes into the study of the spectra of these two operators. The only
difference between Q(1) and Q() is that, for i > 0, we replace the projection Qi,
corresponding to gti, by Pi. The coarse mesh projection is not changed.

The computation of Qiwh or PiTh, for > 0 and for an arbitrary function
wh Vh, involves the solution of a standard finite element linear system of alge-
braic equations on the small subregion fi. The former gives rise to a nonsymmetric
linear system of equations and the latter to a positive definite, symmetric problem.
For i 0, the problem is a standard finite element equation on the H-level, coarse
space. One can view Pi as a preconditioner of Qi in the subspace vh; cf. the discussion
in Dryja and Widlund [8], [9]. The cost of the computation can often be decreased by

DOMAIN DECOMPOSITION ALGORITHMS 249

simplifying the local problems further. We can replace the given second-order elliptic
operator by the Laplacian. If it is possible to choose some of the gt to be rectangular
and the corresponding mesh to be uniform, a Fast Poisson solver can then be used
to compute the contribution from Vh. It is an easy exercise to modify our theory to
cover such a case.

We will consider two additive Schwarz algorithms:
ALGORITHM 1. Obtain the solution of (3) by solving the equation

(4) Q(1)uh b(1),

and
ALGORITHM 2. Obtain the solution of (3) by solving the equation

(5) Q(2)uh b(2).

In order for (4) and (5) to have unique solutions, the operators Q(1) and Q(2)
must be invertible. This follows from Theorem 1 given in the following discussion.
To obtain the same solution as (3), the right-hand sides b() and b(2) must be chosen
correctly. The crucial observation is that these right-hand sides can be computed
without knowledge of the solution of (3). The following formulas are valid:

N

b(1) Q(1)uh E Qiuh
i-0

and

N

b(2) Q(2)uh Qouh+puh.
i-1

Each of these terms can be computed by solving a problem in a subspace since, by
(3) and the definitions of Qi and Pi,

B Q uh v B uh v f v Vv E Vh

and

A(Piuh, vh) B(uh, vh) (f, vh), Vvh e Vh.

The main result of this study is Theorem 1. By combining it with the theorem
given in 3, we establish that the two algorithms converge at a rate that is independent
of the mesh parameters h and H, if the coarse mesh is fine enough.

THEOREM 1. There exist constants Ho > O, c(Ho) > 0 and C(Ho) > O, such
that if H <_ Ho, then, for 1, 2,

c(Ho)CA(uh uh) <_ A(uh, Q(i)uh)

and

A(Q(i)uh, Q(i)uh) <_ C(Ho)A(uh, uh).

The special constant Co is introduced in Lemma 1.

250 X.-C. CAI AND O. B. WIDLUND

Remarks. (a) The operator Q0 is very important, since it provides global trans-
portation of information. All the other projections are local mappings. Without using
Q0, information would travel only from one subregion to its neighbors in each itera-
tion and it would take O(1/H) iterations for the information to propagate across the
region. For further details, see [24].

Without such a global mechanism, it would also be impossible to confine the
spectrum to the right half plane. To see this, we consider a symmetric, indefinite
case. If the subregions are small enough, all the local elliptic problems are positive
definite, symmetric and, in the absence of a global part, the preconditioner defined
by the Schwarz algorithm is positive definite symmetric. Therefore, by the inertia
theorem, the operator P has as many negative eigenvalues as the original discrete
elliptic problem.

(b) The constant H0 determines the minimal size of the coarse mesh problem and
it depends on the operator L. In general, H0 decreases if we increase the coefficients
of the skew-symmetric terms, it decreases with , while it increases if we increase the
overlap. H0 also depends on the shape of the domain 12. If the domain is not convex,
the estimate of H0, implicit in our proof of Lemma 5, depends on the parameter in
(iv). We do not have an explicit formula for H0 but we know from experience that it
can be determined by numerical experiments.

If the operator L is positive definite, symmetric, there is no restriction on the
coarse mesh size H, i.e., H0

The proof of Theorem 1 is based on the following results.
LEMMA 1. There exists a constant Co, which is independent of h and H, such

hthat, for all uh E Vh, there exist u Yih with

U
h

N
hEti

i----0

and
N

E A(uh’ uh) <- CA(uh’ uh)"
i--0

This lemma is also central in the theory previously developed for positive definite,
symmetric problems. For a proof see Dryja and Widlund [8]; cf. also Lions [15] or
Nepomnyaschikh [20]. Note that this lemma is independent of the skew-symmetric
and zero-order terms of the elliptic operator. In the symmetric, positive definite
case, Lemma 1 is combined with an abstract argument to give a lower bound for the
spectrum of the iteration operator.

The next lemma is a variation of a result by Schatz, cf. [23]. In his proof,
Grding’s inequality, (ii), and the regularity result, (iv), are used. The proof of
Lemma 2 follows directly from Schatz’s work by replacing the approximate solution
by the coarse mesh solution and the exact solution of the continuous problem by the
finite element solution in Vh.

LEMMA 2. There exist constants Ho > 0 and C(Ho) > 0 such that if H <_ Ho,
then,

and

IIQouh uhllL <_ C(Ho)HIIQouh

DOMAIN DECOMPOSITION ALGORITHMS 251

LEMMA 3. The restriction of the quadratic form B(., .) to the subspaces V/h, i > 0,
is strictly positive definite .for H sufficiently small, i.e., there exists a constant c > 0
such that

cA(uh, uh) <_ B(uh, uh), Vuh 6 Vh

Proof of Lemma 3. We have to prove that the second order terms dominate the
other symmetric term; the contribution from the skew-symmetric term vanishes. This
follows from the fact that the smallest eigenvalue for the Dirichlet problem for
on the region 12 is on the order of H-2

LEMMA 4. Let vh vhi where v Vih. Then there exists a constant C > O,
such that

Proof of Lemma 4. The proof follows from the observation that for each x e ,
the number of terms in the sum that differ from zero is uniformly bounded.

LEMMA 5. There exist constants Ho > 0, c(Ho) > 0, and C(Ho) > 0 such that if
H <_ Ho, then,

and

N

c(H)C2A(uh’ uh) <-- E A(Qiuh, Qiuh) <- C(H)A(uh, uh)
i--0

c(Ho)C2A(uh, uh)
N

<-- A(Qouh, Quh) +E A(Piuh’ piuh)
i--1

<_ C(Ho)A(uh, uh).

Proof of Lemma 5. An upper bound for A(Qouh, Qouh) is given in Lemma 2.
To obtain an upper bound for the sum of the other terms, we use Lemma 3 and the
formula

to show that

B(Qiuh Qiuh) B(uh, Qiuh)

cA(Quh, Quh) <_ B uh, Quh

i=1 i--1

The right-hand side can be estimated by using inequality (i) and Lemma 4. The other
upper bound is established in a similar way.

To prove the lower bounds, we begin by using Lemma 2 and the triangle inequality
to obtain

Ilu"ll < u + IIQo "ll).
Since the eigenvalues of the Dirichlet problem for -A are bounded from below and
Lemma 2 holds, the last term can be replaced by CIIQouh IIA uh IIA. By using Grding’s
inequality, (ii), it follows that

(1 <_ ", + CIIQo "II II II .

252 X.-C. CAI AND O. B. WIDLUND

By the definition of the operators Q and Lemma 1, we find that

N N

B(uh’ uh) E B(uh’ uh EB(Quh u).
i--O i--O

The boundedness of B(., .), (i), can now be used to obtain

N N

E B(Quh’ u <_ CE IIQ uhllAlluh llA’
i=0 i=0

which by Lemma 1 and the Cauchy-Schwarz inequality can be bounded above by

We finally obtain

N

A(uh, uh) <_ CC E A(Qiuh, Qiuh)’
i=0

for sufficiently small H.
The proof of the other lower bound is quite similar.
Proof of Theorem 1. The upper bounds on the norms of the operators follow

immediately from Lemmas 4 and 5.
To obtain the lower bounds, we first consider

N

A(uh’ Q()uh) E A(uh’ Quh)"
i--0

Using Lemma 5, we see that it suffices to show that

N

(A(uh, Quh) A(Quh, Quh))
i----O

can be bounded from above by

CHA(uh, uh).

By the definition of the quadratic forms

A(uh--Quh Qiuh) B(uh--Qiuh, Quh)-S(uh-Quh, Quh)--(5(uh--Quh), Quh).

By using the definition of Qi, the first term of the right-hand side is seen to vanish.
For 0, the absolute value of the second term can be bounded above by

CHA(uh, uh) using inequality (iii) and Lemma 2. We note that S(Qiuh, Qiuh) o.
There remains to consider S(uh, -g Qiuh). By using the inequality (iii),

N

S(uh-Q,uh, Q,uh)
i--1

ClluhlIA
L

DOMAIN DECOMPOSITION ALGORITHMS 253

X

FIG. 1. An extended subregion.

Since, for each x E f, the number of terms Qiuh that differ from zero is
uniformly bounded, the second factor on the right-hand side can be bounded by

N 1/2C(-i= IIQiuhlI2L2 By an elementary estimate, which shows that the smallest
eigenvalue of the Dirichlet problem for -/k on gti is on the order of H-2 and Lemma
5, the required inequality is established.

The third term is written as the difference of two expressions, which can be
handled by exactly the same tools.

The estimate for the operator Q(2) is obtained similarly.

5. Numerical results. In this section, we present some numerical results to
demonstrate the behavior of our additive Schwarz algorithms for both symmetric
and nonsymmetric indefinite boundary value problems in R2. Numerical results for
positive definite problems, both symmetric and nonsymmetric, have previously been
given in [3], [4], [12].

We consider the problem

Lu=f inf [0,1][0,1],
u 0 on 0gt.

The coefficients of L are specified later for each problem. The right-hand side f is
always chosen so that the exact solution is u xezy sin(rx)sin(ry).

We use a two-level subdivision of t as described in 2. The subregion Fti is
obtained by enlarging the triangle Fti as in Fig. 1. In this extension, the same number
ovlp of h-level triangles are added in all directions.

In our experiments all the subproblems are solved exactly by using a band solver
from LINPACK. We stop the GMRES method as soon as [[rllA/[[rol[A <_ 10-3. We
work with the A-norm, since our theory so far has not been developed for any other
norms. However, in our experience, the performance of the algorithm is quite compa-
rable if we replace that norm with the 2-norm. We have found that the overall error
is not substantially reduced by a more stringent stopping criterion. In our tables, the
error denotes the difference between the computed solution and the exact solution of

254 X.-C. CAI AND O. B. WIDLUND

TABLE 1
Convergence history for Algorithm 1 and Example 1. Here h-1 75, H-1 15, ovlp 2 and
16.0r2

Iteration A- norm; residual L2 norm; error norm; error

1 2.50722 0.318660 0.719067
2 1.44028 0’182950 0.405074
3 0.971708 1.63224E-02 4.73967E-02
4 0.218693 7.38034E-03 2.46119E-02
5 5.54836E-02 6.13811E-03 1.94588E-02
6 3.40790E-02 5.16731E-03 1.53261E-02
7 2.60738E-02 3.71766E-03 9.73493E-03
8 1.87841E-02 2.19535E-03 6.23578E-03
9 1.03642E-02 1.67804E-03 4.90165E-03
10 6.81844E-03 1.36607E-03 4.00215E-03
11 5.02644E-03 8.28570E-04 2.39784E-03

TABLE 2
Example 1. The last two columns give the number of GMRES iterations.

Case # h-1 H- ovlp
1 3r2 15 3 2
2 30 3 4
3 45 3 6
4 60 3 s
5 15 5 1
6 30 5 2
7 45 5 3
8 60 5 4
10 16r2 45 15 1
II 60 15 1
12 75 15 2
13 60 5 4
i4 60 10 2
15 60 20 1
16 30r2 60 20 1
i7 80 20 1

Algorithm 1 Algorithm 2
11 12
11 12
12 12
12 12
10 10
12 12
12 12
12 12
10 10
11 11
11 11
44 33
17 17
8 8
16 16
17 18

the continuous problem measured in the norms indicated. The programs have been
run in single precision on the Multiflow computer at Yale University.

EXAMPLE 1. We consider the symmetric and indefinite Helmholtz equation

(6) u=O on 0t.

5 is a constant. The eigenvalues of the operator in (6) are (i2 + j2)Tr2 5, where i, j
are positive integers. The numerical results are given in Tables 1 and 2. Algorithms
1 and 2, given in (4) and (5), respectively, are used.

EXAMPLE 2. We consider a nonsymmetric and indefinite problem

-Lu-(Ou/Ox+Ou/Oy)-6u=f in gt
u 0 on Oft.

The numerical results are given in Tables 3 and 4.
We note that in a few of the experiments, the rate of convergence is unsatisfactory

but that the rate of convergence improves considerably by decreasing H. The rate of
convergence varies only marginally with the parameter ovlp. Normally, the overall

DOMAIN DECOMPOSITION ALGORITHMS 255

TABLE 3
Convergence history for Algorithm 1 and Example 2. Here h-1 120, H-1 20, ovlp 2,

? 16.0r, and 5 16.0r2.

Iteration A-norm; residual L2 norm; error L norm; error
1 2.99430 0.309833 0.696816
2 1.82397 0.234651 0.529782
3 1.34039 0.136604 0.313758
4 0.905845 7.27307E-02 0.172788
5 0.585598 4.46239E-02 0.108047
6 0.407054 2.78872E-02 6.71409E-02
7 0.288880 1.37858E-02 3.38832E-02
8 0.180577 8.21095E-03 2.06587E-02
9 0.129736 4.44917E-03 1.15359E-02
10 8.77408E-02 2.19873E-03 6.17071E-03
11 5.48599E-02 1.18357E-03 3.88315E-03
12 3.46359E-02 7.18704E-04 2.24515E-03
13 2.29454E-02 4.35330E-04 1.39198E-03
14 1.35519E-02 2.90249E-04 1.03428E-03
15 8.90639E-03 2.18270E-04 6.67672E-04
16 5.98530E-03 1.90636E-04 5.61312E-04
17 3.89341E-03 1.72248E-04 5.31457E-04

TABLE 4
Example 2. The last two columns give the number of GMRES iterations.

Case
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Parameters h-1 H-1
15 5
30 5
45 5
60 5
60 6
60 10
45 15
60 15
75 15
60 20
80 20
100 20
120 20
60 20
120 20
75 25
100 25
120 30

ovlp
1
2
3
4
3
2
1
1
2
1
1
2
2
1
2
1
1
1

Algorithm 1 Algorithm 2
13 12
17 14
18 14
18 14
16 14
12 11
17 13
18 14
25 17
13 11
14 12
18 14
17 14
24 16
35 19
17 13
18 14
15 13

cost of the computation is smallest if ovlp 1. We also note that, as expected, a
smaller H is required when the parameters 5 and are increased to increase the terms
that make the operators skew-symmetric and indefinite.

6. Two other methods. We conclude by outlining how some other results,
previously analyzed for the positive definite symmetric case, can be extended to the
class of elliptic problems described in 2. We confine our discussion to problems in
the plane; both of the algorithms considered here need to be modified considerably in
order to obtain fast methods for problems in three dimensions.

We first consider a basic iterative substructuring method for problems in two
dimensions, cf. Dryja and Widlund [8], [9]. For problems that are nonsymmetric but
positive definite, the result to be formulated has previously been obtained by Cai [3],
[4]

256 X.-C. CAI AND O. B. WIDLUND

When iterative substructuring methods are used, the region is divided into sub-
structures and elements as in 2. Though originally derived differently, it has been
demonstrated by Dryja and Widlund [8] that these methods can be viewed as ad-
ditive Schwarz methods. Our work depends heavily on this reinterpretation of the
algorithms, see [8] for detailed arguments.

In defining the partition of the finite element space into subspaces, we use the
coarse space VH introduced in 4. We also use subspaces corresponding to the sub-
regions [lij ti JFj [.J t2y. These subregions play the same role as the [in 4.
Here ft and fly are adjacent substructures with the common edge Fy. We note that
an interior substructure is covered by three such regions. The local subspaces are

V{ H(,j) N Vh.
Compared with the case considered previously, we use less overlap in the sense

that only the elements of VH can differ from zero at the vertices of the substructures.
This is reflected in a poorer bound for the constant of Lemma 1,

C _< const.(1 + log(H/h))2,

cf. Dryja and Widlund [8]. Lemma 1 is modified accordingly. The rest of the proof
carries over without change. In Theorem 2, we use the notation (Q0 + ’ Qij.

THEOREM 2. For the iterative substructuring method, introduced as an addi-
tive Schwarz method with the subspaces VH and V, there exist constants Ho > O,
c(Ho) > O, and C(Ho) > O, such that if H < Ho,

c(H0) (1 + log(H/h))-2A(uh, uh) < A(uh, uh)

and

A(uh, (uh) <_ C(Ho)A(uh, uh).

We finally show that the result, obtained by Yserentant [26] for positive definite
symmetric problems, can be extended in the same way. We note that Bank and
Yserentant [1] have already reported on successful numerical experiments with an
accelerated variant of this algorithm for the class of elliptic problems introduced in

2. We also note that our algorithm is different from those proposed by Yserentant
[27], [28] for indefinite and nonsymmetric problems. Thus in [27] a reduced system
obtained by implicitly eliminating the nodes of the coarsest mesh is solved by an
iterative method.

We assume that the region [1 is a plane polygon. A coarse triangulation is intro-
duced as before. Its triangles are recursively subdivided into four congruent triangles
a total of j times. The characteristic mesh size for the level k triangulation is hk. As
demonstrated in Yserentant [28], more complicated situations can also be considered
where the final triangulation is highly nonuniform, but to simplify our discussion, we
only consider the regular case in this paper.

As shown in Dryja and Widlund [10], Yserentant’s method can also be viewed
as an additive Schwarz method defined by a set of subspaces. Let Ikv =-- Ihv be
the linear interpolant of v E Vh onto the space of finite elements on the level k
triangulation. The following identity holds

v Iov + (Ilv Iov) +"" + (Ijv --/j-lV) Vv e Vh

DOMAIN DECOMPOSITION ALGORITHMS 257

We represent Vh a

where V0 VH and, for k > 0, Vk R(Ik- Ik-1) is the range of the operator
(Ik Ik-1). An additive Schwarz method is defined for this set of subspaces. We
obtain Yserentant’s method by replacing, for k > 0, the resulting problems on the
subspaces by suitable preconditioners.

The following result holds for the family of elliptic problems introduced in 2.
Here denotes the operator of the transformed equation, which corresponds to
Yserentant’s method.

THEOREM 3. For Yserentant’s method there exist constants Ho > O, c(Ho) > 0,
and C(Ho) > O, such that if H <_ Ho,

and

c(Ho)j-2A(uh, uh) <_ A(uh uh)

A(uh,uh) <_ C(Ho)A(uh, uh).
We will only outline how this result can be established. We model our proof on

that of Theorem 1. We have to show that the different lemmas hold for the spaces
just introduced. It is shown in Yserentant [26] that Lemma 1 holds with Co <_ Cj2, cf.
[26, Lems. 2.4 and 2.5]. Lemma 2 is still valid since the same coarse operator is used in
all the methods considered in this paper. A counterpart of Lemma 3 can be obtained
as well, by using [26, Lem. 2.4]. Lemma 4 is modified by using [26, Lem. 2.7], a result
that makes it possible to obtain a sharp upper bound in Yserentant’s main theorem.
Lemma 5 can be modified in a straightforward manner. One change is required in
the proof of the theorem. The factor = iuhllL must be estimated differently,
since, typically, all these terms differ from zero everywhere. By using Yserentant’s
tools, it is however possible to show that

Since the hi decay geometrically, the triangle and Cauchy-Schwarz inequMities give

N N

i----1 i--1

and the proof can be completed.

REFERENCES

[1] R. E. BANK AND H. YSERENTANT, Some remarks on the hierarchical basis multigrid method,
in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Priaux, and O. Widlund,
eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[2] J. H. BRAMBLE, J. E. PASCIAK, AND J. Xu, The analysis of multigrid algorithms for nonsym-
metric and indefinite elliptic problems, Math. Comp., 51 (1988), pp. 389-414.

[3] X.- C. CAI, Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic
partial differential equations, Ph.D. thesis, Courant Institute, New York University, New
York, NY, 1989.

[4] , An additive Schwarz algorithm for nonselfadjoint elliptic equations, in Third Interna-
tional Symposium on Domain Decomposition Methods for Partial Differential Equations,
T. Chan, R. Glowinski, J. Priaux, and O. Widlund, eds., Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1990.

258 X.-C. CAI AND O. B. WIDLUND

[5] P. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978.

[6] M. DRYJA, An additive Schwarz algorithm for two- and three- dimensional finite element el-
liptic problems, in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Pdriaux,
and O. Widlund, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA,
1989.

[7] M. DRYJA AND O. B. WIDLUND, An additive variant of the Schwarz alternating method for
the case of many subregions, Tech. Report 339, Department of Computer Science, Courant
Institute, New York University, New York, NY, 1987.

[8] , Some domain decomposition algorithms for elliptic problems, in Iterative Methods for
Large Linear Systems, L. Hayes and D. Kincaid, eds., Academic Press, San Diego, CA,
1989.

[9] ., Towards a unified theory of domain decomposition algorithms for elliptic problems, in
Third International Symposium on Domain Decomposition Methods for Partial Differential
Equations, T. Chan, R. Glowinski, J. Priaux, and O. Widlund, eds., Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1990.

[10] , Multilevel additive methods for elliptic finite element problems, in Parallel Algorithms
for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, January
19-21, 1990, W. Hackbusch, ed., Braunscweig, Germany, 1991, Vieweg & Son.

[11] S. C. EISENSTAT, n. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for non-
symmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345-357.

[12] A. GREENBAUM, C. LI, AND Z. HAN, Parallelizing preconditioned conjugate gradient algorithms,
Comput. Phys. Comm., 53 (1989), pp. 295-309.

[13] P. GRISVARD, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[14] Yu. A. KUZNETSOV AND 0. D. TRUFANOV, Domain decomposition methods for the wave

Helmholtz equation, Soviet. J. Numer. Anal. Math. Modelling, 2 (1987), pp. 113-136.
[15] P. L. LIONS, On the Schwarz alternating method I, in First International Symposium on Domain

Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub,
G. A. Meurant, and J. Priaux, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1988.

[16] J. MANDEL, Multigrid convergence for nonsymmetric, indefinite variational problems and one
smoothing step, Appl. Math. Comput., 19 (1986), pp. 201-216.

[17] T. A. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math.,
28 (1977), pp. 307-327.

[18] A. M. MATSOKIN AND S. V. NEPOMNYASCHIKH, A Schwarz alternating method in a subspace,
Soviet Math., 29 (1985), pp. 78-84.

[19] J. NEAS, Sur la coercivitd des formes sesquilindaires, elliptiques, Rev. Roumaine Math. Pures
Appl., 9 (1964), pp. 47-69.

[20] S. V. NEPOMNYASCHIKH, Domain decomposition and Schwarz methods in a subspace for the
approximate solution of elliptic boundary value problems, Ph.D. thesis, Computing Center
of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, USSR, 1986.

[21] J. NITSCHE, Lineare Spline-Funktionen und die Methode yon Ritz fiir Elliptische Randwert-
probleme, Arch. Rational Mech. Anal., 36 (1970), pp. 348-355

[22] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 865-869.

[23] A. H. SCHATZ, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms,
Math. Comp., 28 (1974), pp. 959-962.

[24] O. B. WIDLUND, Iterative substructuring methods: Algorithms and theory for elliptic problems
in the plane, in First International Symposium on Domain Decomposition Methods for
Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J. P6riaux,
eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1988, pp. 113-128.

[25] J. Xu, Theory of multilevel methods, Report No. AM 48, Department of Mathematics, Penn-
sylvania State University, College Park, PA, 1989.

[26] H. YSERENTANT, On the multi-level splitting offinite element spaces, Numer. Math., 49 (1986),
pp. 379-412.

[27] , On the multi-level splitting offinite element spaces for indefinite elliptic boundary value
problems, SIAM J. Numer. Anal., 23 (1986), pp. 581-595.

[28] , Hierarchical bases offinite-element spaces in the discretization of nonsymmetric elliptic
boundary value problems, Computing, 35 (1985), pp. 39-49.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 259-288, January 1992

(1992 Society for Industrial and Applie(Mathematics
014

PRECONDITIONING SECOND-ORDER ELLIPTIC OPERATORS:
EXPERIMENT AND THEORY*

WAYNE JOUBERT, THOMAS A. MANTEUFFEL$, SEYMOUR PARTER, AND

SZE-PING WONG

Abstract. In an earlier work Manteuffel and Parter discussed the role of boundary condi-
tions in obtaining elliptic operators B so that the preconditioned operators B1Ah or AhB have
uniformly bounded L2 condition number. Here A is the original elliptic operator and Ah and Bh
are discretizations. Certain computations, mostly one-dimensional, were undertaken to illustrate and
understand these results. These computational experiments provided several surprises. This cur-
rent work describes those experiments and some subsequent experiments together with theoretical
explanations of these surprising results. One of the main points of this report is the discussion of
interaction of experimental results with the ensuing development of the theory.

Key words, preconditioning, boundary conditions, conjugate gradient, experiment

AMS(MOS) subject classifications. 65N, 65F

1. Introduction. In IMP] Manteuffel and Parter studied the effect of boundary
conditions on the preconditioning of an invertible nonsymmetric discrete second-order
elliptic operator Ah (i.e., the discretization of an invertible second-order elliptic opera-
tor A) by B-1, the inverse of another such discrete elliptic operator in the presence of
H2 regularity. They discussed L2, H1, and H2 estimates on B1Ah and L2 estimates
on AhB1. Roughly speaking, the L2 condition of AhB- is bounded independent of
h if and only if A and B have the same boundary conditions, while the L2 condition of

BIAh is bounded independent of h if and only if A* and B* have the same boundary
conditions. Further, the H1 condition of BIAh is bounded independent of h if and
only if A and B have Dirichlet boundary conditions on the same portion of the bound-
ary. Finally, the H2 condition number of BAh is always bounded independent of h
if A and B have H2 regularity. In order to gain further insight and understanding, we
undertook a number of computational experiments. At first, some of the numerical
results seemed somewhat puzzling. The purpose of this report is to (i) describe and
report on those experiments, (ii) explain their interesting results, and (iii) remark on
several related ideas.

In 2 we present one-dimensional computational results. These results show
that the condition number associated with various preconditioning strategies is ei-
ther bounded or grows as the mesh size decreases, as predicted in IMP]. However,
the conjugate gradient method applied to these problems converges much faster than
bounds based upon the condition number would suggest. In the case where the condi-
tion number is growing, we discover in 3 that all but two singular values are bounded

*Received by the editors April 5, 1990; accepted for publication (in revised form) May 12, 1991.
This research was supported by Los Alamos National Laboratory under U.S. Department of Energy
contract W-7405-ENG-36, Air Force Office of Scientific Research contract AFOSR-86-0163, National
Science Foundation grant DMS-8913091 and grant DMS-8704169.

Center for Numerical Analysis, University of Texas, Austin, Texas 78712.

:Computational Mathematics Group, University of Colorado, Denver, Colorado 80204, and
Computing and Communications Division, Los Alamos National Laboratory, Los Alamos, New Mex-
ico 87544.

Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706.
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.

259

260 w. JOUBERT T. A. MANTEUFFEL S. PARTER AND S-P. WONG

above and below. This fact allows us to produce bounds that more accurately predict
the performance of the conjugate gradient method. In 4, computational results reveal
the structure of the bounded, as well as the unbounded, singular values. These results
lead to a theory in 5 that explains the behavior of the conjugate gradient method
when the condition is bounded.

In 6, two-dimensional computational results are presented. Here again, the var-
ious condition numbers behave as predicted in IMP]. Again, the conjugate gradient
method behaves better than bounds based upon the condition number would suggest,
but not as strikingly as in the one-dimensional case. Now, the rank of the growing part
is low but is much greater than 2. In 7, an analysis of a separable problem shows that
the number of unbounded singular values grows like the square root of the number
of mesh points in the boundary segment where "incorrect" boundary conditions are
used for the preconditioning.

2. One-dimensional computational results. In this section, the computa-
tional experiments involve simple one-dimensional operators. Let

(2.1a) Au -(a2(x)u’)’ + al (x)u’ + ao(x)u, 0 < x < 1,

with boundary conditions

(2.1b) u(0) 0, u’(1) / au(1) 0,

while

Bu + + O<x<l,

with boundary conditions

(2.2b) u(O) O, u’(1) + flu(l) O.

We assume that a2(x), b2(x) are smooth bounded positive functions bounded away
from zero. That is, there are constraints 0 < Ao < A1 such that

0 < Ao _< a2(x), b2(x) _< A1.

The discrete operators are obtained by simple central differences. For example, let
N > 1 be an integer and let

(2.3) h N+I’

(2.4) xj jh, j O, 1,. ,N + 1,

and let U {Uj,j 0, 1,... ,N / 1} be a grid vector. Then Ah, the discretization of
A, is given by

(2.5a) [AhU]j -djUj_ + eUj fjUj+, j 1, 2,..., N,

where

(2.5b) lh) h)]h-2dj= [a2(xj--

PRECONDITIONING: EXPERIMENT AND THEORY 261

(2.5c) ej a2 xj -h + a2 xj + -h + h2ao(xj) h-2,

(2.5d) fl a2 xi +-h +-al(xi) h-2,

with the additional (boundary) conditions

(2.6a) Uo-0

(2.6b) (UN+I UN) + o(UN+I - UN) O.

The L2 adjoint A* of A is given by

(2.7a) A*u -(a2(x)u’)’ (alu)’ + aou, 0<x < 1,

with boundary conditions

(2.7b) (0) =0, u’(1)+a*u(1) =0,

where

(2.7c) [al(1)l0* 0+
a2(1)J

Let

(.8) }u]
i--I

1/2

The theory developed in IMP] asserts: there is a constant KL > 0, independent of h,
such that

(2.9a) Ch(BAh) IIBlAhllh IIA-lBhllh <_ KL,

if and only if

b’(1)l [al(1)l c*(2.9b) *= +b2(1)J a+
a2(1)]

and there is a constant KR independent of h, such that

(2.10a) Ch(AhB;) IIAhBlIIh IIBhAllh <_ KR,

if and only if

(2.10b) -- .

262 w. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

Moreover, if these conditions are violated, the corresponding condition number is
proportional to h-1.

Numerical experiments were performed to verify the theoretical results. Two ap-
proaches were used. In the first, the operators AhB and BAh were constructed
as full matrices and a singular value decomposition was used to determine the appro-
priate condition numbers. Memory constraints limited this approach to systems of
1024 unknowns.

The second approach was to exploit the relationship between the conjugate gradi-
ent method and the Lanczos algorithm. For left preconditioning, the normal equations
of the preconditioned system were formed and the conjugate gradient method PCGNE
(cf. JAMS]) was performed on the preconditioned system

(2.11) (BAh),(B-Ah)U- (BAh),BIF.

The tridiagonal Bh was factored once and backsolution was used to compute BV
for a given vector V. The PCGNE method is optimal in the g2-norm of the error, Ej
U Uj, at each step of the iteration. The parameters generated by this iteration can
be used to get eigenvalue estimates of the operator AB*BAh and thus estimates
of Ch(BAh)(cf. [CGO], JAMS]).

For right preconditioning, the preconditioned conjugate gradient (PCG) method
was applied to the normal equations. Consider the system

(2.12a) AhBV- F,

(2.12b) BhU V.

The normal equations associated with (2.12a) are

(2.13) (AhBI)*(AhBI)v (AhB-I)*F.

The standard conjugate gradient algorithm (CGHS) may be performed on (2.13) and
(2.12b) may be used to find the solution U. However, this process is computationally
equivalent to performing the PCG algorithm on

(2.14) (BBh)-IAAhU- (BBh)-IAF

and avoids the auxiliary equation (2.12b). This method, known as PCGNR, mini-
mizes the g2-norm of the residual, Ri AhEi Ah(U- Ui), at each step of the
iteration and yields estimates of the eigenvalues of (BBh)-IAAh, which is similar
to B*A[AhB. Thus estimates of Ch(AhB) are available.

With this approach, systems of 262,144 unknowns were viable in a convenient
amount of time and storage on Cray XMP 4/16. Remarkably, the iterative method
gave the same results up to three digits of accuracy as the direct method on the smaller
problems. For that reason, only the iterative results are displayed below.

The test problems were given a random starting guess and a zero right-hand side,
F 0, so that the error could be easily computed. The algorithms were altered so
that direct calculation of the residual replaced the recursive formula. This avoids the
stalling that may occur when the residual and direction vector become disassociated
due to round-off when the residual is driven to small values. For left preconditioning,
the PCGNE iteration was terminated when the 2-norm of the error, II E [Ih, Was

PRECONDITIONING" EXPERIMENT AND THEORY 263

reduced by a factor of 10-9. For the right preconditioning, the PCGNR iteration was
terminated when the 2-norm of the residual, R IIh, was reduced by a factor of 10-9.
Notice that the stopping criteria were based upon the measure of the error that was
optimized by the respective algorithms.

Case (i). D(A) D(B). In the first set of experiments we consider operators
with the same boundary conditions. We denote this by saying the domain of A, D(A),
equals the domain of B, D(B). Let

(2.15a) A -u" + alu,’ u(O) O, u’(1) O,
(2.15b) B -u" + cu, u(O) O, u’(1) O.

Table 2.1 shows the results for al 10.0, c 0. The estimate of Ch(BlAh) grows
while the estimate of Ch(AhB1) does not. The rate of growth was measured by
assuming that

(2.16) Ch(B;Ah) K ()
P

where K is independent of h. This yields

(2.17) Ch(B;Ah)/C2h(BA2h) 2P.

The exponent P was calculated for each successive pair of values of h and appears in
the column labeled "Growth Rate."

TABLE 2.1
D(A) D(B), al 10.0, c O.

1/h
8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

Left Preconditioning Right Preconditioning

Its ItsCh(BlAh) Growth Rate
1834+02 .0000+00 8

3803+02 1051+01 14

6748+02 .8274+00 17

1117+03 .7282+00 19

1898+03 .7636+00 19

Ch(Ah -1Bh Growth Rate

.6205+01 .0000+00 8

.6653+01 .1006+00 12

.6864+01 .4503-01 12

.6967+01 .2140-01 12

.7018+01 .1051-01 12

.3501+03 .8832+00 21

.6782+03 .9539+00 21

.1338+04 .9803+00 23

.2659+04 .9909+00 23

.5302+04 .9956+00 26

.1059+05 .9978+00 26

.2116+05 .9989+00 39

.4231+05 .9994+00 31

.8461+05 .9997+00 34

.1692+06 .9998+00 38

.3383+06 .9997+00 54

7044+01 .5361-02 12

7057+01 .2579-02 13

7063+01 .1276-02 11

7066+01 .6338-03 11

7068+01 .3154-03 12

7068+01 .1573-03 13

7069+01 .7817-04 13

7069+01 .3706-04 12

7069+01 .1026-04 II

7069+01 .2924-04 12

7069+01 .5487-04 11

Finally, the number of iterations required to reduce the error for left precondi-
tioning and the residual for right preconditioning by a factor of 10-9 appears in the
column labeled "Its."

264 W. JOUBERT T. A. MANTEUFFEL S. PARTER AND S-P. WONG

Numerical experiments were performed with various values of al and c. The
complete results appear in [JMPW], where it is shown that Ch(AhB1) grows with

al. The theory in IMP] predicts that Ch(AhB) should grow as a3/2 and the constant

K in (2.16) should also grow as a3/2.
The behavior with respect to c is more complicated. It is possible to choose c

so as to tightly cluster the spectrum of AhB, but the relation to the condition
Ch(AhB) is more complicated. It is true, in any case, that for a 0 the optimal
choice is not c 0. These issues are explored in [MO], where it is shown that for a
class of two-dimensional operators the optimal value of c grows as (alh)2.

Case (ii). D(A*) D(B*). In the next set of experiments we consider operators
whose adjoints have the same boundary conditions. We have

(2.18a) A d- al? 0, u’(1) 0,

(2.18b) B -u" + cu u(0) 0, u’(1) + alu(1) 0.

Table 2.2 shows the results with al 10 and c 0. We see that it is Ch(BIAh) that
remains bounded while Ch(AhB) grows with h. Again, see [JMPW] for results for
other values of a and c.

TABLE 2.2
D(A*)- D(B*), al 10, c--0.

1/h
8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

Left Preconditioning

ItsCh(BIAh) Growth Rate Its

3415+01 .0000+00 7

5156+01 .5941+00 12

6497+01 .3336+00 13

7362+01 .1802+00 14

7859+01 .9414-01 13

8126+01 .4816-01 14

8264+01 .2436-01 13

8335+01 .1225-01 13

8370+01 .6146-02 13

8388+01 .3078-02 14

8397+01 .1540-02 13

8402+01 .7702-03 14

8404+01 .3845-03 14

8405+01 .1897-03 14

8405+01 .8317-04 14

8406+01 .2272-04 14

Right Preconditioning

Ch(AhB1) Growth Rate
.0000+00
.9123+00
.8286+00
.8408+00
.8955+00
.9424+00
.9703+00
.9850+00
.9924+00
.9962+00
.9981+00
.9990+00
.9991+00
.9963+00

-.2670+01
.4673+01

.6031+01

.1135+02

.2016+02

.3611+02

.6717+02

.1291+03

.2529+03

.5007+03

.9962+03

.1987+04

.3969+04

.7933+04

.1585+05

.3163+05

.4970+04

.1268+06

7

13

14

16

17

18

18

18

21

21

23

26

26

26

31

62

Case (iii). A and B selfadjoint, D(A) :/: D(B). In this set of experiments we let

(2.19a) A- -u" u(0) 0, u’(1) 0,
(2.19b) B -u" u(0) 0, u’(1) -t- au(1) 0.

Since D(A) =/= D(B) and D(A*) =/= D(B*) neither Ch(BIAh) nor Ch(AhB) will
be bounded independent of h. On the other hand, since A and B are selfadjoint and
positive definite and have Dirichlet boundary conditions on the same portion of the

PRECONDITIONING" EXPERIMENT AND THEORY 265

boundary the results of IMP] tell us that A and B are spectrally equivalent. In other
words, the spectrum of BIAh is bounded while II BIAh h is unbounded.

We again use PCGNE to yield estimates of Ch(BIAh). To get estimates of the
spectrum of BAh (which is the same as the spectrum of BI/2AhB/2) we use the
PCG algorithm, which is optimal in the Ah-norm: ((Ah., ")h) /2.

Table 2.3 shows the results for c 2.0 in (2.19b). Notice that Ch(BAh)
grows while Ch(B/2 Ah B/2) remains bounded. The number of iterations for the
symmetric preconditioning reflects the number required to reduce the Ah-norm of the
error by a factor of 10-9. Numerical results with c 20.0 in (2.19b) can be found in
[JMPW]. The results in [Me] show that, in fact, Blab has two eigenvalues:

A1 =I, A2=I+ (l+-)(l+h)"

TABLE 2.3
A and B selfadjoint, D(A) D(B), c-- 2.0, c- 0.

Left Preconditioning

(S1Ah) Growth Rate
8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

Its

1231+01 .0000+00 3

1677+01 .4460+00 3

2274+01 .4388+00 3

3147+01 .4687+00 3

5740+02 .4188+01 4

1142+03 .9935+00 5

2280+03 .9967+00 5

4556+03 .9983+00 5

9105+03 .9989+00 5

1820+04 .9991+00 5

3452+04 .9236+00 5

7282+04 .1076+01 10

1456+05 .9999+00 14

2912+05 .1000+01 15

5826+05 .1000+01 16

1164+06 .9994+00 18

Symmetric Preconditioning

Ch(BI/2AhS/2)Growth Rate Its

2444+01 .0000+00 2

2705+01 .1465+00 2

2848+01 .7409-01 2

2923+01 .3729-01 2

2961+01 .1871-01 2

2980+01 .9374-02 2

2990+01 .4691-02 2

2995+01 .2346-02 2

2997+01 .1173-02 2

2998+01 .5869-03 2

2999+01 .2935-03 2

2999+01 .1467-03 2

2999+01 .7337-04 2

2999+01 .3622-04 2

2999+01 .3500-04 2

3000+01 .3455-04 2

3. Analysis of the one-dimensional computations. All conjugate gradient
methods are polynomial methods and, thus, yield iterates that obey the equation

(3.1) Ej pj(CA)Eo,

where CA is the preconditioned system and pj(z) is a polynomial of degree j such that
pj(0) 1 (cf. JAMS]). In fact, if the particular conjugate gradient method is optimal
in the Mh- norm, ((Mh., ")h) /2, then we know

min pj(CA)IIMhll Eo liMb,(3.2) II Ei liMb pminep p(CA)Eo IIMh <-- pepo
where p0 (polynomials of degree _< j, p(0) 1}. If CA is Mh selfadjoint, which is
the case in our experiments, then

(3.3) min py(CA) IIMh-- min max Ipj(A)o o ez(c)

266 W. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

where (CA) is the spectrum of CA. If F_,(CA) is assumed to fill the interval
[min, ,max], then pj can be replaced in (3.3) by the scaled and translated Chebyshev
polynomial based upon [Amin, Amax] to yield the well-known bound

Ej liMb< 2 (v/--- l)(3.4) Eo lIMh X/ + 1

where a--(Amax/Amin)- CM,, (CA).
In the experiments in 2 we have Mh I for left preconditioning and

(3.5) at Ch((BIAh)*(B;1Ah)) [Ch(BIAh)]2,

while for right preconditioning we have Mh AAh and

(3.6) a. CAA((B.Bh)-(AAh)) [Ch(AhBI)]2.

When the "wrong" boundary conditions are used we have a 0(h-2) for either
left and right preconditioning. For a large, the number of iterations required to reduce
the bound in (3.4) by a factor of e is approximately

(3.7) j
log(2)- log(e)

2
v/-

For e 10-9 this yields

(3.8) j 10.7v/-.

A quick glance at Table 2.1 reveals that the required number of iterations is a
small fraction of the number suggested by (3.8). Note that the estimated condition
number is equal to v/ (see (3.5), (3.6)). Clearly, the behavior of the conjugate
gradient method is not determined by the worst case analysis but is determined by
the distribution of the eigenvalues of the preconditioned matrix CA. For the left
preconditioned normal equations these are squares of the singular values of BIAh
while for the right preconditioned normal equation these are the squares of the singular
values of AhB1.

We will analyze the behavior of these singular values. Given the differential
operator A suppose we choose B(1) and B(2) to be two operators that differ only in
the boundary conditions at x 1. Suppose

(3.9) ((1)), c*,

while

(3.10) fl(2) a.

Let us analyze the singular values of (B(h2))-Ah in terms of the singular values of

(B(hl))-Ah. The theory of [Me] asserts that there are two positive constants 0 <
A0 < A1 such that

(3.11) 0 < A0 _< ay _< A, j 1,2,...,N,

PRECONDITIONING: EXPERIMENT AND THEORY 267

where the aj are the singular values of

(B(hl))-lAh
Observe .that

(3.12) B(h2) B(h) + R,
where R1 is an operator of rank 1. In the generic case, the Sherman-Morrison formula
yields

+
where T1 is an operator of rank 1. Hence

(3.14) (B(h2))-lAh (B(hl))-lAh + T1Ah

where T1Ah is an operator of rank 1. Therefore

(3.15) ((B)-IAh)*((B(h2))-IAh) ((B(h))-lAh)*((B(hl))-Ah) + $2,

where $2 is an Hermitian operator of rank 2. Hence we have the following result.
LEMMA 3.1. Let &l >_ &2 >_,’", >_ N > 0 be the singular values of (B(h2))-lAh.

Then, .for j 1 and j N we have

(3.16) 0 < A0 <_ &j

_
A, j 2,3,.-.,N- 1.

And, while it is possible that .for some fixed h > O, 1 and/or N also satisfies (3.16),
there are constants C1, C2, C3, C4 > 0 such that

(3.17a) Clh-1/2
_

crl

_
C2h-1/2,

(3.17b) C3h1/2

_
N

_
C4h/2.

Proof. The inequalities (3.16) follow from the remarks above and (3.11). The
estimates (3.17) follow from the results of IMP].

Suppose h is fixed and the conjugate gradient method PCGNE applied to

Q(hl) ((B(hl))-lAh)*((B(hl))-lAh)
requires n iterations to reduce the 2-norm of the error by a factor of e. (PCGNE
is optimal in the t2-norm.) Let Pnl (A) be the optimal polynomial generated by the
iteration. Assume

(3.19) max P,’,,1 (3,)l< e.
e[o,]

Of course, this need not be true, but if either A A02 is small or the eigenvalues of
Q(h) fill the interval [A,A], then (3.19) will be approximately correct. Consider the
polynomial

(3.20) qn+2(A) (2)(&v)

268 W. JOUBERT T. A. MANTEUFFEL S. PARTER AND S-P. WONG

Clearly,

(3.21b) qn1+2(5") qnl+2((?v) 0,

(3.21c) max qnl+2(A) < e

Thus, n + 2 iterations of PCGNE applied to

(3.22) Q(h2)-- ((B(h2))-lAh)*((B(h2))-lAh)
yields

(3.23) [I E(2) [[h<[[ql+2(Q(h2)) IIh <_ e A < e h-

Now, let r be an integer and observe that

(3.24) []+2) [[h A2x
E0(2) [[h -- e7-h-1

Thus, the number of steps of PCGNE required to reduce the t2-norm of the error,

E2) IIh, by a factor of e can be approximated by setting

(3.25) e h_ e,

and solving for r. This yields

(3.26) r
log(e)

log(e) + 2 log(A1)- 2 log(C3)- log(h)"

In our experiments in 2 we have A/C3 - (1 + ai)/x/ e 10-9, h 2-k. For
a 10 this yields

(3.27) r
.88- (.033)k"

Table 3.1 displays the actual number of iterations and the number predicted by (3.27)
for h 2-k,k 15- 18. The results for the correct preconditioning, B), are
taken from the left preconditioning of Table 2.2, while the results for the "wrong"
preconditioning, B(h2), are taken from left preconditioning of Table 2.1. The actual
numbers are surprisingly close to the predicted numbers.

PRECONDITIONING: EXPERIMENT AND THEORY 269

TABLE 3.1
Predicted number of iterations.

1/h Its(l) Actual Its(2) Predicted Its(2)

216 65536

217 131072

2TM 262144

14

14

14

14

31

34

38

54

41

45

50

56

Similar arguments can be made for the right preconditioning using the "wrong"
boundary conditions. The only difference is that, in this case, the M-norm is optimized
where M AAh and the roles of B(h1) and B(h2) are reversed, with B(h2) being the
"correct" preconditioning.

4. Further computational results. The analysis of 3 explains why the re-
sults of the one-dimensional experiments with the "wrong" boundary conditions are
"not so bad" relative to the results for the cases where the "correct" boundary con-
ditions were used. However, it is not yet clear why the results are so good in the
case when the "correct" boundary condition is used. For this reason further com-
putational experiments were undertaken. Section 5 will provide an analysis of these
results. Recall that the operator A is given by

(4.1a) Au -(a2(x)u’)’ / alu’ + aou,

(4.1b) u(0) 0, u’(1) 0,

where a and a0 are constants and a2(x) may be constant or may be variable. The
preconditioners were

(4.2a) B(1)v -v" + boy,

(4.2b) v(0) 0, v’(1) a2(1)

and

(4.3a) B(2)v -v" + boy,

(4.3b) v(0) 0, v’(1) 0.

Here the discretization, Ah, was obtained essentially as the discretization de-
scribed in 2 with one small change. The boundary condition at x 1 was treated a
bit more accurately by choosing

(4.4a) h
(eN +

Then

(4.4b) Nh
2N

2N+1
1

1-h,

270 w. JOUBERT T. A. MANTEUFFEL S. PARTER AND S-P. WONG

1
(4.4c) (N + 1)h 2(N + 1)

1 + h.
2N+l

The boundary condition is then expressed as (2.6b), as before.
The operators (B(hJ)) -1 were given by one cycle multigrid iterations for the solu-

tion of
f.

For technical reasons, the choice of (4.4) rather than (2.3) suggested that the multigrid
coarsening factor be 3 rather than 2.

While we have done many experiments, for our present purposes we will limit
ourselves to three particular operators A.

Case 1.

(4.5a) Au -u" + 8u

with boundary conditions

(4.5b) u(O) O, u’(1) O.

In this case all the eigenvalues of A are real and positive.
The preconditioners chosen are given by

(4.64) B(1)v

with boundary conditions

(4.6b) v(0) 0, v’(1) -8v(1),

and

(4.74) B(2)v

with boundary conditions

(4.7b) v(O) O, v’(1) O.

The theory of IMP] asserts that

(4.84) II(B(hl))-lAhllh
_

C, IIA;1B(hl)llh <_ C

and

(4.8b) II(B(h2))-lAhllh Ch-1/2, IlA-lB(h2)llh Ch-1/2.

The results for this case are summarized in Tables 4.1 and 4.2 and Figs. 4.3 and 4.4.

N

40

121

364

769

TABLE 4.1

Singular values of (B(hl))-1Ah.
,,C((B(hl)) lAb) (r(1)(N) a(1)(N- 1)

6.1493 0.4430 0.91S9

6.3406 0.4339 0.8935

6.3488 0.4345 0.8901

6.3438 0.4351 0.8897

((1) (1)
2.7239

2.7514

2.7587

2.7604

PRECONDITIONING" EXPERIMENT AND THEORY 271

TABLE 4.2

Singular values of (B(h2)) -lAb.
N C((B(b,2))-IAh)
40 72.416 0.4138

121 158.70 0.3231
364 434.78 0.2033
769 900.73 0.1424

a(2)(N) a(2) (N- 1) a(2) (1)
0.6798

0.5218

0.4894

0.4842

29.967

51.274

88.397

128.27

N= ?69 1" 0.28e+01

N= 364 1; 0.:8e+01

N= 121 1" 0.Se+01

N---- 40 I" 0.27e+01

0.0 0. 1.0 I. 2.0
Singular Values

FIG. 4.3. Singular value distribution of (B(hl))-lAh

In all the figures of this section, the numbers "j; num" on the right of the lines are to
be read as follows"

j number of singular values larger than 2;
num= the largest singular value.

We see that a(1)(N) and a(i)(1) remained fixed as N increases, while
decreases and a(2)(1) increases as N increases. The interior singular values for both
preconditionings cluster about 1.0.

Case 2. In this case we introduce a nonconstant a2(x). Let

(4.9a)

with boundary conditions

(4.9b)

where

(4.9c)

Au -(a2(x)u’)’ + 8u’

u(O) =0, g’(1) =0,

1
a2(x) 1 + sin 3rx.

272 w. JOUBERT T. A. MANTEUFFEL S. PARTER AND S-P. WONG

N 7’69
]111

1- 0.1e+03

N= 64 1- O.8e+O"’""’I

N-- II I" 0.51e-+-0

N= 40
|III’",, I ",

1; 0.,:30e+02,

0.0 0.5 1.0 I. .0
Singular Values

FIG. 4.4. Singular value distribution of (B(h2))-lAh

As in Case 1, all the eigenvalues of A are real and positive. The preconditioners
are again B(1) and B(2) as described by (4.6) and (4.7), respectively. Again the theory
of IMP] yields (4.8a) and (4.8b). The results for this case are summarized in Tables
4.5 and 4.6 and Figs. 4.7 and 4.8.

TABLE 4.5

Singular values of (B
N C((S(hl))-lAh) a(1) (N)
o .s o.oo

.s o.s
364 7.7331 0.3914

769 7.7416 0.3916

t))-lAh.

a(i)(N- 1) a(1)(1)
0.5008

0.4611

0.4504

0.4476

2.9420

3.0078

3.0270

3.0317

N

40

121

364

769

TABLE 4.6

Singular values of

C((B(h2))-lAh) a(2) (N)
.so o.o
4.s o.o
480.02 0.1842

994.98 0.1289

a(2) (N- 1) a(2) (1)
0.5008

0.4611

0.4505

0.4476

30.067

51.325

88.425

128.29

The extreme singular values behave as in Case 1. Here, however, the interior
singular values become dense in the interval [.5, 1.5].

PRECONDITIONING" EXPERIMENT AND THEORY 273

N= 121 I" 0.30e+01

N= 40

0.0 0.5 1.0 1.5
Singular Values

FIG. 4.7. Singular value distribution of (B(h1))- 1Ah.

N= 769 2; 0.13e+03
II /

N= 364 " o 8e o
!

N= 121

N= 40 2" 0.30e+02

0.0 0.5 1.0 I.
Singular Values

FIG. 4.8. Singular value distribution of (B(h2))-l Ah

274 w. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

Case 3. In this case we examine an indefinite operator. Let

(4.104) Au -u" + 8u’ (6.5)r2u,

with boundary conditions

(4.10b) u(0) 0, u’(1) 0.

Two eigenvalues of A are negative, while all the others are positive. The pre-
conditioners are again B(1) and B(2) as described by (4.6) and (4.7), respectively.
Once more, the theory of IMP] yields (4.84) and (4.8b). The results for this case are
summarized in Tables 4.9 and 4.10 and Figs. 4.11 and 4.12.

N

40

121

364

769

TABLE 4.9

Singular values of (B(h 1Ah.

C((B(hl))-lAh) a(1) (N) a(1) (N- 1)
377.46 0.0203 0.8299

369.12 0.0208 0.8806

367.70 0.0209 0.8882

367.50 0.0209 0.8892

a(1) (1)
7.6628

7.6898

7.6945

7.6954

N

40

121

364

769

TABLE 4.10

Singular values of (B(h2)) -1Ah.
C((B(2))-IAh) a(2) (N) a(2) (N- 1)

1805.8 0.0203 0.6958

2661.4 0.0208 0.4721

4343.1 0.0209 0.2884

6209.3 0.0209 0.2016

(2) (1)
36.662

55.443

90.875

129.99

Observe that
a(1)(N) a(2)(N) constant

but a(2)(N- 1) << a(1)(N- 1) and is steadily decreasing as a function of N. (This
is easily seen from Fig. 4.11.) So, one would expect that for N large enough

cr(2)(N) < r(1)(N)

and a(2)(N) would continue to decrease as a function of N, while a(1)(N) remains
constant. Indeed, this is the result predicted by IMP]. Here, as in Case 1, the remaining
singular values cluster about 1.0.

5. Distribution of the singular values. In this section we assume that

(5.1)

and consider the distribution of the singular values 0 < aN

_
(TN--1 __,’’’,

__
ffl of

BIAh. The theory developed in IMP] asserts only that there exists a pair of fixed
numbers 0 < A0(L) < A0(U), independent of .h such that

(5.:) 0 < A0(L) <_ fiN

_
O’j

_
(T1

_
A0(U).

PRECONDITIONING: EXPERIMENT AND THEORY 275

N= 789 1" 0.77e+01

N= 364 1; .77e+01

N= IZI I" 0.77e+01

N---- 40 I" 0.77e+01

0.0 0.5 1.0 1.5
Singular Values

F,G. 4.11. Singular value distribution of (B(hl))-l Ah

N= 769 2" O. 13e+03

N= 36, 2" 0.9 le+0:

N= 121 2" 0.55e+0

N= 40 2; 0.37e-- 02

0.0 0.6 1.O 1.5
Singular Values

FIG. 4.12. Singular value distribution of (B(h2)) -1Ah.

276 W. JOUBERT, T. A. MANTEUFFEL S. PARTER, AND S-P. WONG

The development in this section gives a qualitative explanation of the detailed results
on the aj seen in 4.

Let A and B be the operators described by (2.1) and (2.2) subject to (5.1). Let
u, v satisfy

(5.3a) B-1Au v,

that is

(5.3b) Au Bv.

We show that

(5.4a) v(x) b2(x) u(x) + Ku

and the operator K is a linear compact operator. That is,

B_IA a2(x) I + Kb(x)

and

(5.4b) Q (B-1A)*B-1A F[a2(x)]2b2(x)J
where 1 is another compact operator.

Next, we show that

I+K1,

Qh (B;1Ah)*(BIAh)
is a consistent and convergent approximation to Q. Once this has been done it is an
easy matter to prove the main result of this section.

THEOREM 5.1. Let A,B be given by (2.1) and (2.2), respectively. Assume that
(5.1) holds. Let Ah and Bh be constructed as in (2.5). Let

(5.6a) m min
b2(x)’

(5.6b) M max
b2(x)"

Let e > 0 be given (< 1/2m2 is not essential, but is a reasonable additional condition).
Then there is an ho > 0 and an integer t gt(e) such that for all h <_ ho at most gt of
the squared singular values a] are outside the interval [m2 -e, M2 + el.

We return to the proof of (5.4a). From (5.3b) we have

-(a2u’)’ + alu’ -t- aou -(b2v’)’ + blv’ -t- bov.

We remind the reader that the results of IMP] assert that there is a constant, say, Co,
such that

PRECONDITIONING: EXPERIMENT AND THEORY 277

From (5.7) we obtain

-a2u’ + aludt + aoudt (-b2v) + blvrdt + bovdt + CI,

where C1 is a constant depending on u (since we are assuming that u is given and v
is determined from (5.3a)).

Integration by parts yields

(5.10) -a2u’ + au + (co al)udt -b2v’ + blv -- (bo b’)vdt + C.

We observe that the two integrals in (5.10) are compact linear operators applied
to u. This is immediately apparent for the integral on the left-hand side of (5.10).
However, it is also true of the integral on the right-hand side of (5.10) because (i)
(5.3a) shows that v is a linear function of u, and (ii) (5.8) shows that v is a bounded
function of u. We shall use the symbol I(u) to denote any such term that is a compact
linear operator applied to u. With this understanding, (5.10) can be rewritten as

(5.11) -a2u + alu + b2v blv + I(u) C.

Integration and integration by parts now yield

fo
x

fo
x

-a2u + b2v + [(a + a)u (b2 + b)v]dt + I(u)dt Cx.

That is,

(5.12) a2 .1Cl x.v= --u+I(u)+
b2 02

Since (5.8) must be true, we see that C must be a bounded functional of u. Indeed,
a bounded linear functional of u. Hence, C1 (u) is also a compact linear operator.
Therefore, we have

a2(5.13) v --u + I(u).
b2

This is the first goal enunciated at the beginning of this section.
Remark. In the special case where

bl =bo=O

it is easy to obtain an explicit representation of C (u).
Consider the difference equations

(5.14a) BAhU- V,

(5.14b) AhU BhV.

278 W. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

A similar computation, based on summation by parts rather than integration by parts,
yields

a2(xj
(5.15)

b2(xj) Uj + KhU,

where KhU is a discrete analog of the compact operator K(u).
In addition to being a discretization of K(u), these discrete operators are also

uniformly compact in the sense that there is a constant C independent of h such that
if U is a grid vector and U(x, h) is the associated piecewise linear function, and if

(5.16a) KhU W,

then

IIW(’, h)llH1 <_ CIIU(., h)llL2.

Under these circumstances it is very easy to prove Lemma 5.1.
LEMMA 5.1. Consider the operator

(B-1A)*(B-1A) -2 I + K* a + K + K,

where K is the operator of (5.4a), or, using the notation of (5.13),

Then

(2) (a2) K*[=K* a2 + 2 K+ K

is a compact operator. Moreover, the discrete operators

(5.185) /h K; a +
j--l -2 j--1/2

Kh +KKh

are uniformly compact and

(5.19) /h - /.

In particular, let be the eigenvalues of arranged so that

and let #(h) be the eigenvalues ofh arranged so that

(5.20b) I#l(h)l _> 1#2(h)l >_.-. I#k(h)l >_ O.

Then, given a fixed J and an , there is an ho > 0 such that, for all h <_ ho, we have

(5.21) lij #j(h)l <_ e, j 1, 2,..., J.

PRECONDITIONING: EXPERIMENT AND THEORY 279

Proof. We omit the proof, which is a standard compactness argument.
We are now able to prove our main result.
Proof of Theorem 5.1. Let e > 0 be given. Choose J so large that

Choose h0 so small that

(5.22) IAj- #j(h)l <_ -A, j- 1, 2,... J; h _< h0.

Then the eigenvalue values qj(h) of Qh are characterized by

{U*QnU }(5.23) q(h) maxmin U E Sj
S U#O U*U

where dim S j. Hence, see [ST, Thm. 5.10],

(5.24) m2 #j _< cr <_ M2 + #j.

Hence, for j > J we have

(-; _< +

Thus, the theorem is proven.
With Theorem 5.1 in hand, consider the numerical results of 4. In Case 1 and

Case 3 we have a2(x) b2(x) 1. Thus,

((B(t))-IA)*((B(1))-IA) I + .
Figures 4.1 and 4.5 show that the singular values of the discrete operators cluster

sin(3x) and b2(x)- 1 which yieldsabout 1.0. In Case 2, we have a2(x) 1 +

(5.26) ((B(1))-A)*((B(1))-A) a2(x)I + R.

The spectrum of the multiplication operator a2(x)I fills the interval [.5, 1.5]. In Fig. 4.3
we see that the singular values of the discrete operators fill the interval [.5, 1.5] plus a
few isolated values as the theory predicts.

6. Two-dimensional computational results. In this section, we describe
computational results on two-dimensional problems. An analysis of these results will
appear in 7. Our experiments use centered difference approximations to the operators

(6.1) Au -Au + alux + a12uy,

(6.2) Bu -Au,

for (x, y) e [0, 1] [0, 1]. To make notation easier we will denote the boundary condi-
tions schematically. For example, the boundary conditions
(6.3)

u(x, 1) 0

v) o, ux(1, y) + au(1, y) 0 become u

o) o

Uy

280 W. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

Again, the conjugate gradient method PCGNE was used on the left preconditioned
normal equations with iteration matrix

Qh (BIAh)*(BIAh).

For right preconditioning, the conjugate gradient method PCGNR was applied to the
iteration matrix

O,h (BBh)-I(AAh).

For A and B selfadjoint, symmetric preconditioning was implemented by using PCG
on the iteration matrix

(6.6) Gh BAh.

Inversion of Bh was accomplished by using a Fast Poisson solver.
Case (i). D(A) D(B). Let

(6.7a) Au -Au + aux + a2uy, u

Uy

Uy

(6.7b) Bu=-Au, u ux.

u

Table 6.1 shows the results for al a12 1, while Table 6.2 shows the results
for al a2 10. Notice that Ch(BIAh) grows like 0(h-), while Ch(AhB) is
independent of h. Also, notice that this rate is only achieved for the smallest values
of h that we were able to compute.

Here "Its" reflects the number of iterations to reduce the 2-norm of the error
for left preconditioning and the 2-norm of the residual for right preconditioning by a
factor of 10-6

TABLE 6.1
2 D, D(A) D(B), all a12 1.0.

Left pre:’onditioning Rig-’. preconditioning

Its Its1/h
4

8

16

32

64

128

256

512

Ch B Ah
,1511+01

.2115+01

.3044+01

.4709+01

.7890+01

.1413+02

.2654+02

.5131+02

Growth rate

.0000+00

.4855+00

.5251+00

.6291+00

.7445+00

.8409+00

.9093+00

.9510+00

6

7

8

9

12

14

17

22

Ch(AuB-1) Growth rate..
.1346+01
.1405+01
.1436+01
.1451+01
.1459+01
.1429+01
.1379+01
.1465+01

.0000+00 5

.6756-01 6

.3010-01 5

.1542-01 5

.7655-02 5

-.2964-01 4

-.5170-01 4

.8720-01 4

PRECONDITIONING" EXPERIMENT AND THEORY 281

TABLE 6.2
2 D, D(A) D(B), all a12 10.0.

4

8

16

32

64

128

256

512

Left preconditioning Right preconditioning

Growth rate Its Growth rate ItsCh(BIAh)
.5736+01
.1216+02
.2356+02
.4098+02
.6953+02
.1237+03
.2379+03
.4663+03

.0000+00

.1084+01

.9536+00

.7985+00

.7626+00

.8319+00

.9427+00

.9078+01

10

15

21

28

37

54

75

100

Ch(AhB)
.4446+01
.5449+01
.5813+01
.5994+01
.6082+01
.6127+01
.6149+01
.6159+01

.0000+00 9

.2934+00 14

.9319-01 14

.4416-01 14

.2123-01 13

.1048-01 13

.5112-02 12

.2515-02 11

Case (ii). D(A*) D(B*). Let

(6.8a) Au -Au allUx al2uy, u

uy + al2u

Ux 2t- allU

Uy

Notice that the A here is the adjoint of the A in Case (i). The operator A was
changed rather than B so as to retain the easy-inversion of Bh by a Fast Poisson
Solver. Table 6.3 shows the results for all a12 1, while Table 6.4 shows the
results for all a12 10. Now, Ch(BAh) is bounded, while Ch(AhB1) grows like
h-1. Again, notice that the number of iterations using the "wrong" preconditioning
grows very slowly.

TABLE 6.3
2 D, D(A*) D(B*), all a12 1.0.

1/h
4

8

16

32

64

128

256

512

Left preconditioning Right preconditioning

Growth rate Its Growth rate ItsCh(BAh)
.1314+01
.1393+01
.1421+01
.1444+01
.1455+01
.1461+01
.1464+01
.1465+01

.0000+00 6

.8334-01 6

.2909-01 5

.2285-01 5

.1144-01 5

.5677-02 5

.2826-02 5

.1408-02 5

Ch(Ah -1Bh
.1648+01
.2088+01
.3074+01
.4720+01
.7894+01
.1409+02
.2646+02
.4973+02

.0000+00

.3414+00

.5581+00

.6186+00

.7419+00

.8358+00

.9093+00

.9101+00

6

7

8

9

10

13

16

21

282 W. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. TONG

TABLE 6.4
2 D, D(A*) D(B*), all a2 10.0.

1/h
4

8

16

32

64

128

256

512

Left preconditioning Right preconditioning

Growth rate Its Growth rate ItsCh(BIAh)
5571+01 .0000+00 10

6087+01 .1277+00 15

5979+01 -.2591-01 15

6002+01 .5445-02 15

6047+01 .1092-01 14

6105+01 .1383-01 14

6138+01 .7602-02 14

6154+01 .3809-02 13

Ch(AhB1)
.9392+01 .0000+00
.2186+02 .1219+01
.3251+02 .5724+00
.4802+02 .5626+00
.7248+02 .5939+00
.1220+03 .7510+00
.2318+03 .9260+00
.4532+03 .9671+00

10

23

26

29

35

47

68

100

Case (iii). A and B selfadjoint, D(A) = D(B). Let

(6.9a) Au -Au, u

u

(6.9b) B(1)u -Au, u

u

Uy

Uy

Table 6.5 shows the results for both left and symmetric preconditioning with

(B(hl)) -1. Although D(A) D(B), both A and B(1) have Dirichlet boundary con-
ditions on the same portion of the boundary. The theory in IMP] says Ch(BIAh)
should be 0(h-l), while Ch(B/2AhB-/2) should be bounded. These bounds are
supported by the results in Table 6.5.

PRECONDITIONING: EXPERIMENT AND THEORY 283

TABLE 6.5
2- D, A and B selfadjoint, D(A) D(B), same Dirichlet part.

4

8

16

32

64

128

256

512

Left preconditioning

Ch(BIAh) Growth rate Its

.1141+01 .0000+00 5

1245+01 .1260+00 5

1455+01 .2246+00 5

1782+01 .2926+00 7

2282+01 .3569+00 7

3090+01 .4369+00 8

4796+01 .6341+00 9

7924+01 .7242+00 11

Symmetric preconditioning

Ch(B-l/2Ah -1/2Bh Growth rate Its

.1135+01 .0000+00 4

.1204+01 .8431-01 4

.1255+01 .5975-01 4

.1286+01 .3609-01 4

.1297+01 .1159-01 4

.1301+01 .4966-02 4

.1113+01 -.2250+00 3

.1249+01 .1657+00 3

In Table 6.6 the same results are presented for preconditioning with (B(h2)) -1. In
this case A has Dirichlet boundary conditions on the top, while B(2) does not. Thus,
as predicted, Ch(BiAh) 0(h-2), while Ch(BI/2AhB-1/2) 0(h-l). The blank
line for left preconditioning and h 2-9 indicates that the iteration did not converge
in 3000 iterations.

TABLE 6.6
2 D, A and B selfadjoint, D(A) D(B), Dirichlet part of A includes Dirichlet part of B.

1/h
4

8

16

32

64

128

256

512

Left preconditioning

Ch(BIAh) Growth rate Its

.4152+01

.1542+02

.6387+02

.2671+03

.1088+04

.4437+04

.1759+05

.0000+00

.1893+01

.2050+01

.2064+01

.2027+01

.2027+01

.1987+01

7

13

25

52

134

390

1221

Symmetric preconditioning

Ch(BI/2AhB1/2)
.3875+01
.8506+01
.1782+02
.3649+02
.7386+02
.1486+03
.2980+03
.5970+03

Growth rate Its

.0000+00

.1134+01

.1067+01

.1033+01

.1017+01

.1008+01

.i004+01

.1002+01

6

9

11

15

20

26

34

43

Finally, Table 6.7 shows the results for preconditioning with B(3). Here A has
Dirichlet boundary conditions where B(3) does not, and B(3) has Dirichlet boundary
conditions where A does not. As predicted,

Ch(BlAh) 0(h-3) while Ch(B-I/2AhB1/2) 0(h-2).

284 w. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

TABLE 6.7
2- D, A and S selfadjoint, D(A) D(B), mixed Dirichlet part.

4

8

16

32

64

128

256

512

Left preconditioning

Ch(B1Ah Growth rate Its

4196+01 .0000+00 8

2435+02 .2536+01 21

1805+03 .2890+01 55

1460+04 .3015+01 164

1049+05 .2845+01 618

4011+05 .1934+01 2936

Symmetric preconditioning

--------Ch(B;i/2AhB 1/2) Growth rate Its

.oooo+oo
.1687+02 .2184+01 13

.3007+03 .2054+01 34

.m +o4

.4923+04 .2005+01 110

.1972+05 .2002+01 184

.7883+05 .1998+01 328

7. Analysis of the two-dimensional computations. As we have seen, in the
one-dimensional computational experiments described in 2, the conjugate gradient
algorithm works better than might be expected even in those cases where the "wrong"
boundary conditions are used. The reason for this is contained in the analysis of 3
and essentially comes about because

(7.1) B(hl) B(h2) + R1,

where R1 is an operator of rank one. In this section, we turn our attention to the
two-dimensional computations and seek to explain their "not so bad" behavior.

The basic reasons for the efficiency of the two-dimensional examples in the cases
where D(A*) D(B*), i.e., those cases where Cir. (BiAh) is bounded independent of
h, is essentially explained by the computations of 4 and the analysis of 5, see [GMP]
for the two-dimensional extension of the results of 5. As for the case with "wrong"
boundary conditions in two-dimensions, we consider a problem with D((B(2)) *)
D(A*), D(B()) D(A). And, as in all the examples of 6, we may analyze the
problems by the method of "separation of variables." We have

where we might expect Rt to be of rank t O(1/h), the number of points next to the
boundary. But, as we shall see, in fact the number, T, of unbounded singular values
is (at most)

a significantly smaller number.
Consider the problem with

(7.3a) gt={(x,y) 0<x,y<l},

(7.3b) Au uxx + Uyy " aux,

(7.3c) u=0onx=0, y=0, y=l,

PRECONDITIONING" EXPERIMENT AND THEORY 285

(7.3d) 0-- 0 on x 1.

Let the preconditioner be

(7.4) By vxx + vvv

subject to the same boundary conditions as A. The discretizations Ah and Bh are
obtained by straightforward central differences.

We turn immediately to the discrete problem

(7.5a) BIAhU V,

(7.5b) AhU BhV.

We now apply an argument based on "separation of variables." Let

N

(7.6a) U Cj(x)sin rjy,
j’-i

N

(7.6b) V Z CJ (x)sin rjy,
j--1

where

1
(7.6c) N

We find that the functions Cj(x) and Cj(x) are related by the equations (we drop the
subscript j where possible)

(7.7a)
+a ,

(0) 0, () 0,

where

(7.7b) #y
4sin2(rjh/2)

h2

The symbols Cx,x are forward differences. That is,

(S.7c) () Ck+l Ck

The symbols , Cx, , are defined as central differences. That is,

(7.7d) ()k Ck/l 2k + k-1
h2

286 W. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

(7.7e) ()k
2h

Since

we have

2 sin 0-< _<i, 0<0<
2

(7.8) 4j: <_

Our main results now follow easily.
LEMMA 7.1. Let and be connected by (7.7). Then

(7.9) I1- llh < Ilall
2j2h IIllh.

Proof. We first observe that

2
(7.1o) llllh -< !lllh"
Let W . Then W satisfies the equation

(7.11) Wz #jW a.
Multiplication by W and summation, together with a standard summation by parts
argument, yields

(7.12)

thus,

4j2llwll h < 211all IIllh,
h

which implies the lemma. F1

LEMMA 7.2. Let and be connected by (7.7). Then

(7.13)
4j2 IIllh / 4

114,

Proof. Let
w=-.

Then W satisfies
Wx + aW #jW -a.

The summation by parts argument now yields

IIWll + JllWll IIll,llWllh [llllh + IIWllh].
We apply the inequality

10llWll+ IlWllIlWllh" IIWllh

PRECONDITIONING: EXPERIMENT AND THEORY 287

with - 2/llalloo. Then

which implies the lemma.
This estimate contains I1- llh on both sides of the inequality. However, the

following corollary is immediate.
COROLLARY. Suppose

(7.15a) Ilall2oo <j
8

Then

(7.15b)

that
THEOREM 7.1. Suppose and are connected by (7.7). Suppose j is so large

(7.16) <_ j2 and j >_ v/.

Then

(7.17a)

(7.17b)

Proof. Under these hypotheses we have both

j2h
oo

Then the theorem follows from the triangle inequality, e.g.,

Consider the meaning of this theorem. For each j, j 1, 2,..., N the separation
of variables provides N singular values. However, if j > v/ those singular values are
all bounded between

(1+ Ilall)-x and (1 + Ilalloo).

Hence, there are at mostVj’s which can contribute singular values that tend toward
oc or tend toward zero. As these are all one-dimensional problems, the analysis of 3
shows that for each such j there is exactly one singular value tending toward oo and
exactly one singular value tending toward zero. In the worst case one singular value
tends toward oo as h-l2 and one singular value tends toward zero as h/2. However,
in this context many of the "bad" j’s may produce singular values that approach 0 and

288 W. JOUBERT, T. A. MANTEUFFEL, S. PARTER, AND S-P. WONG

oo at slower rates. Hence, the number of "bad" singular values is, at worst, O(1/x/-)
not O(1/h), and the worst of these approach oo as h-l/2 or 0 as hl/2.

REFERENCES

JAMS] S.F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR, A taxonomy for conjugate gradient
methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542-1568.

[eGO] P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY, A generalized conjugate gradient iteration

for the numerical solution of elliptic partial differential equations, in Sparse Matrix
Computations, J. P. Bunch and D. J. Rose, eds., Academic Press, New York, 1976.

[GMP] C.I. GOLDSTEIN, T. A. MANTEUFFEL, AND S. V. PARTER, Preconditioning and boundary
conditions without H2 estimates: L2 condition numbers and the distribution of the
singular values, SIAM J. Numer. Anal., (1990), submitted.

[JMPW] W. D. JOUBERT, T. A. MANTEUFFEL, S. V. PARTER, AND S-P. WONG, Preconditioning
second-order elliptic operators: Experiment and theory, Los Alamos National Labora-
tories Report LA-UR-90-1615, Los Alamos, NM, April, 1990.

[MO] T. A. MANTEUFFEL AND J. S. OTTO, Optimal equivalent preconditionings, SIAM J.
Numer. Anal., (1991), submitted.

IMP] T.A. MANTEUFFEL AND S. V. PARTER, Preconditioning and boundary conditions, SIAM
J. Numer. Anal., 27 (1989), pp. 656-694.

[ST] (. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 289-306, January 1992

() 1992 Society for Industrial and Applied Mathematics
015

FAST ITERATIVE SOLUTION OF CARRIER CONTINUITY
EQUATIONS FOR THREE-DIMENSIONAL DEVICE SIMULATION*

0. HEINREICHSBERGER, S. SELBERHERR, M. STIFTINGER, AND K.P. TRAAR$

Abstract. In this paper the use of iterative methods for the solution of the carrier continuity
equations in three-dimensional semiconductor device simulators is summarized. An overview of the
derivation of the linear systems from the basic stationary semiconductor device equations is given
and the algebraic properties of the nonsymmetric coefficient matrices are discussed. Results from
the following classes of iterative methods are presented: The classical conjugate gradient (CG),
the symmetrized conjugate gradient (SCG), the generalized minimum residual (GMRES), and the
conjugate gradient squared (CGS) method. Preconditioners of incomplete factorization type with
partial fill-in are considered. High performance implementations for these algorithms on vector,
concurrent, and vector-concurrent computers are presented.

Key words, semiconductor equations, nonsymmetric systems, preconditioned iterative meth-
ods, vector computers

AMS(MOS) subject classifications. 65L10, 65F10, 65F20, 35J65

1. Introduction. The three-dimensional numerical analysis of semiconductor
devices by device simulators is increasingly becoming an indispensable tool in design
and optimization of micro-miniaturized devices. Such simulators compute the discrete
self-consistent solution of the semiconductor device partial differential equations. We
restrict ourselves to the decoupled solution method of the three nonlinear device equa-
tions on a three-dimensional nonuniform tensor product grid [15]. In this case each
single nonlinear (outer) iteration consists of the solution of the Poisson equation for
the electrostatic potential and of two carrier continuity equations for the electron
and hole concentrations, respectively. The coefficient matrices of the discrete con-
tinuity equations in the most practical variable set n (electrons) and p (holes) are
nonsymmetric. In this contribution we consider preconditioned iterative methods for
the solution of these nonsymmetric linear systems. Related work is found in [12], [19],
[21], [28], and [32].

Iterative methods applied to the discrete continuity equations have to cope with
high condition numbers of the coefficient matrices [1]. Another problem is the enor-
mous numerical range of the solution vector that has to be computed accurately both
in the depletion zones of the device under consideration as well as in high injection
regimes. Contrary to the Poisson equation, the discrete continuity equations have
to be evaluated much more accurately to guarantee the stability of the nonlinear
iteration. This results in substantially higher iteration counts compared to the Pois-
son equation, and therefore the linear nonsymmetric solvers dominate in the solution
process.

We have performed a comparative study of various preconditioned conjugate gra-
dient type solvers of which the conjugate gradient squared (CGS) method [14], [26]
was identified as the fastest and most economical. The success of this method (and re-
lated ones) depends quite critically on robust preconditioning. We have concentrated
on incomplete factorizations of the coefficient matrix. Partial fill-in substantially
reduces the iteration count at the expense of more arithmetic work per iteration.

Received by the editors April 5, 1990; accepted for publication (in revised form) February
26, 1991. This work was supported by Siemens AG, Munich, and Digital Equipment Corporation,
Hudson.

Institute for Microelectronics, Technical University of Vienna, Vienna, Austria.
SIEMENS AG Austria, ETG 215, Vienna, Austria.

289

290 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

Multiple solutions of linear systems of rank (9(105 or even larger on vector or vector-
concurrent computers with large main memory requires vectorized and/or parallelized
iterative procedures. Our implementation has therefore been concentrated on an effi-
cient vectorizable ILU preconditioner. We show how high performance is achieved on
supercomputers such as the CRAY 2 (one vector unit), Fujitsu VP200, and on super-
minicomputers such as the Alliant FX40 (two vector CEs) and a Digital VAX 6260
(one to six scalar processors).

The outline of this paper is as follows. In 2 the semiconductor partial differen-
tial equations and the nonlinear expressions for the physical quantities within these
equations are summarized, the discretization of which is discussed in 3. The brief
consideration of the algebraic matrix properties in 4 provides the preliminaries for
the iterative procedures outlined in 5. Robust preconditioning is vital for the itera-
tive solution of the carrier continuity equations. We consider incomplete factorization
preconditioners in 6 and their implementation on vector and parallel computers in

7. Numerical experiments and conclusive remarks are found in 8.
2. The semiconductor partial differential equations. We consider the time-

invariant case on a three-dimensional rectangular spatial domain using finite difference
discretization. The semiconductor equations for the variables (, n, p) consist of the
Poisson equation and the carrier continuity equations. Poisson’s equation for the
electrostatic potential reads

(1) div (e. grade) -p

with the space charge p q. (p-n + C), where C denotes the net doping density,
n the hole, p the electron concentrations, and q the elementarycharge. The carrier
continuity equations for the electron and hole current densities Jn,p read

(2) divA q. R,

div R,
where R denotes the carrier generation and recombination rate.

The current densities Jn,p,

are assumed to be proportional to the driving forces Fn,p. An extended drift-diffusion
approach allows the treatment of hot electron effects in one-band semiconductors such
as silicon. This approach for the driving forces reads [13]

(1 grad(k’Tn))(6) Fn=-q grad-. - -n

(1
(7) Fp -q grade + grad .p

P q

where carrier heating is modeled by carrier temperatures Tn,p. For the mobilities
LISF the effect of carrier heating is modeled by a nonlinear dependence on then,p

magnitude of the driving forces Fn,p"

(8) I-in,p

LIS21n,p

1+(1+\ in,p "ln,pl/(q")i/an,p

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 291

with an 2, Op 1. I’n,p"LIS denotes the zero-field mobility due to lattice (L), impurity
(I), and surface (S) scattering mechanisms and Satvn,p the saturation velocity.

Approximations for the carrier temperatures T,,p can be derived by a series ex-
pansion of the energy conservation equations

2q ersatz2(1(9) Tn,p To + - - "T,p" (Vn,p) LiSF ,.LXS#n,p r’n,p

with the Boltzmann constant k, the ambient temperature To and the energy relaxation
times Tn,p

The carrier generation and recombination rate R on the right-hand side of the
carrier continuity equations represents the sum of the impact ionization rate RII, the
Shockley-Read-Hall recombination rate RSRH, and the Auger recombination rate
RAU:

(10) R RII + RSRH + RAU.

The impact ionization rate is modeled by the Chynoweth formulae

(11) RII:-an]fnl
Op

q

in which the On,p depend exponentially on the local electric field:

(12) an,p &n,p .exp
(fn,p/[<,pl) grade

The SRH recombination rate is expressed by

2

R
Tp (n + nl) + Tn (p + pl)

with positive constants nl,Pl,Tn,p. Last, the Auger recombination rate is given by

(14) RAU (Cn n + Cp p) (n p n2i
with Cn,p >_ O.

3. Discretization of the nonlinear system of equations. The nonlinear
system of equations can be solved either by a full Newton iteration or by decoupling
the three partial differential equations (Gummel’s algorithm [8]). We restrict ourselves
to the latter option. In that case, a nonlinear Gauss-Seidel block iterative scheme is
obtained neglecting the nonlinearities in the carrier mobilities and temperatures:

(15) divgradCk+l -q (O(p- n + C)k (k+l k) + pk nk + C)0

(16) divJp (k+l,p+) -q R (’+,nk,p) + -p

(OR(n+l)(17) divJn (k+,nk+) =q R(+,nk,pk+l) +-n --n)

292 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

The set of equations is now discretized on a three-dimensional domain. The boundary
value problem is of mixed Dirichlet-Neumann type. For the idealized ohmic contacts,
Dirichlet boundary conditions hold. For the artificial interfaces in the deep semicon-
ductor bulk, homogenous Neumann boundary conditions have to be applied. Nonho-
mogenous Neumann boundary conditions for the electrostatic potential are valid in
case of interface charges, e.g., at semiconductor-oxide interfaces. Nonvanishing in-
terface recombination velocities at Schottky contacts yield nonhomogenous Neumann
boundary conditions for the carrier concentrations.

The nonlinearities in R have to be treated carefully. The derivatives of RII with
respect to the carrier concentrations can be neglected if the carrier generation rate is
not updated at every nonlinear iteration but in a superimposed generation supercycle.
For the recombination rates RSRH, however, the derivatives with respect to n or p
are computed, because these contributions increase the diagonal dominance in the
resulting linear system. Such a stabilizing effect is not necessarily true for RAU,
therefore, negative contributions of the derivatives of RAU to the main diagonal of
the coefficient matrix are discarded.

For the finite difference discretization of the carrier continuity equations an expo-
nential interpolation scheme for the carrier concentrations n and p must be used [3],
[24]. This is due to an exponential dependence of the carrier concentrations on the
electrostatic potential (Scharfetter-Gummel interpolation). Herein the quantities
#,,p, and Tn,p are interpolated linearly. For a one-dimensional nonuniform discretiza-
tion with mesh spacings hi, neglecting the derivatives of R and assuming constant
carrier temperatures Tn,p, one obtains for the three-point stencil

ni-lDn#-l/2 2hi_ + ni+D,i+i/2 2h----

(B (Ai-) + D,i+/2 Ri(18) -ni D,i-/2 2hi-1 2hi 2

(/_) B (-)
Pi-lDp’i-1/2 2hi_ + Pi+lDp’i+l/2 2h---

B (-Ai-1)
-t- Dp,i+/2 Ri(19) Pi Dp,i-1/2

2hi-1 2hi 2

In these formulae the diffusivities obey the Einstein relation Dn,p ttn,p" Ut, where
Ut k.To denotes the thermal voltage. B is the Bernoulli functionq

X
(20) B(x) exp(x)- 1"

The arguments of the Bernoulli function are Ut
For nonconstant carrier temperatures Tn,p, the above expressions are generalized

as follows [27]. Let

k" T(n,p),i(21) Ut(mp)# q

denote the so-called local "electronic voltages" at the meshpoint i. Assume further
that the electronic voltages Vt(n,p),i vary linearly between the meshpoints as is the
assumption for the electrostatic potential. Then a local one-dimensional continuity
equation is solved for the current densities J,p between neighboring meshpoints.

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 293

Assuming constant current densities, the following midpoint interpolation formula
replaces the diffusivities

Ut(n,p),i

The midpoint values for the mobilities #(n,p),i-}-l/2 are approximated by linear inter-
polation. The Bernoulli function argument evaluates to

(i+l i) (Ut(n,p),i+l Ut(n,p),i)
ln lUt(n,p),i+ I(23) A(n,p),i (Ut(n,p),i+l Ut(n,p),) Ut(n,p),

4. Algebraic properties of the coefficient matrices. The exponential in-
terpolation scheme outlined in the last section produces a nonsymmetric, diagonally
dominant, two-cyclic, seven-band coefficient matrix A.

Nonsymmetry is caused by the inequality B(-x) B(x). Diagonal dominance
is due to the fact that each negative column sum of the offdiagonal elements is less
than (for nonvanishing R) or equal (for vanishing R) to the main diagonal pivot.
This implies at least semidefiniteness of A. Consider the case of constant carrier
temperatures T T Tp. The equality

(24)

and the fact that the exponentially scaled potential increments can be factored yields
that A can be transformed to a symmetric, positive definite matrix A,

(25) . W-. A. W,

by a diagonal similarity transformation. The diagonal matrix W is positive definite
and the elements w(,,p),i are given by exp (+i/2Ut) for electrons and exp (-i/2Vt)
for holes. Since a similarity transformation leaves the spectrum of the matrix A
unchanged, we have a nonsymmetric system of linear equations, in which A has a
positive real spectrum. For local carrier temperature we are not aware of such a
transformation, hence we cannot make statements of the spectrum of A in this case.

We note the enormous numerical range of the W matrices. For a maximum elec-
trostatic potential of 100 Volts and liquid nitrogen temperature (77 K) we may expect
exponents of the order log0 (Wi,max) 3275. These numbers make the explicit trans-
formation of the linear system undesirable on standard, double precision computer
arithmetics. The very large rank of A gives preference to iterative methods over sparse
Gaussian elimination.

5. Selected iterative methods for the linear systems. In this section we
discuss the iterative procedures that were used in our computations. In the case
of symmetrizability these are the classical conjugate gradient (CG) algorithm, then a
variant of CG that circumvents the explicit symmetrization (SCG), and the conjugate
gradient squared (CGS) procedure. For the nonsymmetrizable case we consider the
generalized minimum residual algorithm (GMRES) and again CGS.

The numerical condition of the discrete carrier continuity equations can be rather
poor [1], therefore efficient preconditioning is important. Incomplete (left or split) LU
factorizations are used for preconditioning together with (left or symmetric) scaling
by the main diagonal pivots D of the preconditioner, and the Eisenstat procedure [7]
is used to compute the preconditioned matrix-vector multiply. In 8, where various

294 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

TABLE 1
ILU-SCG.

Choose x0
Q-1-1 (b- Axo)?o-- "L

X-1 r-1 0
50 1
FOR n 0 STEP 1 UNTIL convergence DO

"5- W-2QLQRn

O

n n

fin=(1 ’n &n 1)
-1

END FOR

(if n > 0, f30 1)

numerical experiments will be presented, estimates for the extremal eigenvalues of
the preconditioned matrix, obtained by the conjugate gradient method, illustrate
that the preconditioned problem is well conditioned. We use the following notational
conventions: The index s denotes the scaled matrix As and its strictly triangular
parts L8 and Us. Angle brackets denote the dot-product. Quantities with a hat (^)
refer to the preconditioned system.

In this section we shall make explicit use of the similarity property, which was
derived in the last section. In case of knowledge of the diagonal transformation
matrices W, an explicit transformation (e.g., during the sparse matrix assembly) of
the linear system into symmetric form is the most straightforward approach provided
that the computer arithmetic is sufficiently accurate for the numbers generated by the
similarity transformation. This transformation saves matrix storage and the classical
preconditioned conjugate gradient algorithm (CG) is the optimal iterative method.

The very large number range in the iterates can be circumvented by a variant
of the conjugate gradient algorithm, e.g., proposed in [11]. In this case the diagonal
transformation matrices are confined to the inner products in the variant of the CG
algorithm given in Table 1. An appropriate scaling can be employed for the inner
products, thus avoiding restrictions on computer arithmetics. A three-term recursion
is used with left preconditioning. The WTWQ-1A norm of the solution error is
minimized at each iteration step.

If the linear systems are not symmetrizable one must choose from a more general
class of iterative methods for nonsymmetric linear systems. We concentrate on two
methods: The generalized minimum residual method GMRES, an orthogonalization
method, and the conjugate gradient squared method CGS, which has no (known) min-
imization property. Algorithms that were not considered are methods that require
(e.g., dynamically computed) eigenvalue estimates, such as the Manteuffel algorithm,
and the more recent hybrid methods, which adaptively switch between different ac-
celeration schemes [6], [16].

The GMRES algorithm minimizes the two-norm of the residual at each iteration

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 295

TABLE 2
ILU-GMRES(m).

Choose o
8 (I + Ls)-lb
Choose m
FOR n- 0 STEP 1 UNTIL convergence DO

--(ITUs)-ln
t + (I + n)- ((diag (A) 2I)[+ n)

FOR 1 STEP 1 UNTIL j m DO- (I + v)-
+ (I + L)- ((diag (As) 2I)[+

FORi=ISTEP 1UNTILi=jDO

+ - i=1

END.__ j+1/hj+l,j

Solve t squres problem n- or
with e [1,0,...,0]T m+,m m+Xm
(upper Hessenberg matrix consisting of the ,j), $ m

with [, ,. , 9] Nx
END FOR
Xn+l D-1/(I+U)-"Xn+

step. An orthonormal basis is built by an Arnoldi process, and the Hessenberg least
squares problem can be solved, e.g., by Householder transformations. See Table 2.
The monotonic convergence of GMRES has to be paid for. Full orthogonalization at
iteration step n, which yields optimum convergence speed, requires storage of n vec-
tors. This is prohibitive for large, three-dimensional problems and makes restarting of
the iteration necessary, thus abandoning optimality. Nevertheless, the convergence of
the restarted GMRES(m) is certainly monotonic. Values for the restarting frequency
m less than, say, 6 have been found acceptable. Although the solution vector is up-
dated every m iterations, the residual norm is available at each iteration step at no
extra cost. This is a by-product of the QR decomposition for the solution of the least
squares problem, if the Q and R matrices are updated at each iteration step.

A way of decreasing storage and arithmetic requirements is the use of Lanczos
methods, such as the biconjugate gradient (BiCG) algorithm or the biconjugate gradi-
ent squared (CGS) algorithm [26] given in Table 3. Both algorithms construct approxi-
mations to the solution in the same Krylov subspace as GMRES, but a biorthogonality
condition to the transposed system is used rather than an orthogonality condition to

296 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

TABLE 3
ILU-CGS

Choose x0
o=(I+Ls)-l(bs-Asxo)
5o (I + Us)bl/2Xo
Choose 00 such that ()0, 0) 0
0 =- 0
/--1 =1
FOR 0 STEP 1 UNTIL convergence DO

(0o,)

=+0

=(+)
+ (I +)-1 ((e() 0 +)

+g= ++= (+)-1
+ (i +- ((e(0 +)

+ +
END OR
+1 D-1/(I + g)-ln+l

construct the direction vectors. The residual does not decrease monotonically, hence
the stopping procedure is more difficult compared to GMRES. The initial vector
may be chosen arbitrarily such that ()0,0 0. We conform to the common practice
to set this vector equal to the initial residual vector 0. A well-known property of this
algorithm is the possibility of breakdown by vanishing of certain inner products. This
phenomenon, which cannot be excluded a priori, is certainly a reason for worry. It is
an experimental observation that effective preconditioning makes the event of (near)
breakdown unlikely. We have observed that a sufficiently high machine precision can
avoid breakdown occurring when the iteration is near the true solution.

Related squared Lanczos algorithms [10] (BIORES2 and BIODIR2) exist due to
the analogy to the Lanczos-ORTHORES and Lanczos-ORTHODIR algorithms. These
algorithms can be implemented to generate the same iterates for the solution vector
(in exact arithmetic) if identical vectors xo and)0 are chosen. Though mathematically
equivalent, unavoidable roundoff errors cause the iterates of the three biorthogonal-
ization algorithms to drive apart in the course of the iteration. BIOMIN2, i.e., CGS,
not only proved to perform best under presence of roundoff, but could also be imple-
mented most economically concerning storage.

In Table 4 the arithmetic work of the iterative procedures is listed. These figures
refer to one linear iteration. For the restarted GMRES(m) method the iteration
counter is incremented after the computation of one new orthogonal basis vector.

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 297

TABLE 4
Comparison of arithmetic work/iteration.

Solver Ax (x,
CG 1 2 4 10
SCG 1 3 4 10
CGS 2 2 7 6
GMR 1 m m m -1-+1 -g 2

6. Efficient preconditioning. We start with a comparison of two precondi-
tioners that have been examined intensively" Block Jacobi preconditioning Pa D,
where D is the tridiagonal part of A, and incomplete factorization preconditioning [17],
where

with L the strictly lower and U the strictly upper triangular part of A and/3 computed
such that

(27) diag (PILu) diag (A)

It is trivial to see that for the matrices under consideration the nonzero pattern
of the LU factors of Pj is a proper subset of the nonzero pattern of the factors of
PILU. It can be proven that in this case the ILU preconditioner is superior to the
Jacobi preconditioner in the sense that if A Pj Rj and A PILU RILU, then

(28) p (P;L1uRILu) <_ p (pIRj)
where p denotes the spectral radius. Thus, a stationary iterative method based on the
ILU splitting will converge at least as fast as a method based on a Jacobi splitting.
Accelerated methods (see 5) will be influenced in a similar way. On the other hand,
the arithmetic work for the Jacobi preconditioner compared with the ILU precondi-
tioner is smaller and involves only first order recurrences, which can be vectorized
more easily. Summarizing our experimental work, we state that the use of the Jacobi
preconditioner seems to be limited to low bias voltage applications, i.e., examples
where the diffusion term dominates in the current relations (4)-(6). For higher bias
voltages unpleasant numerical effects have been observed (especially with the Lanczos
methods), such as convergence stagnation or near breakdown in the Lanczos process
at the beginning of the iteration. Another disadvantage is the orientation sensitivity
due to the line elimination that forces the swapping of the matrix and vector elements
to the most favorable direction, thus causing inconvenient computational overhead.
A really clear relationship for both the minority and majority carrier continuity equa-
tions and the direction of the main current flow that would facilitate a detection of
a favorable preconditioning orientation, however, could not be established. Therefore
we cannot recommend this type of preconditioner for general use.

An incomplete factorization preconditioner of alternating direction type, PT, with
tridiagonal matrix factors, has been proposed in [5]. The basic idea is to use tridi-
agonal factors that lend themselves more to parallelization, rather than triangular
factors as with ILU, at the same time maintaining the ILU sparsity pattern. For a
seven-point stencil such a factorization would read

(29) PT TID-1T2D-1T3,

298 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

where D is the main diagonal of A, and the Ti, i 1, 2,3, are tridiagonal matrices
such that

(30) T1 + T + Ta A + 2D.

The elements in the factors of PT are altogether equal to the corresponding el-
ements in A, hence there is no need to compute diagonal pivots D as with ILU.
However, there are more error terms outside the nonzero pattern in PT; therefore
it is no surprise that the iteration count in the iterative solver is higher compared
with the ILU preconditioner. Computing y Plx involves the backsolves of the LU
factors of three tridiagonal matrices. Since each tridiagonal matrix consists itself of
many independent tridiagonal systems this work can be parallelized easily (e.g., by
the partitioning method, cyclic reduction, etc.).

Let NX, NY, and NZ denote the number of gridlines in the respective directions.
The inversion of T1, which is assumed to contain the innermost diagonals of A, consists
of NY. NZ independent tasks and has stride NX. T3, which is assumed to contain
the outermost diagonals of A, has NX. NY independent tasks and stride 1. For T2
the situation is different because the stride is constant for NZ data sets only. The
authors in [5] have reported that one preconditioning step with PT can be performed
up to three times as fast as one step in the hyperplane-ILU preconditioner on vector-
supercomputers. Our numerical experiments, however, indicate that the convergence
decrease with respect to ILU(0) is often larger than three even for simple examples.
We refrained from an implementation on a supercomputer.

The most commonly used and probably most efficient preconditioner, at least
on scalar computers, is incomplete LU factorization with allowable fill-in denoted by
ILV(k), see, e.g., [2], [4], [12]. The index k denotes a controllable sparsity pattern along
the matrix diagonals, k 0 denoting no fill-in, k 1 denoting fill-in caused by the
original nonzero pattern but no further, and so on. As expected, a higher degree of fill-
in reduces the iteration count. However, the number of operations for the factorization
and for each iteration as well as the memory requirements increase considerably. For
example, the ILU(1) preconditioner needs four extra diagonals within the original
seven-diagonal nonzero pattern. For the fill-in ILU preconditioners we are not aware
of a comparably efficient implementation to compute the preconditioned matrix vector
multiply as proposed by Eisenstat for the ILU(0) [7], [29].

The two ILU(0) factorization variants under consideration are split ILU

(31) 1 __//2 (/ + L)-A([9 + U)
(32) &----D-/2 D/U x

-lbl/22 bl/2 ([9 + L)
-1
b=

and left ILU

The preconditioned matrix-vector multiply .,215 can be simplified in the following
manner. For the split ILU(0) one obtains, after having scaled the matrix symmetri-
cally by/,

(34) A8 D-1/2AD-I/2 =- diag (As) + L + U,

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 299

B
4

TABLE 5
Hyperplane-ILU k) on vectorcomputers.

VP-200
Speedup
13.75
12.12
12.62

Cray-2
MFlop B Speedup

96 14 4.30
96 26 4.76
128 30 5.93

MFlop
27
30
34

B
212
327
410

Alliant FX40
Speedup MFlop

1.34 1.8
1.51 2.3
1.64 2.5

+ + (:+/-

with

(36) i-- (I - Us)-li5,

and for the left ILU(0) together with left scaling

(37) 2-- (I + Us)- [+ (I + Ls)- (diag (As) I + Us)].
In our implementation the split ILU(0) requires two additional scratch vectors and
N square-roots, whereas the left ILU(0) requires no extra storage but a triangular
matrix vector multiply.

Computing the diagonal pivots of the incomplete factorization such that PILU A
has zero column sums (or row sums in the symmetric case) leads to modified incom-
plete factorization-type preconditioners (MILU) originated by [9]. A modification
factor a in the interval [0, 1] is usually introduced to smoothly sweep between pure
ILU and full MILU factorization. Our results concerning the choice of such a modifi-
cation factor do not admit a clear statement. It seems that a 1 always decreases the
performance with respect to a 0 slightly. We found a number of device examples
where a choice of c 0.5 yields a performance enhancement of about 10 percent to
30 percent concerning the iteration count. However, this gain is partly compensated
by the higher arithmetic work for the factorization.

Parallelizable variants of ILU such as the Neumann polynomial preconditioner [31]
were investigated as well. Numerical experiments carried out with the NSPCG (Non-
Symmetric Preconditioned Conjugate Gradient) code [18] identified none of them
competitive with ILU.

7. Implementation notes for parallel and vector computers. Vectorizing
and parallelizing the backsolves of triangular or tridiagonal systems is a good exercise
to explore computer architecture. We concentrate on vectorization techniques that are
unlikely to degrade the performance of the incomplete factorization preconditioners;
hence we do not consider multicolor orderings [20]. We further exclude computers
that permit only unity-stride vector operations such as the CYBER 205 and disregard
optimization measurements possibly required by memory bank and related conflicts.
We aim at a production code that is as generally applicable as possible. This can
be achieved by a reordering technique that does not change the preconditioner and
produces long vector lengths. The hyperplane method, which is a plane-diagonalwise
reordering, excellently reported in [2], [29], achieves this goal. The price for the rather
general implementation we are aiming at is indirect addressing by list vectors.

If the unknowns as well as the matrix elements are indexed by (il, i2, i3) in the
three spatial directions, then hyperplanes Hm (or "computational wavefronts") are

300 HEINI:tEICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

defined by the set of all mesh points in the simulation domain that satisfy the equation

(38) + (k + +
where m is constant, k denotes the level of fill-in. Obviously the computation of the
unknowns in Hm can be carried out in parallel (and hence is a vector operation) since
they depend only on the unknowns in Hm-1 for the lower triangular or Hm+l for the
upper triangular system, respectively.

For an implementation of the hyperplane method it is desirable to form a unique
vector of the unknowns in a particular Hm. This is achieved by initially computing
the addresses of the unknowns to be processed in an integer list vector LIST and
marking the beginning of each hyperplane by an additional list vector LPTR. The
vectorlengths increase from 1 to O(NX. NY. NZ)2/3.

Special attention has to be paid to the meshpoints at the simulation boundary.
Addressing (nonexisting) elements at the boundary points can be prevented by proper
IF statements in the code or by computing the unknowns at the boundary outside
the loop. We decided to extend the array of the unknowns such that unallowed
addressing at the boundaries cannot happen. This is done by allocating an array of
size NX. NY. (NZ + 2) for the vector of the unknowns X(I) and filling the front
and back plane of this vector with zeros. Then the code for the solution of the lower
triangular system for k 0 is surprisingly simple:

DO 1 L=2,NX+NY+NZ-2
DO 1 M=LPTI%(L-I)+I,LPTK(L)
I=LIST(M)
X (I)=1% (I)-B (I)X(I-I)-D (I)X(I-NX)-F (I)X(I-NXNY).

R denotes the right-hand side and B, D, F the strictly lower triangular part of As.
The inner loop is vectorizable. The implementation for the upper triangular system
and the higher order recurrences (k 1, 2) is straightforward. The approach sketched
above is used in a similar manner to vectorize the ILU factorization at the beginning
of the iteration.

Using the computational front approach, additional parallelism can be achieved
by twisting the incomplete factorization in one specific direction [29], [30]. Then the
factorization and the backsubstitutions can be performed concurrently from both ends
to the center and from the center to both ends. Since such a twisting splits the domains
into two equal halves, the mean hyperplane vectorlength in each half is decreased
unless the number of meshpoints in the direction of splitting is significantly larger
than the number of meshpoints in the remaining directions. It has been reported
in [29] that the twisted hyperplane approach tends to decrease the iteration count
in the linear solver, however, such an effect could not be verified with our type of
equations. We think that the twisted hyperplane method is not advantageous, at
least on a two-processor machine. To qualify the performance of the hyperplane-
ILU(k) implementation, tests have been carried out on a Fujitsu VP200, a Cray-2, an
Alliant FX40, and a Digital VAX 6260 computer. In Table 5 the CPU time for one
triangular backsubstitution (B) in milliseconds (ms), the overall achieved speedup
over the autovectorized code megaflop (MFlop) rate for this operation is given. This
test example uses a 40 40 40 grid and the measured numbers are mean values for
100 solves. For a larger number of meshpoints the values are even more favorable.

The values in Table 6 show the convergence speed improvement factors the level
1, 2 preconditioners must reach to beat the ILU(0) preconditioner. As can be seen,

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 301

TABLE 6
ILU-level 1, 2 preconditioner break-even points.

kl VP-200
1.56

2 2.15

Cray-2
1.4
2.0

Alliant FX-40
1.44
1.58

TABLE 7
Parallel hyperplane ILU(0) on the VAX 6260.

Processors 1 2 3 4 5 6
MFlop 0.58 1.15 1.64 2.06 2.41 2.65
Speedup 1.00 1.98 2.82 3.54 4.14 4.56

these values tend to favour ILU(1), since practical values for the convergence speedups
against ILU(0) are about 2. Thus, if memory usage is not too restrictive, ILU(1) is
to be preferred to ILU(0).

In Table 7 the performance of ILU(0) on a Digital VAX 6260 with six scalar
processors is presented. The megaflop rates and the speedup over one processor for
the above test example are shown.

8. Numerical results. In this section the effectiveness of the preconditioned
iterative methods outlined in the previous chapters will be demonstrated. We chose
two simulations of silicon MOS-transistors. The finite-difference grids of both simu-
lations are comparatively small, thus the "true" solution 2 of the linear systems were
obtained by a sparse direct solver and the 2-norm of the relative solution error

(39) en ii;11

was evaluated. A (heuristic) error threshold of 10-s for en was found satisfactory
in practical simulations. The computations with the CG and the SCG were performed
with quad precision, the CGS and GMRES(5) iterations in double precision. These
tests were carried out on a Digital VAX 8800, the precision of 1.0 is 1.387-10-17

for double precision and 9.629.10-35 for quad precision arithmetic. All data pre-
sented in the following have been extracted from version 5 of the device simulator
MINIMOS [25].

Example 1 is a moderately nonplanar N-channel MOSFET with a channel length
of 1.5 microns. The gate voltage is Ug 0.5 Volts, the drain voltage is Ud 1.0
Volt, all other terminal voltages are zero. The finite-difference grid is built self-
adaptively and is small due to the low biasing: 23 27 16 in x- (channel length), y-
(pointing into the substrate), and z- (channel width) direction. Gummel’s decoupling
algorithm converges in five iterations. The terminal currents are small: 5.30-10-9

Amperes for the drain current (ID), and -1.20.10-13 Amperes for the bulk current
(IB). Carrier temperatures are judiciously neglected in this simulation, hence the
nonsymmetric linear equations can conveniently be symmetrized and solved by the
classical CG algorithm. The convergence of CG is compared with the symmetrized
variant of the CG algorithm (SCG) and the (CGS) method. ILU(0) and ILU(1) are
used as preconditioners. The CG algorithm provides cheap estimates of the extremal
eigenvalues of the preconditioned matrix and hence for the spectral condition number

)max/)min.

302 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

TABLE 8
Example 1: Majority carrier continuity equation.

N
1
2
3
4
5

ILU(0) a 35
I-CG I-SCG I-CGS
17 32 25
34 29 24
29 29 22
33 29 24
21 41 21

ILU(1) a 10
I-CG I-SCG hCGS
9 22 12
20 22 11
18 21 11
20 21 11
15 26 11

TABLE 9
Example 1 Minority carrier continuity equation.

ILU(0) a 102 ILU(1) a 70
N I-CG I-SCG I-CGS I-CG I-SCG I-CGS
1 50 84 48 41 45 35
2 54 78 43 43 40 32
3 53 78 39 42 39 30
4 54 68 42 42 37 27
5 51 86 47 40 46 35

In Table 8 the iteration history of the majority carriers (holes) are listed, in
Table 9 the minorities (electrons) are listed. The spectral condition number estimate
a varies only marginally during the nonlinear iterations.

As can be seen from the tables, the iteration counts of the CG algorithm corre-
spond nicely to the bounds suggested by the spectral condition number. The CGS
algorithm converges twice as fast as the CG method for the best conditioned problem
(majorities with ILU(1)).

Convergence curves for the three iterative methods with the matrices from the
first nonlinear iteration are given in Figs. 1 and 2.

The second example is a P-channel MOSFET with bias voltages of U8 0.0
Volt, Ug -4.0 Volts, Ud --1.0 Volt, and Ub 2.0 Volts. The drain current is

Id --6.3" 10-5 Amperes and the bulk current is Ib --1.7. 10-9 Amperes. This
time electron and hole carrier temperatures are simulated self-consistently. First an
initial solution is computed, which satisfies the classical semiconductor equations for
constant carrier (i.e., ambient) temperature. This requires ten Gummel iterations.
Subsequently the solution of the semiconductor equations with the extended drift-
diffusion transport equations (see 2) is found by relaxation with respect to the local
carrier temperatures. This requires seven further nonlinear iterations.

Within this second relaxation scheme, the linear systems are no longer diagonally
similar to a symmetric matrix, hence CG and SCG are no longer applicable, but
CGS and GMRES are. The restarting frequency m for GMRES is chosen to be
5 and the results are in columns GMR(5). In Table 10 the iteration counts for
the carrier relaxation cycles are given. Convergence curves for the three iterative
methods with the matrices from the first nonlinear iteration (for locally varying carrier
temperatures) are given in Figs. 3 and 4, respectively.

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 303

We report some timing results using ILU(0)-CGS. Both small examples execute
quickly on supercomputers: Less than 30 seconds on the Fujitsu VP and slightly
more than a minute on the Cray-2. This timing ratio is in good accordance with
the megaflop counts (see 7) of the forward and backsolves of the triangular systems

TABLE 10
Example 2" Carrier temperature relaxation.

Majorities (electrons)
ILU(0) ILU(1)

CGS GMR(5) CGS GMR(5)
45 375 34 90
37 315 15 105
34 465 16 160
35 355 15 120
35 370 15 135
33 405 15 65
41 330 25 125

Minorities (holes)
ILU(O)

CGS GMR(5)
87 25O
87 270
81 235
79 290
81 270
77 285
81 270

ILU(1)
CGS
40
42
41
35
38
37
36

GMR(5)
175
170
195
195
150
160
175

1.0e+O0

1.0e-01

1.0e-02

1.0e-03

1.0e-04

1.0e-05

1.0e-06

1.0e-07

1.0e-08

FIG. 1. Convergence curves for the discrete majority continuity equation of Example 1.

on these machines. A computationally complex example requires substantially more
time, e.g., on the Fujitsu VP computer: A nonplanar N-channel MOSFET with Ud
5.0 Volts, U9 1.0 Volt, requires a grid of 55 48 30 points. The grid loop and the
computation of the initial solution requires 150 seconds. The subsequent nonlinear
solution pass takes 80 Gummel iterations and a total of 1500 CPU seconds. The linear
systems derived from the majority carrier continuity equation converge in roughly 70,
from the minority carrier continuity equation 140 iterations (mean values). The same
example computed on a fast scalar computer (NAS XL/80) takes approximately ten
times more CPU time. The total time, however, is then increased substantially by
references to secondary storage.

9. Conclusions. In this paper preconditioned iterative methods for the carrier
continuity equations in three-dimensional device simulators have been studied and
the performance of these algorithms on various high performance computing systems
has been evaluated.

304 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

1.0e+00

1.0e-01

1.0e-02

1.0e-03

1.0e-04

1.0e-05

1.0e-06

1.0e-07

1.0e-08

’,, CG(0)CGS(1

0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 I1

FIG. 2. Convergence curves for the discrete minority continuity equation of Example 1.

1.0e+00

1.0e-01

1.0e-02

1.0e-03

1.0e-04

1.0e-05

1.0e-06

1.0e-07

1.0e-08

",GMRES(1)-_.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 n

FIG. 3. Convergence curves for the discrete majority continuity equation of Example 2.

1.0e+00

1.0e-01

1.0e-02

1.0e-03

1.0e-04

1.0e-05

1.0e-06

1.0e-07

1.0e-08

" -,,,," "" ,,_GMRES(0)

(o) "’"",..... -"-"GMRES(1)

0 25 50 75 100 125 150 175 fl

FIG. 4. Convergence curves for the discrete minority continuity equation of Example 2.

ITERATIVE SOLUTION OF CONTINUITY EQUATIONS 305

Among the iterative procedures we feel that the CGS method is the most ver-
satile. It avoids possible numerical problems with the symmetrization matrices and
is applicable to "real" nonsymmetric problems. Regarding convergence speed the
GMRES(5) algorithm is clearly exceeded.

More decisive than the iterative (acceleration) procedures is the choice of a robust
parallelizable preconditioner. We have investigated incomplete LU factorization of
levels 0-2 and we have shown that quite a high performance (exceeding 100 megaflops
on the Fujitsu VP200 computer) is reachable for the preconditioned matrix-vector
multiply.

Acknowledgments. The authors are indebted to Martin Schubert and Hans-
Peter Falkenburger from the Institute of Microelectronics, Stuttgart; Dr. Martin
Thurner from the Campus-based Engineering Center Vienna; and H. Dietrich, G.
Koessl, and H. Wiktorin from the Computer Services of Cooperate Research and De-
velopment, Siemens, Munich. The authors wish to thank the anonymous referees for
valuable suggestions.

REFERENCES

[1] U. ASCHER, P. MARKOVICH, C. SCHMEISER, H. STEINRCK, AND R. WEISS, Conditioning of the
steady state semiconductor device problem, SIAM J. Appl. Math., 49 (1989), pp. 165-185.

[2] C. C. ASHCRAFT AND R. G. GRIMES, On vectorizing incomplete factorization and SSOR pre-
conditioners, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 122-151.

[3] R. E. BANK, D. J. ROSE, AND W. FICHTNER, Numerical methods for semiconductor device
simulation, IEEE ED-30 (1983), pp. 1031-1041.

[4] P. CONCUS, G. H. GOLUB, AND G. MEURANT, Block preconditioning for the conjugate gradient
method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220-252.

[5] S. DoI AND N. HARADA, Tridiagonal factorization algorithm: A preconditioner for nonsym-
metric system solving on vectorcomputers, J. Inform. Process., 11 (1987), pp. 38-46.

[6] H. C. ELMAN, Y. SAAD, AND P. E. SAYLOR, A hybrid Chebyshev Krylov subspace algorithm
for solving nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comput., 7
(1986), pp. 840-855.

[7] S. C. EISENSTAT, Efficient implementation of a class of preconditioned conjugate gradient
methods, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 1-4.

[8] H. K. GUMMEL, A selfconsistent iterative scheme for one-dimensional steady state transistor
calculations, IEEE ED-11 (1964), pp. 455-465.

[9] I. GUSTAFSSON, A class of first order factorization methods, BIT, 18 (1978), pp. 142-156.
[10] M. H. GUTKNECHT, The unsymmetric Lanczos algorithms and their relations to Padd approx-

imations, continued fractions and the QD algorithm, in Proceedings of the Second Copper
Mountain Conference on Iterative Methods, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1990.

[11] L. H. HAGEMAN, F. T. LUK, AND D. M. YOUNG, On the equivalence of certain iterative methods,
SIAM J. Numer. Anal., 17 (1980), pp. 852-873.

[12] K. HANK, Supercomputing for process/device simulations, in Proc. Sixth Internat. NASECODE
Conference, J. J. H. Miller ed., Trinity College, Boole Press, Ltd., Dublin, Ireland, 1989,
pp. 11-21.

[13] W. H)NSCH AND S. SELBERHERR, MINIMOS 3: A MOSFET simulator that includes energy
balance, IEEE ED-34 (1978), pp. 1074-1078.

[14] C. DEN HEIJER, Preconditioned iterative methods for nonsymmetric linear systems, in Proc. Int.
Conf. on Simulation of Semiconductor Devices and Processes, Pineridge Press, Swansea,
U.K., 1984, pp. 267-285.

[15] T. KERKHOVEN, On the effectiveness of Gummel’s method, SIAM J. Sci. Statist. Comput., 9
(1988), pp. 48-60.

[16] T. A. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math.,
28 (1977), pp. 307-327.

[17] H. MEIJERINK AND H. VORST, An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

306 HEINREICHSBERGER, SELBERHERR, STIFTINGER, TRAAR

[18] T. C. OPPE, W. D. JOUBERT, AND D. R. KINCAID, NSPCG User’s Guide, Center of Numerical
Analysis, University of Texas, Austin, TX, 1984.

[19] S. J. POLAK, C. DEN HEIJER, W. H. SCHILDERS, AND P. MARKOVICH, Semiconductor device
modelling from the numerical point of view, Internat. J. Numer. Methods Engrg., 24 (1987),
pp. 763-838.

[20] E. L. POOLE AND J. M. ORTEGA, Multicolor ICCG methods for vector computers, SIAM J.
Numer. Anal., 24 (1987), pp. 1394-1418.

[21] C. S. RAFFERTY, M. R. PINTO, AND R. W. DUTTON, Iterative Methods in Semiconductor
Device Simulation, IEEE ED-32 (1985), pp. 2018-2027.

[22] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[23] Y. SAAD, Krylov subspace methods on supercomputers, SIAM J. Sci. Stat. Comput., 10 (1989),
pp. 1200-1232.

[24] D. L. SCHARFETTER AND H. K. GUMMEL, Large-signal analysis of a silicon read diode oscilla-
tor., IEEE ED-16 (1969), pp. 64-77.

[25] S. SELBERHERR, MINIMOS 5 Users’s Guide, Institute for Microelectronics, Technical Univer-
sity of Vienna, Vienna, Austria, 1990.

[26] P. SONNEVELD, CGS, A fast Lanczos-type solver for nonsymmetric systems, SIAM J. Sci.
Statist. Comput., 10 (1989), pp. 36-52.

[27] M. THURNER P. LINDORFER AND S. SELBERHERR, Numerical treatment of nonrectangular field-
oxide for 3D MOSFET simulation, IEEE CAD-9 (1990), pp. 1189-1197.

[28] T. TOYABE, H. MASUDA, Y. AOKI, H. SHUKURI, T. HAGIWARA, Three-dimensional device
simulator CADDETH with highly convergent matrix solution algorithms, IEEE ED-32
(1985), pp. 2038-2044.

[29] H. Votsw, High performance preconditioning, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 1174-1185.

[30] , Large tridiagonal and block tridiagonal linear systems on vector and parallel computers,
Parallel Comput., 5 (1987), pp. 45-54.

[31] ., A vectorizable variant of some ICCG methods, SIAM J. Sci. Statist. Comput., 3 (1982),
pp. 350-356.

[32] A. YOSHII, M. TOMIZAWA, AND K. YOKOYAMA, Investigation of numerical algorithms in semi-
conductor device simulation, Solid-State Electronics, 30 (1987), pp. 913-820.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 307-318, January 1992

() 1992 Society for Industrial and Applied Mathematics
016

THE HIERARCHICAL BASIS EXTRAPOLATION METHOD*

u. R/DE

Abstract. Traditional extrapolation methods, like Richardson’s extrapolation, are based on
asymptotic error expansions of the solution, and thus depend on the use of uniform grids. Within
the hierarchical basis framework for the finite element method it is natural to consider an extra-
polation of the energy functional. This idea is based on a purely local element-by-element analysis
and is applicable to irregular and unstructured meshes. It will be demonstrated that higher order
discretization can be obtained by this type of extrapolation without imposing any additional re-
strictions on the finite element mesh. This method is especially well suited for use in combination
with local refinement strategies. If combined with a multilevel solution procedure, the algorithm is
closely related to multigrid tau-extrapolation. This paper will present the theoretical background
and experimental results for the energy extrapolation method in hierarchical basis formulation.

Key words, elliptic partial differential equations, finite element method, hierarchical basis,
extrapolation

AMS(MOS) subject classifications. 65N30, 65N50, 65N55, 65F10

1. Introduction. For truly efficient elliptic solvers four conceptual components
will be necessary:

1. adaptive refinement,
2. higher order discretization,
3. multilevel solvers,
4. advanced software techniques.

It is now widely acknowledged that for the effective solution of most real-life applica-
tions some form of adaptive discretization is needed. Different meshsizes in different
parts of the solution domain are necessary to model the locally varying features of
the solution effectively.

The need for higher order discretization has been less apparent. However, when
high accuracy is desired, then by exploiting the smoothness of the solution in certain
regions of the domain with higher order approximations, much better efficiency can
be obtained. In most practical applications nonsmooth behavior in elliptic problems
occurs at isolated points, typically singularities introduced by source terms, corners
in the boundary, or discontinuities in the coefficients. Away from those points, the
solutions of elliptic problems are smooth, typically even Ca. In these parts of the
domain higher order should be used.

Even with higher order schemes, the discretization will lead to systems with many
unknowns. For these large scale applications we believe that only multilevel techniques
can provide satisfactory efficiency.

Finally, the resulting complexity of the software must not be underestimated. We
believe that the present software techniques are not powerful enough to provide a
sufficient basis for implementing these algorithms effectively.

This paper will describe an extrapolation-based approach to obtain higher or-
der finite element discretizations that is especially well suited to be integrated with
adaptive techniques and multilevel solution strategies.

Received by the editors April 5, 1990; accepted for publication (in revised form) November 4,
1990. This research was partially supported by Deutsche Forschungsgemeinschaft grant Ru 422/1.

Institut fiir Informatik, Technische Universitit Miinchen, Arcisstr. 21, D-8000 Miinchen 2,
Germany (ruede@lan.informatik.tu-muenchen.dbp.de or na.ruede@na-net.ornl.gov).

307

308 u. R(IDE

FIG. 1. Modified refinement in triangles with an obtuse angle.

After briefly introducing our overall concept, we will derive the energy extrapola-
tion, a technique based on purely local elementwise analysis and therefore applicable
to all irregular and unstructured meshes. This technique will be shown to be equiva-
lent to the use of higher order finite elements.

2. The adaptive hierarchical algorithm. Our refinement strategy is essen-
tially based on the ideas implemented in Bank’s PLTMG [1]. It has been adapted
such that the finite element spaces constructed during refinement are truly nested.
This supports the multilevel solution procedure on the one side and the energy ex-
trapolation on the other side.

Starting from a user-supplied primary triangulation, finer levels are constructed
by partial refinement. Using error estimation techniques, (or a priori knowledge about
local meshsizes) certain elements or edges are flagged for refinement.

Next, care must be taken that the new triangulation becomes consistent. This is
implemented by a (recursive) procedure, imposing the following rules:

1. If the shortest side of a triangle is flagged for refinement, then all other edges
will also be marked.

2. If two edges of a triangle are marked for refinement, the third will also be
marked.

Now, a solution space with more degrees of freedom than the previous one is
created by halving all flagged edges.

In case all three sides of a triangle are flagged, the midpoints of these sides are
connected, creating four congruent new triangles. This is called regular refinement.

In case only one side is flagged, the midpoint of the edge is connected to the
opposite vertex. It is this step that may cause trouble by creating triangles with large
obtuse angles that in turn have unfavorable properties in the finite element solution.
Rule 1 above alleviates this problem, but cannot guarantee a limit on the angles that
occur. Additionally, it must be assumed that the error indicator behaves reasonably.
Furthermore, as a user-selectable option, the regular refinement may be replaced by
the refinement shown in Fig. 1 for triangles with an obtuse angle.

In our experiments this refinement strategy has worked well. It is simpler than
the refinement algorithms used in Bank’s PLTMG, and, in particular, it avoids the
complication introduced by temporary edges that must be removed before further
refinement levels are created. Our approach has the further advantage that the finite
element spaces of coarse levels are true subspaces of finer levels--a feature that is
frequently used in theoretical studies of multilevel solution methods.

We assume that the domain and its internal interfaces can be modeled with rel-
atively few (curvilinear) elements, which make up the primary mesh, and that the
number of elements necessary to obtain final accuracy is much larger. If the primary

HIERARCHICAL BASIS EXTRAPOLATION 309

mesh contains very few degrees of freedom, direct solvers are feasible, and it can
become the coarsest level of a multilevel solver.

If this is not the case, sparse solvers or multileveling "below" the primary trian-
gulation is needed and we suggest using algebraic multigrid (AMG) (see Ruge and
Stiiben [10]) as a convenient way to construct "coarser" levels relative to the primary
mesh. In the following we will assume that the solution on the primary triangulation
can be efficiently obtained by some unspecified method and that the amount of work
is negligible compared to the work required for the final solution.

Thus we now focus on how to obtain solutions on the increasingly finer meshes.
First we notice that coarse grid solutions may be simply interpolated to finer grids,
providing good guesses for starting an iterative solver.

To our knowledge two iterative solution techniques are the most promising: the hi-
erarchical basis technique that, together with conjugate gradient acceleration, promises
an O(n log(n)) work estimate for n degrees of freedom, see Yserentant [11]. The al-
ternative is a true multigrid-like solution technique, as proposed, e.g., in Brandt [3],
or by McCormick [6].

The hierarchical basis technique has the advantage of using smoothing only on
the nodes that are newly added in each particular step of refinement, which clearly
limits the work to O(n) per cycle, no matter how the points are distributed across
different levels. The price for this nice feature is a slowly deteriorating convergence
rate when the levels get finer--O(log(n)) iterations are necessary to reduce the error
by a prescribed factor (in two dimensions).

A multigrid-like approach (cf. MLAT, Brandt [3], or FAC, McCormick [6]) differs
from the hierarchical basis algorithm by smoothing not only the newly added points
but also the coarse grid points between them. For regular problems this will provide
convergence rates independent of the number of levels. Recent results show (see
Leinen [12]) that even without regularity assumptions a local refinement algorithm
with multigrid-like processing will obtain convergence rates that are at least as good as
hierarchical basis rates with conjugate gradient acceleration, and are superior in three
dimensions, where the hierarchical basis algorithm’s complexity further deteriorates.

Finally, we remark that in contrast to McCormick’s FAC method, where process-
ing is based on subgrids, the processing in our algorithms will be based on global grids,
corresponding to the composite grids in FAC. In the most straightforward implemen-
tation we thus smooth in the whole domain including subdomains where no refinement
has taken place. This is not optimal, because too much smoothing will be applied to
points that have not been refined. Such points are smoothed on several levels. For
these points coarsening and interpolation become just trivial copying operations for
the residuals and solution values, respectively.

But, if the number of gridpoints grows geometrically with a factor larger than
1.0 between any two levels, this very simple strategy combined with a V-cycle will
already have asymptotically optimal complexity. Furthermore, it of course makes the
algorithm a special case of a regular, variational multigrid algorithm on global grids
so that the theoretical results for this case become applicable.

3. The energy extrapolation. A multilevel algorithm generates an unusual
wealth of information about the solution. Obviously, monitoring the change in the
approximate solution from one level to the next provides insight about the local
errors that may be used for simple error estimation techniques. On the other hand,
an estimate of the local error for any given approximation may be used to improve
the accuracy of this approximation. Thus it is quite natural that one attempts to use

310 u. RODE

FIG. 2. Regular refinement of a triangle.

the extra information provided by multileveling to improve the accuracy. This is the
basic idea of extrapolation.

The theoretical foundation of classical extrapolation is based on asymptotic error
expansions, which, however, are a feature of using regular grids. The straightforward
application of Richardson’s extrapolation to the solution does not seem possible on
unstructured finite element meshes. General finite element meshes as used in our
approach typically only provide error bounds, not error expansions, as required for
extrapolation.

The key for developing a suitable extrapolation technique is based on the vari-
ational principle. In a variational setting, the problem is to find a function that
minimizes an expression like

(1) (E[u] (u, f))

in some function space H. E[u] often has a physical interpretation as an energy. In
this paper we are concerned with second order linear elliptic selfadjoint problems in
two space dimensions, so that we can assume that E is of the form

f
The numerical solution of (1) with finite elements is now closely related to finding
numerical approximations for En[u].

Consider a single triangle K K of the mesh and a sequence of regular re-
finements Kn, n 1, 2,-.., of this particular triangle, see Fig. 2. For any function
f(x, y) on the triangle, a numerical method to evaluate its energy can be defined by
projecting f to the space of piecewise linears on Kn (by taking the interpolant), and
calculating the energy of the projection. (This can be done exactly.) Thus we define
a sequence of numerical methods EIf] for calculating the energy EK[f]. Note, that

EhK gives the exact energy if f is piecewise linear (on the corresponding triangula-
tion), and thus the integration method implicitly defines the finite element method
(for linear elements).

HIERARCHICAL BASIS EXTRAPOLATION 311

Next, it can be shown that this sequence of approximations to the energy has an
h2-expansion in the following sense: If f E C2N+3(K) and a(x, y) C2N+2(K), then

Ehg[f] Eg[f] h2el + h4e2 +"" + h2NeW + h2N+2RN+l,

where h 2-nh0, h0 the diameter of K, ek are constants independent of h, and

RN+I a remainder term that satisfies IRN+ll
_

c, where c is a constant independent
of h. This is related to the fact that the integration rule resembles the trapezoidal
rule. Using extrapolation (for h2-expansions), we can thus calculate the energy of any
sufficiently smooth function to O(h’) by one step of extrapolation, to O(h6) by two
steps, etc. The existence of such an expansion has been proved in Riide [9].

The remainder term depends on f and a. More precisely, for constant a, it
depends on the derivatives of f in such a way that it vanishes if the derivatives of f
of order N + 2 vanish. In particular, if f is a polynomial of degree 1, (linear), then
R1 vanishes, which means that the error expansion degenerates: linear functions are
represented correctly on all refinement levels.

Similarly, when f is polynomial of degree 2, then R2 vanishes, so that the expan-
sion has exactly one term. This means we can integrate quadratics correctly by using
one step of extrapolation:

Eg[f] 4/3E/2[f] 1/3E:[f].

These results have also been proved in Riide [9].
Observe now that the extrapolated value is calculated by a linear combination

of two bilinear forms based on the nodal values. The linear combination of bilinear
forms is a bilinear form.

Considering the refined triangle as a new macro element, we see that the above
constructed bilinear form must correspond to the element stiffness matrix for piecewise
quadratics on the macro element. This stiffness matrix is uniquely defined for a given
finite element space and basis.

Next, this carries over to the collection of all elements, providing us with an
alternative method to generate a stiffness matrix for quadratic elements by taking a
linear combination of the stiffness matrices for linear elements. In this process it is
only required that each element be refined regularly.

This argument is still element by element. The error terms of the expansion are
canceled within each element. The higher order terms and remainder terms that are
not canceled by the extrapolation are then accumulated with possibly many different
values of h and thus cause a perturbation to the solution. This perturbation in general
does not have an asymptotic expansion, however, because the low order terms have
been canceled elementwise, the perturbation must be of higher order.

To exploit this idea algorithmically we must now look at the algebraic structure
of the problem. Assume that we have a nested sequence of triangulations

(3) T C_ T2 C_ T3...,

and a corresponding sequence of nested, linear finite element spaces

(4) V

_
V

_
V

An element vk Vk will interchangeably be interpreted as a piecewise linear finite
element function or as a vector of nodal values on Tk. The nesting of meshes induces

312 u. RODE

Odginal Function

Hierarchical Function

Hierarchical Displacements

FIG. 3. Hierarchical decomposition.

partitioning of vk, k > 1"

(5) vk [vn]

where v is associated with the nodes on Tk-1 c_ Tk and VF is associated with the
nodes that are in Tk but not in Tk-. Next, define Pk-1- V- -, Vk as the
natural prolongation (linear interpolation). In nodal representation and following the
partitioning in (5)

pkk_ is the operator forming the arithmetic average of two values at vertices connected
by an edge of the coarse triangulation.

Using this mapping, the hierarchical transform 9k of vk E V is defined by

-PL
A one-dimensional example is shown in Fig. 3. Note that the inverse transform reads

(8) (Hkk_l)_ I- I 0]z
A symmetric bilinear form Lk Vk Vk --, T can be partitioned in a compatible way

(9) Lk--[Ck Xk](xk)T Fk

HIERARCHICAL BASIS EXTRAPOLATION 313

and be transformed to

[(Pk-1 nk
0 PL F

where

(11) k k0k Ck --(Pkk_l)T(xk)T -- X Yk-1 + (P2-1)TFkPI-I,

(12) k Tb-2k X +
Now observe that solving

(13) min {(vk)TLkvk 2(vk)Tfk}
vkEVk

is equivalent to solving the transformed minimization problem

The coarse grid block k in the transformed matrix is Lk-l, that is, the finite element
stiffness matrix for a coarser problem. This can be seen by interpreting the coarse
grid part of (14) as the problem of minimizing the energy in the coarse grid finite
element space.

Based on this formalism, a two-level hierarchical basis algorithm consists of the
alternating solution (minimization) for vkc (keeping frozen) and for (keeping
v frozen). Another interpretation for this is a block Gauss-Seidel procedure.

In this setting, the minimization for vc is fully equivalent to a multigrid coarse
grid correction (for variational multigrid). A good approximate solve for can be
implemented by a few relaxation steps for the corresponding unknowns. This is the
form of a hierarchical basis multigrid algorithm as it has been suggested by Bank,
Dupont, and Yserentant [2]. Except that smoothing is restricted to the F-unknowns,
the hierarchical basis algorithm is a usual multigrid algorithm.

We will go a step further and reintroduce full smoothing making the method fully
equivalent to a variational multigrid algorithm. This so-called hierarchical transfor-
mation multigrid algorithm (HTMG) has been introduced by Griebel [4], see also
McCormick and Riide [7].

A two-level variant of this algorithm is shown in Fig. 4. When step 4 is replaced
by a recursive application of the same algorithm we get a V-cycle HTMG method. As
mentioned before, it is fully equivalent to a regular (variational) multigrid algorithm.
It provides a particularly efficient implementation of a full approximation storage
(FAS) scheme. In some cases the HTMG implementation is even cheaper than classical
correction storage schemes. For the details see Griebel [4].

Assume Lk-1 is the stiffness matrix for a triangulation with linear elements, and
Lk is the stiffness matrix for an associated regular (full) refinement. An approximation
for the energy of any smooth function u represented by the nodal values [:c] is

given by uLk-luC and [uu] Lk[uC respectively. In this notation our results on
UF

asymptotic expansions of the energy become

T T Lk[Uc][ItCUF] ItF
Ea In] + h2e,

314 u. RODE

1. Perform 1 relaxations on Lkvk fk.
2. Perform the hierarchical transform vk --, k (7).
3. Calculate the coarse grid right-hand side fk- f / (p_ fF
4. Solve the coarse grid system Lk-lvk-1 fk-1.
5. Calculate the corrected fine grid values by reversing (7):

6. Perform 2 relaxations on Lkv f.
FIG. 4. Basic two-level solution algorithm.

provided uc are the nodal values of a function that is piecewise quadratic on the
triangulation. Under the same assumptions

uLk-luc E2[u] / 4h2e,

such that the usual extrapolation gives

This is now an exact representation of the energy for quadratics based on the energy
for linear functions. The formula further simplifies when hierarchically transformed
systems are used. Equation (15) is equivalent to

(16) 54 [uguTF] Lk uCuF -lugLk-luc [ugt] 54(2k)T 5F UCtF
In the hierarchical basis representation higher order is simply obtained by multiplying
certain matrix entries by the extrapolation factor 4/3.

Finally, we must apply an analogous extrapolation for the inner product

(f u) // f(x, y)u(x, y) dxdy

to get better representations of the right-hand side. In the basic (linear element)
algorithm the inner product is approximated by

Jig u(x, y)f(x, y) dxdy 1/3 area(K)(u(a)f(a) + u(b)f(b) + u(c)f(c)),

where a, b, c are the corners of K. Thus in the basic system, the right-hand side value
for node i is given by

f 1/3f(xi, Yi) Z area(K).
(xi,yi)vertex of K

This integration rule can also be shown to have an h2-expansion, so that the ex-
trapolated system genuinely provides higher order accuracy. The extrapolated equa-
tions can be written as

uc (P_) fF(17) - (2a)T -F tF -4afg

HIERARCHICAL BASIS EXTRAPOLATION 315

Note that in the extrapolation of the right-hand side the scaling of the equations has
to be taken into account.

This system can now be solved by a standard hierarchical basis procedure. How-
ever, when we wish to improve the HB-performance by introducing full grid smooth-
ing, a slight problem occurs. Such a smoothing on the untransformed system is
incompatible with the higher order accuracy of the extrapolated system. There are
two possible solutions:

Ignore the problem and smooth anyway. In McCormick and Riide [7] it has
been shown that the resulting method is equivalent to a regular multigrid
algorithm using T-extrapolation. For this case theoretical results have been
proven (see Hackbusch [5] or aiide [8]) that show that the loss in accuracy
due to the wrong smoother is not worse than the discretization error itself.
This is based on the fact that smoothing affects mainly only high frequency
solution components that are not important for the approximation accuracy.
If this approach is chosen, the extrapolation only affects step 3 in the basic

)algorithm of Fig. 4 that must be changed to fk-1 4/3(P2_1 fF--4/3f(k
It is also possible to design smoothers fully compatible with the modified
system. For this we use a two-level smoothing technique. Here step 1 and
step 6 of Fig. 4 are each replaced by a two-level algorithm that has the same
basic structure as the basic two-level algorithm itself:
S1. Perform relaxations on the F-nodes of Lkvk fk.
$2. Perform the hierarchical transform vk Ok.
$3. Calculate the coarse grid right-hand side fk- 4/3(P_)TfF--4/3.f(kk

with the extrapolated equations.
$4. Relax the coarse grid system Lk-lvk-1 fk-1 using v as a starting

guess.
$5. Calculate the corrected fine grid values by

V
k +_.__ vk_v Pkk_ + kF

$6. Perform 2 relaxations on Lkvk fk.
An algorithm involving this smoother then looks like a hierarchical basis al-
gorithm (with fine point smoothing only) and a nonstandard cycling strategy
that involves short visits to the coarser levels without full recursion. This
more complicated strategy is of course only necessary on the finest level,
where the extrapolation applies. On all other levels a standard smoother
may be used.

4. Numerical experiments. Our example problem is

(18)

Au 0on(0,1)2,
cos(4r(x y))sinh(4(2 x y))

on 0[0, 1] 2u
sinh(Sr)

The boundary function also describes the true solution. This function has value 1 at
(0, 0) and decays exponentially to 0 in the solution domain. Though there is increased
activity in the southwest corner of the domain we start out by solving on a regular
square mesh triangulation. The first of these triangulations is obtained by halving
the square with the southwest to northeast diagonal. Then full refinement steps are
used to construct a sequence of uniform triangulations. For linear elements this dis-
cretization is equivalent to a 5-point difference stencil. In Table 1 the straightforward

316 u. RODE

TABLE 1
Solution of example 1 with global refinement.

Level #nd No extrapol. Two-level smooth Regular smooth
L2 energy
8.11eo3 7.26e-2
7.12eo3 1.32e-1
1.32e-3 5.24e-2
1.42e-4 1.18e-2
1.13e-5 1.92e-3
8.23e-7 2.75e-4

L2 energy
7.66e-3 7.13e-2
7.50e-3 1.33e-1
1.86e-3 5.37e-2
2.77e-4 1.17e-2
2.74e-5 1.71e-3
2.06e-6 1.97e-4

2 25
3 81
4 289
5 1089
6 4225
7 16641

L2 energy
7.55e-3 7.08e-2
7.78e-3 1.35e-1
2.51e-3 6.03e-2
6.63e-4 1.82e-2
1.68e-4 4.81e-3
4.22e-5 1.22e-3

rate 1.99 1.98 3.79 2.80 3.73 3.11

full multigrid algorithm is compared to a version where extrapolation is applied every
time on the finest grid. We further distinguish between a variant using a regular
smoother and one that uses the two-level smoothing technique (see the discussion at
the end of the previous section). In order to keep algebraic errors low, two V-cycles
are used on each level. We are mainly interested in differential errors, that is, errors
of the discrete solution with respect to the analytic solution. We display discrete
Euclidean and discrete energy-norm error estimates. Note that the superiority of the
higher order schemes only shows for finer meshes but that the extrapolation saves at
least one level of refinement, when we need high accuracy. Further note that both
algorithms with extrapolation behave about the same; the algorithm with regular
smoothing seems to provide even somewhat lower energy errors. The experimentally
determined convergence rates of the Euclidean norm indicate O(h2) convergence for
the linear algorithm and O(h4) accuracy for the two extrapolated algorithms. In the
energy norm the extrapolated algorithms exhibit O(h3) behavior.

The next example will apply adaptive refinement to the same problem. The
algorithm has the structure of a nested iteration starting on the coarsest level.

On any level:
1. Perform a full (regular) refinement step.
2. Interpolate the solution to the new nodes, and perform a few relaxations on

the new nodes to dampen high frequency interpolation errors.
3. Using the extrapolated stiffness matrix, calculate the solution with quad-

ratic order accuracy using an extrapolation-V-cycle. (The results of Table 2
refer to regular smoothing. Using the more complicated two-level smoothing
technique did not yield significantly better results.)

4. Compare with the coarser level solution to decide which of the new nodes are
relevant for the improvement in accuracy.

5. Delete the fine grid nodes that (presumably) have not improved the accuracy.
6. If final accuracy has not been obtained yet, make this level the current level

and go to step 1.
Remark. After deleting the extra nodes of a full refinement, there is no new

solution phase, assuming that we have only deleted nodes that would cause negligible
changes to the solution (relative to the accuracy on that level).

To this end note that asymptotically the exact solution behaves like u e4(1-r)

where r is the distance from (x, y) (0, 0) and when we only consider the radial
dependence. Thus (for a second order discretization) the truncation error asymp-
totically behaves like et h2(4)4ea(1-r). In order to achieve equally distributed
truncation errors, we introduce variable meshsizes in the form

h(r) He-4r(1-r)/2,

HIERARCHICAL BASIS EXTRAPOLATION 317

TABLE 2
Solution of example 1 with local refinement.

Level #nd No extrapol. #nd
L2 energy

2 25 7.56e-3 7.09e-2
3 43 7.68e-3 1.34e-1
4 77 2.71e-3 1.83e-2
5 191 7.11e-4 1.83e-2
6 683 1.80e-4 4.85e-3
7 2167 4.84e-5 1.48e-3
8 7985 1.22e-5 4.26e-4

rate

With extrapol.
L2 energy

25 8.11e-3 7.26e-2
43 7.10e-3 1.32e-1
139 1.32e-3 5.25e-2
331 1.44e-4 1.19e-2
1241 1.15e-5 1.95e-3
4427 8.08e-7 2.77e-4
17539 5.46e-8 3.73e-5

1.99 1.80 3.88 2.98

where H is a global meshsize parameter. For the higher order discretization we use
accordingly

h(r) He-4(1-r)/4.

We use these relationships to guide the local refinement: The edges of a node are
refined, when they are longer than the h associated with the position of that node.
The rules of 2 are used to complete the creation of a consistent new level. The results
are displayed in Table 2.

It is also instructive to compare Tables 1 and 2. Note that the local refinement
algorithm obtains almost the same accuracy on each refinement level as the global
refinement algorithm, however with a much reduced number of nodes. This shows
that we have really only omitted nodes that are irrelevant for obtaining the solution
accuracy.

5. Conclusions. We have introduced the energy extrapolation technique, a
method that obtains higher order based on a local extrapolation that can be used
on unstructured finite element meshes. This approach is especially well suited for a
combination with adaptive refinement and multilevel solution. For model problems
we demonstrate the superiority of the integrated algorithm.

Acknowledgments. The author wishes to thank Steve McCormick and the
Computational Math. Group at the University of Colorado at Denver for their hos-
pitality and many helpful discussions. The author is also indebted to the referees for
some valuable remarks.

REFERENCES

[1] R. BANK, PLTMG Users’ Guide, Edition 4.0, Department of Mathematics, University of Cali-
fornia at San Diego, CA, 1985.

[2] R. BANK, T. DUPONT, AND H. YSERENTANT, The Hierarchical Basis Multigrid Method, Konrad
Zuse Zentrum Preprint, SC-87-2, April 1987, Berlin.

[3] A. BRANDT, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, GMD
Studien 85, 1984.

[4] M. GRIEBEL, Zur LSsung yon Finite-Differenzen- und Finite-Element-Gleichungen mittels
der Hierarchischen-Transformations-Mehrgittermethode, Doctoral Dissertation, Technis-
che Universitt Miinchen, Germany, 1989.

[5] W. HACKBUSCH, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
[6] S. MCCORMICK, Multilevel Adaptive Methods for Partial Differential Equations, Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1989.
[7] S. MCCORMICK AND U. RODE, On Local Refinement Higher Order Methods for Elliptic Partial

Differential Equations, Internat. J. High Speed Comput., 2 (1990), pp. 311-334.

318 u. RODE

[8] U. RODE, Multiple tau-Extrapolation for Multigrid Methods, Institut fiir Informatik, Technische
Universitt Miinchen, 1-8701, 1987.

[9] Extrapolation Techniques for Constructing Higher Order Finite Element Methods, In-
stitut fiir Informatik, Technische Universitt Miinchen, in preparation.

[10] J. RUGE AND K. STJBEN, Efficient Solution of Finite Difference and Finite Element Equations
by Algebraic Multigrid (AMG), Arbeitspapiere der GMD, 89, 1984.

[11] H. YSERENTANT, On the multi-level splitting offinite element spaces, Numer. Math., 49 (1986),
pp 379-412.

[12] P. LEINEN AND H. YSERENTANT, Two fast solvers based on the multi-level splitting of finite
element spaces, Proceedings of the 3rd European Conference on Multigrid Methods, Bonn,
Oct. 1-4, 1990, W. Hackbusch and U. Trottenberg eds., Burkhiuser Verlag, Basel, 1991.

SIAM J. Sci. STAT. COMPUT.
Vol. 13, No. 1, pp. 319-338, January 1992

() 1992 Society for Industrial and Applied Mathematics
017

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATION
PRECONDITIONERS FOR THREE-DIMENSIONAL ANISOTROPIC

PROBLEMS*

JUNE M. DONATOt$ AND TONY F. CHANt

Abstract. To solve three-dimensional elliptic problems using preconditioned conjugate gradi-
ent, it is crucial to make a good choice of preconditioner. To facilitate this choice, a Fourier analysis
technique has been used by Chan and Elman [SIAM Rev., 31 (1989), pp. 20-49.] and others to study
preconditioned systems arising from the discretization of the two-dimensional model elliptic equa-
tion. In this paper the same technique is used to analyze relaxed-modified incomplete factorization
preconditioned systems that arise from the discretization of a three-dimensional anisotropic elliptic
problem. Expressions for the "Fourier eigenvalues" of the preconditioned three-dimensional systems
are presented along with estimates of the condition numbers. For MILU, an optimal value for the
parameter c is derived. The correlation between the distribution of the eigenvalues and the Fourier
results for the preconditioned systems is remarkable. From the expressions for the eigenvalues we

prove that ,(M-1A) is order h-2 for ILU and order h-1 for MILU(c 0). Then by examining
the distribution of Fourier eigenvalues, the dependence of PCG convergence rate on the clustering
of the eigenvalues of an operator, as well as its condition number, can be exemplified. The PCG
experiments were performed on an Alliant FX/80.

Key words. Fourier analysis, three-dimensional problems, periodic and Dirichlet boundary
conditions, condition numbers

AMS(MOS) subject classifications, primary 65F10, 65N20; secondary 15A06

1. Introduction. While preconditioned conjugate gradient (PCG) is a widely
used method of solving systems arising from the discretization of elliptic partial differ-
ential equations (PDEs), its performance is highly dependent upon the preconditioner
chosen. For two-dimensional discretized elliptic PDEs, much theory and experimen-
tal background exists for the use of incomplete LU (ILU) and modified incomplete LU
(MILU) preconditioned systems [3], [4], [6], [12], [13]. However for three-dimensional
problems there is considerably less knowledge [1], [2], [14], [15]. Experimental difficul-
ties arise because the discretization of three-dimensional problems leads to extremely
large systems. Even though these systems are typically sparse, the space and time
requirements are still daunting on most sequential machines. Hence, we see the move
to parallel computers. But the choice of a "good" preconditioner still remains.

To facilitate this choice, a Fourier analysis technique has been used by Chan and
Elman [7] and by Chan and Meurant [8] to study preconditioned systems arising from
the discretization of the two-dimensional model elliptic equation. In this paper we
use the same technique to analyze relaxed-modified incomplete factorization precon-
ditioned systems that arise from the discretization of a three-dimensional anisotropic
elliptic problem.

Begin by considering the matrix A arising from the discretization of three-di-
mensional anisotropic elliptic problems. For the preconditioner M we will examine
(point) relaxed-modified incomplete LU factorizations. (For experiments using point
and block methods, see [2], [15].) Using the Fourier technique of [7], the resulting

Received by the editors April 5, 1991; accepted for publication (in revised form) January 22,
1991. This work was supported in part by Department of Energy contract DEFG03-87-ER-25037
and Army Research Office contract DAAL03-88-K-0085.

Department of Mathematics, University of California, Los Angeles, California 90024
(na. donato@na-net, ornl. gov and chanhnath, ucla. edu or na. tchan@na-net, ornl. gov).

The research of the first author was also supported by National Aeronautics and Space Admin-
istration grant NGT-70125.

319

320 JUNE M. DONATO AND TONY F. CHAN

preconditioned systems M-1A are analyzed. Expressions for the "Fourier eigenvalues"
are given and from these expressions we derive bounds on the condition numbers. For
the isotropic problem we find, as in the two-dimensional case [7], that (M-1A) is
order h-2 for ILU and h-1 for MILU (c 0). For MILU, an optimal value of Copt is
derived.

To examine the usefulness of these Fourier derivations and calculations, we present
the results of a PCG implementation for comparison. Because of the inherent large
size of these three-dimensional problems, the PCG algorithm was coded on an Alliant
FX/80 using FX/FORTRAN. We examine various grid spacings and their effect upon
condition numbers and iterations required for convergence. We find the dependence
on h of the preconditioned Dirichlet and periodic operators to be in remarkable agree-
ment. For the anisotropic problem we illustrate the dependence of PC(] convergence
on the distribution of eigenvalues [3], [4] and show that the clustering of the Fourier
eigenvalues mimics that of the Dirichlet eigenvalues.

For many of the experiments, the distribution of the eigenvalues is given for both
the preconditioned Dirichlet and the related periodic systems. While true Fourier
analysis is not directly applicable to these problems, it is obvious from our numeri-
cal results that the Fourier technique is an extremely valuable heuristic method for
examining the behavior of these preconditioned systems. The method is easy to ap-
ply and can save considerable time by determining initial approximations to optimal
parameters. It is worth noting that the use of Fourier methods is a long-standing
technique for the analysis of multigrid. A notable example is Brandt’s "local mode
analysis" [5].

The rest of this paper is outlined as follows. In 2 the stencil and recurrence
relation are given for the general relaxed-(M)ILU preconditioner. In 3 the Fourier
eigenvalues are derived for the related periodic preconditioned operator for the general
anisotropic problem, and theorems for the isotropic problem are stated for ILU and
MILU preconditioned systems. In 4 we give background information on the codes
used. We also present various experimental results and we compare predicted results
to the actual numerical results from the PCG implementation. Section 5 contains
a summary of conclusions. Finally, the Appendix contains the proofs of the Fourier
theorems and the derivation of Cops.

2. The preconditioner. We start by considering the following three-dimensional
anisotropic equation as our expanded model problem

(au +au + aau) r

posed on the unit cube f {0

_
x,y,z <_ 1} with al,a2,a3 >_ 0 and Dirichlet

boundary conditions

(2) u(x, y, z) 0 on 0t.

The problem is then discretized on the interior of the unit cube by the standard
second-order finite differences using a uniform n n n mesh with mesh size h n+l
We get a matrix system Au b, where A is represented by a seven-point stencil. The
general seven-point stencil for the Dirichlet problem yields a linear equation of the
form

ai,j,kUi,j,k -k- bi,j,kUi+l,j,k + Ci,j,kUi,j+l,k + di,j,kUi-l,j,k + ei,j,kUi,j-l,k

qt_ fi,j,kUi,j,k+l -- gi,j,kUi,j,k-1 h2ri,j,k

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 321

where 1 <_ i, j, k _< n and

(4)

bi,j,k O, n,

C,j,k O, j n,

fi,j,k O, k n,

di,j,k O, 1,

e,, =O, j l,

g,,a =O, k= l.

Note that the subscripts (i,j,k) correspond to the grid location (ih, jh, kh).
For example, the entry bi,j,k represents the coupling between ui,j,k and its neighbor
ui+l,j,k. Writing the left hand side in stencil form (expanding by planes) we have

k- 1 plane

gi,d,k

k plane
Cijk

di,d,k ...a,d,k b,d,
ei,d.k

k + 1 plane

Referring back to the anisotropic problem we have the assignments

()

ai,, 2(al + a2 + a3),
bi,j,k --al,

Ci,j,k --a2,

di,j,k --al

ei,j,k --a2,

fi,j,k

gi,j,k --a3.

A relaxed-modified ILU factorization is an approximate LU factorization M of
A based on Gaussian elimination in which nonzero entries (fill-ins) of L and U are
dropped (set to zero) if they correspond to a zero element in A (i.e., the sparsity
patterns for L and U are the same as for A). Further, the nonzero entries of the
resulting matrix M LU are required to equal the corresponding nonzero entries
of A except possibly for those entries along the diagonal. For example, for ILU it
is required that diag(M) diag(A). For MILU(c), the diagonal of M is modified
to ensure the condition rowsum(M) rowsum(A) + ch2. Hence, in MILU a fill-in
in a row of M is added onto the diagonal element of that row of M along with the
perturbation ch2. For RILU(w), only a fraction w of the fill-ins are added back onto
the diagonal of M. In this paper, we further restrict U to be unit diagonal.

Using the stencil viewpoint, the (relaxed-modified) LU factorization of A has the
following structure where L is the lower triangular matrix

k- 1 plane k plane k / 1 plane

gi,j,k

322 JUNE M. DONATO AND TONY F. CHAN

and U is the unit upper triangular matrix given by

k- 1 plane k + 1 plane

The resulting preconditioner M LU is then represented by

k- 1 plane k plane k + 1 plane
mi-l,j,k-1 mi-l,j-bl,k Ci,j,k

gi,j,k mi,j/l,k--1 di,j,k mi,j,k bi,j,k mi-l,j,k+l fi,j,k
ei,j,k mi4-1,j--l,k mi,j--l,k-i

The center (diagonal) entries mi,j,k of M are given by

mi,j,k oi,j,k + di,j,k
bi- l,j,k Ci,j- l,k fi,j,k-1- ei,j,k gi,j,k
Oi- 1,j,k Oi,j- 1,k Oi,j,k-

The other six entries of M that correspond to zero elements in A are called the
"fill-ins." They are given by

To determine the ai,j,k values, the relaxed modified LU factorization is typically
augmented by the rowsum condition

rowsum(M) rowsum(A) + ch2 + (1 w) (fill-ins in M).

The above formulation includes both the parameter 5 ch2 of Gustafsson [12], which
is added to the main diagonal, and a relaxation parameter w of Axelsson and Lindskog
[3]. (See also [1].) This condition yields the ILU factorization for c w 0 and
MILU(c) for w 1. For c 0, w e (0, 1) we get RILU(w) [6], [10].

Given that six of the entries in any given row are common to both A and M, the
rowsum condition yields a second expression for the diagonal entries of M

mi,j,k ai,j,k - ch2 w(fill-ins in M).

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 323

Substituting in the expressions for the fill-ins and for mi,j,k, the following recurrence
for a,j,k results in

Oi,j,k ai,j,k + ch2 di,j,k(bi-l,j,k + w(ci-l,j,k + fi-l,j,k))/oi-l,j,k
() i,j,k(i,j-l,k + w(bi,j-l,k + ,j-l,k))/i,j-l,k

gi,j,k(fi,j,k-i + w(bi,j,k- + ci,j,-))/i,j,k-,

where (4) applies and a term is ignored if it involves an i,j,k having any of its indices
equal to 0 or n + 1.

3. Fourier analysis. A method of exact analysis of M-A has not yet pre-
sented itself. Yet it is critical to be able to compare the distribution of the resulting
eigenvalues and their clustering traits for different preconditioners M. These cluster-
ing traits, along with the condition number a(M-A), affect the convergence rate of
a PCG method [3], [4]. So our basic approach here, while not exact, is to find the
Fourier transform of M-A. We do this by applying M-A to the eigenvectors u(’’r)

composed of Fourier exponential modes. The (i, j, k)th grid component of u(s’t’r) is
given by

Uij k(s’t’r) eiOe.
where , Os (2/(n + 1))s, (2/(n + 1))t, (e/(+)),
r8t: l...n.

However, this technique is theoretically exact only for constant coefficient prob-
lems with periodic boundary conditions [7]. In other words, the u(,’) are not eigen-
vectors of the matrix M-A that results from the discretization of the Dirichlet prob-
lem. To use the technique, we make the following extensions [7]"

(a) eat the matrices M and A if they were periodic. Enforce (5) for 0
i, j, k n + 1 and ignore the Dirichlet constraints (4).

(b) Force M to be a constant diagonal system by treating the ai,j,k the constant
a arising the asymptotic solution of the recurrence equation (7). So ai,j, a is
then given by

= (al+a+aa)+

where the positive root has been chosen to agree in magnitude with the Dirichlet
values. In the case of very large n, this is the value the ai,,k would tend toward for
those (i, j, k) corresponding to grid points far from the boundaries of t. The proof
that ai,i,i " a follows analogously to the two-dimensional situation given in [16].

(c) From the theory developed in [7], we then use the formula hd 2hp to relate
the mesh sizes used for the Dirichlet problem to that of the corresponding Fourier
method (periodic) result.

With the above extensions, we have obtained a periodic constant coefficient ILU
factorization preconditioner for which exact Fourier analysis can be used. Note that
this related periodic ILU factorization is not the ILU factorization for the periodic
version of the Dirichlet problem. It is an artificial operator that we analyze in the
hope that the results will apply to the ILU preconditioned Dirichlet system.

324 JUNE M. DONATO AND TONY F. CHAN

Now applying these related periodic extensions of A and M to u(s’t’r) yields

Au(8,t,) Astu(,t,),
Mu(S,t,r) CstrU(s,t,r),

where

(9))str=)tr(A)=4(alsin2 () +a2sin2 () +a3sin2 (-))
and

(10)
2

At + -(ala2 cos(0 Ct) + ala3 cos(r 0) + a2a3 cos(t

2w(ala2 + aa3 + a2a3)/a + ch2.

Thus the Fourier transform of M-1A is

(11) #st,(M_A At(A)

and the condition number of the preconditioned system is given by

(M_]A maxstr #str

minstr str

From (9) and (10) this can be easily computed for a given mesh size h. The n3 values
#str are also called the Fourier eigenvalues of M-A.

Consider for now the isotropic problem (al a2 a3 1). Using the above we
get the following results whose proofs are presented in the Appendix.

THEOREM 3.1. For the ILU preconditioned isotropic operator (w O, c 0),

(I) O(h-2).

THEOREM 3.2. For the MILU preconditioned isotropic operator (w 1),

n(M) { O(h-ll, ire>O;
O(h- c=0.

Result 3.1. The optimal value of c occurs near Cp 12r2 for the periodic problem
and Cd 3r2 for the Dirichlet problem.

It appears from numerical calculations below that the above results also hold for
the Dirichlet ILU and MILU preconditioned systems except for MILU when c is near
zero. And in the anisotropic cases, although generalizing these theorems poses some
difficulties, we are able to show that the Fourier results are still excellent predictors
of the Dirichlet results in terms of dependence on h and c.

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 325

4. Numerical results. In order to verify the preceding Fourier results, a PCG
routine was implemented on an Alliant FX/80 to solve the system Au b using
equations (3), (4), and (5) where the true solution was chosen to be

z) x(1 x) (1)z(1 z).

Except where noted, uniformly distributed random initial data* was used for u on the
interior of the unit cube.

In order to compare condition numbers for small h we approximated the extreme
eigenvalues of the (M)ILU preconditioned systems from PCG-generated values as
outlined in [11]. From values generated during the PCG iterations, a symmetric
tridiagonal matrix associated with the Lanczos vectors is generated. An EISPACK
routine is then called to determine the eigenvalues of the tridiagonal matrix which
will in turn approximate the extreme eigenvalues of the preconditioned system. All
computations were done in double precision except for the EISPACK routine. The
stopping criterion for the PCG iteration required the following three conditions to be
satisfied concurrently

< --min 1< 10--3’ I/Z(mka)x n(k- 1) -3
r-max [< 10

For some experimental results the full set of eigenvalues was needed for the pre-
conditioned operator. A full set of eigenvalues could only be generated in reasonable
time for large h (small n). For this a separate program was implemented wherein the
M and A matrices were generated and then a call to another EISPACK routine was
made to solve the general eigenvalue problem Ax #Mx.

A routine to generate the Fourier eigenvalues and condition numbers via equations
(8), (9), and (10) was implemented on a Sun 3/150 workstation. The computations
were performed in double precision.

4.1. ILU results (c w 0). First, we show that the Fourier technique pre-
dicts the distribution of the eigenvalues for the ILU preconditioned Dirichlet operator.
Figure 1 shows the distribution of the eigenvalues of the preconditioned Dirichlet and
periodic operators for hd (hp 6)" The range and clustering of the Dirichlet
ILU and the Fourier ILU eigenvalues are extremely close. Table 1 shows the results
for various values of h for the ILU preconditioned Dirichlet problem. As h decreases,
the Fourier results (Table 2) for the minimum and maximum eigenvalue (and hence
condition number) are closer to those for the preconditioned Dirichlet system. As
predicted, (M-1A)- O(h-2) in each case.

4.2. MILU results for w 1. In Fig. 2 the minimum and maximum eigen-
values and the condition numbers are plotted as a function of c for hd for the
Dirichlet operator and hp for the Periodic MILU results.

For large c, the maximum eigenvalues are indistinguishable. For the minimum
eigenvalues (and hence the condition numbers) the values are different, but the trend
in the values as functions of increasing c are similar. Also we see from Fig. 2 that
the optimal c value for the MILU preconditioned Dirichlet operator does occur at c
slightly less than the value Cd 37r2 predicted by Result 3.1.

Experiments were also performed with zero initial data and normally distributed random initial
data. Qualitatively, the results did not depend on the choice of these initial data.

326 JUNE M. DONATO AND TONY F. CHAN

periodic ILU

Dirichlet

0.2 0 0.4 0.5 0.6 0 0.8 0 9 1.1

Magnitude of eigenvalues

1.2

(,=).FIG. 1. Eigenvalues of the isotropic ILU preconditioned system, hd -TABLE 1
Dirichlet ILU results for various hd values.

hd min It max It
0.328 1.096

5-g 0.098 1.108
0.0258 1.111

-Z 0.0065 1.112

(M-1A)
3.341
11.28
43.’045
170.123

TABLE 2
Periodic ILU results for corresponding hp.

hd minIt maxIt (M-IA),,,
0.293 1.112 3.791
0.095 1.112 11.735’
0.026 1.112 43.’0’

0.0065 1.112 170.574

Tables 3 and 4 contain the results for various values of hd for Cd 37r2. We see
that the Periodic values for MILU are not as close to the Dirichlet values as they were
for the ILU case. But we do see that the periodic results display the O(h-1) behavior
that occurs for the MILU operator for Cd 37r2.

Tables 5 and 6 show the corresponding results for c 0. The periodic MILU condi-
tion number displays O(h-2) behavior rather than the O(h-1) behavior of the Dirich-
let MILU operator. This is the same situation that arises for the two-dimensional
case [7]. For c 0, it takes a very delicate cancellation to yield the O(h-2) results for
the Fourier condition number. Away from c 0 the calculations are not as delicate
and the Fourier prediction is very good.

Figure 3 plots the condition number of the MILU preconditioned Dirichlet prob-
lem and the Fourier condition number results for hd 1 (the lower two curves) and
for hd 4 (the upper two curves). Again we see that, away from c 0, the de-
pendence of conditioning on the parameter c clearly follows the same general pattern
for the preconditioned Dirichlet operator (a given hd) and its corresponding Fourier
results (hp hd/2

4.3. Anisotropic results. To examine results from anisotropic problems we
pick the following three sets of data:

Data Set 1: a a2 a3 1.
Data Set 2: al 1, a2 1, a3 --0.01.

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 327

1.5

0.5

0
0 20 40 60

e parameter

103

10
0

c parameter

10

101
0

+ Dirichlet MILU, hd=l/64

odic MILU,

hp=li128
20 60

c paramtar

FIG. 2. MILU results as a function of c for hd A"
TABLE 3

Dirichlet MILU results for c 37r2

hd mintt maxtt (M-1A)
0.537 1.444 2.689
0.585 2.614 4.465. 0.629 5.018 7.971
0.664 9.872 14.871

TABLE 4
Periodic MILU results for c 37r2

hd mintt maxtt (M-1A)
0.497 1.545 3.110

Tg 0.499 2.797 5.603. 0.500 5.341 10.687
0.500 10.429 20.859

Data Set 3: al 1, a2 0.01, a3 0.01.
These three data sets are a subset of those used in [2], and to allow us to compare

results to [2] we use an initial guess for u(x, y, z) that is zero on the interior of the
unit cube.

Tables 7, 8, and 9 present the results for h 1/21 for the ILU preconditioned
operators. For each of the three data sets the periodic ILU results are in close ap-
proximation to the Dirichlet ILU values. In particular, the behavior of the Dirichlet
ILU condition numbers is captured by the periodic ILU condition numbers. What is

328 JUNE M. DONATO AND TONY F. CHAN

TABLE 5
Dirichlet MILU results for c O.

hd mintt maxtt (M-1A)
1.000 2.753 2.753
1.000 5.983 5.982. 1.000 13.125 13.120

4 1.001 28.256 28.337

TABLE 6
Periodic MILU results for c O.

d min tt
1.0oo- 1,o00
1.o00- 1.000

max tt
13.252
52.156’

a(M-IA)
13.252
52.156’

207.784 207.784
830.301 830.301!

6O

c parameter

FIG. 3. MILU condition numbers for hd= (solid lines) and hd 4 (dashed lines).

of further interest is the comparison of condition numbers and PCG iteration counts
for the Dirichlet ILU operator across the three data sets. (M-1A) for Data Set 1
is greater than for Data Set 2. Yet Data Set 1 requires significantly fewer PCG
iterations to converge than Data Set 2. This iteration count variation is also seen in
the data presented in [2].

To study this more closely, we redo the calculations for hd so that the full set
of eigenvalues can be plotted. Tables 10, 11, and 12 present the minimum, maximum,
and condition number results for the three data sets and we see that the same situation
occurs as for hd 1" In Fig. 4, the eigenvalues of the Dirichlet ILU operator are
plotted in sorted order for Data Sets 2 and 3 with hd . These figures also include

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 329

TABLE 7
ILU results for Data Set 1.

hd 1/21 min # max #
ILU 0.059 1.108

Periodic 0.057 1.112

(M-1A) Iterations
18.900 37
19.388 na

TABLE 8
ILU results for Data Set 2.

hd 1/21 min# max# (M-1A)
ILU 0.072 1.198 16.667

Periodic 0.070 1.203

Iterations
57

17.106 na

TABLE 9
ILU results for Data Set 3.

hd 1/21 min # max #
ILU 0.419 1.436

Periodic 0.479 1.472

(M-IA) Iterations
3.426 27
3.600 na

the Fourier eigenvalues for hp 1__
16"

For the corresponding figure for Data Set 1, refer back to Fig. 1.
First we notice the extreme similarity of the Dirichlet and Fourier eigenvalues.

For each data set the behavior of the Fourier eigenvalues corresponds to that of the
preconditioned Dirichlet system. And we can see using either the Dirichlet or Fourier
spectra that it is the clustering [3], [4] of the eigenvalues that becomes the dominant
factor in the number of iterations required.

0.2 0.4

periodic ILU Data Set 2

Dirichlet ILU Data Set 2

0.6 0.8 1.2 1.4

periodic ILU Data Set 3

Dirichlet ILU Data Set 3

0.2 0 4 0 6 0.8 1.2 1.4

Magnitude of eigenvalues

FIG. 4. Eigenvalues for the anisotropic ILU preconditioned systems, hd g

330 JUNE M. DONATO AND TONY F. CHAN

Data Set 1 yields a larger condition number than Data Set 2 because (in part) of
its much smaller minimum eigenvalue. But Data Set 1 has only a few well-isolated
minimum eigenvalues, whereas there is a clustering of eigenvalues near the minimum
for Data Set 2. The eigenvalues for Data Set 1 have more clustering about 1 than
those for Data Set 2. Hence, the systems from Data Set 1 converge more quickly via
PCG than those from Data Set 2.

TABLE 10
ILU results for Data Set 1.

hd---- 1/8 mintt max (M-1A) Iterations
ILU 0.328 1.095 3.338 16

Periodic 0.293 1.112 3.791 na

TABLE 11
ILU results for Data Set 2.

hd 1/8 min tt max tt
ILU 0.379 1.168
Periodic 0.340 1.199

(M-1A) Iterations
3.079 20
3.523 na

TABLE 12
ILU results for Data Set 3.

hd-- 1/8 min tt max tt
ILU 0.863 1.119
Periodic 0.825 1.166

(M-1A) Iterations
1.297 14
1.413 na

For Data Set 2, Table 13 lists the condition number of the ILU preconditioned
system as a function of h. Table 14 similarly reports the results for Data Set 3.

TABLE 13
Data Set 2: (M-1 A) for various h.

hd ILU Periodic

1 3.079 3.523

Y’6 10.002 10’.446’
.2 37.667 38.096

TABLE 14
Data Set 3" (M-1A) for various h.

ha ILU Periodic
1.297 1.413

y 2.369 2.546. 6.667 6.857

We see the remarkable agreement of the ILU and Fourier results that occurred in
the isotropic case for ILU. Hence, the Fourier results remain a good predictor of the
dependence of (M- A) on h.

We also analyze the MILU preconditioned operators for the anisotropic data sets.
Tables 15, 16, and 17 list the condition numbers for each of the three data sets
using the MILU preconditioner with Cd 22. Each table includes both the Dirichlet
MILU and the calculated Fourier condition number for various values of hd. Again,
the similarity in the dependence of (M-1A) is noticeable. For all three data sets and
for both the Dirichlet and Fourier results, (M-IA) demonstrates O(h-) behavior.

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 331

10 + Didchlet values
o Pedodic values

c parameter

FIG. 5. (M-1A) for anisotropic MILU for Data Set 2, ha 6 (solid lines), hd 3 (dashed
lines).

+ Difichlet values

o Periodic values

10
0 1 1’5 20 25 30

c parameter

FIG. 6. (M-IA) for anisotropic MILU for Data Set 3, hd 6 (solid lines), ha 2 (dashed
lines).

332 JUNE M. DONATO AND TONY F. CHAN

TABLE 15
a(M-1A) results for MILU (Cd 2r2) preconditioned system for Data Set 1.

hd MILU
2.521

yg 4.282

.@2 7.721

Periodic
3.032
5.619
10.797

TABLE 16
g(M-IA) results for MILU (Cd 27r2) preconditioned system for Data Set 2.

hd MILU Periodic
2.629 3.075
4’.393 ’5.572

.@2 7.987 10.654

TABLE 17
(M-1A) results for MILU (Cd 2vr2) preconditioned system for Data Set 3.

hd MILU
2.782

Ag 2.920

.@ 6.322

Periodic
2.801
2.954
6.597

In Figs. 5 and 6 we have plotted a(M-1A) as a function of c for MILU for the
anisotropic Data Sets 2 and 3, respectively. The upper two curves of each figure
correspond to hd 2 and the lower two curves to hd 6" Again, as in the isotropic
MILU results, except when c is near zero, the Fourier curves mimic the dependence
on c demonstrated by the Dirichlet MILU preconditioned system.

From Figs. 5 and 6, we can see a difficulty in determining Copt in anisotropic
situations. The Dirichlet curves for a(M-1A) are visually fiat near the optimal value
of Cd. This flatness may indicate that finding Copt is a poorly conditioned numerical
task. However, the optimal value for c in the Fourier curves certainly corresponds
to a good initial approximation of Copt in the Dirichlet case. By this we mean that
by choosing Cd to be the value corresponding to the optimal c determined from the
Fourier values, the behavior of a(/-1A) in the Dirichlet problem will be O(h-)
rather than O(h-2).

5. Conclusions. We note that the Fourier technique used here and in [7] is not
exact, but it has been shown to be a powerful tool in the analysis of preconditioned
systems. Although the Fourier and Dirichlet condition numbers are not identical, the
Fourier method is still capable of predicting the dependence of the Dirichlet condition
number on the parameters h and . In the case of an MILU preconditioner, the
Fourier method provides a simple and fast technique to find a first approximation
to the optimal c parameter. This makes the method very worthwhile, since there
are currently no other "easy" methods to apply that give better results. And this is
further emphasized by its easy application to anisotropic problems.

Appendix. In this section, we provide the details of proofs and derivations omit-
ted from the main text: we prove Theorems 3.1 and 3.2 and derive Result 3.1.

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 333

THEOREM 3.1. For the ILU preconditioned isotropic operator (w 0, c 0),

(I) O(h-2).

Proof. For the isotropic problem (al a2 a3 1) with ILU preconditioner
3 whose solution is(w 0, c 0) we get the recurrence (7) the expression 6 a +

c 3 + and we have

2, + -(cos(0 ,) + co(0) + cos()).

It holds immediately that

/min _>)l.b. 12sin2(rh) 12(rh)2 + O(h4),
Amax _< iku.b. 12,

6
Cmax _< Cu.b. 12 +--.

Now, for the lower bound on Cstr: Set x sin , y sin 2
, z sin and use

cos(O Ct) 1 2(x2 + y2) + 4x2y2 +/- 4xyv/il x2)(1 y2)
> 1 2(x2 + y) -41xyl,

2,, + -(os(O) + os() + cos())
2 y> At. + -(3 2(x + 4lxyl- 2(y + z) 4lyz]- 2(x2 + z2) 4]xzl)

2 y2 z2=4(x2+y2+z2)+_(3_4(x2+ + 4(Ixyl + lyz] + lxyl))

(()(z + + z1 ([zl + Iz + Ixl)) +
6((1 +)(+ u +) (11 + I1 + I1)) +

4 6

6((Ix]-]yl) e + (lyl-]z]) + (Ixl- Izl) 2) +
6

In other words,

6
)min 21.b.

334 JUNE M. DONATO AND TONY F. CHAN

So, we can now finally get bounds on the condition number via

I) > ,min 12 sin2 (rh) 2 sin2 (rh)
min)max 12+6 2+-I

Amax 12
II.(I) < < 2a,mx- Cmi

(I) x < 2a
(Z) ei()
min 2+ /a

(e+) (e+) 1.2h-2.
si(h) (h)

Now we will see that this O(h-2) bound is tight.
6 FromLet08-t=r=, (r=s=t=(n+l)/2),togetA=12,=12+.

these we have

#(1) A 12
0.916 0(1).e+

On the other end, letting s r I 2h, we get for smMl enough h

A 12 sin2 (rh)
6

12 sin2(rh) +

(_A ein(h) e(h) + O(h)
e(h) + O(h)2 sin2(rh) + +

e(h) + O(h).
Finally, combining the above, we get

#(1) 1

#(2) (2a + 1)2h2 + O(h4)
O(h-2)

and so we have that the bound of O(h-2) on g(I) is tight. [:]

THEOREM 3.2. For the MILU preconditioned isotropic operator (w 1),

t(M [O(h-1), if c > O;
O(h-2), c- 0.

Proof. For the isotropic problem (al a2 a3 1) with MILU preconditioner
9 whose(w 1, c 0) we get for the recurrence (7) the expression 6 + ch2 + -solution is

ch2 i ch2
c=3+ +hxfl3- 1+ 1--

So we have

Ast 4 (sin2 (-

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 335

2
8,r ,str + (COS(O8 ,) + COS(8) + COS())

6
-+- ch2

,st 2(3 cos(08 Ct) cos(08) cos(t r)) + ch2.

We first derive a lower bound on #(M). Observe that 8t <_)st + ch2. Also, for
h small enough, there exists such that sin(rh) _> h, which yields Ast _> 12(h)2.
Thus we get the lower bound

Next we derive the upper bound on (M). We use that ,st <_ 12. With the aid
of the symbolic manipulator Maple [9] we get

3 ,) cos(< 6.
sin2 ()+ sin2 (2) + sin2 ()

Hence,

8tr ,st- 2 (3 cos(08 Ct) cos(08) cos(t r)) + ch2
1

2 3-cos(Os-t)-cos(r-Os)-Cos(t-r) ch1 (-),, 4(sin(Os/2)Tsin(qbt/2)+sin(r/2)) -" "Astr
1

1 (-5)1 3--cos(Os--t)--cos(r--Os)--cos(t--.),sin(Oa/2)_l_sin(t/2)+sin(r/2) -- ch2

1
ch1 5-5(6) 12

Now we use the approximation c 3(1+ 1/2hx/-+O(ch2)) to get for small enough
h that 1/2(1- 1/2hxfl + O(ch2)), which yields

1
#st _<

lh- + O(h23
#u.b..

So, finally,

maX #str < #u.b. 1 + c

min #st #t.b. 1/2hv + O(h2). O(h-), ifcO;
-O(h-2), c--0.

Next it is shown that the above bounds are tight.

336 JUNE M. DONATO AND TONY F. CHAN

First consider 0s Ct r 1 2rh.

)111 12sin2(rh),
2 6

blll 12 sin2(rh) + -(3) + ch2 12 sin2(rh) + ch2,

Alll 12 sin2 (rh) 1
111 12sin2(rh) + ch2 1 + (ch2/12sin2(rh))

1

+ o(1).

1 + (ch2/12(rh)2)

0Now consider Os r O, and Ct 2r-20. Then sin(t/2) sin 0 2 sin cos
and cos(t 08) cos(r Ct) cos(308), cos() 1. In the expression for
we will also use the following

cos(30) 1 18 sin2 + 48 sin4 32 sin6 .
0 0

A-4 (2sin2 ()+4sin2 ()cos2 ())- 8sin2 ()(1 + 2cos2 ())
2 0

=24sin2 ()(1-sin2 ()),
A _4 (1 cos(30)) + ch2__

4 (18sin20 0 O)-48sin4+32sin6 +ch2

=24sin2() (1-1sin2())
34(1-1)(0 0)-hv/ + O(ch2) 18 sin2 48 sin4 + 32 sin6 + ch2

48 sin + gh 18 sin 48 sine + O(ch),

#(M)

_
24sin()(1 - sin())

e 4asin + h(18sin -48sin)+ O(ch)

If c 0 this simplifies to (M) Setting 0 01 2rh leads to (M)
2 sin2()

O(h-2). If c > 0, setting 2V/- (i.e., s x/n + 1/r) leads to #(M) O(h-1).
Hence, we have the exact bounds

iq,(M) O(h-1), if c > 0; [:]
O(h-2), c- 0.

Result 3.1. For the MILU preconditioned isotropic operator, the optimal value of
c (the one that minimizes t(M)) occurs near Cp 12r2 for the periodic problem and
Cd 37r2 for the Dirichlet problem.

In the derivation of this result, we make use of the following empirical results:
the maximum value of # occurs on the plane 0 + / 2r (and symmetric planes)
where 0 is small.

FOURIER ANALYSIS OF INCOMPLETE FACTORIZATIONS 337

So, as in the latter part of the proof of Theorem 3.2, we have

24sin2()(1 sin2())
48sina + hx/-(18 sin2 48sin4) + O(h2)

Let x _= sin2 ().

(M) 24x(1 x)
48x2 + hxfl3-(18x 48x2) + O(h2)

48x + 64 hx/-3(18 48x) + O(h2)z
24

48x + -hx/-(18- 48x)+ O(h2)’z

In the above and in the rest of the derivation we use that x << 1 and hence x2 << x,
which can be verified a posteriori from the derivation.

Setting 0 O#/Ox we get x2 ch2/48, which implies sin2 (-) .. v/c/48h.
Substituting this result back into the equation for #(Mx) yields

3,(M) -t 2V/h

For the minimum we use 0 2rh and get

12 sin2(h) 1tt(mMi:
12 sin2 (rh) + ch2 1 +

Thus as a function of c,

g(M)(c) max 1 + (C/122)
min (2X/-h/3)

We want the c value that yields the minimum g(M), hence we set 0 (Oa/Oc) to get
Cp 127r2.

But this is the parameter c for the periodic approximation. To predict the optimal
Cd value for the Dirichlet problem, we use 5p cphp2 d Cdhd2 as in [7], where
hp h and find that2

1
ca cv 3r2.

Acknowledgment. The first author would like to acknowledge the helpful dis-
cussions with Rosa Donat on the use of Maple in the proof of Theorem 3.2 and to
Richard E. Little for general encouragement. Also, many thanks to the reviewers of
this paper. Their comments, large and small, were greatly appreciated.

338 JUNE M. DONATO AND TONY F. CHAN

REFERENCES

[1] C. ASHCRAFT AND R. GRIMES, On vectorizing incomplete factorizations and SSOR precondi-
tioners, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 122-151.

[2] 0. AXELSSON AND V. EIJKHOUT, Robust vectorizable preconditioners for three dimensional
elliptic difference equations with anisotropy, in Algorithms and Applications on Vector
and Parallel Computers, H. J. J. te Riele, Th. J. Dekker, and H. A. van der Vorst, eds.,
Elsevier Science Publishers B.V., North-Holland, 1987.

[3] O. AXELSSON AND G. LINDSKOG, On the eigenvalue distribution of a class of preconditioning
methods, Numer. Math., 48 (1986a), pp. 479-498.

[4] ., On the rate of convergence of the preconditioned conjugate gradient methods, Numer.
Math., 48 (1986b), pp. 499-523.

[5] A. BRANDT, Rigorous Local Mode Analysis of Multigrid, Tech. Report, Department of Ap-
plied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel,
December, 1988.

[6] W. F. CHAN, Fourier analysis of relaxed incomplete factorization preconditioners, SIAM J. Sci.
Statist. Comput., 12 (1991), pp. 668-680.

[7] T. F. CHAN AND H. C. ELMAN, Fourier analysis of iterative methods for elliptic problems,
SIAM Rev., 31 (1989), pp. 20-49.

[8] T. F. CHAN AND G. MEURANT, Fourier analysis of block preconditioners, University of Califor-
nia, Los Angeles, CA, Computational and Applied Math., CAM Report 90-04, February,
1990.

[9] B. W. CHAR, G. J. FEE, K. 0. GEDDES, G. H. GONNET, AND M. B. MONAGAN, A tutorial
introduction to Maple, J. Symb. Comput., 2 (1986), pp. 179-200.

[10] n. C. ELMAN, Relaxed and stabilized incomplete factorizations for non-self-adjoint linear sys-
tems, BIT, 29 (1989), pp. 890-915.

[11] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University
Press, Baltimore, MD, 1989.

[12] I. GUSTAFSSON, A class of first order factorization methods, BIT, 18 (1978), pp. 142-156.
[13] J. A. MEIJERINK AND n. A. VAN DER VORST, An iterative solution method for linear systems of

which the coeJficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-
162.

[14] H. A. VAN DER VORST, High performance preconditioning, SIAM J. Sci. Statist. Comput., 10
(lS), . 1a-11s.

[15] ICCG and related methods for 3D problems on vector computers, Comput. Phys.
Comm., 53 (1989), pp. 223-235.

[16] G. WITTUM, On the robustness of ILU smoothing, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 699-171.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 339-363, January 1992

() 1992 Society for Industrial and Applied Mathematics
018

LINE ITERATIVE METHODS FOR CYCLICALLY REDUCED
DISCRETE CONVECTION-DIFFUSION PROBLEMS*

HOWARD C. ELMANt AND GENE H. GOLUB$

Abstract. An analytic and empirical study of line iterative methods for solving the discrete
convection-diffusion equation is performed. The methodology consists of performing one step of the
cyclic reduction method, followed by iteration on the resulting reduced system using line orderings
of the reduced grid. Two classes of iterative methods are considered: block stationary methods,
such as the block Gauss-Seidel and SOR methods, and preconditioned generalized minimum residual
methods with incomplete LU preconditioners. New analysis extends convergence bounds for constant
coefficient problems to problems with separable variable coefficients. In addition, analytic results
show that iterative methods based on incomplete LU preconditioners have faster convergence rates
than block Jacobi relaxation methods. Numerical experiments examine additional properties of the
two classes of methods, including the effects of direction of flow, discretization, and grid ordering on
performance.

Key words, iterative methods, line orderings, reduced system, convection-diffusion, elliptic
operators

AMS(MOS) subject classifications, primary 65F10, 65N20; secondary 15A06

1. Introduction. Consider the convection-diffusion equation

(1.1a) -[(pu)x + (quy)y] + ru + suy f on

(1.1b) au -" Un g on 0gt,

where t is a smooth domain in R2 and p > 0, q > 0 on t. Discretization of (1.1)
produces a linear system of equations

(1.2) Au f,

where u and f are now vectors in a finite-dimensional space, and A is a nonsymmetric
matrix when r and s are nonzero. We are concerned with discretizations (principally,
finite difference methods) for which each equation in (1.2) is centered at some mesh
point (xi, yj), and the associated unknown uij depends only on its neighbors in the
horizontal and vertical directions. That is, the equation centered at (xi, yy) has the
form

(1.3) aijuij fij bijui,j-1 cijui-l,j dijui+l,j eijui,j+l.

In this case, we say that (1.2) has a .computational molecule of the form

Cij 3 dij.

Received by the editors April 5, 1990; accepted for publication (in revised form) November 26,
1990.

Department of Computer Science, and Institute for Advanced Computer Studies, University
of Maryland, College Park, Maryland 20742. The work of this author was supported by National
Science Foundation grants DMS-8607478 and ASC-8958544, and by U. S. Army Research Office
grant DAAL-0389-K-0016.

Department of Computer Science, Stanford University, Stanford, California 94305. The work of
this author was supported by National Science Foundation grant DCR-8412314.

339

340 HOWARD C. ELMAN AND GENE H. GOLUB

()15 X 25 (35 X 45 (55 X 65
X 14 ()24 >< 34 (44 >< 54 ()64
(13 X 23 (:)33 X 43 ()53 X 63
>< 12 ()22 X 32 (42 X 52 (62
()11 ><21 (31 X41 ()51 X61

(13 X28 (14 ><29 (15 X30
X25 (10 ><26 (11 ><27 (12
@7 >< 22 @8 >< 23 @9 X 24

X19 @4 X20 @5 X21 @6
@1 ><16 @2 ><17 @3 X18

FIG. 1.1. A 65 grid and a red-black ordering. Grid indices are shown on the left, and vector
indices for a red-black ordering are shown on the right. Red points are denoted by "(R)" and black
points by "."

When the system (1.2) has this property, the mesh points { (xi, yj)} and unknowns
{uij } can be ordered with a red-black ordering so that every equation centered at a
"red" point depends only on "black" unknowns, and every equation centered at a
"black" point depends only on "red" unknowns. An example of a red-black ordering
of a 6 x 5 grid is shown in Fig. 1.1. If uj is a black unknown, then by adding
appropriate linear combinations of the equations for U+l,j and u,j+l to the equation
for uj, we can eliminate the dependence of uij on its red neighbors. When this is
done for every black equation, the result is a smaller linear system

(1.4) A(b)u(b) g(b),

where U(b) is the set of unknowns associated with black mesh points. In matrix
notation, this process corresponds to ordering the rows and columns of A so that
(1.2) has the form

D C
E F)(u()u())=(f()f(b)),

where D and F are nonsingular diagonal matrices. Decoupling of the red points
u(r) is equivalent to producing the system (1.4), where A(b) F- ED-1C and
g(b) f(b) ED-l f(r).

In [7], [8], we analyzed the convergence behavior of block iterative methods for
solving the reduced system (1.4) derived from discretizations of (1.1). We considered
block Jacobi, Gauss-Seidel, and successive overrelaxation (SOR) methods [25], [28],
where the blockings (of the rows and columns of A(b)) are derived from certain line
orderings of the underlying reduced (black) grid. In particular, the unknown grid
values u(b) can be grouped together either by individual lines of the grid, producing
a class of one-line orderings, or by pairs of lines, producing two-line orderings (see
2). These orderings produce matrices with block Property A, so that the classical
analysis of Gauss-Seidel and SOR methods [25], [28] can be used. The results of [7],
[8] apply to problems with the constant coefficients p(x, y) q(x, y) 1, r(x, y)
a, s(x, y) T. They show that convergence is often very fast; in particular, for
nonselfadjoint problems (a or T nonzero), convergence is typically faster than for
selfadjoint problems. They also show that convergence rates for solving the reduced
system are often faster than for solving the full system (1.2) by analogous line methods.
These observations are in agreement with asymptotic results in [20] and the algebraic
analysis of [13]. Related results for point iterative methods are given in [18].

In this paper, we extend the analysis of [7], [8] to separable problems, and we
also use it to derive bounds on convergence behavior for stationary methods based
on incomplete factorizations [17]. In addition, in a series of numerical experiments,
we examine the effect of physically significant properties of the problem (1.1) on the

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 341

performance of iterative methods applied to (1.4). Here, we consider both block
relaxation methods and the preconditioned generalized minimum residual method
(GMRES) [23], with preconditioning by incomplete factorizations [17]. We focus on
the following issues"

1. For constant coefficient problems, the effect of the signs and magnitudes of
r and s in (1.1). These quantities determine the direction and rate of flow
associated with the convection in the model. The analysis of [7], [8] is sensitive
to magnitudes but not to signs.

2. The effect of variable coefficients r and s. We consider problems both with
and without turning points.

3. The effects of the choice of discretization on performance; we consider cen-
tered and upwind finite difference discretizations.

4. The first three issues do not address the issue of accuracy of the discrete
solution. We also examine the effect of methods designed to improve accuracy
in the presence of boundary layers, in particular, local mesh refinement and
defect correction methods [12], [15].

An outline of the paper is as follows. In 2, we describe the reduced matrix A(b),
and we present the ordering strategies and iterative methods used to solve (1.4), in-
cluding some block red-black strategies of use for vector and parallel computations.
In 3, we extend the analysis of [7], [8] to separable problems and incomplete fac-
torizations. In 4, we describe the results of numerical experiments with constant
coefficient problems. For several ordering strategies, we examine how performances of
block stationary methods and preconditioned GMRES are affected by direction and
rate of flow, choice of difference scheme, and use of local mesh refinement to resolve
boundary layers. In 5, we compare experimental results with analytic bounds on con-
vergence, for separable problems. In 6, we consider performance for some problems
with nonseparable variable coefficients, i.e., where the flow varies in both direction
and magnitude in ft. Here we consider both centered and upwind finite differences,
as well as a difference scheme used to implement defect correction methods. Finally,
in 7 we make some concluding remarks.

2. The reduced system and line iterative methods. Let uj be a black point
not next to the boundary Oft. Elimination of the unknowns u+l,j and u,j+ from
(1.3) produces an equation in the reduced system with the computational molecule
shown in Fig. 2.1. The value "." in the center is

bijei,j-1 cijdi-l,j dijCi+l,j eijbi,j+l
aij

hi,j-1 ai- ,j ai+ ,j ai,j+

and the right-hand side is perturbed by an average of neighboring values,

g(b) fij
bijfi,j-1 cijfi-l,j dijfi+,j eijfi,j+

ij
hi,j- hi- 1,j hi+1,j hi,j+

The line ordering strategies for the reduced grid are outlined as follows (see [7],
[8] for further details). In the natural one-line ordering, points of the reduced grid are
grouped together by diagonal lines, e.g., oriented in the NW-SE direction. The left
side of Fig. 2.2 shows an example for a 6 5 grid. Here, the kth line consists of all
points with grid indices (i, j) such that i + j 2k / 1. (Compare with the left side
of Fig. 1.1.) Thus, in Fig. 2.2, the first line consists of the points {1, 2}, the second
line consists of the points {3, 4, 5, 6}, etc. In the natural two-line ordering, points

342 HOWARD C. ELMAN AND GENE H. GOLUB

ei el,./+1

ai- l,j

aij+l

a- l,.i

ai,j+l

ai,j-1

ai-F l,i

FiG. 2.1. The computational molecule for the reduced system.

Xll XI4 XI5
X 6 XIO X13

X 5 X 9 X12
X 2 X 4 X 8

X1 X3 7

X13 X14 XI5
X 7 X 9 Xll

X 8 XIO
X X 3 X 5

X 2 X 4 X 6

FIG. 2.2. Natural one-line (left) and two-line (right) orderings of the reduced 6x5 grid.

are grouped together by pairs of either horizontal or vertical lines. The right side of
Fig. 2.2 shows an example of a horizontal grouping for a 6 x 5 grid. The points in the
kth group are those with grid indices (i, j) such that k- 1 < j/2 < k. If the number
of lines is odd, the last group consists of a single line, as in the group {13, 14, 15}.
For both these strategies, A(b) is a block tridiagonal matrix; let D denote its block
diagonal. For the one-line ordering, each block of D is a tridiagonal matrix, and for
the two-line ordering, each block of D is a pentadiagonal matrix (except possibly the
last block, which may be tridiagonal). It is also useful (e.g., for parallel computations,
see [8]) to define line red-black variants of these orderings, in which alternating lines
(or line pairs) are assigned opposite colors. For example, for the one-line version, let
the sets { 1, 2}, {7, 8, 9, 10, 11}, and {15} be denoted as "red" lines, and the others
as "black" lines. Then every equation centered at a point in a red line depends only
on that red line and the neighboring black lines; an analogous statement holds for
equations centered on black lines. For the red-black one-line ordering, all red lines are
ordered first, followed by all black lines. The red-black two-line ordering is defined in
similar fashion.

For any of these line orderings, let

A(b) D- C (D- L) U,

where D is the block diagonal part of A(b) and L and U are the lower and upper
triangular parts, respectively, of the block off-diagonal part of A(b). We consider
several block stationary methods based on the splittings (2.1). The block Jacobi

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 343

iteration is given by

(b) D-1CU(kb) + D- g(b)k+l

and the block SOR iteration is

(2.2) (b) (D wL)-l[(1- w)D + wU]u(kb) + w(D wL)-lg(b).

The block Gauss-Seidel iteration corresponds to the case w 1 in 2.2. In all cases,
A(b) is block consistently ordered, so that [28]

(2.3) p((D- L)-IU) [p(D-1C)]2,
where p(X) denotes the spectral radius of a matrix X.

In addition, we consider the use of the ILU(0) incomplete factorization [17] applied
to A(b) for each of the orderings. This factorization is defined as

(2.4) M (D L)D-I(),
where D is a diagonal matrix;] and are strictly lower triangular and upper trian-
gular, respectively; the nonzero structure of D L 6 is the same as that of A(b);
and the entries of M are the same as the corresponding entries of A(b) wherever the
latter are nonzero. We will examine the use of this factorization as a preconditioner
for GMRES.

3. Analysis of separable problems and the ILU(0) faetorization. We will
be concerned with finite difference discretizations of (1.1). For example, on a uniform
grid with mesh size h, let standard second order differences [11] be used for the second
derivative terms. If centered differences are used for the first derivative terms, then
after scaling by h2, the values in the computational molecule are given by

aij P(Xi+l/2, Y9) + P(Xi-1/2, Yi) + q(xi, Yj+I/2) + q(xi, Yj-I/2),
bij -(q(xi, yj-1/2) + s(xi, y)h/2), dij -(p(xi+/2, y) r(xi, yj)h/2),
cij -(p(xi_/2, yj) + r(xi, yj)h/2), eiy= -(q(xi, y9+/2) s(xi, yy)h/2).

If upwind differencing is used for the first derivatives, then (for the ce r(xi, yy) > 0,
s(xi, yy) > 0) the values are

aij P(Xi+/2, Yj) + P(Xi-1/2, Yj) + q(xi, Yj+/2) + q(xi, Yj-/2)
+ r(xi, yj)h + s(xi, y9)h,

biy -(q(xi, Yy-/2) + s(xi, y9)h), dij -p(xi+/2, yy),
cij -(p(xi-1/2, yj) + r(xi, yj)h), eiy: -q(xi, yj+l/2).

If instead, s(xi, yy) < 0, then biy -q(xi, Yj-1/2), eij -(q(xi, Y+/2) s(xi, yy)h),
and s(xi, y)h is replaced by -s(xi, y)h in the expression for ai. The case r(xi, y) <
0 is handled in an analogous manner.

If is a rectangular domain and the coefficients of (1.1a) satisfy

p p(x), q

then the differemial operator of (1.1) is separable [26]. In this case, the discrete
coefficients of (1.3) satisfy

_(v)+
bij bj, cij ci, dij di, eij ej.

344 HOWARD C. ELMAN AND GENE H. GOLUB

Our convergence analysis is based on symmetrizing the reduced matrix A(b) by
a diagonal similarity transformation. The following result gives circumstances under
which A(b) can be symmetrized when it comes from a separable operator. In the
analysis, matrix entries are referenced using indices from the underlying reduced grid,
as shown in Fig. 2.1. That is, every nonzero entry of the row of A(b) associated with
the (i, j) grid point is referenced using subscripts i and j. For example, the entry
corresponding to the point southwest of the center of the computational molecule (see
Fig. 2.1) is denoted by

-bjei d-
hi,j-1 ai-l,j

where the numerator is expressed using the notation of (3.1).
THEOREM 1. /jr the operator of (1.1) is separable and cidi-1 and bjej_l have the

same sign for all i and j, then the reduced matrix A(b) can be symmetrized with a real
diagonal similarity transformation.

Proof. We seek a diagonal matrix Q such that Q-1A(b)Q is symmetric. Let A(b)

be ordered by the natural one-line ordering, so that its rows and columns are grouped
into blocks corresponding to individual lines. Let Q be ordered the same way.

First consider the block diagonal D, which is a tridiagonal matrix. Any two
successive rows of a block of D, corresponding to the (i,j) and (i- 1,j + 1) mesh
points, contain the 2 2 sub-block

-ciej a-l. a,+
-b+d_l + .

ai-l,j hi,iT1

where "." denotes a diagonal entry. If qij is known, then qi-,j+ must be chosen so
that

(1 1) (1 + qi-l,j+l.qi- 1,j+lbJ+ldi-
gi-l,j

+
ai,j+l

qij q1Ciej
gi-- 1,j gi,j+1

hus, within the blocks of Q, successive entries must satisfy

(.) qi_l,j+l (bJ+ldi-l)
1/2

Ciej
qij.

For symmetrizing D, the first entry of each block of Q may be arbitrary.
To symmetrize the off-diagonal blocks of A(b), we require

(a.a) Q;I() Q_ (QAI,Q)"k,k--1

where k is a block (or line) index, 2 k 1. As in [7], there are three cases,
corresponding to 2 k < 1/2 + 1, k 1/2 + 1 (1 even), and 1/2 + 1 < k. In the case
2 k 1/2 + 1, a careful specification of the emries of Q and A(b) shows that (3.3)
is equivalent to the following three scalar relations:

eiei-
qi-2,j

I 1
i/2

(3.5) qi-l,j+l
bj+lCi-1
di-2ej

qi-2,j,

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 345

Ibj+lbj+2) 1/2
(3.6) qi-2,j+2 qi-2,j.

ejej+

These relations specify three successive entries of Qk in terms of a single entry of
Qk- (where k (i + j- 1)/2). Since the first entry of Qk is arbitrary, (3.4) can
be used to define it. However, once this entry is defined, all subsequent entries are
determined by (3.2). Thus, it is necessary to show that (3.4)-(3.6) are consistent with
(3.2). But application of (3.2) and (3.4) in either order results in (3.5), showing that
both (3.4)and (3.5)are consistent with (3.2). Similarly, (3.6) follows directly from
(3.2) and (3.5).

The arguments for the cases k 1/2 + 1 (1 even) and 1/2 + 1 < k are essentially
the same and we omit the details. A sufficient condition to guarantee that all the
required square roots are well defined is that cidi_l and bjej_l have the same sign
for all and j.

Finally, note that this analysis is not restricted to the natural one-line ordering.
If A(b) is symmetrically permuted into some other order, givinNg the permuted matrix
2(b) then for an analogous permutation of Q to Q, (-12(b)() is also
symmetric.

Remark 1. For the centered difference discretization, necessary and sufficient
conditions to ensure that all cidi_l and bjey_ have the same sign are that either

(3.7) max

and

or

’2p(xi_l/2)

2q(yj_l/2) l)]2q(yj_/2
<1;

min [min (r(x)h r(x_l)h
2p(Xi_l/2) ll2p(Xi_l/2)l) >1

s(yi)h s(yj_)h
and min[min(12q(yj-1/2)lq-(---lff2) I)] > 1.

In contrast, the full system (1.2) can be symmetrized by a diagonal similarity trans-
formation if and only if the conditions (3.7) hold. For upwind differences, it is always
the case that cidi_ > 0 and bjej_ > 0 for all i, j.

Let .(b) Q-1A(b)Q denote the symmetrized reduced matrix, when it exists, for
any of the strategies under consideration. Fig. 3.1 shows the resulting computational
molecule. Let

b 47

denote the block Jacobi splitting, where /) Q-1DQ, Q-1CQ. Note that
[9-1 Q-D-CQ, so that the eigenvalues of D-C are the same as those of
-1, and in particular they are real. Let Z: (D- wL)-l[(1- w)D + wU]
denote the block SOR iteration matrix. The following result is then a straightforward
application of the analysis of the block SOR method [28].

COROLLARY 1. If A(b) i8 the reduced matrix derived from a separable operator,
and cidi-1 and byey_l have the same sign for all and j, then p(D-1C)
If p(D-1C) < 1, then p(.) w* 1, where * 2/(1 + V/1 + [p(D-1C)]2)
minimizes p(

346 HOWARD C. ELMAN AND GENE H. GOLUB

v/bj + bj + e ej +

,v/b./’_ bj e./_ e./_

FIG. 3.1. The computational molecule for the symmetrized reduced system in the separable case.

Remark 2. It may be possible to establish the requirements of Corollary i a priori.
Sufficient conditions to guarantee that p(D-1C) < 1 are that the original matrix A
be a diagonally dominant M-matrix, which is always the case for upwind differences,
and is also true for centered differences for small enough h. (In addition, if A is an
M-matrix, then so is A(b) [10].) Even if Corollary 1 cannot be invoked from an a
priori examination of matrix entries, it may still be useful as a guideline for practical
computation. For example, for constant coefficient problems, empirical evidence and
Fourier analysis suggest that p(D-C) < 1 in cases where cidi- and bjej_l are both
negative but A is not a diagonally dominant M-matrix. A good value for the SOR
parameter could be computed from a dynamic estimation of p(D-1C), e.g., using the
methods of [14, 9]. In addition, note that it is not necessary to compute Q or (b)
in order to apply this result, see [7].

The following result contains upper bounds on p(D-1C) (for both one-line and
two-line splittings), for separable problems.

COROLLARY 2. Let A(b) come from a separable operator discretized on a uniform
square grid of mesh width h, and assume that

-(Y) > a() 0 < ci+ld < , 0 < bj+lej < ,(3.8) ax) _> c(x)
j

for all i, j. If A() D- C is a one-line Jacobi splitting and

(3.9)

then

(3.10) +P(D-1C) <- (a + a(Y))2 2(x/ + 2 + 4v (1 cos rh)"

If A(b) D- C is a two-line Jacobi splitting and

(3.11) (a() + a(u))2 > 2(v/" + V)2 + 2,

A nonsingular matrix X is an M-matrix if Xij _< 0 for j and X- _> 0.

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 347

then

(.)

P(D-1C) <- (a(x) + a(y))2- 2(v
2 cos 2rh + 4v/cos rh

+ y/-)2 2 + 4V 1 cos rh) + 4 1 cos2 rh)
+ o(h2).

Proof. Using Corollary 1, we have (for any ordering)

(D-C) (D-5) <_ IID-IIIIblI (D)(5).
Consider the one-line orderings. By (3.8), all nonzero off-diagonal entries of are
bounded below by -2v//(a(x) + a(Y)), and all diagonal entries of are bounded
below by

.() + .() e/(() + .()) ev/(.() + .()).

Thus,/ >_ , where each block of is a constant coefficient tridiagonal matrix

2x/’ a() + a(y(3.13) tri -a() + a(Y)
2 2r 2xfl

a() + a() a() + a()’ a(x) + a() J
The size of this block depends on the line from which it is derived. Assumption
(3.9) implies that each block (3.13) and, therefore, each corresponding block of D, is
an irreducibly diagonally dominant M-matrix. Hence, the Perron-Frobenius theory
implies p(.-l)

_
p(D-1). Similarly, by (3.8), 0 _< (<_ (, where is a matrix with

the same nonzero structure as that of C in which all occurences of cidi-1, bjej_l, and

aij are replaced by , r, and a(x) + a(), respectively. Consequently, p()
_
p(),

and we have

(3.14) p(b-)p(O) <_ p()-)p(’),

where the right side of the inequality contains constant coefficient matrices. The
bound (3.10) is determined from the maximum eigenvalue of D-1 and use of Ger-
schgorin’s theorem for 6’. (See [7, Thm. 4])

For the two-line ordering,the blocks of D and/) are pentadiagonal matrices, and
/) >_/, where each block of D is a constant coefficient pentadiagonal matrix,

[2V a() + a(y) 2 2rpenta a() + a(Y) a() + a() a() + a() a() + a()

2v]a() + a() a()+a(y)

which is assumed in (3.11) to be diagonally dominant. In addition, exactly as above,
0

_ _ , where has the same nonzero structure as (. The bound (3.12) then
follows from [8, Thm. 5]. U

We will examine the use of this result in 5.
Remark 3. In the interest of brevity, we have limited our attention to the natural

and red-black variants of the one-line orderings. Other variants, called "torus" one-
line orderings, collect some individual lines together into sets of equal sizes; this is

348 HOWARD C. ELMAN AND GENE H. GOLUB

useful for parallel and vector computations. (See [8], [16].) All of the analysis of this
section also applies to the torus orderings.

We now turn our attention to incomplete LU (ILU) factorizations. Let B be an
M-matrix of order N, and let Af C_ {(i, j) ll

_
i, j

_
N} be an index set containing

all diagonal indices (i, i). It is shown in [17] that there is a unique ILU factorization
LU such that L is unit lower triangular, U is upper triangular, lij 0 and uij 0
for (i, j) Af, and [LU- B]ij 0 for (i, j) EAf. The ILU(0) factorization of (2.4) is
a particular example. The following result of Beauwens ([2, Thin. 4.4]) can be used
to compare the ILU(0) splitting to the block Jacobi splitting.

THEOREM 2. Let B be a nonsingular M-matrix, and let

B M1 R1 M2- R2,

where MI LIU1 and M2 L2U2 are incomplete factorizations of B such that the
set of matrix indices for which L + U1 is permitted to be nonzero is contained in the
set of indices for which L2 + U2 is permitted to be nonzero. Then

p(M-IR2) <_ p(M-IR).

The analysis in [2] actually applies to a more general class of factorizations than the
standard ILU factorization. Theorem 2 can be proved using the result of Wonicki
[27], that if (3.15) represents two regular splittings of a matrix B for which B-1 _> 0,
then

(3.17) M-1 >_ M-1

implies the conclusion (3.16). It is straightforward to establish (3.17) for ILU factor-
izations.

COROLLARY 3. Suppose A(b) is an M-matrix, ordered using any of the orderings
under consideration. Let A(b) M- R where M is the ILU(0) factorization of A(b),
and let A(b) D- C denote the block Jacobi splitting. Then p(M-1R) <_ p(D-C).

Proof. The index set of nonzeros of the block diagonal D is a proper subset of
the nonzero index set for the ILU(0) factorization. The result then follows from
Theorem 2, where (the factorization of) D is viewed as an incomplete factorization
of A() 0

Thus, we expect convergence of a stationary method based on the ILU(0) splitting
to be at least as fast as that for the block Jacobi method, for any ordering. (The work
per step for the Jacobi method will be smaller, though.) In particular, as observed in
[7], [8], convergence should be faster for mildly nonsymmetric problems arising from
nonselfadjoint operators than for symmetric ones derived from selfadjoint operators.
Combining the ILU(0) factorization with an acceleration scheme such as GMRES
(i.e., using M as a preconditioner) should further improve convergence. Numerical
experiments with the ILU(0) preconditioner that support this statement are presented
in the following sections.

4. Experimental results: Constant coefficient problems. In this section,
we examine the numerical performance of the block Gauss-Seidel and SOR stationary
methods, and GMRES(5) with the ILU(0) preconditioner, for solving the constant
coefficient model problem

(4.1) Au + aux + TU, 0

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 349

East North
x

x Northeast Southeast

FIG. 4.1. Plots of the constant coejCficient solution for four different directions of flow.

on ft (0, 1) x (0, 1). Dirichlet boundary conditions on 0 are determined from the
exact solution

eax- 1 ey 1
+

e- 1 e- 1

on ft. The vector (a, T) represents a velocity field with the signs of a or T determining
the direction of flow. We consider eight types of velocity fields, corresponding to eight
flow directions in the (x, y)-plane:

East (E): a > 0, T 0, Northeast (NE): a - > 0,
West (W): a < 0, T 0, Southeast (SE): a --T > 0,
North(N): a=0, T>0, Northwest (NW): a=--T<0,
South (S): a 0, T < 0, Southwest (SW): a T < 0.

(For a 0 or T 0, (4.2) is defined using the limit, i.e., lim__.0(ex- 1)/(ea- 1) x.)
In addition, the solution (4.2) has a boundary layer at any outflow boundary, i.e., near
x 1 for positive a and x 0 for negative a, and similarly for y and -. Plots of
the solution for four such (a, T) combinations, corresponding to flows in the east,
north, northeast, and southeast directions, are shown in Fig. 4.1. Our concern is
to determine the effects of direction and magnitude of flow, ordering of unknowns,
discretization scheme, and use of local mesh refinement on the performance of reduced
system iterative methods.

Details of the numerical experiments are as follows. The experiments were per-
formed on a VAX-8600 in double precision Fortran. Reported iteration counts are
averages over three initial guesses consisting of vectors of random numbers in [-1, 1].
The stopping criterion for all methods was Ilrill2/llroll2 <_ 10-6. A maximum of 150
iterations was permitted; an asterisk "." in any table entry below indicates that for
at least one initial guess, the stopping criterion was not met after 150 steps. (We

350 HOWARD C. ELMAN AND GENE H. GOLUB

remark that when the block stationary methods failed to meet the stopping criterion,
they never "stagnated," i.e., they appeared to be converging.) For red-black SOR,
the first iteration was performed with w 1, as in [24]. Preconditioned GMRES
was performed with right-oriented preconditioning, i.e., GMRES was applied to the
preconditioned problem A(b)M-I(b) g(b), where M is the preconditioning matrix
and u(b) M-I(b). The construction of the reduced matrices and the experiments
with GMRES were performed with PCGPAK [21].

TABLE 4.1
Average iteration counts for the natural one-line ordering, for eight flow directions.

Gauss-
Seidel

SOR

GMRES
ILU

E W N S NE
a>O, a<O, a=O, a=O, a=>O

10 124 148 124 149 63
50 17 35 17 35 5
100 7 26 7 26 8
200 12 31 12 31 32
500 53 75 53 75 124
1000 150" 150" 150" 150" 150"
10 34 47 34 47 22
50 13 30 13 30 4
100
200 11
500 27
1000 54
10 15 16 14 15 11
50 12 12 8 8 4
100 11 11 6 6
200 10 10 4 4 7
500 10 10 4 4 11
1000 9 9 4 4 18

SE

101
19
14
28
123
15o*
33
17
15
24
37
61
16
16
15
14
17
22

NW
a=--T<O

101
19
14
28
122
150"
33
17
15
23
37
60
17
16
14
13
17
21

SW
< 0 Avg.

117 116
35 23
40 18
71 31

150" 97*
150" 150"
44 37
32 19
33 17
36 23
42 36
65 60
14 15
5 10
6 9
7 9
12 11
20 13

TABLE 4.2
Average iteration counts for the red-black one-line ordering, for eight flow directions.

G
Seidel

SOR

GMRES
ILU

E W
> O, < O,

II,II =o =o
10 132 144
50 23 24
100 13 14
200 20 21
500 63 69
I000 150" 150"
10 33 34
50 23 24
IO0
2OO
5OO
1000
10 24 28
50 29 35
100 28 33
200 28 34
500 31 34
1000 39 42

N S NE
O, a----.O, > 0

T>O -r<O
133 144 82
23 24 19
13 14 22
20 21 49
63 69 140"
150" 150" 150"
33 34 27
23 24 19

18
21
31
57

25 30 27
26 35 37
27 35 38
28 34 37
31 33 35
39 43 46

SE
a=->0

103
18
11
27
128
150"
29
18
14
23
35
58
29
22
16
14
27
52

NW

103
18
11
27
128
150"
30
18
14
22
34
57
27
20
16
14
26
52

SW
< 0

108
21
26
57

150"
150"
28
21
19
22
33
57
32
51
53
53
49
53

Avg.

119
23
15
30
102"
150"
31
21
16
22
33
57
28
32
31
30
33
46

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 351

TABLE 4.3
Average iteration counts for the natural two-line ordering, for eight flow directions.

Seidel

SOR

GMRES
/ ILU

E W N
> 0, < 0, 0,

I1,1-1 =o =o >o
10 101 109’ 92 50
50 22 23 9 7
100 13 13 8 6
200 9 9 15 13
500 6 6 52 47
1000 5 5 150" 143
10 30 31 22 25
50 19 20 6 6
100 9
200 16
500 31
1000 56
10 17 "16 17 17 12"
50 12 13 12 13 5
100 10 10 10 11
200 8 8 8 9 10
500 7 7 8 8 22
1000 6 6 8 8 45

S ’NE SE
a=0,

115
25 22
23 21
31 28
64 63

150" 150"
33 37
20 21

25
29
41
64

NW
<0

19
27
30
33
43
49

72
8
7
14
53

148"
26
8
11
17
31
56
18
25
30
30
41
49

sw
a=-r<

87
23
21
28
64
150"
38
22
25
29
41
65
is
5

48

0 Avg.

89
18
14
19
44
117"
30
15
17
23
36
6O
17
10
14
14
2O
28

TABLE 4.4
Average iteration counts for the red-black two-line ordering, for eight flow directions.

auss-
Seidel

$OR

GMRES
ILU

E W
> 0, < 0,

10 100 110
50 19 20
100 10 11
200 8 8
500 6 6
1000 5
10 24"’ 26
50 15 16
IO0
2OO
5OO
1000
10 20 21
50 12 13
100 8 9
200 6 7
500 8 9
1000 7 8

0 0
"r>0 -r<0
100 109
17 18
15 16
22 24
56 58

150" 150"
24 25
13 14

20 23
25 31
26 30
26 30
34 29
40 43

NE SE
a=>0

60
14
13
20
54
146
28
13
17
21
34
58
16
15
16
17
24
36

78
15
14
21
56

150"
29
14
17
23
35
58
23
23
22
23
30
42

NW
<0

SW
< 0 Avg.

78 82 90
15 16 17
13 14 13
21 21 18
59 57 44

150" 149" 113"
29 5’9 26
14 15 14
17 17 17
22 23 22
35 35 35
58 58 58
23 25 21
24 25 21
24 25 20
23 28 20
28 31 24
41 45 33

The orientation of line orderings was as in 2. That is, for the one-line orderings,
lines were oriented in the NW-SE direction, and the natural ordering arranged the
lines starting from the SW corner; and for the two-line orderings, line pairs were
grouped by horizontal lines and the natural listing is from bottom (south) to top
(north). Note that the lines associated with ordering strategies have a relationship
with the direction of flow (see also [4]). For example, for the natural one-line ordering,
when the flow direction is NE, the lines are perpendicular to the direction of flow,
and the Gauss-Seidel and SOR sweeps follow the flow. When the flow direction is
SW, the lines are perpendicular to flow, but the sweeps are in the opposite direction

352 HOWARD C. ELMAN AND GENE H. GOLUB

of the flow. On the other hand, the sweeps for the red-black orderings do not have
a clear relationship to the direction of flow (although the line orientations still do).
The ILU(0) preconditioning entails lower and upper triangular solves, so that, for the
natural line orderings, the preconditioning operation can be thought of as a pair of
bidirectional sweeps.

Tables 4.1-4.4 contain results for centered difference discretizations on a uniform
mesh of width h 1/32. For this class of problems, the analysis of 3 is applicable
when lah/21 and ITh/21 are both less than one, i.e., when cr or T are 10 or 50 in the
problems considered. In these cases, Corollary 1 is used to choose the SOR parameter
w, where p(D-1C) is approximated using the bounds (3.10) and 3.12; here

For the one-line orderings, when both Icrh/21 and]Th/21 are greater than one, the
Fourier analysis of [7] can be used to estimate p(D-iC), from which good values of w
are also obtained (i.e., using the formula for w* in Corollary 1). These values were also
used for the two-line orderings when lah/21 > 1 and ITh/21 > 1, although there is no
theoretical justification for this. We did not examine SOR when one of]ah/21, ITh/2
is greater than one and the other is less than one. Table 4.5 shows the choices of w
used for Tables 4.1-4.4. Note that the analysis of 3 and [7], [8], does not distinguish
between natural and red-black orderings, or between problems where the magnitudes
of cr (or T) are the same but the signs differ.

TABLE 4.5
Values of SOR parameters used for Tables 4.1-4.4.

10
50
100
200
500
1000

One-line orderings
E/W/N/S NE/SE/NW/SW

1.63
1.07

1.52
1.02
1.05
1.27
1.60
1.77

E/W
1.52
1.06

Two-line orderings
N/S NE/SE/NW/SW
1.52 1.44
1.04 1.01

1.05
1.27
1.60
1.77

We make the following observations on the data of Tables 4.1-4.4:
1. For the stationary methods (Gauss-Seidel and SOR), performance depends

on the relationship between flow direction and sweep direction, but the effects vary
depending on the magnitudes of the velocity vectors. For example, for the natural
one-line orderings, when the convection terms are small or moderate in size, the best
performance of the Gauss-Seidel and SOR methods occurs when the sweeps follow
the flow (i.e., when the flow direction is NE). When the convection terms dominate,
the stationary methods perform better when the flow direction forms a nonzero acute
angle with the sweep direction (flow is N or E), than when the sweeps follow the flow.
For the natural two-line ordering, performance for moderate sized convection terms
is best when the flow direction forms an acute angle with the sweep direction (i.e.,
when flow is N, NE, or NW); for convection-dominated systems, performance is best
when the sweep is perpendicular to the flow. It is always the case that sweeping in
the opposite direction of the flow is a bad choice.

2. Performance of stationary methods for the red-black orderings is much less
sensitive to flow directions. In particular, the average iteration counts (over the
eight flow directions) are essentially the same for the natural and red-black orderings.

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 353

This is significant on parallel architectures, where the red-black orderings can be
implemented more efficiently [8]. The minimum iteration counts are typically lower
for the natural orderings than for the red-black orderings.

3. Somewhat different conclusions apply for GMRES/ILU. There is no clear
correlation between direction of flow and performance, except that for convection-
dominated problems, performance for both natural orderings degrades when the di-
rections of flow are not parallel to one of the grid coordinates. We have no simple
explanation for this. The average iteration counts for GMRES/ILU are typically
higher for the red-black orderings than for the natural orderings. Similar results have
been obtained for symmetric problems, with point red-black and natural orderings,
e.g., in [1].

4. One step of the block SOR method is approximately as expensive as one
matrix-vector product and one scalar-vector product [8]. Thus, its cost per step
is approximately IONb multiply-adds, where Nb is the order of A(b). One step of
GMRES(5) with ILU(0) preconditioning entails a preconditioning solve, a matrix-
vector product, and approximately 8Nb vector operations [23], for a total cost of
26Nb multiply-adds. That is, one GMRES/ILU step is about 2.5 times as expensive
as one SOR step. Consequently, the performances of the stationary methods and
GMRES/ILU are comparable for problems with small and moderate-sized convection
terms (where for problems with small convection terms, it is necessary to use a good
SOR parameter to achieve good performance). GMRES/ILU is somewhat more ef-
fective for convection-dominated systems, especially when there is no simple way of
choosing a relaxation parameter. GMRES(5) requires 7Nb storage locations [23], plus
approximately 9Nb for the factors of M. SOR requires essentially one vector of stor-
age for the solution iterates {uk)}, plus storage for the factors of the block diagonal
D. If no pivoting is required, these factors could overwrite the analogous locations of
A(b).

TABLE 4.6
Average iteration counts for the block Gauss-Seidel method, upwind differences.

10 134
50 30

Natural 100 16
One-line 200 9

5OO 5
1000 4
io i43
50 37

Red-blak 100 23
One-line 200 16

500 13
1000 11
io io4
50 27

Natural 100 16
Two-line 200 11

500 7
1000
10 103
50 24

Red-black 100 14
Two-line 2D0 9

500 6
I000

E W N S NE SE
> 0, (0, 0, 0, > 0 > 0

150" 135 150" 77
48 30 48 16
33 16 33 9
26 9 26
22 22 3
20 4 20 2
150" 144 150" 93
39 37 39 31
24 23 24 23
17 16 17 20
13 13 13 17
12 11 12 16
113 105 129 54 95
28 24 41 17 34
17 13 29 11 27
11 8 23 7 23
7 20 20
6 3 19 4 19

"13 113 124 65 90
26 32 34 24 27
15 21 22 18 20
10 16 14 6
6 12 13 12 13
5 11 12 11 12

NW
a--<0

116
34
24
19
17
16
118
33
23
18
15
14

116
34
24
19
17
16
118
33
23
18
15
14
84
20
13
9
6

90
27
13
6
13
12

SW
< 0 Avg.

133 126"
49 36
40 24
35 19
33 15
32 14
124 130"
36 36
26 24
21 18
19 15
18 14
99 ’98
35 28
27 19
23 14
21 11
20 10
94)9’
28 28
20 18
16 10
14 11
13 10

354 HOWARD C. ELMAN AND GENE H. GOLUB

Table 4.6 shows the performance of the block Gauss-Seidel method for solving the
same set of problems using the upwind difference scheme for the first derivative terms.
The main difference from the results for centered differences is that performance
improves as a or T increases. This is because A(b) (as well as A) becomes more
diagonally dominant in these cases. In addition, for the natural one-line ordering,
performance is consistently best when the flow is in the same direction as the sweep
(NE), and good performance is achieved when the sweep and flow directions make an
acute angle. Similar observations apply for the natural two-line ordering, except that
sweeping in the direction of flow (N) is not best when the convection terms are small.
As above, the red-black orderings tend to be less sensitive than the natural orderings
to flow directions.

The results above do not address the issue of accuracy of the discrete solution. If
lah/21 or ITh/21 is greater than one and boundary layers are present in the continuous
solution, then the discrete solution tends to be inaccurate near the boundary layers,
and it is oscillatory when centered differences are used [22]. If the boundary layer
can be located, then one possible remedy is to use local mesh refinement. For the
solution (4.2), for nonzero a or T, there are boundary layers of width O(1/a) (or
O(1/T)) near the outflow boundary. We consider one local refinement strategy, which
we describe in terms of the "horizontal" parameters x and a. In the interval of width

2/v/- containing the boundary layer (at either x 0 or x 1), we use a mesh of size
h such that la/21 -.75; away from that interval, we use h 1/32.2 It was shown in

[6] that this strategy does a good job of resolving the boundary layer with the addition

TABLE 4.7
Average iteration counts for the natural one-line ordering, centered differences and local mesh

refinement.

100
Gauss- 200
Seidel 500

1000
100

GMRES 2O0
ILU 500

1000

> O, < O,
"r--O -r=O
’7 31’
12 37
46 73
134 150"
12 12
10 10
10 10
9 9

N s
a--O, a=O, >0
"r>O -r<O

7’ 31 8
12 37 32
46 73 124
132 150"
6 6 6
4 4 8
4 3 12
4 18

17
28
111

17
18
18
23

NW
a=--<0

17
28
109

17
17
21
24

SW
< 0 Avg.

47 2
80 33
150" 91"

6 10
8 10
11 11
14 13

2 Grid points are distributed from left to right within each of these subintervals, so that the
rightmost mesh width of either interval may differ from h and .

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 355

of a relatively small number of additional mesh points. For example, in the present
set of experiments, when a 100 there are 25 coarse grid points and 14 fine grid
points in the horizontal direction; when a 1000, there are 29 coarse and 43 fine grid
points. (The unrefined mesh contains 31 points in each direction.) Table 4.7 shows
the performance of the Gauss-Seidel and GMRES/ILU methods for four problems
where mesh refinement is used, for the natural one-line ordering. Comparison with
Table 4.1 shows that the behavior of the two iterative methods is essentially the same
as that for uniform meshes. Similar conclusions apply for the three other ordering
strategies. Thus, we conclude that the behavior on uniform meshes is indicative of
behavior where mesh refinement is used to resolve boundary layers. (Experiments
with the Gauss-Seidel method for lal ITI 1000 were not performed because of
storage constraints in our implementation.)

5. Experimental results: Separable variable coefficient problems. In
this section, we examine the use of Corollary 2 to derive bounds on p(D-1C) when
A(b) comes from a separable operator. We consider three model problems taken from
[3]. Other experiments with these problems are described in [7].

PROBLEM 5.1.

-Au+a (I+x2) Ux+TUy=0 onf=(0,1) X(0,1)
u=O on0fl.

Discretization by centered differences gives, after scaling by h2,

x) a(x) -() a() 2,a

+ +

V +

b+e 1 .
For a >_ 0 and T >_ 0, upwind discretization gives

ah crh o(ai=2+--(l+x)_>2+--
aj 2 + Th O(y)

ah(1 + 2Ci+ldi 1 + - xi+l) <_ 1 + ah ,
bj+lej 1 + 7"h rI.

356 HOWARD C. ELMAN AND GENE H. GOLUB

TABLE 5.1
Comparison of computed spectral radii and bounds for the block Gauss-Seidel iteration matrices,

for Problem 5.1 with h 1/32.

(T T

20
40
60

Centered differences
One-line

Computed Bound
.741 .809
.323 .385
.047 .062

Two-line
Computed Bound

.674 .731

.236 .275

.015 .018

Upwind differences
One-line Two-line

Computed Bound Computed Bound
.817 1.298 .772 1.379
.611 1.182 .544 1.212
.455 .961 .386 .985

Table 5.1 compares the bounds for p(.1) p(D-IC)2 obtained from Corollary 2 with
the corresponding computed values of p(:), for h 1/32. For this problem, as well
as the others considered below, we examine several choices of cr and T where for the
largest such choice, maxx Ir(xi)h/21 and maxyj Is(yj)h/21 are both close to one.

PROBLEM 5.2.

-Au + ax2ux O onft=(0,1)(0,1),
u 0 on Oft.

Centered difference discretization gives

) c() -(Y) (Y) 2,a uj

ci+di 1-+---xi+ 1- xi) 1+ 2

Upwind difference discretization gives

ai 2 + axh 2 + ah3 (),
aj 2 (),

2ci+di 1 + axi+h 1 + ah ,
bj+ej 1 .

(72h4

2

Table 5.2 compares bounds for p(.i) with corresponding computed values for Problem
5.2. An entry "-" means that the analysis is not applicable because (3.11) is not
satisfied.

TABLE 5.2
Comparison of computed spectral radii and bounds for the block Gauss-Seidel iteration matrices,

for Problem 5.2 with h 1/32.

Centered differences
One-line

a T Computed Bound
20 .963 1.014
40 .953 1.033
60 .945 1.051

Two-line
Computed Bound

.951 .987

.939 1.011

.928 1.035

Upwind differences
One-line

Computed Bound
.964 3.077
.955 10.37
.947 56.22

Two-line
Computed Bound

.951 6.630

.939

.928

PROBLEM 5.3.

-Au + a(1 2x)u + T(1 2y)uu 0

u--O

on a (0,1) x (0, 1),
on Oft.

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 357

Centered difference discretization gives

-(Y) c(y) 2,ax) a(x)
uj

ci+ldi 1 + --(1 2Xi+l) 1 -(1
=l-2h (1-2xi)(1-2Xi+l)

l-ah2+ (2h3-ha)=,

()(Th(1))bj+ej= 1+ (1-2yj+) 1- -2yj

N 1- The + (2ha ha) .
For a 0 and T 0, upwind discretization gives

ai 2 + a 1 2xih R 2 a(),
a 2 + rl 2NIh X 2 a(u),

ei+ldi 1 + all 2Xi+llh N 1 + ah (,

b+e 1 + TI 2y+llh 1 + Th .
Table 5.3 compares bounds and computed values of p() for Problem 5.3; the entry
"-" indicates that either (3.9) or (3.1) is not satisfied.

TABLE 5.3
Compason of computed spectral radii and bounds for the block Gauss-Seidel iteration matces,

]or Problem 5.3 with h 1/32.

Centered differences Upwind differences
One-line

a T Computed Bound
20 .854 .921
40 .733 .852
60 .629 .788

Two-line
Computed Bound

.813 .869

.669 .785

.553 .710

One-line
Computed Bound

.871 3.611

.780

.703

Two-line
Computed Bound

.833 6.986

.723

.634

To understand these results, it is useful to recall the constant coefficient problem
(4.1). For that problem, the parameters associated with centered differences are given
by (4.3). As shown in [7], [8], if both ah/2 < 1 and Th/2 < 1, then the bounds from
Corollary 2 essentially have the form 1 O(a2h2) O(T2h2). In particular, if either
ah/2 or Th/2 are near 1, then or r] are close to 0, and the bounds from Corollary
2 are very small. For Problem 5.1, r(x) (the coefficient of u) is bounded below
away from 0, so that for large a, the contribution hr(xi)/2 cannot be small for any
xi. Consequently, the bounding value is qualitatively like its constant coefficient
counterpart (compare (5.1) and (4.3)). Moreover, c(), c(y) and have the same
values as in the constant coefficient case. (This is true for () and c(y) with all three
problems considered here.) Thus, the bounds from Corollary 2 behave like their
constant coefficient analogues. For Problem 5.2, the upper bound corresponds to a
value for xi(= h) for which the differential operator is locally nearly selfadjoint; the
resulting bounds typically do not even guarantee convergence, and they are larger

358 HOWARD C. ELMAN AND GENE H. GOLUB

than what would be obtained in the selfadjoint case. For Problem 5.3, 1-O(oh2)
and 1-O(ah2), which lead to asymptotic bounds of the form 1-O(ah2)-O(’rh2);
these are larger than those occurring for Problem 5.1 but smaller than for Problem
5.2. Note that for all three problems, the bounding values are qualitatively similar to
the behavior of 1.

The parameters for upwind differences applied to the constant coefficient problem
are

a(x) 2 + ah, ay) a(y) 2 + Th, 1 + ah, 1 +

In this ce, the bounds on p(D-1C) from Corollary 2 are less than one, nd they
decrease with increasing a or (see [7], [8]). However, the extra inequalities required
to define a(x) nd a(y) decrease the size of the denominators in (3.10) and (3.12) and
limit the usefulness of the corollary. For Problem 5.1, ah is replaced by ah/2 in a(),
and the bounds on p(D-C) are less than one only when ah is large. The bounds for
Problems 5.2 and 5.3, where they are defined, do not provide any useful information.

6. Experimental results: Nonseparable variable coefficient problems.
We now examine the performance of the iterative methods for solving some nonsepa-
rable problems. Our goals are to examine the effectiveness of the block Gauss-Seidel
and SOR methods, and ILU-preconditioned GMRES, for solving such problems; and
to determine whether the analytic results of [7], [8], and 3 are of use in predicting
behavior.

The following problem, from [19], models the circular flow of a cold fluid with a
hot wall at the right boundary.

PROBLEM 6.1.

-eAu + 2y(1 x2)ux 2x(1 y2)uy 0

u=O
u 100

u--O

Un "-0

on t (--1, 1) x (0, 1),
on 0 _< y _< 1, x --1,
onO_<y_<l,x=l,

on --l_<x<O,y=O,

on 0 _< x _< 1, y--O,
on --1_<x_<1, y=1.

The velocity vectors have turning points in the vertical component, and their mag-
nitudes vary throughout the domain of definition. The solution contains a boundary
layer at x 1. Figure 6.1 shows the boundary conditions and streamlines, and the
general shape of the solution, for e 1/100.3 A related problem, differing from
Problem 6.1 only in the boundary conditions, was also considered in [9]; experimental
results were qualitatively similar to those presented below.

As above, we consider both centered difference and upwind difference discretiza-
tions. At the outflow boundary x _> 0, y 0, we used first order upwind differences

0 0)

i.e., u(xi, O) u(xi, Yl). For the centered difference scheme, we consider both a
square 31 31 mesh, and a uniform mesh of width h 1/32. The first choice

3 The discrete solution was computed using centered differences with 31 interior grid points in
each direction; the figure includes the exact solution values at x =i=l and y 1, but not at y 0.

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 359

u=0

u=0

0
-1 1u=0 0 u =0

n

u=lO0

FIG. 6.1. Boundary conditions and solution for Problem 6.1.

produces matrices with the same algebraic structure as those considered in 4-5, but
the horizontal mesh width is twice that of the vertical width; the second choice leads
to lines of different length in the grid. We also consider a strategy for improving the
accuracy of the solution, based on defect correction methods. For all tests, the initial
guesses and stopping criteria are as in 4.

Table 6.1 shows average iteration counts for solving the reduced system derived
when centered differences are applied on a square 31 31 grid. Here, the grid sizes
for the full system are uniform in each of the x and y coordinates, with hx 1/16
and hy 1/32. As in the constant coefficient case (4), block relaxation is most
effective for intermediate values of e-1, where it is competitive with GMRES/ILU.
The latter method is more effective when e-1 is either small or large. The perfor-
mance of the stationary methods is fairly insensitive to the choice of ordering. This is
consistent with the fact that, because of variable directions of flow, there is no clear
correspondence between lines and flow direction. On the other hand, as in 4, the
performance of GMRES/ILU is typically better with the natural orderings than with
the red-black orderings. We remark that in a few experiments with Orthomin [5], we

360 HOWARD C. ELMAN AND GENE H. GOLUB

TABLE 6.1
Average iteration counts for Problem 6.1 on a 31 31 grid (hx 1/16, hy 1/32), with centered

differences. Numbers in parentheses are approximate number of digits of accuracy when methods
did not meet the stopping criterion.

Ordering

Gauss-
Seidel

GMRES
/ ILU

Natural one-line
Red-black one-line
Natural two-line
Red-black two-line
Natural one-line
Red-black one-line
Natural two-line
Red-black two-line

0 0 00 200 00 000
122 22 27 57 150 (4) 150 (1)
119 26 29 63 150 (4) 150 (1)
114 24 26 54 150 (4) 150 (1)
111 25 26 54 150 (4) 150 (1)
10 7 7 8 15 33
27 27 34 37 46 74
14 10 10 10 19 87
24 21 26 26 42 71

found Orthomin(5) to be somewhat less robust than GMRES(5).
TABLE 6.2

Average iteration counts for Problem 6.1, with the natural one-line and two-line orderings,
on a uniform grid with mesh size h 1/32 and centered differences. Numbers in parentheses are
approximate number of digits of accuracy when methods did not meet the stopping criterion.

Method
G.S. Natural one-line
G.S. Natural two-line
GMRES/ILU Natural one-line

.GMRES/ILU Natural two-line

10 50
0 () 2S
129 27
17 11
20 14

/
i00 200’ 500 000
22 35 122 150 (3)
22 34 101 150 (3)
10 10 16 150 (3)
12 12 17 64

Table 6.2 shows iteration counts for solving the reduced system derived from an
underlying uniform mesh of width h 1/32, for block Gauss-Seidel and GMRES/ILU,
with the two natural line orderings. The lines are oriented as in Fig. 2.2. These
results are similar to those of Table 6.1, except that GMRES/ILU has trouble with
one problem class (e 1/1000 with the natural one-line ordering). In this case, the
iteration "stagnates," in the sense that the residual norm IIg(b) A(b)ub)II2 remains
constant over many iterations.4 In contrast, whenever the block relaxation methods
fail to meet the stopping criterion, they appear to be converging.

TABLE 6.3
Average iteration counts for Problem 6.1 on a 31 31 grid (hx 1/16, hy 1/32), with upwind

differences.

Ordering
Natural one-line

Gauss-
Seidel

GMRES
/ ILU

Red-black one-line
Natural two-line
Red-black two-line
Natural one-line
Red-black one-line
Natural two-line
Red-black two-line

10 50 100 200 500 1000
142 31 24’ 21 18 17
139 37 29 26 24 23
132 32 25 23 20 19
131 35 27 22 20 19
10 8 8 7 7 6
29 25 28 32 36 37
15 10 10 9 8 7
28 20 20 21 26 25

Table 6.3 shows average iteration counts for solving the reduced system derived
when upwind differences are applied to Problem 6.1. Note that the mesh points used

Stagnation of this type also occurs for GMRES(10) and GMRES(15).

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 361

for discretization depend on the direction of flow (see 2), and the reduced matrices
A(b) are always diagonally dominant. The results of Table 6.3 (for the stationary
methods) are consistent with those for constant coefficient problems.

A methodology for improving accuracy that does not require a priori knowledge
about the solution is the class of defect correction methods. A description of this ap-
proach can be found in [12], which contains several other references. For the operator
Lu =_ -Au + ru + suy, let A,h denote the matrix associated with the (second
order) centered difference discretization on a uniform mesh of width h. For > e, let
A,h denote the analogous matrix derived from L. In its simplest form, the defect
correction iteration consists of the following steps, where f is the discrete right-hand
side.

Solve A,hu(m) f.
For m-- 0, 1,..., Do

r(.) f A,hU(m)

Solve A=,hd(m) r(m)

u(m/l) u(m) + d(m)

End

The idea is to compensate for instabilities associated with high order operators using
lower order operators. For the choice e / ch where c > 0 is a fixed constant,
A,h is a first order discretization. At every step of the iteration, Ae,h is used only
to calculate the residual, and a linear system with coefficient matrix A,h must be
solved. Thus, the cost of this method is highly dependent on the cost of solving the
linear system.

Any c > 0 prevents the convection terms from dominating the discrete problem,
for arbitrarily small e. For c >_ max{Ir(x,y)l/2, Is(x,y)l/2}, A,h and the resulting
reduced matrix 4(5)

",h are diagonally dominant M-matrices. For Problem 6.1, this gives
c 1. However, Hemker [15] has observed that (using a variant of the algorithm
above) better accuracy is obtained with smaller c. Following [15], we use c- 1/2. The
differential operator L for Problem 6.1 is then equivalent to

2y(1 x2) 2x(1 y2)-Au + u u.e+h/2 e+h/2
We refer to the discretization of this operator by centered difference as the "defect
correction discretization." Table 6.4 shows the performance of the various iterative
methods for solving the resulting reduced linear systems. (See [15] for a discussion
of the overall iteration.) These results are qualitatively similar to performance for
upwind differences.

7. Concluding remarks. In this paper, we have continued the study of line
iterative methods for solving reduced systems begun in [7], [8]. We have extended the
analysis in two ways. First, for matrices that arise from variable coefficient separable
differential operators, we derived conditions under which the reduced matrices can be
symmetrized via diagonal similarity transformations; previous results applied only to
constant coefficient problems. Symmetrization is the key to the analysis of conver-
gence behavior for the constant coefficient case. In the present analysis, it determines
conditions under which the classical analysis of SOR applies, from which the optimal
SOR parameter can be expressed as a simple function of the maximum eigenvalue of
the line Jacobi iteration matrix, and it leads to some analytic bounds on performance
for separable problems. In addition, we used regular splitting results to show that the

362 HOWARD C. ELMAN AND GENE H. GOLUB

TABLE 6.4
Average iteration counts to solve the linear systems arising from the defect correction method,

for the natural one-line and two-line orderings on a uniform grid with mesh size u= 1/32. Numbers
in parentheses are approximate number of digits of accuracy when methods did not meet the stopping
criterion.

Method
G.S. Natural one-line
G.S. Natural two-line
GMRES/ILU Natural one-line
GMRES/ILU Natural two-line

/
10 50 100 200 500 1000
150 (4) 42 32 28 2’6 25
0() s 0
17 12 12 11 11 11
21 16 14 14 13 ..3

analysis of line Jacobi splittings can be extended to splittings based on incomplete
LU factorizations, for various line orderings of the reduced grid. The results help ex-
plain the good performance of IC preconditioners applied to the nonsymmetric matrix
problems arising from the convection-diffusion equation.

We have also performed an extensive set of numerical experiments that exam-
ine the effects of direction of flow, discretization, and grid ordering on performance
of the line iterative methods. For constant coefficient problems, the results reveal
correlations between relaxation sweep direction and direction of flow that are not dis-
played by any analytic results. They also show that for block relaxation methods,
red-black orderings are less sensitive to flow directions than natural orderings, whereas
for IC-preconditioned GMRES, convergence is faster for natural orderings than for
red-black orderings. In addition, both block relaxation and IC preconditioned GM-
RES are effective for many problems where the analysis does not apply. In general,
IC-preconditioned GMRES is more robust than block relaxation. Finally, experimen-
tal results for problems with variable coefficients or locally refined grids are largely
consistent with analysis and experiments for constant coefficients and uniform grids.

REFERENCES

[1] C. C. ASHCRAFT AND R. G. GRIMES, On vectorizing incomplete factorization and SSOR pre-
conditioners, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 122-151.

[2] R. BEAUWENS, Factorization iterative methods, M-operators and H-operators, Numer. Math.,
31 (1979), pp. 335-357, 1979.

[3] E. F. F. BOTTA AND A. E. P. VELDMAN, On local relaxation methods and their application to
convection-diffusion equations, J. Comput. Phys., 48 (1981), pp. 127-149.

[4] R. C. Y. CHIN AND T. A. MANTEUFFEL, An analysis of block successive overrelaxation for a
class of matrices with complex spectra, SIAM J. Numer. Anal., 25 (1988), pp. 564-585.

[5] S. C. EISENSTAT, n. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for non-
symmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345-357.

[6] H. C. ELMAN, Relaxed and stabilized incomplete factorizations for non-self-adjoint linear sys-
tems, BIT, 29 (1989), pp. 890-915.

[7] n. C. ELMAN AND G. H. GOLUB, Iterative methods for cyclically reduced non-self-adjoint linear
systems, Math. Comp., 54 (1990), pp. 671-700.

[8] , Iterative methods for cyclically reduced non-self-adjoint linear systems II, Report
UMIACS-TR-89-45, Department of Computer Science, University of Maryland, College
Park, MD, 1989; Math. Comp., 56 (1991), pp. 215-242.

[9] Line iterative methods for cyclically reduced discrete convection-diffusion problems,
Report UMIACS-TR-90-16, Department of Computer Science, University of Maryland,
College Park, MD, 1990.

[10] K. FAN, Note on M-matrices, Quart. J. Math. Oxford Ser. (2), 11 (1960), pp. 43-49.
[11] G. E. FORSYTHE AND W. R. WASOW, Finite Difference Methods for Partial Differential Equa-

tions, John Wiley and Sons, New York, 1960.
[12] W. HACKBUSCH, Multi-Grid Methods and Applications, Springer-Verlag, Berlin, 1985.

LINE ITERATIVE METHODS FOR CONVECTION-DIFFUSION PROBLEMS 363

[13] L. A. HAGEMAN AND R. S. VARGA, Block iterative methods for cyclically reduced matrix equa-
tions, Numer. Math., 6 (1964), pp. 106-119.

[14] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic Press, New York,
1981.

[15] P. W. HEMKER, Mixed defect correction iteration for the accurate solution of the convection

-diffusion equation, in Multi-grid Methods, W. Hackbusch and U. Trottenberg, eds., Lecture
Notes in Mathematics 960, Springer-Verlag, Berlin, 1982.

[16] L. LAMPORT, The parallel execution of DO loops, Comm. ACM., 17 (1974), pp. 83-93.
[17] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear systems of

which the coejficient matrix is a symmetric M-matrix, Math. ComB., 31 (1977), pp. 148-
162.

[18] J. P. MILASZEWICZ, Improving Jacobi and Gauss-Seidel iterations, Lin. Alg. Appl., 93 (1987),
pp. 161-170.

[19] K. W. MORTON, Generalised Galerkin methods for steady and unsteady problems, in Numerical
Methods for Fluid Dynamics, K. W. Morton and M. J. Baines, eds., Academic Press,
Orlando, FL, 1982.

[20] S.V. BARTER AND M. STEUERWALT, Block iterative methods for elliptic and parabolic difference
equations, SIAM J. Numer. Anal., 19 (1982), pp. 1173-1195.

[21] PCGPAK User’s Guide, Version 1.04, Scientific Computing Associates, New Haven, CT, 1987.
[22] P. J. ROACHE, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1982.
[23] Y. SAAD AND M. n. SCHULTZ, GMRES: A generalized minimual residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
[24] J. SHELDON, On the spectral norms of several iterative processes, J. Assoc. Comput. Mach., 6

(1959), pp. 494-505.
[25] R. S. VAIGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[26] H. F. WEINBERGER, A First Course in Partial Differential Equations with Complex Variables

and Transform Methods, Blaisdell, New York, 1965.
[27] Z. WONICKI, Two-sweep iterative methods for solving large linear systems and their application

to the numerical solution of multi-group multi-dimensional neutron diffusion equation,
Ph.D. thesis, Report N1447/CYFRONET/PM/A, Institute of Nuclear Research, Swierk,
Poland, 1973.

[28] D. M. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 364-378, January 1992

() 1992 Society for Industrial and Applied Mathematics
019

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER
FOR THE FINITE ELEMENT SOLUTION
OF LINEAR ELASTICITY PROBLEMS*

BARRY F. SMITHi

Abstract. For linear elasticity problems the finite element method is an extremely successful
method to model complicated structures. The successful implementation requires the solution of
very large, sparse, positive definite linear systems of algebraic equations. A new technique for
solving these systems using the preconditioned conjugate gradient method is proposed. Using ideas
from both additive Schwarz methods and iterative substructuring methods, it is proven that the
condition number of the resulting system does not grow as the substructures are made smaller and
the mesh is refined. This result holds for two and three dimensions. Numerical experiments have
been performed to demonstrate the power of this method. For linear elasticity problems in two
dimensions the condition numbers are observed numerically to be less than four when using a regular
mesh.

Key words, additive Schwarz methods, domain decomposition, elliptic equations, finite ele-
ments, iterative substructuring, linear elasticity, preconditioned conjugate gradient, Schur comple-
ment

AMS(MOS) subject classifications. 65F10, 65N30

1. Introduction. We introduce a new domain decomposition method of solving
the linear systems arising from the finite element discretization of coupled elliptic
systems using a preconditioned conjugate gradient method. The method incorpo-
rates certain features of both additive Schwarz methods and iterative substructuring
methods. We prove that for second-order, selfadjoint, uniformly elliptic systems the
condition number of the resulting preconditioned linear system is bounded indepen-
dently of the number of substructures and the mesh refinement. The method is highly
parallelizable.

Very early, Sobolev [31] showed that the Schwarz alternating method converges
for the equations of linear elasticity. More recent work using the Neumann-Dirichlet
algorithm was done by Bjcrstad and Hvidsten [4]. De aoeck [15] has implemented
an iterative substructuring type algorithm for elasticity problems. Hughes and oth-
ers have been using element-by-element preconditioning [21], [33], on large structural
problems. The preconditioned problems for these latter two algorithms still can re-
quire hundreds of conjugate gradient iterations.

For the p-version finite elements Mandel has analyzed iterative substructuring
type algorithms for elasticity [23], [24], [25], [26]. Other work using the p-version
finite elements has been done by Babuka, Craig, Mandel, and Pitkranta [1] and
Babuka, Griebel, and Pitkranta [2].

Much work using domain decomposition has focused on the scalar elliptic problem,
including Bj0rstad and Widlund [5], [6]; Bramble, Pasciak, and Schatz [7], [9], [10];
Chan and Resasco [11], [12]; Dryja [16], [17]; Dryja and Widlund [18], [19]; and
Widlund [34]. The work by Matsokin and Nepomnyaschikh [27] discusses a Schwarz
alternating algorithm that has some similarities to that presented in this paper.

Received by the editors April 5, 1990; accepted for publication (in revised form December 2,
1990. This work was supported in part by the National Science Foundation under grant NSF-CCR-
8903003 and in part by the Norwegian Research Council for Science and the Humanities under grant
D.01.08.054 and The Royal Norwegian Council for Scientific and Industrial Research under grant
IT2.28.28484 at the University of Bergen, Bergen, Norway.

Argonne National Laboratory, 9700 South Cass Ave., Argonne, Illinois 60439.

364

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 365

2. The discrete problem. We consider a second order, symmetric, coercive,
bilinear form an(u, v) on a bounded polyhedral (polygonal) domain g/and, for sim-
plicity, impose a homogeneous Dirichlet condition on 0. The variational problem is
then to find u e (H())q, such that,

v) v e

Our specific applications are various linear elasticity models, where q is from 2 to 6,
cf. [14]. Our results also hold for the scalar case q 1.

We perform two levels of triangulations into substructures i and then triangulate
the substructures into elements, and assume shape regularity and that the substruc-
tures and elements satisfy the usual rules of finite element triangulations; see, e.g.,
Ciarlet [13]. vH() C (H]())q and Yh(-) C (H())q are the spaces of continuous,
piecewise linear functions, on the two triangulations, which vanish on the boundary
0. We will be working only with piecewise linear finite elements but note that the
theory may also hold for higher order elements.

The discrete variational problem is then of the form, find Uh E vh(-), such that,

(1) a(uh, Vh) f(Vh), /Vh e vh(12).

This finite dimensional variational problem is turned into a linear system of equations
by introducing a basis (i) for the space Vh. We use the standard nodal basis functions
in Vh. If we express the solution as Uh . xi, we obtain the linear system

Here x is the vector of unknowns xi, f the vector of components f(i), and K the
stiffness matrix Kij an(, Cj).

Using subscript notation explained below, for any block matrix

KII KIB)K KBI KBB

with KIX nonsingular, the Schur complement of K is given by

S-- KBB KBIK-KIB.
This is the block that remains after the variables associated with KII have been
eliminated by Gaussian elimination. We give, without proof, the important lemma.

LEMMA 2.1. If K is symmetric, positive definite and if x is partitioned in the
same manner as K,x (xi, xB)T, then .for any given Xs,

xSXB minxTKx.

The minimizing extension XI is referred to as the discrete harmonic extension. This
is a direct analogy to the continuous case for the Laplacian. The discrete harmonic
extension satisfies the relation KIIXI + KIBXB O.

With each substructure ilk, we can associate the portion of the stiffness matrix
K arising from the integration over that substructure,

K ak (i, Cj).

366 BARRY F. SMITH

Similarly, the subvector of unknowns associated with this substructure is called x(k).
Since we are working with nodal basis functions the support of i associated with any
node in the interior of a substructure lies completely in that substructure. Therefore
there are no couplings between unknowns associated with the interiors of two different
substructures. For each substructure, we partition the variables into those associated
with a node in the interior of the substructure, x(ik), and those on the boundary of
the substructure, x(). To simplify notation, we pad the subvectors x(k) and subma-
trices g(k) by zeros so that the following equation makes sense. This is called the
subassembly process; cf. [19].

i iI l l I)
The Schur complement of the global stiffness matrix K is then given by

("(k T g(iki)- g(iks))x(skk’BB IB
k

k

Each of the Schur complemems, S(k), can be formed independemly and in parallel.
We are now left with the still large linear system

SXB g.

This system will be solved using the preconditioned conjugate gradient method. The
preconditioner is constructed using the ideas developed in the theory of additive
Schwarz methods.

3. Schwarz methods: An abstract framework. Suppose that we wish to
solve the following finite dimensional variational problem. Find u E V, such that,

(2) a(u, v)= f(v), V v e V.

Here a(., .) is a symmetric, positive definite bilinear form. For our purposes a(.,-) will
be the bilinear form induced by the matrix S. Let V be a set of subspaces of V so that
V V1 +... + VN. With each subspace there is a corresponding projection operator
Pi, which is the projection in the a(u, v) inner product onto the subspace V, i.e.,

(3)

Piu can be determined by introducing a basis {i)} for V and expanding Piu in that

basis, Piu j J-(i)./.(i).j This results in the linear system

/(i)((i) f(i),
(i) (i) (i) f(i) is the vector defined by f(i)).where K az (,z),and

The additive Schwarz method, see Dryja and Widlund [19], of solving (2) is to
introduce an auxiliary problem

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 367

which has the same solution as (2). Since Pu can be found by (3) without knowing
the solution of (2), we first compute] and then solve (4) using the conjugate gradient
method.

The conjugate gradient method can be an effective method for the solution of a
symmetric (in any inner product) positive definite linear system. The decrease in the
energy norm of the error after m steps can be bounded by

2 +1
where (P) is the condition number of the matrix P, see, e.g., Golub and Van Loan

The reason for going from problem (2) to problem (4) is that by a suitable choice
of the subspaces V we can turn a large ill-conditioned system into a very well con-
ditioned problem at the expense of solving many small independent linear systems.
The following two lemmas allow us to develop bounds on the condition number of P.

LEMMA 3.1. Consider the undirected graph with a node for each subspace V, and
an edge between node i and. node j if and only if V N V O. Let p be the number of
colors needed to color the graph so that no two nodes connected by an edge have the
same color. Then

max(P)

_
p.

Proof. All the subspaces for a particular color are disjoint, hence their correspond-
ing projection operators are mutually orthogonal. Therefore the sum of the projection
operators of a particular color is itself a projection operator. P then consists of p of
these composite projection operators each with a maximum eigenvalue of one; thus
max(P)

_
p.

LEMMA 3.2 ([18], [22], [28]). Assume that for all u e V, there exists a represen-
tation u -i ui with ui E V such that

a(ui, ui)

_
Ca(u, u),

then

min(P)

_
C2.

Throughout this paper c, C, and Co represent generic constants independent of h
and H.

Proof.

Therefore,

_< lull a

By the assumption of the lemma and a property of projections,

]U]2a <_ CZ]Piul2a C a(Piu, u) Ca(Pu, u).

368 BARRY F. SMITH

4. The new algorithm. The variational problem we are solving, after the un-
knowns in the interior of the substructures have been eliminated, is to find h E Ih,
such that,

where Izh is the subspace of Vh of discrete harmonic functions. The matrix formula-
tion of the problem is to find xB, such that,

ySxB yg,
The vectors ys and xs are, as in 2, the coefficients of the finite element functions
restricted to F.

For our algorithm we use the following subspaces: a global coarse space, and
spaces associated with overlapping regions of F. We can regard the boundaries of
the substructures as consisting of three pieces: the substructure vertices, the edges
between substructure vertices, and the faces of the substructures. In two dimensions
there are no faces, only vertices and edges. To obtain the overlapping regions for the
Schwarz method we introduce the faces Fv. We choose FE to be regions consisting
of an edge and an overlap onto the adjacent faces to a distance of order H from the
edge. The Fy are regions consisting of a vertex and an overlap onto all adjacent faces
and edges to a distance of order H from the vertex. We constrain the overlap so that
no portion of F is covered more than four times.

The subspaces of Irh are given by,

VEt (e supp([r) C_ },

V (e supp(lr c_ },

and

{ ?h supp(lr) C_ Fy}.

It is easy to see that each of these spaces is a subspace of rh and that

The matrix projection onto the coefficients of each "face" subspace is given by

S-1RF S,

where RF is the restriction operator that returns only those coefficients associated
with FF and SF is the principal minor of the Schur complement S that is associated
with that same set of coefficients. Note that PF is a matrix projection acting on
the coefficient vector Xs. Corresponding to each PF is a projection in the space h.
The projections onto "edge" and "vertex" subspaces are formed in the same manner.

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 369

Naturally the restriction operators R need never be explicitly represented, instead we
would use something like hardware scatter-gather.

For the coarse space VH, the projection operator is

The operator R/ maps the coefficients of VH to the coefficients of Ih and represents
linear interpolation from VH to ,zh. SH is defined as RHSRI. This results in PH
being a projection matrix in the S inner product. The matrix RHSRI may be
regarded as a submatrix of the Schur complement after a partial change to hierarchical
basis has been made, see Smith and Widlund [30]. In Smith [29] it is shown how this
calculation may be made one subdomain at a time.

The preconditioned problem, corresponding to the abstract theory in 2, is given
by

PXB -ISxB -lg.

The explicit form of the preconditioner is given by

We now present a detailed description of the algorithm. We note that many
opportunities exist for parallelism between and within each step. Naturally, in each
step we would take advantage of the band and sparse structures of the matrices.

Iterative substructuring/additive Schwarz algorithm
1. Form the stiffness matrices

for each substructure by integration.
2. Factor K/(for each substructure.

3. Form the Schur complements S(j) K(j) (J)TK(II)-IK(IJ)BBB IB
4. Form and factor the coarse stiffness matrix SH.
5. Form, by subassembly, SF, SE, and Sv.
6. Factor SF SE and Sv.
7. Form the right-hand sides b(j) for each substructure by integration.
8. Modify the right-hand sides; b()= b)- (J)TK(i)-Ib(j)IB
9. Solve Sxs bB using a preconditioned conjugate gradient method with the

preconditioner

10. Form the right-hand sides for the problems on the interiors of the subdomains

IIBXB

11. Solve for the interior unknowns xJ)= K(IJi)-bJ).

370 BARRY F. SMITH

Steps 1 though 6 can be regarded as a preprocessing stage independent of the partic-
ular loads; they need not be repeated for different loads.

The main result of this paper is now given in Theorem 4.1.
THEOREM 4.1. The condition number of the preconditioned linear system is

bounded independently of the size of the substructures H and the size of the elements
h, i.e.,

(P) (-1S) <_ C.

Proof. We note that no node on F is contained in more than four of the regions
FF* FE, and Fyk Therefore the graph as described in Lemma 3.1 can be colored by
a fixed finite number of colors. Hence by Lemma 3.1 we have Anax(P) _< C.

We first use the coerciveness of our bilinear form an(u, u),

(a),

to make it possible to work in the (Hl(f))q norm instead of the equivalem norm
induced by aa(u, u). To obtain a lower bound, we must demonstrate that for all
gh h, there exists a representation

V
j k

with h h h h h and H yHF e F, E Y e , e such that,

where C0 is independent of gh, h, and H.
We construct this representation follows. We extend the boundary regions

rE,, rN,rV into the neighboring substructures. That is, define the mllowing do-
mains, rN ui i mr all i that satisfy i rN . Define similar domains
Nr the Nee regions, re and vertex regions Fv. This results in a large collection of
overlapping domains. Now apply the result of Appendix A to each component of the
vector-valued function gh separately to obtNn a representation of

hh uH + EuE, +EU + EuhV
j k

which satisfies

HI(a)
j k

The equivalence of the HI() norm and seminorm on Vh follows from iedrichs’
inequality and allows us to apply the result in Appendix A. The continuous, piecewise
linear functions u, u, u, and uH are in the spaces Vh()
H(E), vh() H(V), and VH, respectively.

We now define our representation by taking the restrictions of these new functions
to F and then extending them as discrete harmonic.

~h h

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 371

~h IF uh IFUvk vk

The resulting discrete harmonic, continous piecewise linear functions

are in the spaces Fh, Eh, h1/2, and YH, respectively. The definition of discrete
harmonic then gives us the needed bound in (5). We then apply Lemma 3.2 to
conclude the proof of the theorem.

If we exclude from the algorithm all of the overlap and the "vertex" spaces, we
obtain the iterative substructuring algorithm presented in Dryja and Widlund [19].
That is, in the definition of -1, we drop the terms

and restrict FE to be the edge extended out to but not including the first nodes on
the adjacent faces, i.e., this implies that the restriction operator RE retrieves only
those coefficients associated with the nodes along the edge. Previously it would also
retrieve some coefficients associated with nodes on the adjacent faces. The iterative
substructuring algorithm is also very similar to that introduced by Bramble, Pasciak,
and Schatz [7]. In two dimensions these algorithms have condition numbers that grow
like (1 + log(H/h))2. In three dimensions the condition numbers for these algorithms
grow faster than (H/h) [8], [16].

The algorithm considered here is not intended for the same class of problems as
the algorithm presented in Bramble, Pasciak, and Schatz [7]. It is intended for elliptic
systems, generally in three dimensions, which result in extremely ill-conditioned linear
systems. The construction of the preconditioner, specifically step 3 in the algorithm, is
expensive. However, for this more difficult class of problems, we believe the additional
expense is needed to produce a well-conditioned problem.

5. Numerical results. We have performed numerous experiments with prob-
lems in two dimensions. The problems considered are

The Laplacian using the usual five-point stencil.
The equations of linear elasticity using four node square membrane elements
with two degrees of freedom per node; cf. [3];
The equations of linear elasticity using four node square shell elements with
three degrees of freedom per node; cf. [3].

Experiments have been performed on square and L-shaped regions; since there was
no appreciable difference between the two cases, results are only given for the square
regions. The substructures are squares. For the elasticity problems the stiffness matri-
ces were generated using the SESAM code [3], a large, reliable commercial structural
analysis code, using a Poisson ratio of .3.

The experiments were run twice, once using all the subspaces as indicated in
the algorithm and once excluding the "vertex" spaces. That is, we drop the terms
-,k RTV SJvRv from the preconditioner -1. As expected the condition number re-
mains bounded by a constant independent of H and h when all the spaces were
included. When the "vertex" spaces were excluded the condition number appears to
grow like (1 + log(H/h))2, as expected.

The selection of an appropriate stopping condition for the preconditioned con-
jugate gradient method is crucial. A stopping criteria based only on a norm of the

372 BARRY F. SMITH

TABLE 1
Condition numbers and iteration counts for the Laplacian.

Number
of

subdomains

Nodes Number, of No Without With
along unknowns preconditioner "vertex" "vertex"
edge on F spaces spaces

16 3 81 35.26 14 4.92 7 2.45 6
7 177 75.10 24 7.59 9 2.55 7
15 369 155 37 10.89 10 2.82 7
31 753 315 51 14.84 11 2.99 7

64

256

3 385 137 32 5.35 9 2.60 8
7 833 290 49 8.19 10 2.68 8
15 1729 598 70 11.54 12 2.78 8
31 3521 1216 * 15.62 13 2.87 8
3 1665 545 62 5.46 9 2.63 8
7 3585 1151 91 8.27 10 2.70 7
15 7425 2372 * 11.77 12 2.80 7
31 15105 4766 * 15.90 13 2.89 7

TABLE 2
Condition number as function of overlap for the Laplacian.

Overlap in nodes 0 1 2 3 4 5 6 7 8
Condition number 15.62 4.49 4.01 3.78 3.52 3.38 3.01 2.92 2.81
Iterations 13 8 8 8 8 8 8 8 8

residual can make comparisons between preconditioned and unpreconditioned results
misleading since the eigenvalues of the two operators can be of completely differ-
ent orders of magnitude. For instance, for elasticity problems the eigenvalues of the
original stiffness matrices can be of order 1012, while the eigenvalues of the precondi-
tioned problems generally are of order 1. We have therefore chosen to use the stopping
condition

I[residual[[L2 <_ el[approx, solution[]L2Amin(/-lS).

’min (--1S) is calculated using the Lanczos method at very little extra expense. We
have chosen to use e 10-5; this assures that roughly five digits of the solution are
correct and not many more, regardless of the preconditioner used.

In Table 1 the experiments are conducted for the Laplacian. The overlap of the
"vertex" spaces onto the "edge" spaces is chosen to be HI4. In Table 2, we examine the
effect of varying the amount of overlap of the "vertex" spaces onto the "edge" spaces
for the case with 64 substructures and 31 nodes along the edge of each substructure.
We see that the overlap is very important but a small overlap has almost as much
effect as a larger overlap. We give a sample of the convergence behavior in Table 3,
showing the discrete L2 norm of the error as a function of the number of iterations.
This is again for the case of 64 substructures and 31 nodes along the edge of each
substructure. The linear elasticity problems are considered in Tables 4-9.

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 373

TABLE 3
Errors and convergence rates for Laplacian.

Iter.
No preconditioning Without "vertex" With "vertex"

Spaces Spaces

1
2
3
4
5
6
7
8
9
10
11
12

9.8 x i0-I

9.6 x 10-1

9.5 x 10-1

9.3 x 10-1

9.2 x i0-I

9.1 x i0-I

8.9 x 10-1

8.8 10-1

8.6 x 10-1

8.4 x 10-1

8.2 x 10-1

7.9 x i0-1

.99 3.0 10-2 .03 3.0 x 10-2 .03

.98 9.9 10-3 .10 1.0 10-2 .10

.98 2.2 10-3 .13 4.1 x 10-3 .16

.98 1.2 10-3 .19 9.0 10-4 .17

.98 6.3 x 10-4 .23 7.0 x 10-5 .15

.98 4.5 x 10-4 .28 2.5 x 10-5 .17

.98 1.0 10-4 .27 9.4 10-6 .19

.98 3.6 x 10-5 .28 3.3 10-6 .21

.98 9.5 10-6 .28 3.8 10-7 .19

.98 6.3 10-6 .30 6.7 10-8 .19

.98 7.7 x 10-6 .34 2.4 10-8 .20

.98 3.0 10-6 .35 5.9 10-9 .21

TABLE 4
Condition numbers and iteration counts for membrane elements.

Number
of

subdomains

Nodes Number of No Without With
along unknowns preconditioner "vertex" "vertex"
edge on F spaces spaces

16 3 162 22.16 19 10.52 15 3.51 10
7 354 46.63 28 14.84 17 3.51 10
15 738 96.34 41 19.83 19 3.56 10
31 1506 196 60 25.51 20 3.62 10

64 3 770 84.82 37 12.13 18 3.85 10
7 1666 178 55 16.92 19 3.85 10
15 3458 368 79 22.37 22 3.84 10
31 7042 747 * 28.52 25 3.89 10

256 3 3330 334 75 12.42 18 3.91 10
7 7170 705 * 17.31 19 3.90 10
15 14850 1453 * 22.88 22 3.89 10
31 30210 2921 * 29.15 25 3.94 10

TABLE 5
Condition number as function of overlap for membrane elements.

Overlap in nodes 0 1 2 3 4 5 6 7 8
Condition number 28.55 5.59 4.85 4.36 4.01 3.89 3.88 3.89 3.89
Iterations 25 12 11 10 10 10 10 10 10

374 BARRY F. SMITH

TABLE 6
Errors and convergence rates for membrane elements.

Iter.
No preconditioning Without "vertex"

spaces
With "vertex"

spaces

1
2
3
4
5
6
7
8
9
10
11
12

9.7 x 10-1 .98 8.0 x 10-2 .08 8.7 x 10-2

9.5 x 10-1 .98 3.7 x 10-2 .19 4.2 x 10-2

9.3 x 10-1 .98 I.I 10-2 .22 1.6 10-2

9.2 x 10-1 .98 6.3 10-3 .28 3.9 10-3

9.0 10-1 .98 3.7 10-3 .33 1.1)< 10-3

8.8 X 10-1 .98 3.4 10-3 .39 5.1 10-4

8.6 X 10-1 .98 2.0 X 10-3 .41 1.6 X 10-4

8.3 X I0-I .98 1.4 X 10-3 .44 4.4 X 10-5

8.1 x 10-1 .98 5.1 10-4 .43 1.7 10-5

7.8 10-1 .98 2.3 10-4 .43 5.4 10-6

7.5 x 10-1 .97 2.5 10-4 .47 1.5 x 10-6

7.2 x 10-1 .97 2.6 10-4 .50 5.1 10-7

]IIIL2)1/i
.09
.20
.25
.25
.26
.28
.29
.29
.30
.30
.30
.30

TABLE 7
Condition numbers and iteration counts for shell elements.

Number
of

subdomains

Nodes Number of No Without With
along unknowns preconditioner "vertex" "vertex"
edge on F spaces spaces

16 3 243 452 47 10.51
7 531 442 66 14.83
15 1107 970 * 19.81
31 2259 * * 25.48

17
18
21
23

3.48
3.48
3.53
3.60

10
10
10
10

64 3 1155 1751 * 11.99
7 2499 1707 * 15.93
15 5187 3800 * 22.12
31 10563 * * 28.24

18
19
23
26

3.72
3.74
3.83
3.88

10
10
10
10

256 3 4995 * * 11.63
7 10755 * * 16.19
15 22275 * * 22.58

17
19
22

3.73
3.81
3.85

10
10
10

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 375

A. Appendix: A partitioning result. For two or three dimensions let t be
a polyhedral (polygonal) domain that has been triangulated into substructures that
are shape regular, with diameter O(H). Continue the triangulation to obtain a tri-
angulation with elements of diameter O(h). Furthermore assume that has been
covered with N shape regular overlapping regions Fti (not necessarily related to the
coarse triangulation above), each with a diameter O(H), each of which overlaps all
its neighbors with an overlap of O(H). We require that the domains gti be aligned
with the fine triangulation. Let VH() C H() and vh(") C H(gt) be the spaces
of continuous, piecewise linear functions, on the two triangulations, which vanish on
the boundary 0ft. We then construct the following spaces

Vo v’, v"n U:)(n,).

The following theorem is a variation of a result given in Dryja and Widlund [19].
h uh h suchTHEOREM A.1. For all uh E Vh there exists ui Vih with =o ui

that

where Co is independent of Uh, h, and H.
Proof. From Strang [32], we know that there exists a linear map H Vh

-* VH
that satisfies

lu ZHu ll < CH21L2 (Ft) H1 (gt)

and

We then define

uho Huh, W
h

U
h uho

and

u

Ih is the linear interpolation operator onto the space Vh, and the 0i form a partition
of unity with Oi C(ti), 0

_
0i

_
1, and yN=I 0i 1. Since Ih is a linear operator,

it is immediate that

uh
N

hEUi
i--0

Because of the generous overlap between subregions, we can ensure that the gradients
of 0i are well behaved. That is, 0i can be constructed so that its gradients never
grow faster than IV0il

_
C/H2. If we let K represent any single element in the

triangulation, this can be expressed as

(8) I1 _< C(h/H)2.

376 BARRY F. SMITH

TABLE 8
Condition number as function of overlap for shell elements.

Overlap in nodes 0 1 2 3 4 5 6 7 8
Condition number 28.24 5.62 4.81 4.33 3.98 3.87 3.87 3.88 3.88
Iterations 23 12 11 10 10 10 10 10 10

TABLE 9
Errors and convergence rates for shell elements.

No preconditioning Without "vertex" With "vertex"
Iter. spaces spaces

x/ II’IIL)/ IIII)/IIIIL (IolI) IIIIL (iiolI. IIIIL (Iioli,
1 * * 6.8 x 10-2 .07 7.4 x 10-2 .07
2 * * 3.2 x 10-2 .18 3.6 x 10-2 .19
3 * * 9.4 10-3 .21 1.4 10-2 .24
4 * * 5.3 x 10-3 .27 3.4 x 10-3 .24
5 * * 3.1 x 10-3 .32 1.0 x 10-3 .25
6 * * 3.1 x 10-3 .38 4.7 10-4 .28
7 * * 1.9 x 10-3 .41 1.4 10-4 .28
8 * * 1.4 x 10-3 .44 3.9 x 10-5 .28
9 * * 5.5 10-4 .43 1.6 x 10-5 .29
10 * * 3.3 10-4 .45 4.9 10-6 .29
11 * * 2.5 x 10-4 .47 1.3 10-6 .29
12 * * 2.5 10-4 .50 4.6 10-7 .30
13 * * 2.4 x 10-4 .53 1.5 10-7 .30

Here 0i is the average of 0i on element K.
hWe now estimate the H1 norm of ui over a single element.

+ (o,
< 21wl(K) + 2l/(e)WIH(K),

which can be bounded using an inverse inequality by

luihl2I-II(K) <-- 21iwhl2HI(K) + Ch-211Ih(Oi i)whll2i-(K)"
We now use (8) and the trivial inequality Ile ,ll ,o <_ to obtain

luh I2HI(K <_ 21whI2HI(K) -t- CH-IIwI IL2(K)
hSince a finite bounded number of u are nonzero for any element K, we obtain, when

summing over i,
N

(K)"
i--1

Next sum over the elements K,
N

hl2H < Clwhl2H -t- CH-IlwhlILJui (a) (a)
i--1

To finish the argument, we use (6) and (7) to obtain

N

< H(2)
i----0

AN OPTIMAL DOMAIN DECOMPOSITION PRECONDITIONER 377

Acknowledgments. I would like to thank Petter Bjcrstad and Anders Hvidsten
for their assistance in using the SESAM code and for many useful discussions. I would
also like to thank VERITAS SESAM SYSTEMS, Hcvik, Norway, for the use and
access to SESAM for the generation of test stiffness matrices which were used in the
numerical experiments reported in this paper.

REFERENCES

[1] I. BABUKA, A. CRAIG, J. MANDEL, AND J. PITKRANTA, Efficient preconditioning for the p-
version finite element method in two dimensions, Tech. Rep. 41098, University of Colorado,
Denver, CO, 1989; SIAM J. Numer. Anal., submitted.

[2] I. BABUKA, M. GRIEBEL, AND J. PITK.RANTA, The problem of selecting the shape functions
for a p-type finite element, Internat. J. Numer. Methods Engrg., 18 (1989), pp. 1891-1908.

[3] K. BELL, B. HATLESTAD, 0. E. HANSTEEN, AND P. 0. ARALDSEN, NORSAM, a programming
system for the finite element method, Users manual, Part 1, General description, NTH,
Trondheim, 1973.

[4] P. E. BJORSTAD AND A. HVIDSTEN, Iterative methods for substructured elasticity problems in
structural analysis, in Domain Decomposition Methods for Partial Differential Equations,
R. Glowinski, G. H. Golub, G. A. Meurant, and J. Priaux, eds., Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1988.

[5] P. E. BJORSTAD AND 0. B. WIDLUND, Solving elliptic problems on regions partitioned into sub-
structures, in Elliptic Problem Solvers II, G. Birkhoff and A. Schoenstadt, eds., Academic
Press, New York, 1984, pp. 245-256.

[6] , Iterative methods for the solution of elliptic problems on regions partitioned into sub-
structures, SIAM J. Numer. Anal., 23 (1986), pp. 1093-1120.

[7] J. n. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction of preconditioners for
elliptic problems by substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[8] The construction of preconditioners for elliptic problems by substructuring, II, Math.
Comp., 49 (1987), pp. 1-16.

[9] , The construction of preconditioners]or elliptic problems by substructuring, III, Math.
Comp., 51 (1988), pp. 415-430.
, The construction of preconditioners .for elliptic problems by substructuring, IV, Math.

Comp., 53 (1989), pp. 1-24.
[11] T. F. CHAN AND D. C. RESASCO, A survey of preconditioners for domain decomposition, Tech.

Rep. /DCS/RR-414, Yale University, New Haven, CT, 1985.
[12] , Analysis of domain decomposition preconditioners on irregular regions, in Advances in

Computer Methods for Partial Differential Equations, R. Vichnevetsky and R. Stepleman,
eds., IMACS, 1987.

[13] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978.

[14] , Lectures on three-dimensional elasticity, Springer-Verlag, Berlin, 1983.
[15] Y. DE ROECK, A local preconditioner in a domain-decomposed method, Tech. Rep., Centre

Europe de Recherche et de Formation Avance en Calcul Scientifique, Toulouse, France,
1989.

[16] M. DRYJA, A method of domain decomposition for 3-D finite element problems, in First Inter-
national Symposium on Domain Decomposition Methods for Partial Differential Equations,
R. Glowinski, G. H. Golub, G. A. Meurant, and J. Priaux, eds., Society for Industrial and
Applied Mathematics, Philadelphia, 1988.

[17] , An additive Schwarz algorithm .for two- and three- dimensional finite element elliptic
problems, in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Priaux, and
O. Widlund, eds., Society for Industrial and Applied Mathematics, Philadelphia,1989.

[18] M. DRYJA AND O. B. WIDLUND, An additive variant of the Schwarz alternating method for the
case of many subregions, Tech. Report 339, also Ultracomputer Note 131, Department of
Computer Science, Courant Institute, New York, NY, 1987.

[19] , Some Domain Decomposition Algorithms for Elliptic Problems, Proceedings of the
Conference on Iterative Methods for Large Linear Systems, held in Austin, TX, October
1988, to celebrate the sixty-fifth birthday of David M. Young, Jr., Academic Press, Orlando,
FL, 1989.

[20] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, Johns Hopkins
Univ. Press, Baltimore, MD, 1989.

[10]

378 BARRY F. SMITH

[21] T. R. HUGHES AND R. M. FERENCZ, Fully vectorized EBE preconditioners for nonlinear
solid mechanics: applications to large-scale three-dimensional continuum, shell and con-
tact/impact problems, in First International Symposium on Domain Decomposition Meth-
ods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and
J. Priaux, eds., Society for Industrial and Applied Mathematics, Philadelphia, 1988.

[22] P. L. LIONS, On the Schwarz alternating method. I., in First International Symposium on Do-
main Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub,
G. A. Meurant, and J. Priaux, eds., Society for Industrial and Applied Mathematics,
Philadelphia, 1988.

[23] J. MANDEL, Iterative solvers by substructuring for the p-version finite element method, Comput.
Methods Appl. Mech. Engrg., (1989). To appear in a special issue as Proceedings of an
International Conference on Spectral and High Order Methods, Como, Italy, 1989.

[24] On block diagonal and Schur complement preconditioning, Tech. Report University of
Colorado, Denver, CO, 1989.

[25] , Two-level domain decomposition preconditioning for the p-version finite element ver-
sion in three dimensions, Internat. J. Numer. Methods Engrg., (1989), to appear.

[26] , Hierarchical preconditioning and partial orthogonalization for the p-version finite ele-
ment method, in Proceedings of the Third International Symposium on Domain Decom-
position Methods for Partial Differential Equations, Houston, Texas, 1989, T. F. Chan,
R. Glowinski, J. Priaux, and O. Widlund, eds., Society for Industrial and Applied Math-
ematics, Philadelphia, 1990.

[27] A. M. MATSOKIN AND S. V. NEPOMNYASCHIKH, A Schwarz alternating method in a subspace,
Soviet Mathematics, 29 (1985), pp. 78-84.

[28] S. V. NEPOMNYASCHIKH, Domain decomposition and Schwarz methods in a subspace for the
approximate solution of elliptic boundary value problems. Ph.D. thesis, Computing Center
of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, USSR, 1986.

[29] B. F. SMITH, Domain decomposition algorithms for the partial differential equations of linear
elasticity, Ph.D. thesis, Courant Institute, New York, NY, 1990.

[30] B. F. SMITH AND O. B. WIDLUND, A domain decomposition algorithm using a hierarchical
basis, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 1212-1220.

[31] S. L. SOSOLEV, L’Algorithme de Schwarz dans la Thdorie de l’Elasticitd, Comptes Rendus
(Doklady) de l’Acadmie des Sciences de I’URSS, IV (1936), pp. 243-246.

[32] G. STRANG, Approximation in the finite element method, Numer. Math., 19 (1972), pp. 81-98.
[33] T. E. TEZDUYAR AND J. LIOU, Element-by-element and implicit-explicit finite element formu-

lations for computational fluid dynamics, in First International Symposium on Domain
Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub,
G. A. Meurant, and J. Priaux, eds., Society for Industrial and Applied Mathematics,
Philadelphia, 1988.

[34] O. B. WIDLUND, Iterative substructuring methods: Algorithms and theory for elliptic problems
in the plane, in First International Symposium on Domain Decomposition Methods for
Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J. Priaux,
eds., Society for Industrial and Applied Mathematics, Philadelphia, 1988.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 379-396, January 1992

()1992 Society for Industrial and Applied Mathematics
O2O

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD
FOR AN EFFICIENT PARALLEL SOLUTION OF
LARGE-SCALE FINITE ELEMENT SYSTEMS*

CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX:

Abstract. A domain decomposition algorithm based on a hybrid variational principle is devel-
oped for the parallel finite element solution of selfadjoint elliptic partial differential equations. The
spatial domain is partitioned into a set of totally disconnected subdomains, each assigned to an indi-
vidual processor. Lagrange multipliers are introduced to enforce compatibility at the interface points.
Within each subdomain, the singularity due to the disconnection is resolved in a two-step procedure.
First, the null space component of each local operator is eliminated from the local problem. Next,
its contribution to the local solution is related to the Lagrange multipliers through an orthogonality
condition. Finally, a conjugate projected gradient algorithm is developed for the solution of the cou-
pled system of local null space components and Lagrange multipliers. When implemented on local
memory multiprocessors, the proposed hybrid method requires fewer interprocessor communications
than conventional Schur methods. It is also suitable for parallel/vector computers with shared mem-
ory. Moreover, unlike parallel direct solvers, it exhibits a degree of parallelism that is not limited by
the bandwidth of the finite element system of equations. In this paper, it is applied to the solution
of large-scale structural and solid mechanics problems.

Key words, domain decomposition, finite elements, parallel processing

AMS(MOS) subject classifications. 65N20, 65N30, 65W05

1. Introduction. In this paper, we present a parallel finite element subdomain-
based computational method for the solution of selfadjoint elliptic partial differential
equations. The method blends direct and iterative solution schemes. Its unique fea-
ture is that it requires fewer interprocessor communications than conventional domain
decomposition algorithms, while still offering the same amount of parallelism. Roux
[9], [10] has presented an early version of this work that is limited to a very special
class of problems where a finite element domain can be partitioned into a set of dis-
connected but nonfloating (nonsingular) subdomains. Here, we generalize the method
for arbitrary finite element problems and arbitrary mesh partitions.

In 2, we partition the finite element domain into a set of totally disconnected
subdomains and derive a computational strategy from a hybrid variational principle
where the intersubdomain continuity constraint is removed by the introduction of a
Lagrange multiplier. An arbitrary mesh partition typically contains a set of float-
ing subdomains that induce local singularities. The handling of these singularities is
treated in 3. First, the null space components are eliminated in parallel from each
local problem and a direct scheme is applied concurrently to all subdomains in order
to recover each partial local solution. Next, the contributions of these null space com-
ponents are related to the Lagrange multipliers through an orthogonality condition.

*Received by the editors April 5, 1990; accepted for publication (in revised form) January 30,
1991.

Department of Aerospace Engineering Sciences, and Center for Space Structures and Controls,
University of Colorado, Boulder, Colorado 80309-0429. This work was supported in part by the
National Science Foundation under grant ASC-8717773, and by the Air Force Office of Scientific
Research under grant AFOSR-89-0422.

:O. N. E. R. A. Groupe Calcul Parallele, 29 Av. de la Division Leclerc, BP72 92322 Chatillon
Cedex, France.

379

380 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

A parallel preconditioned conjugate projected gradient algorithm is developed in 4
for the solution of the coupled system of local zero energy modes and Lagrange multi-
pliers, which completes the solution of the problem. Section 5 emphasizes the parallel
characteristics of the proposed method and contrasts it with conventional Schur meth-
ods. Section 6 illustrates the method with the parallel solution of structural examples
on the iPSC/1 hypercube. Finally, 7 concludes this paper.

2. A hybrid variational principle. For the sake of clarity, we consider first
the case of two subdomains, then generalize the method for an arbitrary number of
subdomains.

The variational form of the three-dimensional boundary-value problem to be
solved goes as follows. Given f and h, find the function u that is a stationary point
of the functional:

where

J(v) 1/2a(v, v) (v, f) (v, h)r

a(v, w) ja V(i,j)CijktW(k,l)

(’) fa vI aa

(v, h)r fr vihi dr.

In the above, the indices i,j,k take the values 1 to 3, v(i,j) (vi,y + vy,i)/2 and
denotes the partial derivative of the ith component of v with respect to the jth spatial
variable, cijkl are tensorial coefficients defining a symmetric positive definite operator,
12 denotes the volume of the body, F its piecewise smooth boundary, and Fh the piece
of F where the functions hi are prescribed.

If 12 is subdivided into two regions gtl and t2 (Fig. 1), solving the above problem
is equivalent to finding the two functions u and u2 that are stationary points of the
functionals:

where

Jl(Vl) 1/2a(vl, Vl)l (Vl, f)l (Vl, h)r
J2(v2) 1/2a(v2, v2)a. (v2, f)a2 (v2, h)r2

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 381

FIG. 1. A two-subdomain decomposition.

and that satisfy on the interface boundary F the continuity constraint:

(2.3) ul u2 oafs.

Solving the two above variational problems (2.2) with the subsidiary continuity
condition (2.3) is equivalent to finding the saddle point of the Lagrangian:

J* (v, v2, #) J1 (v) + J2 (v) + (v v2,

(Vl V2, t)F, JfF (Vl V2) dr,

where

that is, finding the two displacement fields Ul and u2 and the Lagrange multiplier
that satisfy

J*(u, u2, #) <_ J*(ul, u2, ,k) <_ J*(v, v2, A)

for any admissible v, v2, and #. Clearly, the left inequality in (2.5) implies that
(u-u2, #)r, <_ (Ul-u2, A)r,, which imposes that (Ul-u2, #)r, 0 for any admissible
and therefore u u2 on F. The right inequality in (2.5) imposes that J1 (u) +
J2(u2) _< J(v)+ J2(v2) for any pair of admissible functions (v, v2). This implies that
among all admissible pairs (v, v2) that satisfy the continuity condition (2.3), the pair
(Ul, u2) minimizes the sum of the functionals J1 and J2 defined, respectively, on f and
t2. Therefore, u and u2 are the restriction of the solution u of the nonpartitioned
problem (2.1) to, respectively, f and f12. Indeed, (2.4) and (2.5) correspond to a
hybrid variational principle where the intersubdomain continuity constraint (2.3) is
removed by the introduction of a Lagrange multiplier (see, for example, Plan [8]).

If now the functions u and u2 are expressed by suitable shape functions as:

Ul NUl and u2 Nu2

382 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

and the continuity equation is enforced for the discrete problem, a standard Galerkin
procedure transforms the hybrid variational principle (2.4) in the following algebraic
system:

(2.6)
Ku -f+BA
K2u2 f2 BA
Bu B2u2

where Kj, uj, and fi, j 1, 2, are, respectively, the generalized stiffness symmet-
ric matrix, the generalized displacement vector, and the prescribed generalized force
vector associated with the finite element discretization of . The vector of Lagrange
multipliers A represents the generalized interaction forces between the two subdomains
1 and "2 along their common boundary FI. Within each subdomain j, we denote
the number of interior nodal unknowns by n and the number of interface nodal un-

knowns by ni.I The total number of interface nodal unknowns is denoted by hi. Note
that ni nI hi2 in the particular case of two subdomains. If the interior degrees of
freedom are numbered first and the interface ones are numbered last, each of the two
connectivity matrices B1 and B2 takes the form

Bj --[Oj Ii], j=l,2,

s I Z identity matrix. The vectorI null matrix and Ij is the nj nwhere Oj is an ni nj
of Lagrange multipliers A is nz long.

If both K1 and K2 are nonsingular, (2.6) can be written as

(BIK-IBIT -b B2K-IB2T)A B2K-If2 BK-Ifl
Ul K-(f -+-BTA)
u2 K(f2 B2TA)

and the solution of (2.6) is obtained by solving the first of equations (2.7) for the
Lagrange multipliers A, then substituting these in the second of (2.7) and backsolving
for ul and u2.

For an arbitrary number of subdomains , the method goes as follows. First, the
finite element mesh is decomposed into a set of totally disconnected meshes (Fig. 2).
For each submesh, the matrix Ky and the vector fj are formed. If ay and Ns denote,
respectively, the number of subdomains k that are adjacent to y and the total
number of subdomains, the finite element variational interpretation of the saddle-
point problem (2.4) generates the following algebraic system:

k--aj

Ku fj + BjkTA
k=l

Bjkuj BkjUk

j= 1, Ns

j 1, N and tk connected to tj

where Bjk is a boolean matrix that interconnects ftj with its neighbors tk. In general,
Bjk is ni (n; + n) and has the following pattern:

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 383

111
’111

FIG. 2. A multiple subdomain decomposition.

[]Ol(j, k)
Sjk Cjk

O2(j, k)
Iwhere O1 (j, k) is an ml (j, k) (n; + ny) zero matrix, O2(j, k) is another m2(j, k)

I) zero matrix and Cjk is an me(j, k) (n -4-n) connectivity matrix, mc(j, k)(n A- nj
is the number of Lagrange multipliers that interconnect Fj with its neighbor k, and
ml (j, k) and m2(j, k) are two nonnegative integers that satisfy ml (j, k) -F m(j, k) +
m2(j, k) ni. The connectivity matrix Ck can be written as

Cjk O3(j,k) Ijk Oa(j,k)

where O3(j,k) is an m(j,k) m3(j,k) zero matrix, Iyk is the m(j,k) m(j,k)
identity matrix, Oh(j, k) is another mc(j, k) m4(j, k) zero matrix, and m3(j, k) and
m4(j,k) are two nonnegative integers that verify m3(j,k)A-m(j,k)+ m4(j,k)
s I

nj -4- nj.
If Ky is nonsingular for all j 1, Ns, the solution procedure (2.7) can be extended

to the case of an arbitrary number of subdomains. However, the finite element tearing
process described in this section may produce some "floating" subdomains 12f that
are characterized by a singular matrix Kf. When this happens, the above solution
algorithm (2.7) breaks down and a special computational strategy is required to handle
the local singularities.

At this point, we note that the utility of Lagrange multipliers specifically for do-
main decomposition has also been previously recognized by other investigators (Dihn,
Glowinski, and Periaux [2]; Dorr [3]).

3. Removing local singularities. Again, we focus on the two-subdomain de-
composition. The extrapolation to N8 > 2 is straightforward. For example, consider
the elastostatic problem and suppose that corresponds to a cantilever beam and
that and 2 are the result of a vertical partitioning (Fig. 3).

In this case, K1 is positive definite and K2 is positive semidefinite, since no
boundary condition is specified over g2. Therefore, the second of equations (2.6)

(3.1) K2u2 f2-B2TA

384 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

111111111111IIIIII11111111|111

FIG. 3. Decomposition resulting in a singular subdomain.

requires special attention. If the singular system (3.1) is consistent, a generalized
inverse of K2 can be found, that is, a matrix K2+ that verifies K2K2+K2 K2, and
the general solution of (3.1) is given by

(3.2) u2 K2+ (f2 B2TA) + R2c

where R2 is an (n + n2/) n rectangular matrix whose columns form a basis of
the null space of K2, and c is a vector of length n. Physically, R2 represents the
rigid body modes (zero energy modes) of 2 and c specifies a linear combination of
these. Consequently, we have n < 6 for three-dimensional problems, and n < 3 for
two-dimensional problems. Substituting (3.2) into (2.7) leads to

(3.3)
K+BT(BIK-IBIT + B2 2 2)*’ -SK-f + B2(K2+f2 + R2c)

Ul Ki-l(fl + BrA)
u2 K2+ (f2 B2Tx)+ R2c.

The following points should be noted.
1. Because By is a boolean operator, the result of its application to a matrix or

vector quantity should be interpreted as an extraction process rather than a
matrix-matrix or matrix-vector product. For example, B2R2 is the restriction of
the null space basis R2 of K2 to the interface unknowns. In the sequel we adopt
the notation:

R2 B2R2.

2. The generalized inverse K2+ does not need to be explicitly computed. For a
given input vector v, the output vector K2+v and the null space basis R2 can be
obtained at almost the same computational cost as the response vector K-lv,
where K1 is nonsingular (See Appendix A).

3. System (3.3) is underdetermined. Both A and c need to be determined before
u and u2 can be found, but only three equations are available so far.

Since K2 is symmetric, the singular equation (3.1) admits at least one solution if
and only if the right-hand side (f2 B2TA) has no component in the null space of K2.
This can be expressed as

(3.4) R2T(f2-B2TA) 0.

The above orthogonality condition provides the missing equation for the complete
solution of (3.3). Combining (3.3) and (3.4) yields after some algebraic manipulations:

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 385

FI -R2 B2K2+ -B1K-lfl
c --R2Tf2]

(3.5) ul K{-l(f +BT))
u2 K2+ (f2 B2T)) / R2c, where

FI (BK-BT + B2K2+B2T)

Clearly, F1 is symmetric positive and R2/ has full column rank. Therefore, the system
of equations in (A, a) is symmetric and nonsingular. It admits a unique solution (A, a)
which uniquely determines ul and u2.

It is important to note that since n < 6, systems (3.5) and (2.7) have almost
the same size. For an arbitrary number of subdomains Ns, of which NI are floating,
the additional number of equations introduced by the handling of local singularities is
bounded by 6Nf. For large-scale problems and relatively coarse mesh partitions, this
number is a very small fraction of the size of the global system. On the other hand, if
a given tearing process does not result in any floating subdomain, a is zero and the
systems of equations (3.5) and (2.7) are identical.

Next, we present a numerical algorithm for the solution of (3.5).
4. A preconditioned conjugate projected gradient algorithm. Here we

focus on the solution of the nonsingular system of equations:

(4.1) -R2/T O c --R2Tf2
FI BK-BT / B2K2+B2T.

We seek an efficient solution algorithm that does not require the explicit assembly of
FI.

Clearly, the nature of FI makes the solution of (4.1) inadequate by any technique
that requires this submatrix explicitly. This implies that a direct method or an iter-
ative method of the SOR type cannot be used. The only efficient method of solving
(4.1) in the general sparse case is that of conjugate gradients, because once KI and
K2 have been factorized, matrix-vector products of the form Fly can be performed
very efficiently using only forward and backward substitutions. Unfortunately, the
Lagrangian matrix

L
-R 0

is indefinite so that a straightforward conjugate gradient algorithm cannot be directly
applied to the solution of (4.1). However, the conjugate gradient iteration with the
projected gradient (see, for example, Gill and Murray [7]) can be used to obtain the
sought-after solution. In order to introduce the latter solution algorithm, we first note
that solving (4.1) is equivalent to solving the equality constraint problem:

minimize

subject to

(() 1/2.,kTFI, -t- (BK-lf B2K2+f2)T)
R2T, R2Tf2.

386 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

Since 1i is symmetric positive, a conjugate gradient algorithm is most suitable for
computing the unique solution to the unconstrained problem. Therefore, this algo-
rithm will converge to the solution to (4.1) if and only if it can be modified so that

the constraint RTA RTf2 is satisfied at each iteration. This can be achieved by
iTprojecting all the search directions onto the null space of R2

The result is a conjugate gradient algorithm with the projected gradient. It is of
the form:

Initialize

Pick A(o) such that RTA() RTf2

r() [I R2/RITRI T]2 2)-1R2 (B2K2+f2 B1K-lfl)

Iterate k- 1, 2,... until convergence

(4.4)

fl(k) r(k-1)Tr(k-1)/r(k-2)Tr(k-2 (fl(1) O)
s(k) r(k-) + fl(k)s(k-) (s() r(0))
/(k) r(k-)Tr(k-1)/S(k)TFis(k
A(k) A(k-1) + (k)s(k)
r(k) r(k-) (k)[I R2/(R2/TR2/)-R2/T] F,s().

Given the projection operator [I- R2(R2/TR2/)-R2/T], it is easily checked that
ITthe projected residual vector r(k) is parallel to the null space of R2 at each iteration

k, and that R2/Ts(k) 0 for all k _> 1. Therefore, R2TA(k) R2/TA(o), which indicates
that the approximate solution)(k) satisfies the linear equality constraint of problem
(4.1) at each iteration k. It is also important to note that within each iteration, only
one projection is performed. This projection is relatively inexpensive since the only- IT- Iimplicit computations that are involved are associated with the matrix 2 ., which
is at most 6 6. This matrix is factored once, before the first iteration begins. Except
for this small overhead, algorithm (4.4) above has the sme computational cost as the
regular conjugate gradient method. After) is found, is computed

a kRTRI-(FIA22) B2Kf2 + BKf).
As in the ce of the conjugate gradient method, the conjugate projected gradient

algorithm is most effective when applied to the preconditioned system of equations.
It should be noted that even in the presence of floating subdomains, only F needs
to be preconditioned and not the global Lagrangian matrix L. In the ce of two
subdomains, FI can be written in matrix form as

where K-1, j 1, 2, is replaced by K if gtj is a floating subdomain. The objective
is to find an approximate inverse p}-i of Fr that (a) does not need to be explicitly

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 387

assembled (especially since FI is not explicitly assembled), and (b) is amenable to
parallel computations. The matrix P is then the preconditioner. Equation (4.5)

-1above suggests the following choice for Px

(4.6) p-i [B1 B2] O K2 B2T

At each iteration k, the preconditioned conjugate projected gradient algorithm involves
the solution of an auxiliary system of the form

(4.7) Piz(k) r(k)

where r(k) is the residual at the kth iteration. The particular choice of P-I given in
(4.6) offers the advantage of solving (4.7) explicitly without the need for any interme-
diate factorization. For computational efficiency, p-i is implemented as

(4.8) P- K1/ q- K2/

where K and K2/ are the traces of K and K2 on Fx. Clearly, with this choice for
the preconditioner, the auxiliary system (4.7) is "cheap," easy to solve, and perfectly
parallelizable on both local and shared-memory parallel architectures.

5. Parallel characteristics of the proposed method. Like most domain
decomposition-based algorithms, the proposed method is perfectly suitable for paral-
lel processing. If every subdomain fj is assigned to an individual processor pj, all
local finite element computations can be performed in parallel. These include form-
ing and assembling the matrix Kj and the vector fj, factoring K and eventually
computing the null space basis Rj, as well as backsolving for uj after) and c have
been determined. The conjugate projected gradient algorithm described in 4 is also
amenable to parallel processing. For example, the matrix-vector product Fis(k) can
be computed in parallel by assigning to each processor p the task of evaluating

y)= BK-IBTs),

and exchanging yk) with the processors assigned to neighboring subdomains in order
to assemble the global result. Interprocessor communication is required only during
the solution of the interface problem (4.1) and takes place exclusively among neigh-
boring processors during the assembly of the subdomain results.

At this point, we stress that the parallel solution method developed herein requires
inherently less interprocessor communication than other domain decomposition-based
parallel algorithms. As mentioned earlier, interprocessor communication within the
proposed method occurs only during the solution of the interface problem (4.1). The
reader should trace back this problem as well as the presence of the Lagrange multi-
pliers to the integral quantity

(5.1) (v v,)r,, fr :(v re) dr

388 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

a

FIG. 4. An L-shaped three-subdomain problem with a crosspoint.

where FIj is the interface between subdomains Qi and Qj. If Flij has a zero measure,
then (vi -vj,)rI 0 and no exchange of information is needed between Qi and Qj.
Therefore the sub[omains that interconnect along one edge in three-dimensional prob-
lems and those that interconnect along one vertex in both two- and three-dimensional
problems do not require any interprocessor communication. This is unlike conven-
tional domain decomposition methods (Schur-related methods), where assembly is
required at any intersection point between two subdomains. This result can also be
derived from a mechanical interpretation of relation (5.1), as demonstrated by the
following example. Consider the case of an L-shaped domain uniformly partitioned
into three subdomains Qt, t2, and Q3 meeting at a "crosspoint" (Fig. 4). For the
sake of clarity, in the following analysis the crosspoint c of interfaces a and b is treated
as a separate entity. In the practical implementation of the method, it is integrated
with every interface to which it belongs. Three discrete forces Ai corresponding to the
three subdomains meeting at the crosspoint c are introduced at each of its degrees
of freedom. For simplicity, it is assumed that the elements across the interfaces are
compatible so that the forces from both sides of an interface are equal in magnitude
and opposite in direction. Moreover, for this problem, if Bik denotes the boolean
matrix that" identifies the nodes which are shared by i and gtj along the interface k,
the decomposition shown in Fig. 4 is such that Bik Bk/, and B2 Bc

23 B3.
Therefore if every subdomain is "glued" to every one of its neighbors, the subdomain
equations of equilibrium for this problem can be written as

B Ta Bbl3Tbl2 .+_ B3T cKlul fl + 12 12 + B2T2 + ’13
Ba Ta Sc T,c c Txcg2u2 f2- 12 ,’12- 12 12 -a23 23

T b :c Txc v,c T)kcK3u3 f3--Bb3 A13 13 ^13--D23 23.

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 389

However, it can be argued that since f2 and ’3 intersect at a single point, when-
ever 1 is glued to 2 and f3, then -2 is automatically glued to f3. This holds only

k such that the subdomain equationsif there exist a set of discrete interface forces/ij
of equilibrium can be simplified to

(5.3)
K1u fl -F B2T/z,2 q- B2T/2 -F Bbl3T/bl2 -F B3Tc

13

:a T aK2u. f2 D12 /2 S2T

K3u3 f3 sb13Tb T’C
13 D13]M13"

Comparing equations (5.2) and (5.3) reveals that:

which clearly demonstrates that any two subdomains that intersect at a single node
do not need to be explicitly assembled.

Therefore, for a three-dimensional regular mesh that is partitioned into sub-
cubes, the proposed method requires that each subdomain communicate with at
most six neighboring subdomains (since a cube has only six faces), while the parallel
Schur methods necessitate that each subdomain communicate with up to 26 neighbors
(Fig. 5). For the latter method, one could of course group vertex- and edge-associated
messages with the face-associated ones and perform some type of fast communica-
tion sweeps as described in [11]. However, that option creates an additional burden
for the computer implementation and may not be feasible for arbitrary subdomain
interconnections. Clearly, this communication characteristic makes the proposed par-
allel solution method very attractive for a multiprocessor with a distributed memory
such as a hypercube. Indeed, the advantages of the method for this family of parallel
processors are twofold: (a) the number of message-passing is dramatically reduced,
which reduces the overhead due to communication start-up, and (b) the complexity
of the communication requirements is improved so that an optimal mapping of the
processors onto the subdomains can be reached (Bokhari [1], Farhat [4]); therefore
the elapsed time for a given message is improved. Both enhancements (a) and (b)
reduce the communication overhead of the parallel solution algorithm in a synergistic
manner. This algorithmic feature of the proposed method is still desirable for shared-
memory multiprocessors because it eases the assembly process during the interface
solution and makes the latter more manageable. It is not, however, as critical for the
performance as it is for local memory multiprocessors.

Finally, it should be noted that domain decomposition methods in general exhibit
a larger degree of parallelism than parallel direct solvers. The efficiency of the latter
is governed by the bandwidth of the given finite element system of equations. If the
bandwidth is not large enough, interprocessor communication and/or process synchro-
nization can dominate the work done in parallel by each processor. This is true not
only for multiprocessors with a message-passing system, but also for supervector mul-
tiprocessors with a shared memory such as the CRAY systems, where synchronization

390 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

RATHER THAN

FIG. 5. Reduced interprocessor communication patterns for two- and three-dimensional regular

mesh partitions.

primitives are rather expensive. Therefore, the computational method described in
this paper should be seriously considered for large-scale problems with a relatively
small or medium bandwidth. These problems are typically encountered in the finite
element analysis of large space structures that are often elongated and include only
a few elements along one or two directions (Farhat [5]). The method is also rec-
ommended for problems where the storage requirements of direct solvers cannot be
met.

6. Applications and performance assessment. For conventional domain de-
composition methods, the interface problem can be written as

where K(/), K(/), Kll, and K22 are the stiffness matrices associated, respectively,
with the interface nodes and the interior nodes of subdomains and gt2, and KI
and K2I are the coupling stiffnesses between, respectively, and FI, and 2 and FI
(see, for example, [6] for further details). Because the left-hand side of (6.1) is known
as Schur’s complement, we have been referring to these subdomain-based algorithms
as Schur methods. A standard conjugate gradient algorithm may be used for solving
(6.1). Here we compare for performance the above subdomain-based Schur method
with the hybrid algorithm developed in this paper. While the preconditioner (4.8) is
selected for the hybrid version, two different preconditioners are considered for Schur’s
method:

(a) diagonal scaling, and (b) subdomain scaling, that is,

p-Z (i) KtTIK-llKII)_I + (K) K2TIK-21K2I)_i.

We focus on the static analysis on a 32-processor iPSC hypercube of a three-dimensional
mechanical joint subjected to internal pressure loading. The finite element discretiza-
tion of this mechanical joint using eight node brick elements is shown in Fig. 6. The

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 391

mesh has 9912 elements and 29,654 degrees of freedom. Figure 7 displays its decom-
position in 32 subdomains. For the hybrid formulation, most of these subdomains are
floating and therefore induce each a singular local operator.

The obtained numerical results are reported in Figs. 8-10. For each algorithm,
three curves are reported, which correspond to monitoring convergence with three
different measures: (A) the global force relative residual, (B) the displacement relative
variation, and (C) the interface relative residual.

It is interesting to note that for both algorithms, convergence using the relative
global residual is harder to achieve than convergence using the relative variation of the
solution. This is because the problem is ill conditioned. The interface residual is closer
to the global solution variation in the hybrid method, while it is closer to the global
residual in the Schur method. This is because in the former case, the interface problem
is formulated in the functional space of the problem’s solution derivative, while in the
latter case, it is formulated in the same functional space as the problem’s solution.
Clearly, a stopping criterion should be based on the global relative residual. For a
tolerance of 10-3 (typical for nonlinear problems), the preconditioned hybrid method
requires fewer iterations for convergence than the diagonally preconditioned Schur
method. On the other hand, the subdomain preconditioned Schur method converges
faster than the other algorithms. However, it is still slower than the preconditioned
hybrid method, as reported in Table 1, where Tmsg/itr., Tp, and SP denote, respec-
tively, the time elapsed in message-passing per iteration, the total parallel time, and
the overall parallel speedup. Here, the parallel speedup SP is defined as the ratio
between the total time using one processor and the total time using p processors, for
the same number of subdomains. It is computed as

SP= P
Tcmn1 +PTc.p

where p denotes the number of processors, and Tcmn and Tcmp denote, respectively, the
total communication time and total computation time associated with the algorithm.
Basically, SP measures how well the algorithm parallelizes on a message passing mul-
tiprocessor. It does not however reflect the intrinsic computational performance of
the algorithm; the total parallel time does. Note also that the above expression of
SP overcomes the practical difficulties associated with running a large problem on a
single node of a hypercube.

TABLE 1

Performance results on iPSC/2
Mechanical joint, brick elements, 32 subdomains,

9912 elements, 29654 degrees of freedom

Convergence criterion: I[relative global residual [[< 10-3

Tmsg/itr. Tmsg/itr. Tmsg/itr. Tp Tp Tp SP SP SP
D.S.* S.S.f Hyb. D.S. S.S. Hyb D.S. S.S. Hyb.

17.9 m.s. 17.9 m.s. 5.4 m.s. 1103 s. 1322 s. 917 s. 24.0 23.9 28.8

* D.S. Dia. Schur

f S.S. Sub. Schur

All methods achieve excellent speedup. This is generally true for all balanced
algorithms that require message-passing only between neighboring processors. How-
ever, for this problem, the hybrid algorithm is faster and exhibits a 20 percent higher

392 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

FIG. 6. Finite element discretization of a mechanical joint.

FTG. 7. Decomposition in 32 subdomains.

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 393

-2

-b

-8

-10

-12

PRECONDITIONED TEARING METHOD

" A=Global Force Rest.

B=Global Dis. Varla.

C:[nter face Residual

20 40 60 80 100 120 140 160

No. of |ter&on

FIG. 8. Preconditioned hybrid method.

-12
0

DIA. PRECONDITIONED SCHUR METHOD

A=Global Force Re,i.

B=Inter. Force Resl.

-----._..//m\.j/_ C=Global Dis. Varia.

100 200 300 400 500 600 700

No. of terat ion

FIG. 9. Diagonal-preconditioned Schur method.

394 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

-6

-8

-10

-12

SBS. PRECONDITIONED SCHUR METHOD

A=Global Force Rest.

B=Inter. Force Res|.

C=Globai Dis. Var|a.

\
I

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

No. oF ;tert|on

FIG. 10. Subdomain-preconditioned Schur method.

speedup than the conventional Schur algorithms, for which the time elapsed in inter-
processor communication is 3.31 times higher. Again, because it avoids interprocessor
communication along the edges and corners of the subdomains, the hybrid algorithm
requires fewer message-passing startups which, in the case of short messages, are
known to account for the largest portion of the time elapsed in interprocessor com-
munication on the iPSC.

7. Conclusion. A novel subdomain-based algorithm for the parallel finite el-
ement solution of selfadjoint elliptic partial differential equations is presented. The
spatial domain is partitioned into a set of totally disconnected subdomains, each as-
signed to an individual processor. Lagrange multipliers are introduced to enforce com-
patibility at the interface nodes. In the static case, each floating subdomain induces
a local singularity that is resolved in two phases. First, the null space components
are eliminated in parallel from each local problem and a direct scheme is applied con-
currently to all subdomains in order to recover each partial local solution. Next, the
contributions of these components are related to the Lagrange multipliers through an
orthogonality condition. A parallel conjugate projected gradient algorithm is developed
for the solution of the coupled system of local null space components and Lagrange
multipliers, which completes the solution of the problem. When implemented on local
memory multiprocessors, this proposed method requires less interprocessor commu-
nication than other conventional domain decomposition methods. It is also suitable
for parallel/vector computers with shared memory. Example applications from struc-
tural mechanics are reported on the iPSC hypercube. Measured performance results
illustrate the advantages of the proposed method.

Appendix A. Solving a consistent singular system Ku f. For com-
pleteness, we include in this appendix a derivation of the solution of a consistent
singular system of equations. In this work, such a system arises in every floating

AN UNCONVENTIONAL DOMAIN DECOMPOSITION METHOD 395

subdomain gtj and takes the form

(A.1) Kjuj fj

Iwhere Kj is the (n + n) (n + ny) stiffness matrix associated with fj, and uj and
fj are the corresponding displacement and forcing vectors. If tj has n rigid body
modes, Kj is rank n deficient. Provided that fj is orthogonal to the null space of
K, the singular system (A.1) is consistent and admits a general solution of the form

(A.2) u K]fj + Rjc

where K is a generalized inverse of Kj that is, K- verifies KiK-Kj Ky, Ri
is a basis of the null space of Kj that is, Ry stores the n rigid body modes of Ftj,
and c is a vector of length n containing arbitrary real coefficients.

Computing the rigid body modes. Let the superscripts p and r denote,
respectively, a principal and a redundant quantity. The singular stiffness matrix K
is partitioned as

(A.3) K grT K;r

s I If Rj is defined asPP has full rank equal to nj njwhere Kj nj.

(A.4) Rj [-[Kp]-IK]
where In is the n n identity matrix, then Ry satisfies

KR 0.

Moreover, In has full column rank and so does Rj. Therefore, the n columns of Rj
as defined in (A.4) form a basis of the null space of K.

Computing K-f. The partitioning of the singular matrix Ky defined in (A.3)
implies that

(A.5) K; KrT[Kp]_IKr.

Using the above identity, it can be easily checked that the matrix Kf defined as

is a generalized inverse of K. Therefore, a solution of the form K-fj can be also
written as

396 CHARBEL FARHAT AND FRANCOIS-XAVIER ROUX

In practice, Kj cannot be explicitly rearranged as in (A.3). Rather, the following
should be implemented when Kj is stored in skyline form. A zero pivot that is en-
countered during the factorization process of Kj corresponds to a redundant equation
which needs to be labeled and removed from the system. The zero pivot is set to
one, the reduced column above it is copied into an extra right-hand side this corre-
sponds to a forward reduction with Kru as right-hand side, and the coefficients in
the skyline corresponding to that pivotal equation are set to zero. At the end of the

PP Thefactorization process, the nonlabeled equations define the full rank matrix Ky
backward substitution is modified to operate also on the n extra right-hand sides in

P __[KP]-lKPrllv"order to recover u _j
The above procedure for solving a consistent singular system of equations has

almost the same computational complexity as the solution of a nonsingular one.

REFERENCES

[1] S. H. BOKHARI, On the mapping problem, IEEE Trans. Comput., C-30 (1981), pp. 207-214.
[2] Q. V. DIHN, R. GLOWINSKI, AND J. PERIAUX, Solving elliptic problems by domain decomposi-

tion methods with applications, in Elliptic Problem Solvers II, A. Schoenstadt, ed., Academic
Press, London, 1984.

[3] M. R. DORP, Domain decomposition via Lagrange multipliers, UCRL-98532, Lawrence Liver-
more National Laboratory, Livermore, CA, 1988.

[4] C. FARHAT, On the mapping of massively parallel processors onto finite element graphs, Com-
puters &: Structures, 32 (1989), pp. 347-354.

[5] Which parallel finite element algorithm for which architecture and which problem, in
Computational Structural Mechanics and Multidisciplinary Optimization, R. V. Grandhi,
W. J. Stroud, and V. B. Venkayya, eds., ASME, AD-Vol. 16, 1989, pp. 35-43.

[6] C. FARHAT AND E. WILSON, A new finite element concurrent computer program architecture,
Int. J. Num. Meth. Eng., 24 (1987), pp. 1771-1792.

[7] P. E. GILL AND W. MURRAY, Numerical Methods for Constrained Optimization, P. E. Gill and
W. Murray, eds., Academic Press, London, 1974, pp. 132-135.

[8] T. H. H. PIAN, Finite element formulation by variational principles with relaxed continuity
requirements, in The Mathematical Foundation of the Finite Element Method with Appli-
cations to Partial Differential Equations, Part II, A. K. Aziz, ed., Academic Press, London,
1972, pp. 671-687.

[9] F. X. Roux, Test on parallel machines of a domain decomposition method for a composite three
dimensional structural analysis problem, Proc. International Conference on Supercomput-
ing, Saint Malo, France, 1988, pp. 273-283.

[10] , A parallel solver for the linear elasticity equations on a composite beam, in Proceedings
of the Second International Conference on Domain Decomposition Methods, T. F. Chan, R.
Glowinski, J. Priaux, and O. Widlund, eds., Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 1989.

[11] Y. ShAD AND M. H. SCHULZ, Data communication in hypercubes, J. Parallel and Distributed
Computing, 5 (1988).

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. i, pp. 397-410, January 1992

()1992 Society for Industrial and Applied Mathematics
021

DOMAIN DECOMPOSITION METHODS FOR PROBLEMS
WITH PARTIAL REFINEMENT*

JAMES H. BRAMBLEt, RICHARD E. EWING$,
ROSSEN R. PARASHKEVOV$, AND JOSEPH E. PASCIAK

Abstract. In this paper, a flexible mesh refinement strategy for the approximation of solutions
of elliptic boundary value problems is considered. The main purpose of the paper is the development
of preconditioners for the resulting discrete system of algebraic equations. These techniques lead to
efficient computational procedures in serial as well as parallel computing environments. The precon-
ditioners are based on overlapping domain decomposition and involve solving (or preconditioning)
subproblems on regular subregions. It is proven that the iteration schemes converge to the discrete
solution at a rate which is independent of the mesh parameters in the case of two spatial dimensions.
The estimates proved for the iterative convergence rate in three dimensions are somewhat weaker.
The results of numerical experiments illustrating the theory are also presented.

Key words, second-order elliptic equation, domain decomposition, overlapping domain decom-
position, local mesh refinement, partial refinement, overlapping Schwarz methods, preconditioners

AMS(MOS) subject classifications. 65N30, 65F10

1. Introduction. To provide the required accuracy in many applications in-
volving large scale scientific computation, it becomes necessary to use local mesh
refinement techniques. These techniques allow the use of finer meshes in regions of
the computational domain where the solution exhibits large gradients. This remains
practical only if efficient techniques for the solution of the resulting discrete systems
are available. It is the purpose of this paper to provide such techniques. We will
give a flexible scheme for refinement as well as develop and analyze effective iterative
methods for the solution of the resulting systems of discrete equations.

In this paper, we shall be interested in techniques for problems with refinements
which are not quite local. As an example, one might consider a front passing through
a two-dimensional domain. In this case, it might be necessary to refine in the neigh-
borhood of the front.

There are a number of ways of developing preconditioned iterative schemes for
the discrete systems resulting from local mesh refinement in the literature. Techniques
based on nested multilevel spaces are given in [1], [7], [8], [12]. Techniques based on
domain decomposition are given in [2], [10], [13], [14]. The analysis presented there
implicitly depends on the shape of the the refinement domain, and hence the result-
ing algorithms may not be as effective with irregularly shaped refinement regions.

*Received by the editors April 5, 1990; accepted for publication (in revised form) October 5,
1990. This manuscript has been authored under contract number DE-AC02-76CH00016 with the
U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes. This work was also supported in part under the National Science Foun-
dation grant DMS84-05352 and by the U.S. Army Research Office through the Mathematical Science
Institute, Cornell University. Additional supporters of this work include the Office of Naval Research
under contract 0014-88-K-0370 and by the Institute for Scientific Computation at the University of
Wyoming through National Science Foundation grant RII-8610680.

tDepartment of Mathematics, Cornell University, Ithaca, New York 14853.
tMathematics Department, University of Wyoming, Laramie, Wyoming 82071.
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973.

397

398 BRAMBLE, EWING PARASHKEVOV, AND PASCIAK

These algorithms also require the solution of a subproblem or preconditioner on the
refinement regions. We shall provide alternative preconditioned iterative techniques
for these problems based on overlapping domain decomposition. Our algorithms are
simpler and possibly more effective when implemented since they often lead to pre-
conditioning subproblems defined on either regular subregions or topologically "nice"
meshes. The refinement region is the union of the subregions and may be irregularly
shaped.

The proposed mesh refinement strategy is important in that it provides a basic
approach for implementing dynamic local grid refinement. An example of a refinement
strategy involves starting with a uniform coarse grid and refining in small subregions
associated with a selected set of coarse-grid vertices. These subregions are allowed
to overlap and there are no theoretical restrictions on the resulting refinement region
(the union of the subregions). Dynamic refinement is achieved by simply dynamically
changing the selected set of coarse-grid vertices.

In addition, the technique can be integrated into existing large scale simulators
without a complete redesign of the code. This is because most of the computation
involves tasks on either the global coarse grid or the refinement grids associated with
the refinement subregions. Choosing the coarse and refinement grid structure to be
that already used in the code saves considerable development costs. For example, if
one uses regularly structured meshes in the coarse and refinement grids, a substantial
part of the resulting algorithm only requires operations on regular grids even though
the resulting final approximation space is not regular.

The outline of the remainder of the paper is as follows. In 2, we define some
preliminaries and describe the second-order elliptic problems that will be considered.
The overlapping domain decomposition algorithms for grids with partial refinement
are given in 3. An analysis of the resulting preconditioned algorithms is given in

4. It is shown that the condition number of the preconditioned systems is bounded
independently of the mesh parameters for many two-dimensional applications. The
results for three dimensions are somewhat weaker and involve logarithms of the mesh
parameters. Finally, the results of numerical experiments using these preconditioning
techniques are given in 5.

2. The elliptic problem and preliminaries. We shall be concerned with the
efficient solution of discrete equations resulting from approximation of second-order
elliptic boundary value problems in a polygonal or polyhedral domain gt contained
in Euclidean space Rd, for d 2, 3. We consider the problem of approximating the
solution u of

(2.1)
Lu f in

u =0 on

Here L is given by
d 0 0V

Lv Z_ Xi aij
Oxj

and {aij(x)} is a uniformly positive definite, bounded, piecewise smooth coefficient
matrix on ft. The corresponding bilinear form is denoted by A(., .) and is given by

1] Ov OWdx,(2.2) A(v, w) ai Ox-- Ox--

DOMAIN DECOMPOSITION WITH PARALLEL REFINEMENT 399

and is defined for functions v,w E HI(Ft). Here HI(Ft) is the Sobolev space of order
one on Ft. We denote the L2(Ft) inner product by (., .). The weak solution u of (2.1)
is the function u E H(Ft) satisfying

A(u, q) (y, q) for all q e H(Ft).

Here, H(Ft) is the subspace of functions in H (Ft) whose trace vanishes on OFt.
We consider the above model problem for convenience. Many extensions of the

techniques to be presented are possible; for example, one could consider equations
with lower-order terms and different boundary conditions.

In this paper, we shall deal with various domains. These domains will always
be open. The closure of a domain 0 will be denoted t9. In addition, we shall use
various positive constants. These will be denoted by the character C, which will
take on different values in different places. However, this constant shall always be
independent of the mesh parameters in the approximation schemes.

3. The overlapping algorithms. In this section, we shall define iterative meth-
ods for problems with partial refinement based on overlapping domain decomposition.
Our goal is to illustrate the technique and analysis and hence, for simplicity, we shall
not attempt to provide the most general theorems. Many extensions are possible and
can be inferred from the analysis presented.

The analysis given in the following section requires the application of techniques
from both the theory of overlapping domain decomposition [9], [11] as well as the
standard domain decomposition theory [4], [5]. We first give the setup in the two-
dimensional case. We start with a coarse mesh UT consisting of triangles of quasi-
uniform size H. The associated finite element space M0 is defined to be the set of
those continuous piecewise linear functions on the coarse mesh that vanish on OFt.
The mesh refinement is defined in terms of a number of coarse grid subdomains (i,
for 1,... K. By convention, Fti is defined to be the interior of the union of the
closures of the coarse grid triangles. The refinement regions will also be referred to
as "the subdomains." We assume that they have limited overlap in that any point of
Ft is contained in at most a fixed number (not depending on H) of the subdomains.
We define the domain of refinement Ftr to be the union of the subdomains, Ftr
uK= Fti There are no theoretical restrictions concerning the definition of the refinement
subregions except that they are defined in terms of the coarse-grid triangles and satisfy
the overlap property as described above.

We provide two examples of the construction in the two-dimensional case. For
both examples, the subregions are associated with coarse-grid nodes. The interior and
boundary nodes of this mesh will be denoted {x}, for 1,... Nc. For the first ex-
ample, we define the region associated with a coarse-grid node x as the subdomain Ft
that contains the coarse-grid triangles having xi as a vertex. For the second example,
we consider a mesh that is topologically equivalent to a regular rectangular mesh (see
Fig. 3.1). In this case, we define gt to be the four quadrilaterals that share the vertex
x. Some reasons for such a choice will be explained later. In either case, an index
set I C_ [1,..., N] is selected and only those subdomains {Ft} with I are used to
define the refinement region. By possibly changing the numbering of the coarse-grid
nodes, we assume, without loss of generality, that I 1, 2,... K. There are no nddi-
tional restrictions concerning this set I and hence rather complex refinement regions
are possible.

400 BRAMBLE, EWING, PARASHKEVOV, AND PASCIAK

FIG. 3.1. A distorted rectangular mesh.

The composite space is defined in terms of a quasi-uniform mesh {-} on fl of
size h < H that satisfies

c_
The space of continuous piecewise linear functions with respect to this triangulation
(which vanish on OFt) will be denoted by//. Note that this space is introduced for
the construction and analysis of the composite grid space. It is not used in actual
computation since it has too many degrees of freedom in f/tr. The subspace M
associated with the subdomain gt is defined by

(3.1) M { E]tS/I supp C_ Ft}.
The composite finite element space is then defined to be

K

M= M.
i=0

Note that the space M provides finer grid approximation in the refinement region gtr.
An illustrative example of a mesh so generated is given in Fig. 3.2. The nodes on the
boundary of the refinement region that are not coarse-grid nodes are slave nodes since,
by continuity, the values of functions in M on these points are completely determined
by their values on neighboring coarse-grid nodes. The operator A M - M is
defined for v e M by

(Av,)= A(v,) for all M.
Our goal is to efficiently solve the composite grid problem: Given a function

f L2(gt), find U M satisfying

(3.2) A(U,) (f,)
As above, we define A M - M by

(Av,) A(v,)
Problem (3.2) can then be rewritten as

for all M.

for all E M.

AU=F,

DOMAIN DECOMPOSITION WITH PARALLEL REFINEMENT 401

- Selected coarse grid nodes

FIG. 3.2. A composite grid.

for appropriate F E M. We will develop preconditioners for (3.3) by using overlapping
domain decomposition.

There are basically two classes of these preconditioners, the additive and the
multiplicative. The additive version defines the preconditioner Ba for A of (3.3) by

K

Ba E RiQi.
i=0

Here, Qi denotes the L2() projection operator onto Mi and Ri is a symmetric positive
definite operator on Mi. Explicit choices for Ri will be discussed later; however, we
note that it suffices to take Ri to be a preconditioner for Ai.

The multiplicative version is defined by applying the Ri consecutively. The mul-
tiplicative preconditioner Bm applied to a function W E M is defined as follows:

(1) Set Y0 0.
(2) For 1,...,K + 1, define Y by

Yi](-1 -- Ri- Qi- W A]-I).

(3) For K + 2,... ,2K + 2, define Y by

Yi Yi-1 + R2K+2-iQ2K+2-i(W- A]-I).

(4) Set BroW Y2K+2.

It is not difficult to see that Bm is a symmetric linear operator on M.
The operators Ba and Bm defined above will be effective as preconditioners A if

they satisfy the following:

(1) They are relatively inexpensive to evaluate.
(2) They lead to well-conditioned linear systems.

The first criterion involves implementation issues. The second criterion requires that
the condition numbers K(BaA) and K(BmA) be small. In the case of the additive
algorithms, this is equivalent to the existence of positive constants co, Cl satisfying

(3.6) coA(v, v) <_ A(BaAv, v) <_ ciA(v, v) for all v e M,

402 BRAMBLE, EWING, PARASHKEVOV, AND PASCIAK

with cl/co small. A similar statement holds for the product algorithm. The goal of
the analysis to be presented is to provide estimates for co and Cl.

We note that the subdomains have limited overlap. This immediately implies
that cl <_ CNo, where C depends only on the preconditioning properties of Ri, and
No is the maximum number of subdomains overlapping any point x E . Thus, to
analyze the additive algorithm, we are left to estimate the size of co. This will be done
in the following section.

To analyze the product algorithm, we apply Theorem 2.2 of [6]. Assume that Ri
is scaled so that for a fixed w E (0, 2),

(3.7) A(RAv, v) < wA(v, v) for all v M.
Then the product operator defined above satisfies

(3.8) c2A(v, v) <_ A(BmAv, v) <_ A(v, v) for all v e M

where c2 > Cco. Here co is the constant in (3.6) and C is a positive constant which
depends on No and the preconditioning properties of R but not on h or H. Thus,
to analyze the product algorithm, we are once again left to estimate the size of co in
(3.6).

Remark 3.1. It is easy to extend the above ideas to three-dimensional calculations.
We consider the case where is the union of rectangular parallelopipeds and the
coarse-grid functions are piecewise trilinear on the rectangular parallelopipeds. The
refinement subregions are defined to be the interior of the closures of coarse grid
parallelopipeds. The composite mesh is defined in terms of a quasi-uniform mesh of
parMlelopipeds of size h < H. This mesh is assumed to be a refinement of the coarse-
grid mesh. The space//is defined to be the set of functions which are continuous on
gt, are trilinear with respect to the finer mesh, and vanish on OFt. The construction
then proceeds exactly as described above for the two-dimensional case.

4. Convergence analysis. In this section, we provide an analysis for the over-
lapping domain decomposition preconditioners described in the previous section. As
discussed earlier, we are to provide estimates for the constant co appearing in (3.6).
The analysis to be presented uses tools from both the theory of overlapping do-
main decomposition and the standard domain decomposition theory. We shall prove
that under suitable hypotheses, the condition numbers K(BaA) and K(BmA) remain
bounded independently of h and H in the two-dimensional case. The theorem for
three dimensions guarantees that the condition numbers grow at most proportional to
(1 + ln2(H/h)).

The first hypothesis for the theorems of this section provides control of the con-
dition number K(RiAi). Specifically, we assume that

(4.1) CoA(w, w) <_ A(RAiw, w) <_ wA(w, w) for all w e M,

where the constants Co and w remain fixed independent of h and H. For the product
algorithm, we also assume that 0 < w < 2. We have the following theorem.

THEOREM 4.1. Let d 2 and assume that there are no isolated points on the
boundary of r. Then the condition numbers K(BaA) and K(BmA) remain bounded
independently of h, H and the choice of subdomains

Before proving Theorem 4.1, we review some results from the theory of overlap-
ping and nonoverlapping domain decomposition. These results will play a major role
in the subsequent proof.

DOMAIN DECOMPOSITION WITH PARALLEL REFINEMENT 403

Let Pi denote the elliptic projection into the subspace Mi, i.e., Piv w where w
is the unique function in Mi satisfying

A(w,) A(v,) for all E

It immediately follows from the definitions that QiA AiPi and hence (4.1) implies
that, for v E M,

K

A(BAv, v) E A(RiQiAv, v)
i--0

K K

E A(RiAiPiv, Piv) >_ Co E A(Piv, v).
i--0 i--0

Thus, co >_ 0C0 for any constant 0 satisfying the inequality

K

(4.2) oA(v, v) <_ E A(Piv, v) for all v M.
i--0

It is known (cf. [11]) that (4.2) follows provided that 0 is a constant such that for
g

with vi Mi satisfyingany v M there is a decomposition v -i=0 vi,

K

(4.3) E A(vi, vi) <_ -lA(v, v).
i--0

We remark that it is easy to prove that statements (4.2) and (4.3) are equivalent.
We shall require a known result concerning overlapping domain decomposition

[9], [11]. For each coarse-grid node xi, we let Eli denote the interior of the union of
the closures of the coarse-grid triangles that have xi as a vertex. We define Mi in
terms of ti as in (3.1). Given w /tT/, there exists a decomposition w N__c
with Oi E M, satisfying

Nc
(4.4) E A((v, (vi) <_ C (A(w, w) + H-2

i--1

Here C is a constant not depending on h or H. The functions {i} are defined in
terms of a partition of unity with respect to the subdomains {t}. An explicit partition
can be defined from the coarse-grid nodal basis functions. These decompositions
preserve support in the sense that if w vanishes at a node then every Oi vanishes there
also.

We will also need results from the standard domain decomposition theory which
we introduce as the following lemma. The proof of this lemma is essentially given in

LEMMA 4.1. Let y M f3 l/Ii be discrete harmonic on each coarse grid triangle.
By this we mean that

A(y,) 0

for all functions M which vanish on the coarse-grid mesh. Assume that y vanishes
on at least one coarse-grid edge connecting Oi and xi. Let {Fj} denote the remaining
coarse-grid edges connecting Oi and xi and define yj to be the function which is

404 BRAMBLE EWING PARASHKEVOV AND PASCIAK

discrete harmonic on the coarse-grid triangles, equals y on j and vanishes on the
remaining coarse-grid edges. Then y - yj and

(4.5) E A(yj, yj) <_ CA(y, y).

Remark 4.1. If the function y in Lemma 4.1 vanishes only on the point xi (instead
of a line from Oti to xi), then the above decomposition is still defined. However, in
such cases, (4.5) only holds with the constant C replaced by c ln2(H/h).

Proof of Theorem 4.1. As discussed in the previous section, it suffices to estimate
the constant co in (3.6). This in turn follows from the construction of a decomposition

Kv i=0 v with vi E M satisfying (4.3).
Let Q denote the L2(t) projection operator onto the subspace Mo.
We note that

(4.6) I1(I Q)wll 2

_
CH2A(w, w)

and

(4.7) A(Qw, Qw) <_ CA(w, w)

hold for all w E H().
We define v0 in terms of Q by

v(xi) for coarse-grid nodes xi

_ ,
vo(xi)

Qv(xi) for coarse-grid nodes xi r.
Clearly, we have that

A(v v0, v vo) Ar(v v0, v v0)
(4.8) _< 2[A((I Q)v, (I Q)v) / Ar(Qv vo, Qv v0)].
Here At(.,.) is given by (2.2) but with integration only over the domain r. Note
that Qv- vo is a function in M0 which vanishes at all coarse-grid nodes in and is
equal to Qv- v on the remaining coarse-grid nodes. Consequently,

(4.9) A(Qv vo, Qv vo) <_ C E I(Qv v)(xi)]
xEO2

Here, the sum is taken over coarse grid nodes xi 0gtr. There are no isolated points
on 0gF and hence for each xi 0r, there is a coarse grid edge Fi contained in 0gtr

ending at xi. Both functions Qv and v are linear on Fi and hence

I(Qv v)(x,)[2 < cg-1 II(Qv v)ll
(4.10)

<_ C[H IIQ +

Here Th denotes a coarse-grid triangle containing the edge Fi and Ah denotes the form

defined by (2.2) but with integration only over the region 7h. The last inequality in
(4.10) is a simple consequence of the divergence theorem and is well known. Combining
(4.6)-(4.10) proves that

(4.11) A(v vo, v vo) <_ CA(v, v).
A similar argument gives that

(4.12) [Iv V0112
_
CH2A(v, v).

DOMAIN DECOMPOSITION WITH PARALLEL REFINEMENT 405

We next apply the overlapping domain decomposition result to w v- v0.
NcSpecifically, we decompose w i=1 i, with E // and satisfying (4.4). Note

that this is clearly not the desired decomposition into the refinement subspaces {M}.
We will distribute the functions j, j 1,... ,No, into these subspaces. We start
assigning each coarse grid-node xj E r to a unique subdomain j(j) which contains

xj. We then define

w- j.
g(j)--i

We need to decompose the remaining functions i for xi

_
r. Note that by

the support property, i vanishes unless xi Ofr. Consider a fixed function i with

xi Ofr. We write i y / y/0 where y i on the boundaries of the coarse-
grid triangulation and is discrete harmonic on the coarse-grid triangles (as in Lemma
4.1). The function y vanishes on the boundaries of the coarse-grid triangulation and
is orthogonal (in A(., .)) to y. Note that the function y is nonzero only on triangles
contained in the refinement region. Thus, we can assign each of these triangles uniquely
to a subdomain fj and add the restriction of y to the corresponding function wj.
The result of these modifications will still be denoted

We finally distribute the function y. There are no isolated points in 0r and hence
there must be a coarse-grid edge ending at xi contained in 0r. Note, in addition,
that both i and y vanish on this edge. Thus, by Lemma 4.1,

(4.13) A(yj, yj)

_
CA(y, y).

The functions yj are defined in Lemma 4.1 and the sum over j is taken over the
coarse-grid indices corresponding to coarse-grid neighbors of xi in r. The functions

yj are assigned to subdomains k which contain the corresponding edge (where yj is

nonzero) and the functions yj are added into the corresponding wk, producing a result
Kwhich is still denoted wk. It follows immediately that w -i= wi and

K

(4.14) A(wi, wi)

_
C(A(w, w) / H-2 Ilwl[2).

i--1

KCombining (4.11), (4.12), and (4.14) shows that the decomposition v i=o vi with

vi wi for 1,..- K satisfies (4.3). This completes the proof of the theorem.
Remark 4.2. The hypothesis concerning isolated points on the boundary of

is included to provide a uniform bound for co. It is possible to show (using of [4],
Thm. 1) that the constant co only deteriorates like C/ln2(H/h) if the isolated point
hypothesis is not satisfied. This sort of decay is actually seen in the last numerical
example in 5 where this assumption is violated.

Remark 4.3. There is very little restriction concerning the way that the domains
i are defined. Note that if only one refinement domain is used, then Theorem 4.1
provides a result for the imbedded space case proposed in [2]. Alternatively, one can

consider the case where fr is all of and hence M M. In this case, Theorem 4.1
guarantees uniform bounds for the condition numbers without putting restrictions on
the shapes of the subdomains (i). Thus, for example, the subdomains can be taken
to be strips as long as the coarse problem is included.

Remark 4.4. There are numerous ways of modifying the above algorithm. One
possibility is to include additional subspaces corresponding to the coarse-grid nodes
on 0r. For such a node xk, the space Mk would be defined to be the functions in M

406 BRAMBLE EWING, PARASHKEVOV, AND PASCIAK

with support in gtk. The same result holds with a somewhat simpler analysis since the
standard domain decomposition theory is avoided. However, this algorithm has some
practical disadvantages. There are more subproblems and many of them correspond
to grids on irregularly shaped domains.

We next provide the result for three-dimensional applications.
THEOREM 4.2. Let gt be a domain in R3 and let the mesh and approximation

space be as discussed in Remark 3.1. Assume that the hypotheses preceding Theorem
4.1 hold and that fF is the interior of its closure. Then

K(BaA) <_ C(1 + ln2(H/h))
and

K(BmA) <_ C(1 + ln2(H/h)).
The constant C above does not depend on H or h.

Proof. The major part of the proof follows the proof of Theorem 4.1. We seek a
decomposition of v E M satisfying (4.3) with -1 _< C(l+ln2(H/h)). The construction
of v0 is exactly the same as in Theorem 4.1 and still satisfies (4.11) and (4.12). Here
we used the assumption that gtr was the interior of its closure.

The overlapping domain decomposition w N=I satisfying (4.4) is also valid
in three dimensions. Once again we reduce to the problem of decomposing functions

k corresponding to coarse-grid nodes xk E 0Ftr. As in the proof of Theorem 4.1, we
write k Y + Y, where y is discrete harmonic (with respect to the refined mesh) in
the interior of the coarse parallelopipeds The y part is added into g

Finally, we must take care of the function y. We write

(4.15) Y E +E t’
where:

(1) The functions {j} are discrete harmonic (with respect to the refined
mesh) in the interior of the coarse parallelopipeds.

(2) j y on the interior nodes on the face between coarse regions T and

T]/ and vanishes on the remaining nodes of UOTH
(3) l equals y on the nodes of an edge of {-} which is in tk n fl and

vanishes on all of the remaining nodes of the composite grid.
(4) The sums in (4.15) are taken over the appropriate faces and edges.

Applying Lemma 4.3 of [5] gives that

A(Ij, ij) < C(1 + ln2(g/h)){lff;kl 2 2
1/2,o + H- I(Vkl }"

Here 1"1/2,o denotes the Sobolev seminorm of order 1/2 on 0T. We clearly have

A(Ij, 1) <_ C(1 + ln2(H/h))(A(wk, wk) + H-2 IlWkll2).
Similar arguments using Lemmas 4.1-4.2 of [5] give

A(t,)t) <_ C(1 + ln2(H/h))(A(wk, Wk) + H-2 IlWkll2).
The desired bound for - follows as in the proof of Theorem 4.1.

5. Numerical results. In this section, we provide the results of numerical ex-
amples illustrating the theory developed earlier. We shall consider the model problem

(5.1)
-Au f in

u 0 on OFt,

DOMAIN DECOMPOSITION WITH PARALLEL REFINEMENT 407

where A denotes the Laplacian and is the unit square [0, 1] [0, 1]. To define the
coarse mesh, the domain Ft is first partitioned into m m square subdomains of side
length H 1/m. Each smaller square is then divided into two triangles by one of the
diagonals (e.g., the diagonal which goes from the bottom left to the upper right-hand
corner of the square). The coarse-grid approximation space M0 is defined to be the
set of functions which are continuous on Ft, are piecewise linear with respect to the
triangulation, and vanish on 0. The space//is defined from a similar finer mesh of
size h HI1 for some integer > 1.

For our first two examples, we consider an application where it is required to refine
along the diagonal connecting the origin with the point (1, 1). Such a refinement might
be necessary if the function f has large gradients near this diagonal but is well behaved
in the remainder of . Accordingly, we select the coarse-grid nodes on the diagonal
for refinement. We define the refinement region associated with a refinement node to
be the four coarse mesh squares which have that node as a corner.

Note that the refinement region is highly irregular even though the coarse problem
and the refinement subproblems involve regular rectangular meshes.

We will illustrate the rate of convergence of preconditioned algorithms for solv-
ing (3.2) where A(., .) is given by the Dirichlet form. To do this, we shall numer-
ically compute the largest and smallest eigenvalue (A1 and A0, respectively) of the
preconditioned operator BaA. As is well known, the rate of convergence of the re-
sulting preconditioned algorithms can be bounded in terms of the condition number
K(BaA) i1/o. We shall not report results for preconditioning with the product
operator Bin, although our previous experience [6] suggests that the product version
will converge somewhat faster than the additive.

Table 5.1 gives the largest and smallest eigenvalue and the condition number of
the system BaA as a function of h. In this example, we took Ri A-I; i.e., we solved
exactly on the subspaces {Mi}. For Table 5.1, m 4, and there are three refinement
subdomains (0,1/2) (0,1/2), (1/4,3/4) (1/4,3/4), and (1/2, 1) (1/2,1). Note
that both the upper and lower eigenvalues appear to be tending to a limit as the ratio

h/H - O. Similar behavior is seen in Table 5.2, which corresponds to m 8 and uses
seven smaller refinement subregions.

TABLE 5.1

Condition numbers for 3 overlapping subregions.

1/8

1/32
1/64
1/128

2.44
2.50
2.51
2.52
2.52

0.50
0.41
0.38
0.36
0.35

K(BA)
4.9
6.1
6.6
6.9
7.1

In almost all realistic applications, the direct solution of subproblems is much
more expensive than the evaluation of a suitable preconditioner. To illustrate the
effect on the convergence rate of the preconditioned iteration, we next consider the
previous example but with the direct solves on the subspaces replaced by multigrid
preconditioners. Specifically, we employ the V-cycle multigrid algorithm (cf. [3])
using one pre- and post-smoothing Jacobi iteration on each grid level. This leads to

408 BRAMBLE EWING PARASHKEVOV AND PASCIAK

TABLE 5.2

Condition numbers for 7 overlapping subregions.

h

1/32

1/128

2.46
2.52
2.54
2.54

0.47
0.39
0.35
0.34

K(BaA)
5.2
6.5
7.2
7.5

a preconditioning operator Ri" Mi Mi, which satisfies

0.4A(v, v) <_ A(RAiv, v) <_ A(v, v) for all v e Mi.

The constant 0.4 above was computed numerically and holds for all of the subspace
problems that are required for this application, including M0.

Tables 5.3 and 5.4 provide the eigenvalues and condition numbers for the above
examples when direct solves were replaced by multigrid preconditioners. Note that
in all of the reported runs, the condition number with multigrid preconditioners was
at most 5/4 times as large as that corresponding to exact solves. Such an increase in
condition number is negligible in a preconditioned iteration. In contrast, the compu-
tational time required for the multigrid sweep is considerably less than that needed
for a direct solve (especially in more general problems with variable coefficients).

TABLE 5.3

Preconditioned subproblems, 3 overlapping subregions.

h

1/8

1/128

2.37
2.12
2.07
2.04
2.02

0.53
0.33
0.27
0.25
0.24

K(BaA)
4.5
6.4
7.6
8.2
8.4

TABLE 5.4

Preconditioned subproblems, 7 overlapping subregions.

1/16

1/64
1/128

2.36
2.11
2.06
2.03

0
0.40
0.28
0.24
0.22

K(BaA)
5.9
7.5
8.8
9.4

As a final example, we consider a case where the isolated point hypothesis of
Theorem 4.1 is not satisfied. Specifically, we consider a coarse mesh of size H 1/4
and select the four nodes with (x,y) values (1/4,1/2), (3/4,1/2), (1/2,1/4), and

DOMAIN DECOMPOSITION WITH PARALLEL REFINEMENT 409

(1/2,3/4). The refinement region is everything but the subsquares [0, 1/4] [0, 1/4],
[0, 1/4] [3/4,1], [3/4, 1] [0,1/4], and [3/4, 1] [3/4, 1]. Note that, to satisfy the
hypotheses of the theorem, it would be necessary to include a refinement region cen-
tered at the coarse-grid node (1/2, 1/2). Table 5.5 gives the smallest eigenvalue for the
operator BaA as a function of h. The function (.32 + .36 log2(h-1))-2 is also provided
for comparison. These results suggest that smallest eigenvalue A0 decays as predicted
by the theoretical bound C/ln(H/h)2 (see Remark 4.2).

TABLE 5.5

A "bad" example in two dimensions.

1/8
1/16
1/32
1/64
1/128

.5O

.32

.22

.16

.12

(.32 + .36 log2(h-1))-2

.51

.32

.22

.16

.12

REFERENCES

[1] R.E. BANK, T. DUPONT, AND H. YSERENTANT, The hierarchical basis multigrid method,
Numer. Math., 52 (1988), pp. 427-458.

[2] J.H. BRAMBLE, R. E. EWING, J. E. PASCIAK, AND A. H. SCHATZ, A precondition-
ing technique for the efficient solution of problems with local grid refinement, Comput.
Methods Appl. Mech. Engrg., 67 (1988), pp. 149-159.

[3] J.H. BRAMBLE AND J. E. PASCIAK, New convergence estimates for multigrid algorithms,
Math. Comp., 49 (1987), pp. 311-329.

[4] J.H. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction of precondition-
ers for elliptic problems by substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[5] , The construction of preconditioners for elliptic problems by substructuring, IV,
Math. Comp., 53 (1989), pp. 1-24.

[6] J.H. BRAMBLE, J. E. PASCIAK, J. WANG, AND J. XU, Convergence estimates for prod-
uct iterative methods with applications to domain decomposition, Math. Comp., 57 (1991),
pp. 1-21.

[7] , Convergence estimates for multigrid algorithms without regularity assumptions,
Math. Comp., 57 (1991), pp. 23-45.

[8] J.H. BRAMBLE, J. E. PASCIAK, AND J. Xu, Parallel multilevel preconditioners, Math.
Comp., 55 (1990), pp. 1-22.

[9] M. DRYJA AND O. WIDLUND, Some domain decomposition algorithms for elliptic prob-
lems, Iterative Methods for Large Linear Systems, L. Hayes and D. Kincaid, eds., Aca-
demic Press, New York, 1989.

[10] R.E. EWING, R.D. LAZAROV, AND P.S. VASSILEVSKI, Local refinement techniques for
elliptic problems on cell-centered grids, II: Two-grid iterative methods, Math. Comp.,
submitted.

[11] P.L. LIONS, On the Schwarz alternating method, in Proceedings of the First International
Symposium on Domain Decomposition Methods for Partial Differential Equations, R.
Glowinski, G. H. Golub, G. A. Meurant, and J. Priaux, eds., Society for Industrial
Applied Mathematics, Philadelphia, PA, 1988.

[12] S.F. MCCORMICK, Multilevel Adaptive Methods for Partial Differential Equations, Society
for Industrial Applied Mathematics, Philadelphia, PA, 1989.

410 BRAMBLE EWING PARASHKEVOV AND PASCIAK

[13]

[14]

S. MCCORMICK AND J. THOMAS, The fast adaptive composite grid (FAC) method for
elliptic equations, Math. Comp., 46 (1986), pp. 439-456.

O. WIDLUND, Optimal iterative refinement methods, Proceedings of the Second Inter-
national Symposium on Domain Decomposition Methods, T. F. Chan, R. Glowinski,
J. Priaux and O.B. Widlund, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1989, pp. 114-125.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 411-424, January 1992

(C)1992 Society for Industrial and Applied Mathematics
022

A LARGE, SPARSE, AND INDEFINITE GENERALIZED
EIGENVALUE PROBLEM FROM FLUID MECHANICS*

HANS D. MITTELMANNt, CINDY C. LAWS,
DANIEL F. JANKOWSKIS, AND G. PAUL NEITZEL

Abstract. A numerical method for calculating the minimum positive eigenvalue of a sparse,
indefinite, Hermitian algebraic problem has been developed. The method is based on inverse iteration
and is a generalization of a procedure previously employed for the simpler problem of finding the
smallest eigenvalue of a positive-definite matrix. Motivation was provided by a three-dimensional
research problem from hydrodynamic stability. Stability limits obtained from the application of the
method to a previously studied problem are compared to independently determined results.

Key words, eigenvalue problem, thermocapillary convection, energy stability, inverse iteration

AMS(MOS) subject classifications. 76E15, 76D99, 65F15

1. Background and motivation. Hydrodynamic stability theory is concerned
with determining the conditions under which a certain flow, called the basic state, will
remain stable or become unstable due to the inevitable presence of unknown pertur-
bations (see Joseph (1976)). In general, these perturbations are governed by nonlinear
partial differential equations. Linear-stability theory assumes the perturbations to be
infinitesimally small and neglects the nonlinear terms in comparison with their linear
counterparts. This theory is local in nature and results in a criterion that guarantees
growth of these small disturbances. Typically, an externally controllable dimensionless
parameter, say, R, is selected and linear theory yields a value RL such that R > RL
is a sufficient condition for instability.

Energy stability theory, on the other hand, adopts a global approach by examin-
ing the behavior of a generalized integral disturbance energy. Unlike linear stability
theory, energy-stability theory provides a value RE such that R < RE is a sufficient
condition for stability of a given basic state to disturbances of arbitrary amplitude.
This technique is equivalent to a stability analysis utilizing a Lyapunov function (see
Sinha and Carmi (1976) and the literature cited there). The application of either
theory gives rise, in general, to an eigenvalue problem.

If RE and RL should coincide, a rigorous stability bound is obtained. However,
this is usually not the case and the proximity of RE to RL is a function of the physical
mechanism which gives rise to the instability (see Davis (1971)). Two such mecha-
nisms for which RE and RL may be expected to be relatively close to each other are
buoyancy and thermocapillarity. The former is responsible for the onset of convection
in an initially quiescent fluid layer that is heated from below (cooled from above)
under certain conditions. This is the classically termed Bdnard convection. Thermo-
capillarity, which is the variation of a liquid’s surface tension with temperature, can

*Received by the editors April 5, 1990; accepted for publication (in revised form) December 5,
1990. This work was partially supported by the U.S. Air Force Office of Scientific Research under
grant AFOSR-90-0080 and by the Microgravity Science and Applications Division of the National
Aeronautics and Space Administration (NASA) under grant NAG-3-1054.

CDepaxtment of Mathematics, Arizona State University, Tempe, Arizona 85287-1804.
SDepartment of Mechanical and Aerospace Engineering, Arizona State University, Tempe, Ari-

zona 85287-6106.

411

412 MITTELMANN LAW JANKOWSKI AND NEITZEL

also result in the instability of a quiescent liquid layer with a free surface (liquid-gas
interface) when heated from below. This is known as Marangoni convection.

Buoyancy and thermocapillarity are also mechanisms that can drive dynamic ba-
sic states, which themselves can become unstable; for instance, the buoyancy bound-
ary layer adjacent to a vertical heated surface and thermocapillary convection, which
results when a temperature gradient exists along a free surface. Problems of tech-
nological interest in which both of these mechanisms play an important role may be
found in the field of materials processing. One problem in particular that has received
a considerable amount of attention is the stability of thermocapillary convection as-
sociated with the float-zone crystal-growth process. This process has been identified
as one that may benefit from a microgravity environment. Although buoyancy forces
will be significantly reduced in such an environment, thermocapillary convection will
persist. Since it has been conjectured that the instability of thermocapillary convec-
tion may be responsible for undesirable striations observed in material grown by this
process, the stability properties of this basic state are of interest for both terrestrial
and microgravity conditions.

Recent work on the stability of thermocapillary convection has been done by Shen,
Neitzel, Jankowski, and Mittelmann (1990). They employed energy stability theory to
obtain sufficient conditions for stability against axisymmetric disturbances. Compar-
isons with the experimental results of Preisser, Schwabe, and Scharmann (1983) have
identified a need for corresponding results for nonaxisymmetric disturbances. The
present work is motivated by the need for obtaining such stability information.

The earlier work of Shen et al. (1990) required the calculation of the smallest
positive eigenvalue of a generalized eigenvalue problem of the form Ax pBx. Energy
theory, since it has its basis in a variational problem, results in a differential eigen-
value problem that is selfadjoint. The direct discretization of the variational problem
employed by Shen et al. preserved this character and thus resulted in real symmetric
matrices A and B. There are several complicating features: (i) both matrices are
indefinite; (ii) the basic-state quantities in B depend on the stability parameter; and
(iii) both A and B depend on a free coupling parameter A. The latter two com-
plications are easily dealt with by iteration processes, once a reliable procedure for
calculating the eigenvalue of interest has been developed.

The standard algorithm for the solution of eigenvalue problems of the form Ax
pBx, for general real or complex matrices A and B, is the QZ algorithm. This method
computes all of the eigenvalues of the system by means of orthogonal transformations.
However, since it does not exploit either the sparsity or symmetry of A and B, and only
a single eigenvalue is desired, its use in the application of interest, where the system
order is typically quite large, is extremely inefficient in terms of computer resources.
In addition, it is possible that the calculation of the single eigenvalue of interest,
which does not occur at any particular stage of the overall solution process, can be
contaminated by earlier calculations. These factors motivated the development of the
method that was successfully used by Shen et al. (1990). The QZ algorithm was used
solely to obtain some insight into the distribution of the complete family of eigenvalues
for coarse discretizations (i.e., low system order) of the variational problem.

Theoretically, the inclusion of nonaxisymmetric disturbances into the discretized
functional is straightforward, involving only a normal-mode decomposition in the az-
imuthal coordinate (cf. (2.9)). However, the corresponding computational problem
is more difficult because the matrices in the algebraic eigenvalue problem become
complex and Hermitian. The numerical procedure of Shen, Neitzel, Jankowski, and

A LARGE INDEFINITE EIGENVALUE PROBLEM 413

Mittelmann (1990) is unable to handle this case and some modification is necessary.
Basically, their procedure is a form of inverse iteration. The modification to handle
complex Hermitian matrices uses a residual-based inverse iteration, which, in each
step, computes an increment of the last iterate and employs additional orthogonal
projections. Both of these modifications were made, since standard inverse iteration
computes nearly parallel vectors and the loss of significance in the correction to the
previous vector leads to slow or no convergence. The complex case is reduced to a real
case of twice the dimension, which is also symmetric. This permits a relatively efficient
solution of this indefinite system using preconditioned conjugate-gradient methods. So
far our emphasis has been on developing a working algorithm and obtaining solutions
to these yet unsolved stability problems. An analysis of the method employed may
be given in future work. It must be stressed, however, that the indefiniteness of both
A and B makes this eigenvalue problem more general than is usually considered in
the literature for large sparse eigenproblems from the applications. The recent survey
article by Kerner (1989), for example, addresses only the case in which B is definite.
Nevertheless, it may be that suitable generalizations of existing algorithms, for exam-
ple, of generalized Davidson’s method (see Morgan and Scott (1986)) to the present
case may provide alternative approaches. This method, if applicable, would allow
indefinite preconditioners.

In order to test this new numerical approach, we choose to examine in this paper
a related stability problem for which results are available. As in Shen et al. (1990),
we consider the onset of buoyant convection in a fluid-filled cylinder heated from
below with either a conducting or insulating sidewall boundary. Linear-stability limits
have been computed by Charlson and Sani (1970), (1971) for both axisymmetric and
nonaxisymmetric disturbances. These linear-theory results can be compared directly
with those of energy theory since it can be shown for this problem that both limits
coincide (see Joseph (1976)). Although the heated-cylinder problem is somewhat
simpler than the float-zone problem for which results will ultimately be computed, it
nevertheless serves as an excellent test problem for the numerical procedure. For the
first results on the float-zone problem, see Mittelmann, Law, Jankowski, and Neitzel
(1991).

In the following section the application of energy-stability theory to the heated-
cylinder problem will be described. Subsequently, the new version of the inverse
iteration procedure for the computation of the stability bounds will be presented.
Results for the heated-cylinder problem will be compared to those of Charlson and
Sani (1970) and (1971), followed by a discussion on the generalization of the method to
the problem of thermocapillary convection in a model of the float-zone crystM-growth
process.

2. Energy-stability analysis of the heated-cylinder problem. Consider a
right circular cylinder of height H and radius R that is filled with a Boussinesq fluid of
kinematic viscosity u and thermal diffusivity n, and oriented with its axis of symmetry
in the direction of the gravitational acceleration of magnitude g. The top and bottom
surfaces of the cylinder are maintained at temperatures Tc and TH Tc, respectively,
and the sidewall may be either perfectly conducting or perfectly insulating. The
dimensionless Boussinesq equations that govern the temperature T(r, , z, t), pressure
p(r, 8, z, t), and velocity v(r, , z, t) fields are

(2.1) vt + Ral/2v Vv -PrVp + PrV2v + Ral/2prTez,

(2.2) Tt + Ra/2v VT V2T,

414 MITTELMANN, LAW, JANKOWSKI, AND NEITZEL

(2.3) V-v =0,

where H, kRal/2/H, punRal/2/H2, H2/n have been used to scale lengths, velocity,
pressure, and time, respectively. The dimensionless temperature is defined to be

T (T’- TIn)/AT,
where T’ is the dimensional temperature, Tm= (TH +Tc)/2 is the mean temperature,
and AT TH-Tc. The dimensionless parameters appearing in (2.1) are the Rayleigh
and Prandtl numbers, which are defined as

Ra gH3AT/nv

and
Pr v/n,

where is the coefficient of thermal expansion.
The boundary conditions to be applied require no penetration and no slip at solid

boundaries, constant temperatures at the planar endwalls, conducting or insulating
conditions at the sidewall, and boundedness of all quantities on the axis of symme-
try. Equations (2.1)-(2.3), along with the appropriate boundary conditions, permit
a solution that is motionless (v 0), with the linear (pure conduction) temperature
profile

(2.4) e(z) 1/2- z

and corresponding pressure distribution

(2.5) P(z) 1/2Ra/2z(1 z)
where the arbitrary constant of integration in (2.5) has been chosen to be zero. This
is the basic state of interest in the present paper.

We begin the energy-theory analysis of the basic state in the usual fashion by
deriving the energy identity. We assume there exists a solution [u, p, T] to the govern-
ing equations ((2.1)-(2.3)) that is a perturbation to the motionless conducting basic
state, i.e.,

(2.6)
[u, p, T] =[0, P(z), e(z)]

+ [u’(r,z,O,t),v’(r,z,O,t),w’(r,z,O,t),p’(r,z,O,t),T’(r,z,O,t)].

In our earlier work (see Shen et al. (1990)) on the float-zone problem, we had restricted
consideration to axisymmetric disturbances, i.e., the disturbance had no 0-component
of velocity and no 0-dependence.

Substitution of (2.6) into the governing equations and the appropriate boundary
conditions leads to a system of equations and boundary conditions for the disturbance
quantities. We then take the inner product of the disturbance momentum equation
with u’, add to this the disturbance energy equation multiplied by APrT, and inte-
grate over the volume

V={(r,O,z) lO<r<A, 0 < 0 < 2r, O<z<l}
of the cylinder, using the disturbance boundary conditions. The parameter A R/H
is the aspect ratio of the cylinder. The result is the exact disturbance-energy evolution
equation, which may be written (see Davis and von Kerczek (1973)),

1 dE 1 (-PrD Ra/2prI),(2.7) E dt -

A LARGE, INDEFINITE EIGENVALUE PROBLEM 415

where

E (u’. u’ + APrT’2) dV, D (Vu’. Vu’ + AVT’. VT’)dV,

I -/y(1 + A)w’T’dV.

The velocity and temperature disturbances have been joined by a positive coupling
parameter) (see Joseph (1976)) to form a generalized disturbance energy, E. An
upper bound is constructed for the resulting right-hand side of this equation,

(2.8) u=max(-PrD-PrRal/2I)H E

where the maximum is taken over the space of kinematically admissible functions,

H={u’,Tlu’=T’=Oat z=0,1; boundednessatr=0;

u 0 and appropriate, homogeneous thermal conditions at r A; V. u 0}.
We choose to formulate the problem so that the Rayleigh number is the stability
parameter. For fixed values of the other parameters associated with the problem, the
smallest value of Ra that corresponds to the condition p 0 will be called Ra*.

The cylindrical geometry allows a Fourier decomposition in the azimuthal coor-
dinate of the form

(2.9) u’(r, O, z, t) --+ u(r, z, t)ei + fi(r, z, t)e-i,
where n is the azimuthal (integer) wave number and "-" denotes complex conjugation.
Since , is a free parameter, the maximum value of Ra* for positive values of is sought
(see Joseph (1976)), while a minimization has to be carried out with respect to n. The
resulting value is the energy-stability limit, Ra, defined as

(2.1O) RaE rain max Ra*.
n

It can be shown that Ra < RaE is a sufficient condition for stability against distur-
bances of arbitrary amplitude belonging to the class H. For the problem of interest
here, the search for the maximizing A can be done analytically with the result that
A 1 is the optimal choice.

It is convenient to consider a slightly different functional than in (2.8) that
incorporates the divergence constraint by means of a Lagrange multiplier. Hence, the
maximum problem to be solved is expressed as

(2.11) max [-PrD PrRal/I + 2 JvV u’ dV + (E -1)] 0
h

where is a Lagrange multiplier expressing the arbitrary normalization E 1, r(r, z)
is a Lagrange multiplier, and h is the extension of H obtained by removing the di-
vergence constraint. It is easy to show that . Following Shen et al. (1990), we
consider the variation of a discretized version FD of the quadratic functional

F -PrD PrRal/2I + 2/y V. u dV.

The explicit homogeneous boundary conditions that arise following normal-mode de-
composition and that are applied during the discretization process are dependent upon
the azimuthal wave number n (see Batchelor and Gill (1962)). The same discretization

416 MITTELMANN, LAW JANKOWSKI AND NEITZEL

procedure employed by Shen et al. (1990) is used, but there are probably opportunities
available for further study of this topic.

A stationary value of FD is located by differentiating it with respect to each
unknown and setting each of these derivatives to zero, i.e.,

(2.12) OFD
0 q u,j, v,j, w,j,, or rrk,;Oq

here the indices correspond to a nodal numbering, see Shen et al. (1990). This pro-
cess yields a generalized algebraic eigenvalue problem. We seek its minimum positive
eigenvalue as the approximate (subject to discretization error) value of Ra*. Calling
the vector consisting of the unknowns on all grid points X, we rewrite (2.12) in the
matrix form

(2.13) AX pB X,

where A and B are indefinite, Hermitian matrices with A having a banded structure.
More precisely,/ and/} have the following block structure

where the upper left submatrices arise from the above functionals, while A results
from the incompressibility condition. B has null vectors associated with its lower
blocks, but BI in general may yield additional null vectors.

g. Numerical procedure for finding Ra. Equation (2.1a) represents a gen-
eralized eigenvalue problem. The matrices A and B are Hermitian and sparse, but, in
general, indefinite. For the ultimate problem of interest, in addition to the basic-state
dependence of B mentioned above, A and B depend nonlinearly on the other param-
eters of the problem, namely, Pr and the coupling parameter, . Due to the fact that
we report here on the heated cylinder problem as a test for both the discretiation
procedure and the eigenproblem solver, we need to consider only fixed values of these
parameters, reducing (2.1g) to the generalized eigenvalue problem

(3.1) AX pB X, IlXll 1,

where I1" [I denotes the Euclidean norm.
The eigenvalues p of (a.1) are, in general, complex since in the case of at least

one of the matrices being regular the problem is equivalent to the eigenvalue problem
for a non-Hermitian complex matrix. Null vectors of A and B correspond to zero and
"infinite" eigenvalues, respectively. The method developed for the present computa-
tions makes use of the sparseness of ._ and , the fact that they are Hermitian, and
computes only the eigenvalue of interest.

Since a real eigenvalue of (3.1) has to be computed, it is convenient to transform
the problem so that only real arithmetic is needed. Let

Re(A) -Im(A)A= Im(X) Re(X)
where Re(.), Im(.) denote real and imaginary parts, and let B be defined in a similar
way. A straightforward calculation shows that the eigenvalue problem

(3.2) AX pBX, X 0

A LARGE, INDEFINITE EIGENVALUE PROBLEM 417

has the eigenpairs p, (X,-iX)T, , (X, iX)T, where p,X are the eigenpairs of (3.1)
and is the imaginary unit. Thus, each eigenvalue of (3.1) corresponds to a
pair of complex-conjugate eigenvalues of (3.2).

It is important to note that all eigenvalues of (3.2) have the same modulus as
the corresponding eigenvalues of (3.1) and that a simple real eigenvalue of (3.1) cor-
responds to a double eigenvalue of (3.2), but that (3.2) has no other eigenvalue of the
same modulus. Apart from the multiplicity of the eigenvalues, (3.2) is an eigenvalue
problem of the form considered in Shen et al. (1990).

The stability theory requires the computation of but a single eigenvalue of the
problem (3.2), namely, p*, the smallest positive one. The following observations from
computations of the entire spectrum using the complex QZ algorithm led to the choice
of a suitable form of inverse iteration for the solution of this problem. The problem
specified in (3.2) has a spectrum that is roughly symmetrically distributed in the
complex plane with respect to both the real and the imaginary axis. There are a
number of infinite eigenvalues corresponding to null vectors of B. The smallest positive
eigenvalue p* was, in general, also the smallest one in modulus. There were, however,
several eigenvalues both in the negative and the positive halfplane that were not much
greater in modulus than p*. The nullspaces of A and B did not appear to have a
nontrivial intersection. Thus, inverse iteration with an appropriately chosen shift of
origin was selected for the solution of (3.2).

When the matrix B in (3.2) is positive definite, Rayleigh quotient iteration, i.e.,
inverse iteration with a shift computed in each step from the Rayleigh quotient of
the current eigenvector approximation, is known to exhibit very rapid convergence.
This procedure cannot be applied here. The technique developed for the present case
is a generalization of that employed by Bank and Mittelmann (1986) in the program
PLTMG for the simpler problem of finding the smallest eigenvalue of a positive-definite
matrix. It cannot be expected to solve for any desired eigenvalue of (3.2) without
having a rather good initial approximation for this eigenvalue, but the observations
mentioned above justified the application of a suitably implemented version for the
computation of p*. The process is started with a random normalized vector X0 that
is such that its Rayleigh quotient

(3.3) po XoAXo/XoTBXo
is well defined. Given this initial pair p0, X0, the inverse iteration procedure is per-
formed as follows:

1. Solve (A sB)Y (pkB A)Xk and define

2. Form Q [XklY] and solve the 2 x 2 problem

QTAQZ TQTBQZ

for the eigenvalues T1, T2 and associated normalized eigenvectors Zl, Z2. Without loss
of generality, let T1 be the smallest positive eigenvalue.

3. Set pk+l ’1, Xk+l QZl, and check for convergence. If not converged,
increment iteration index k and repeat.

While no analysis of this algorithm will be given here, a few remarks are in order.
The shift s is chosen as a positive real number. From the well-known theory of inverse

418 MITTELMANN LAW JANKOWSKI AND NEITZEL

iteration s has to be closer to p* than to any other eigenvalue of (3.2). Since p* is
unknown, this may require some adjustment of s during the iteration. Experience has
shown, however, that a rough knowledge of the expected p* and the facts observed
above on the distribution of the other eigenvalues permitted the determination of a
reasonable value for the shift.

The eigenvalue problem in step 2 is basically an orthogonal projection of the
original problem into the subspace spanned by the columns of Q. Since only one
eigenvalue is needed, no attempt was made to save more than one vector and solve a
larger auxiliary eigenvalue problem. Simpler inverse iteration algorithms are indeed
available; however, their application to the present problem did not yield satisfactory
results. In general, of course, this 2 2 eigenvalue problem may have complex eigen-
values as well as real ones. While several precautions for this and other cases were
put into the program, they will not be described here, being a rather technical detail.
Eventually, T1 will be positive and approximate p* while QZ1 approximates the asso-
ciated eigenvector. The quantities Xk+ and Pk+l are related through the Rayleigh
quotient (3.3).

Due to the properties of A and B, the matrix on the left-hand side of the linear
system in step 1 is highly indefinite but symmetric. The latest version of the program
SYMMLQ (see Paige and Saunders (1975)) was used for the solution of this system.
It applies a conjugate-gradient method and provides for preconditioning by a positive-
definite matrix. There is no complete theory available for the preconditioning of
indefinite systems. The standard diagonal preconditioning for the associated normal
equations led to the choice of the diagonal matrix with its ith element equal to the
Euclidean norm of the ith column of the matrix A- sB.

The convergence of the above inverse iteration procedure is, in general, linear
with a factor asymptotically equal to

where pn is the next nearest eigenvalue of (3.2) to s and different from p*. Choosing s
close to p* will thus speed up convergence of the inverse iteration while generally re-

quiring more conjugate-gradient iterations for the nearly singular system matrix. The
essential computational requirement per conjugate-gradient iteration is one matrix-
vector multiplication with the system matrix. Since p* is, in general, a double eigen-
value of (3.2), it is also important to note that inverse iteration exhibits the same
convergence behavior for eigenvalues that are equal as opposed to those that are equal
in modulus but different. Again, the observations on the distribution of the spectrum
and the properties of (3.2) as a transformation of (3.1) are of relevance.

Finally, as a stopping criterion, a test on the relative decrease of the residual
combined with one on the convergence of subsequent eigenvalue approximations was
used. The resulting code never failed to solve the above eigenvalue problem and some
information on its performance will be given in the following section.

4. Results and discussion. The algorithm described in the preceding section
has been implemented in a FORTRAN code and executed on an Ardent Titan Mini-
supercomputer in the Advanced Research Computing Facility of the Department of
Mathematics at Arizona State University. The main storage requirement was for the
Hermitian matrices A and B. Only the nonzero elements of the upper halves of the
real and imaginary parts of these matrices need to be stored. Indirect addressing
prevents a full vectorization of the matrix-vector multiplication executed in each step

A LARGE, INDEFINITE EIGENVALUE PROBLEM 419

of SYMMLQ. Experiments with, for example, storage of the matrices by diagonals
permitted full vectorization, but yielded no gain in performance due to the relative
sparseness of the diagonals caused by a staggered-grid discretization (see Shen et
al. (1990) for details). For example, for the case of aspect ratio A 0.2 with Ar
0.0052 and Az 0.0065, the order of the matrices is 29022; the number of nonzero
elements that must be stored are

157946 for Re(A),
73168 for Im (A),
50396 for Re(B).

The inverse iteration was started with a random vector; a shift of 80 percent of a
rough guess of the expected eigenvalue was used for all calculations.

The algorithm described in the previous section was used to compute the eigen-
values Ra* of the heated-cylinder problem described in 2. Values were calculated for
various azimuthal wave numbers, aspect ratios, and discretizations. The number of
iterations required for convergence ranged between 4 and 16. Future theoretical inves-
tigation is needed to explain the causes of the larger iteration counts; one possibility
may be the existence of closely spaced eigenvalues. The overall cost of solving the
eigenvalue problem was not very sensitive with respect to the choice of the shift s in a
relatively wide range of 0 < s < p*. The above preconditioning technique resulted in
a number of cg-iterations within SYMMLQ equivalent to a few percent of the order
of the linear system if s was not too close to p*. When s approached p* the faster
convergence of the inverse iteration was, in general, more than offset by the increased
cg-iterations. For the example whose dimensions were listed above, the number of
cg-iterations with the simple and cheap diagonal preconditioning was on the order of
1000 for an order of A in (3.2) of 58044.

Since the results of Charlson and Sani (1971) are presented in the form Ra*
versus aspect ratio for integer values of the azimuthal wave number n, the minimiza-
tion implied in (2.10) was not carried out. These values are denoted by Ran in the
accompanying figures. In addition to performing calculations for nonaxisymmetric dis-
turbances, cases for axisymmetric (n 0) disturbances were computed and compared
with earlier results of Charlson and Sani (1970). For axisymmetric disturbances, the
complex Hermitian system (2.13) simplifies to a real, symmetric one, thus providing
a means for testing the algorithm’s ability to reproduce the results obtained with its
predecessor (see Shen et al. (1990)). As an additional check, calculations of Ra-n
were in complete agreement with corresponding values of Ran, thereby indicating the
expected indifference to the sense of the azimuthal coordinate.

The convergence of the inverse-iteration procedure was addressed earlier. Also of
interest is the convergence behavior of the discretization scheme. Figure 1 illustrates
this for a case with A 2 and n 1 for a conducting sidewall. For moderate values
of stepsize h (At2 -t- AZ2) 1/2, convergence is O(h2), but for smaller h, this appears
to accelerate.

Figures 2 through 5 show a comparison between selected energy-stability results
obtained with the present algorithm and linear-stability results, which are equal to
those obtained from energy theory for this problem. Since our interest was in ver-
ifying the reliability of the new inverse-iteration algorithm for indefinite, Hermitian
eigenvalue problems, we did not attempt to reproduce all available results. The n 1
results reported by Charlson and Sani (1971), which were obtained with a Galerkin
approach, were apparently not converged (R. L. Sani, private communication); recent

420 MITTELMANN LAW JANKOWSKI AND NEITZEL

1000

I00

I0

0.01 0.1 1

h

FIG. 1. Convergence behavior for various discretizations for A 0.5, n 1 with a conducting

sidewall. ARa is computed using the result from the finest discretization; h (At2 + Az2) 1/2. The

straight line shows convergence to be O(h2).

A LARGE INDEFINITE EIGENVALUE PROBLEM 421

10

4

2
0 0.5 1.0 1.5

A
FIG. 2. Comparison of selected results from the present computations (symbols) with those of

Hardin et al. (1990) (curves) .for A < 1.5 with insulating sidewall.

2100 13 x

| \ \ n 2 -----[[]-----
2ooo - _-

1900 \,

n 0 0

/

_
X

1800 N

1700
1 2 3 4

A
FIG. 3. Comparison of selected results from the present computations (symbols) with those of

Hardin et al. (1990) (curves) for 1 < A < 4 with an insulating sidewall.

422 MITTELMANN LAW JANKOWSKI AND NEITZEL

10

4

n=O

0 0.5 1.0 1.5

A

FIG. 4. Comparison of selected results from the present computations (symbols) with those of
Hardin et al. (1990) (curves) for A < 1.5 with a conducting sidewall.

2100

2000

1900

1800

1700
1 2 3 4

A
FIG. 5. Comparison of selected results from the present computations (symbols) with those of

Hardin et al. (1990) (curves) for 1 < A < 4 with a conducting sidewall.

A LARGE, INDEFINITE EIGENVALUE PROBLEM 423

Galerkin computations of Hardin, Sani, Henry, and Roux (1990) have obtained revised
values of Ran; these are presented in the figures. Agreement is satisfactory in all cases,
leading to the conclusion that the algorithm is implemented properly and is capable
of performing such computations.

The confidence gained from the successful tests for the heated cylinder provides a
basis for the extension of these ideas to the more difficult three-dimensional problem
associated with the stability of thermocapillary convection in a model of the float-
zone crystal-growth process. This problem will require, for fixed n, two additional
outer iterations to find the energy-stability limit MaE (Ma denotes the dimensionless
Marangoni number). First, as in (2.10), both matrices will depend on the coupling
parameter A > 0 requiring maximization with respect to this parameter. Second,
the matrix B will depend on the basic state and, in particular, on its Marangoni
number MaBS. An accelerated fixed-point iteration method can be used to enforce
the required condition Ma* MaBs. These two iterations form an intermediate
level of the solution procedure with the inverse iteration being the inner, and a final
minimization of the Man with respect to the discrete wave number being the outer,
iteration level.

A technologically significant problem associated with materials processing has
driven the creation of a new numerical algorithm for finding the smallest positive eigen-
value of a sparse, indefinite, Hermitian system. Early attempts by Shen et al. (1990)
to employ the QZ algorithm for the simpler problem of a real, symmetric system
were only partially successful because of an inability to obtain adequate resolution
due to restrictions on system order imposed by available computational resources.
This difficulty was only resolved with the development of the new algorithm. The
three-dimensional stability calculations that are now underway are necessary, both
to obtain a complete stability picture for the problem, and also because laboratory
experiments indicate that nonaxisymmetric modes are actually those responsible for
causing instability in some cases. The algorithm has been successful in solving these
technologically related problems; these, in turn, have provided motivation for further
research in numerical analysis.

Acknowledgment. The authors thank the referees for their helpful comments.

REFERENCES

R. BANK AND H. D. MITTELMANN (1986), Continuation and multigrid for nonlinear elliptic
systems, Lecture Notes in Mathematics 1228, Multigrid Methods II, W. Hackbusch and U. Trot-
tenberg, eds., Springer-Verlag, Berlin, New York.

G. K. BATCHELOR AND A. E. GILL (1962), Analysis of the stability of axisymmetric jets, J. Fluid
Mech. 14, 529-551.

G. S. CHARLSON AND R. L. SANI (1970), Thermoconvective instability in a bounded cylindrical
fluid layer, Internat. J. Heat Mass Trans. 13, 1479-1496.

(1971), On thermoconvective instability in a bounded cylindrical fluid layer, Internat J. Heat
Mass Trans. 14, 2157-2160.

S. H. DAVIS (1971), Energy stability of unsteady flows, in Proc. IUTAM Symposium on Unsteady
Boundary Layers.

S. H. DAVIS AND C. VON KERCZEK (1973), A reformulation of energy stability theory, Arch.
Rational Mech. Anal. 52, 112-117.

G. R. HARDIN, R. L. SANI, R. HENRY, AND B. ROUX (1990), Buoyancy-driven instability in a

vertical cylinder: Binary fluids with sorer effect. Part I: General theory and stationary stability
results, Internat. J. Numer. Meth. Fluids 10, 79-117.

424 MITTELMANN LAW JANKOWSKI AND NEITZEL

D. D. JOSEPH (1976), Stability of Fluid Motions I, II, Springer-Verlag, Berlin.
W. KERNER (1989), Large-scale complex eigenvalue problems, J. Comput. Phys. 85, 1-85.
H. D. MITTELMANN, C. LAW, D. F. JANKOWSKI, AND P. G. NEITZEL (1991), Stability of

thermocapillary convection in float-zone crystal growth, Numerical Methods for Free Boundary
Problems, ISNM-99, P. Neittaanmaki, ed., Birkhuser-Verlag, Basel.

R. B. MORGAN AND D. S. SCOTT (1986), Generalizations of Davidson’s method for computing
eigenvalues of sparse symmetric matrices, SIAM J. Sci. Statist. Comput. 7, 817-825.

C. C. PAIGE AND M. A. SAUNDERS (1975), Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal. 12, 617-629.

:F. PREISSER, P. SCHWABE, AND A. SCHARMANN (1983), Steady and oscillatory thermocapillary
convection in liquid columns with free cylindrical surface, J. Fluid Mech. 126, 545-567.

a. L. SANI, private communication.
Y. SHEN, G. P. NEITZEL, D. F. JANKOWSKI, AND H. D. MITTELMANN (1990), Energy stability of

thermocapillary convection in a model of the float-zone, crystal-growth process, J. Fluid Mech.
217, 639-660.

S. C. SINHA AND S. CARMI (1976), On the Liapunov-Movchan and the energy theories of stability,
J. Appl. Math. Phys. 27, 607-612.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 1, pp. 425-448, January 1992

()1992 Society for Industrial and Applied Mathematics
023

CONJUGATE GRADIENT-TYPE METHODS
FOR LINEAR SYSTEMS

WITH COMPLEX SYMMETRIC COEFFICIENT MATRICES*

ROLAND W. FREUND

Abstract. Conjugate gradient-type methods for the solution of large sparse linear systems
Ax b with complex symmetric coefficient matrices A AT are considered. Such linear systems
arise in important applications, such as the numerical solution of the complex Helmholtz equation.
Furthermore, most complex non-Hermitian linear systems which occur in practice are actually com-
plex symmetric. Conjugate gradient-type iterations which are based on a variant of the nonsymmetric
Lanczos algorithm for complex symmetric matrices are investigated. In particular, a new approach
with iterates defined by a quasi-minimal residual property is proposed. The resulting algorithm
presents several advantages over the standard biconjugate gradient method. Some remarks are also
included on the obvious approach to general complex linear systems by solving equivalent real linear
systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems
arising from the complex Helmholtz equation are reported.

Key words, complex symmetric matrices, nonsymmetric Lanczos algorithm, biconjugate gra-
dients, minimal residual property

AMS(MOS) subject classifications. 65F10, 65N20

1. Introduction. Conjugate gradient-type methods--used in combination with
preconditioning--are among the raost effective iterative procedures for solving large
sparse nonsingular systems of linear equations

(1.1) Ax=b.

The archetype of these schemes is the classical conjugate gradient algorithm (CG
hereafter) of Hestenes and Stiefel [24] for Hermitian positive definite matrices A.

While most linear systems that arise in practice have real coefficient matrices A
and real right-hand sides b, there are some important applications (see [16] and the
references therein) that lead to complex linear systems. Partial differential equations
that model dissipative processes usually involve complex coefficient functions and/or
complex boundary conditions (see, e.g., [29]), and discretizing them yields linear sys-
tems with complex matrices A. A typical example for this category is the complex
Helmholtz equation

(1.2) -Au alU + ia2u f,

where al, a2 are real coefficient functions, which describes the propagation of damped
time-harmonic waves as, e.g., electromagnetic waves in conducting media. Further
applications, which give rise to complex linear systems, include discretizations of
the time-dependent Schrbdinger equation using implicit difference schemes, inverse

*Received by the editors April 5, 1990; accepted for publication (in revised form) November
5, 1990. This work was supported in part by the Defense Advanced Research Projects Agency via
Cooperative Agreement NCC 2-387 between the National Aeronautics and Space Administration
(NASA) and the Universities Space Research Association

Research Institute for Advanced Computer Science, Mail Stop Ellis Street, NASA Ames
Research Center, Moffett Field, California 94035, and Institut fiir Angewandte Mathematik und
Statistik, Universitt Wiirzburg, D-8700 Wiirzburg, Federal Republic of Germany.

425

426 ROLAND W. FREUND

scattering problems, underwater acoustics, eddy current computations [2], numerical
computations in quantum chromodynamics, and numerical conformal mapping.

In all these examples, the resulting coefficient matrices A are non-Hermitian.
However, they still exhibit special structures. Often, A differs from a Hermitian
matrix only by a shift and a rotation:

(1.3) A ei(T + iaI), T Tg Hermitian, a e C, 0 E R, := v/--l.
In almost all other cases, which lead to complex systems, the coefficient matrix is
symmetric:

(1.4) A AT is complex symmetric.

Note that the two families (1.3) and (1.4) overlap. The matrix (1.3) is complex
symmetric if and only if T is real.

Surprisingly, when complex linear systems (1.1) are solved in practice, usually no
attempt is made to exploit the special structures (1.3) or (1.4). Indeed, there are two
popular approaches. The first one (see, e.g., [1]) is to apply preconditioned CG to the
Hermitian positive definite normal equations

(1.5) AHAx-- AHb.

Of course, complex numbers can always be avoided by rewriting (1.1) as a real linear
system for the real and imaginary parts of x. The second popular approach is to solve
this real and, in general, nonsymmetric linear system by one of the generalized CG
methods such as GMRES [40]. It turns out that in both cases the resulting iterative
schemes tend to converge slowly. As a consequence, complex linear systems have the
bad reputation of being difficult to solve by CG-type methods. On the other hand, for
the class of shifted Hermitian matrices (1.3), there are efficient CG-type algorithms
[10], [11], [28], [16] for complex linear systems in their original form (1.1). We refer
the reader to [16] for a detailed study and practical aspects of these schemes. In [16]
it is also shown how the special structure (1.3) can be preserved by using polynomial
preconditioning.

In this paper, we are mainly concerned with CG-type methods for linear systems
(1.1) with coefficient matrices of the second class (1.4). In particular, we consider
approaches based on a variant of the nonsymmetric Lanczos algorithm, which was
successfully used for computing eigenvalues of complex symmetric matrices (see [35]
and [6, Chap. 6]). This Lanczos recursion generates basis vectors for the Krylov
subspace induced by A that are orthogonal with respect to a certain indefinite inner
product. The standard way to obtain from this basis iterates, which approximate the
exact solution of (1.1), is to enforce a biconjugate gradient (BCG hereafter) condition.
Here, we propose a new approach that generates iterates via a quasi-minimal residual
property. On typical examples, the resulting algorithm displays better convergence
properties than the BCG approach. In particular, it produces residuals whose norms
are almost monotonically decreasing, in contrast to the erratic convergence behavior
that is typical for BCG. Moreover, the new technique eliminates one of the two sources
of possible breakdown in the BCG approach.

The outline of the paper is as follows. In 2, we review the Lanczos recursion and
related algorithms for complex symmetric matrices. Also, some theoretical properties
which will be needed later on are listed. In 3, we propose the quasi-minimal residual
approach for complex symmetric matrices. Section 4 contains some remarks on the
problem of breakdown of the complex symmetric Lanczos recursion. In 5, we are con-
cerned with the issue of "complex versus equivalent real linear systems." In particular,

COMPLEX SYMMETRIC LINEAR SYSTEMS 427

some results are presented which indicate that for Krylov subspace methods, such as
CG-type algorithms, it is always preferable to solve the original complex system rather
than equivalent real ones. In 6, some typical results of numerical experiments for lin-
ear systems arising from finite difference approximations to the complex Helmholtz
equation (1.2) are given. Finally, in 7, we make some concluding remarks.

Throughout the paper, all vectors and matrices, unless stated otherwise, are

assumed to be complex. As usual, M -[-k], MT --[mkj], and MH --T denote
the complex conjugate, transpose, and Hermitian matrix, respectively, corresponding
to the matrix M [mjk]. Moreover, we set HeM (M + M)/2 and ImM
(M- M)/(2i) for its real and imaginary part, respectively. The notation

Kk(c, B) span{c, Bc, Bk-lc}
is used for the kth Krylov subspace of Cn generated by c E Cn and the n n matrix
B. Furthermore, a(B) denotes the spectrum of B. The vector norm Ilxll v/xHx is
always the Euclidean norm. The set of all complex polynomials of degree at most k
is denoted by

IIk := {p(A) "0 + -IA +... + /kAk /o, /,"" /k e C}.
Moreover, the coefficient matrix A of (1.1) is always n n and, unless stated otherwise,
assumed to be complex symmetric. Generally, xk C, k O, 1,..., denote iterates
for (1.1) with corresponding residual vectors rk b- Axk. If necessary, quantities
of different algorithms will be distinguished by superscripts, e.g., .BCG and ,QMR

k k
Finally, an iterative scheme for solving (1.1) is called a Krylov subspace method if its
iterates are of the form

(1.6) xk Xo + Kk(ro, A) or, equivalently, xk xo + P(A)ro, P IIk_.

Note that, in particular, CG-type algorithms for (1.1) fall into this category.

2. The Lanczos recursion and related algorithms for complex symmet-
ric matrices. The Lanczos procedure [31] for general complex n n matrices A con-
sists of two three-term recurrences (see, e.g., [43, pp. 388-394]). As Lanczos pointed
out [33, p. 176], the general method reduces to only one recursion if A is Hermitian,
respectively, complex symmetric. In particular, for these two special cases, work and
storage of the general Lanczos method are halved. The resulting Hermitian Lanczos
recursion has been studied extensively (see [20, Chap. 9] and the references therein).
In contrast, the literature on the complex symmetric variant is scarce and restricted
to the application of the algorithm to computing eigenvalues of complex symmetric
matrices (see Moro and Freed [35] and Cullum and Willoughby [6, Chap. 6]). Here
we hope to convince the reader that the complex symmetric Lanczos algorithm is also
very useful for solving linear systems.

2.1. The Lanczos recursion. The basic method is as follows:
ALGORITHM 2.1 (LANCZOS METHOD FOR A AT).

(1) Start:

ChooseroCn, roO;
Set=ro andvo-O.

(2) For k 1,2,... do:

Computek=([k)/2

428 ROLAND W. FREUND

Ifi3k O" Set mo k 1, and stop;
Otherwise, set Vk k/k;
Compute ak vAvk;
Set

In the following proposition, some elementary properties of Algorithm 2.1 are
listed; proofs can be found in [5, Chap. 6]. We set

(2.1) Vk "= [v v2 vk] and Tk :=

Moreover, m, m,(ro, A) :- dimKn(ro, A) denotes the grade of r0 with respect to
A (cf. [43, p. 37]). We remark that m, > 1 is the smallest integer such that Kin. is
an A-invariant subspace of Cn. Equivalently, if A is nonsingular and ro b- Axo,
m, > 1 is the smallest integer such that

(2.2) A-b E xo + Kin. (ro, A).
PROPOSITION 2.2. (a) In exact arithmetic, Algorithm 2.1 stops after a finite

number of steps k mo + 1 and 0 <_ mo <_ m,. Furthermore, mo+ 0 if mo m,

("regular termination"), and mo+ 0 if mo< m, ("breakdown").
(b) For k 1,2,... ,m0"

(2.3) T { 0, ifk#j
j=l 2,...,too,vv= 1, /k=j

(2.4) gk(ro, A) span{vl, v2,.-. vk},
(2.5) AVk VT +[0 0 0 +1].

Notice that, by (2.3)-(2.4), the Lanczos vectors Vl,..., vk form an orthonormal
basis for Kk(ro, A) with respect to the indefinite bilinear form

(2.6) (x, y) :- yTx, x, y Cn.
In particular, if Algorithm 2.1 terminates regularly, it generates a basis of the affine
space xo + Kin. (r0, A), which, in view of (2.2), contains the exact solution of Ax b.

Note that the indefinite bilinear form (2.6) is the proper (cf. Craven [5]) "inner
product" for complex symmetric matrices. Unfortunately, it has the defect that there
exist vectors v Cn which are quasi-null [5], i.e., (v, v) 0, but v # 0. Consequently,
it cannot be excluded that Algorithm 2.1 actually breaks down. Indeed, in view of
part (a) of Proposition 2.2, a breakdown occurs if we encounter a quasi-null vector 6.
The phenomenon of breakdown will be discussed further in 4.

Finally, we remark that there is a close connection (see Theorem 2.4 in [15]) of
the complex symmetric variant 2.1 with the Lanczos algorithm for general matrices.
Unlike Hermitian matrices, complex symmetric matrices do not have any special spec-
tral properties. Indeed (see, e.g., [25, Thm. 4.4.9]), any complex n x n matrix is
similar to a complex symmetric matrix. This result entails that the general nonsym-
metric Lanczos method differs from the complex symmetric Algorithm 2.1 only in an
additional starting vector so, which can be chosen independently of r0 in 2.1.

After these preliminaries, we now turn to linear systems (1.1). In the sequel, it
is always assumed that A is nonsingular.

COMPLEX SYMMETRIC LINEAR SYSTEMS 429

2.2. Related algorithms. In his celebrated papers [31], [32], Lanczos also
proposed a scheme, closely related to the nonsymmetric Lanczos process, for solving
general non-Hermitian linear systems, namely, the biconjugate gradient algorithm
(BCG). We refer the reader to [12], [39], [26] for a detailed discussion of the BCG
approach.

Like the nonsymmetric Lanczos method, BCG for general linear systems is started
with two vectors: the residual ro b- Axo of the initial guess xo and a second vector
so 0. We remark that so is still unspecified. Due to the lack of a criterion for the
choice of so, we usually set so ro in practice. For the case of complex symmetric
matrices A, it is straightforward to show that, in analogy to the complex symmetric
variant 2.1 of the general Lanczos process, the choice so ro results in a scheme which
requires only half the work and storage of general BCG. The resulting procedure is as
follows:

ALGORITHM 2.3. (BCG for A AT)
(1) Start:

Choose xo E Cn;
Set po ro b- Axo and compute rToro.

(2) For k 1, 2,... do:

Compute Apk-1 and Pk-IT Ap_;
T k 1, and stop;Ifp_Apt_ 0 or rk_rk_ 0 Set rn
T /p_Apk-Otherwise, set 6k rk_rk-

Compute xk xk- + 5kPk-1 and rk rk-1 5kApk-1;
Compute T and set Pk

Trk rk rk rk/r[_lrk-;
Compute Pk rk -k- PkPk-1.

Note that the transpose in all dot products in Algorithm 2.3 is essential. In
particular, Algorithm 2.3 is different from the classical CG method for positive definite
matrices A AH.

In the sequel, BCG always refers to the complex symmetric Algorithm 2.3. Next,
we list some basic properties of BCG that will be needed in subsequent sections.
These results are immediate consequences of results (e.g., Jacobs [26]) for the general
biconjugate gradient method.

PROPOSITION 2.4. (a) In exact arithmetic, Algorithm 2.3 stops after a finite
number of steps k m + 1 and 0 <_ ml <_ m,. Furthermore, xml A-lb if rnl m,

"regular termination"), and Xml A-Ib ifm < m, ("breakdown").
(b) For k 1,2,... ,ml"

rk_rj_ O, kCj, j=l,2,.-.,m,

(2.8) g(ro, A) span{ro, r,... rk_ }.

(c) Let k {1,2,... ,ml}. Then, xk is uniquely determined by the Galerkin
condition

(2.9) (b- Axk)Ty 0 for all y e gk(ro, A), Xk e xo + gk(ro, A),

with respect to the inner product (2.6).
By comparing (2.7)-(2.8) with (2.3)-(2.4), we conclude that r_ is parallel to

the Lanczos vector Vk generated by Algorithm 2.1. More precisely, we easily verify

430 ROLAND W. FREUND

that

(2.10) rk-1 (--1)k-1(1 (k--ll""" k--lkVk, 1, 2,’’" ml.

Notice that there are two different causes for breakdown of Algorithm 2.3. The first
one, namely, the occurrence of a quasi-null residual vector rk-1, is, in view of (2.10),
equivalent to the breakdown of the complex symmetric Lanczos Algorithm 2.1. In
addition, Algorithm 2.3 breaks down if we encounter a search direction pk-1 # 0 with
p_iTAp-I 0. This second cause of breakdown is more severe than the first one. As
we will see in 3, it occurs if no Galerkin iterate (2.9) exists.

Closely related to the biconjugate gradient method for general linear systems
(1.1) is the conjugate gradients squared algorithm (CGS hereafter) that was recently
proposed by Sonneveld [41].

ALGORITHM 2.5. (CGS for general A)
(1) Start:

Choose xo E Cn and so C’, so :/: O;
Set po uo ro b- Axo and compute SToro.

(2) For k 1, 2,... do:

Compute Ap_ and sotAp_1;

If 80TApk_l 0 or soTrk_l O: Stop;

Compute q ua_ aApk_1;

Compute xa x_ + aa(u_ + qk) and r r-i akA(uk-1 + qk);
Compute srk and set k srk/sTo rk-;
Compute uk rk + kqk and Pk uk + k(qk

Notice that, like general BCG, CGS has a second unspecified starting vector so.
However, unlike BCG, even with the special choice so r0, CGS cannot exploit
the complex symmetry of A. In particular, for A AT, Algorithm 2.5 requires per
iteration about twice as much work as the BCG Algorithm 2.3.

Finally, as a special case of the general connection [41] between the CGS and
BCG approaches, we have the following result.

PROPOSITION 2.6. Let A AT, ro r0
BCG rCo GS, and, in Algorithm 2.5,

so ro. Then, for k O, l, m,

rBCG (A)ro and cG (Pk(A)) 2
k Pk "k ro

for some Pk Hk with Pk(O) 1.

3. A quasi-minimal residual algorithm for complex symmetric matri-
ces. In this section, we propose a new approach for solving complex symmetric linear
systems. The method is based on the complex symmetric Lanczos Algorithm 2.1. For
simplicity, we assume throughout this section that, in exact arithmetic, Algorithm 2.1
terminates regularly, i.e.,

(3.1) /3k0 for k=l,2,...,m,, /3m.+1=0.

Moreover, always let k {1, 2,..., m,} in the following.

COMPLEX SYMMETRIC LINEAR SYSTEMS 431

3.1. Basic approach. Let xk be the kth iterate of any Krylov subspace method
(1.6). Then, by (2.4) and with Vk as defined in (2.1), we have

(3.2) Xk xo + Vkzk where Zk E Ck.

Using (2.5) and r0 1Vl, it follows from (3.2) that

(3.3) r b- Axk ro AVkz 1vl Vk+lkZk V+I (1el kZk).
Here, e "= [1 0 0IT denotes the first unit vector,

T with ek [0 0 1]

and, if k m,, vm.+ := O. Recall that Tk was defined in (2.1).
Clearly, the aim is to choose Zk in (3.2)-(3.3) such that rk 0 as good as possible.

In the BCG approach, this is attempted by enforcing the Galerkin condition (2.9).
Using (2.3)-(2.4) and (3.3), we easily verify that (2.9) holds if and only if rk and vk+
are parallel or, equivalently, Zk is a solution of the linear system

(3.5) Tz e.
Note that, by (3.1), (3.5) is inconsistent if T is singular. Thus we have the following
result.

PROPOSITION 3 1 A BCG iterate _BCG satisfying the Galerkin condition (2.9)
exists if and only if Tk is nonsingular. Moreover, if it exists, it is unique and given by

(3.6) _BCO xo + Vz and r -Z+(z)v+
where z is the solution o] (3.5) and (z) denotes its kh component.

Proposition 3.1 demonstrates the defects of the BCG approach. Simple examples
show that singular Tk may indeed occur, and then, in view of Proposition 2.4, the BCG
Algorithm 2.3 would break down in exact arithmetic. In floating-point arithmetic, such
a breakdown is unlikely to happen. However, Tk may still be close to singular and
then the Galerkin condition (2.9) defines a poor approximation to the true solution
of (i.I). This is the reason for the typical erratic convergence behavior with wildly
oscillating residual norms.

Obviously, the question arises as to whether there is a better strategy than (2.9)
for choosing zk in (3.2)-(3.3). Ideally, we would like to have the minimal residual
(MR) property

Axl (3.7) lb- Axkll
xexo+g,(,o,A) zeC

However, by (2.3), in general (see Theorem 3.4 for an exception) the columns of Vk+l
are orthonormal only with respect to (2.6) rather than the Euclidean inner product
(x, y) yHx. Consequently, solving the least-squares problem on the right-hand side
of (3.7) results in an algorithm for which work and storage per iteration step k grows
linearly with k. Hence, if we insist on a "true" iterative scheme with constant work
and storage per iteration, this excludes the MR method.

Here, we propose the quasi-minimal residual (QMR) approach as a substitute for
(3.7). Let

k+l=diag(wl,W2,...,Wk+) with wj >0 for all j

be a given positive diagonal weight matrix and rewrite (3.3) in the form

(3.8) rk (Vk+k+l) (WlZlel k+l

432 ROLAND W. FREUND

Instead of Ilrkll as in (3.7), we may at least minimize the vector of components in the
representation (3.8) of rk"

(3.9)
zC

Hence, we define the iterates of the QMR method as follows:

(3.10) ,QMR
Xk --k XO -- VkZk where zk E Ck is the solution of (3.9).

Notice that k+lk is a (k / 1) x k matrix which, by (3.4) and (3.1), has full rank.
Thus, the least squares problem (3.9) always has a unique solution Zk.

Clearly, the QMR approach still depends on the weights wj. A natural choice is

(3.11) IIv ll, J 1, 2,..., k + 1,

so that all basis vectors vj/wj in the representation (3.8) of rk have Euclidean length 1.
Our numerical tests (cf. 6) also confirmed (3.11) as the best strategy.

3.2. Practical implementation. Next we present an algorithm for the actual
computation of the QMR iterates (3.10). The derivation is similar to that of Paige
and Saunders’ SYMMLQ and MINRES algorithms [36] for real symmetric matrices.

By (3.4), (2.1), and (3.1), tk+lk is a tridiagonal (k + 1) x k matrix with full
column rank. Hence it admits a QR factorization of the type

(3.12) Qk+ltk+lk [ROk]
where Qk+l is a unitary (k + 1) x (k + 1) matrix and Rk a nonsingular matrix of the
form

(3.13) Rk :=

1 ?2 03
0 @ a
0 ". a

The decomposition (3.12) can be generated by means of a series of k complex Givens
rotations (e.g., [20, p. 47])

Q(cj,sj) cj sj 2 + isjl2 1 j 1,... k.
-sj cj

cj E ll,sj C, cj

In particular, (3.12) is easily updated from the factorization (ktkk-1 Rk-1 of the
previous step by setting

0 Q(Ck, Sk) 1

and computing ck, Sk and the new elements Ok, k, k of Rk as follows:

(3.15)

COMPLEX SYMMETRIC LINEAR SYSTEMS 433

By (3.12) and since Qk+l is unitary, (3.9) is equivalent to

(3.16)

From (3.10) and (3.16) it follows that

(3.17) Xk xo + Vkzk where zk := R-*tk, "k+l k+l :-- WllQk+lel.

Notice that, in view of (3.14), tk differs from the previous vector tk-1 only by its kth
component Tk := (tk)k Ck’k. Next, we define vectors pj via

(3.18) [p, p2 Pk VkR-.
Finally, using (3.17)-(3.18) and (3.13), we obtain the recursion

1()xk xk_ + Tpk, where p - vk rkpk_ Opk_.

for the OMR iterates. In combination with Algorithm 2.1, the following implementa-
tion results"

ALGORITHM 3.2 (QMR METHOD).
(1) Start:

Choose xo E C.n;
Set=b-Axo, vo=po=p--O;

o.

(2) For k 1,2,... do:

If O, stop: x_ solves Ax b.
Otherwise, compute vk k/k and ak vAvk;

~TSet +1 Av av Zv_, Z+I (v++)/
Compute Ok, k, k, Ck, and sk, using formulas (3.15);
Set Pk (Vk lkPk- Okpk-2)/k;
Set T Ck’, + --Sk;
Compute Xk Xk-, + TkPk.

The assumption (3.1) guarantees that, in exact arithmetic, Algorithm 3.2 stops
for k m, + 1 and, by (2.2), xk- is indeed the solution of (1.1) then. However,
in floating-point arithmetic, this finite termination property of the Lanczos recursion
is no longer valid, and the stopping criterion stated in Algorithm 3.2 is not useful
in practice. Instead, we should terminate the iteration as soon as Ilrkll is sufficiently
reduced. We remark that rk is not directly available in Algorithm 3.2. However, in
view of (3.19), if we update one additional auxiliary vector, namely,

Ck’k+lhk hk-1 + Vk+l, ho := r0,

then Ilrkll can be computed via

Ilrk]l 18182... Ski 2. Ilhkl].
Finally, notice that, for the weighting strategy (3.11),

i/3k
f’=Rek, 9"=Im

434 ROLAND W. FREUND

can be obtained without extra cost during the computation of ’k fTf gTg +
2ifTg.

3.3. Properties. In this subsection, we list some further properties of the QMR
approach.

PROPOSITION 3.3. For k 1, 2,... m,:

()

(3.19) .QMR 12QMR. Is ._ + (c+/+)v+;

(b) The BCG iterate BCG defined by (2.9) exists if and only if Ck O. Moreover,
if ck O, then

(.o)
(3.21)

Proof. (a) By (3.17), (3.12), and (3.8), we have

_QMR(3.22) Tk+lWk+ where

0

Vk+1- Hk+l k+lOk+l
1

With (3.14), it follows that successive vectors @k+l and @k are connected by

(3.23) (v+ -s--Z(v + (c/w+)v+.
Finally, by combining (3.23) and (3.22) and using "k+l --Sk’k, we obtain (3.19).

(b) First we note that (3.12), (3.4), and (3.14)imply

(3.24) QktkTk Ik- ckO IRk.
Thus, by Proposition 3 1 BCG exists if and only if ck 0 Now assume Ck O.
Using (3.5)-(3.6), (3.24), and (3.17), we get

(3.25) k’BCG X0 "- ?kzBCGk where zBCG [tk-1]-R- /c
By comparing (3.25) with (3.17), (3.20) follows. For the proof of (3.21), notice that,
by (3.25), (3.13), and the formula for sk in (3.15),
(3.26) (BCG+) +/() -/(+c).
Furthermore, Algorithm 3.2 shows that

I/,1 IM1/18182 S-ll.
Finally, by inserting (3.26)-(3.27) into the formula (3.6) for _BCg

"k we arrive at
(3.21). El

In view of part (b) of Proposition 3.3, the QMR method has the additional feature
that it also yields all existing BCG iterates. This is in contrast to the BCG Algorithm
2.3, which breaks down as soon as the first nonexisting BCG iterate is encountered. We
remarkthat by (3.21) -BeG

"-k II can be computed without extra cost from quantities
which are generated in Algorithm 3.2 anyway. In particular, we may monitor IIrCGII
during the course of the QMR algorithm, and, whenever the actual BCG iterate is
desired, compute .BCG via (3.20):b k

COMPLEX SYMMETRIC LINEAR SYSTEMS 435

There is an important special case for which the QMR method (with weighting
strategy (3.11)) is even equivalent to the MR approach (3.7). Consider the subclass
of (1.3) of complex symmetric matrices of the form

(3.28) A T + iaI, T TT real symmetric, a > 0.

Assume that r0 E Rn (this can always be achieved by a proper choice of x0). Then it is
easily verified that the Lanczos vectors vk generated by Algorithm 2.1 are all real and
therefore, by (2.3), orthonormal with respect to the usual Euclidean inner product.
In particular, by (3.11), wj =- 1, and the least squares problem (3.9) is equivalent to
the one on the right-hand side of (3.7). Hence we have the following result.

THEOREM 3.4. Let A be of the form (3.28) and ro n. Then, the iterates xk
generated by Algorithm 3.2 (with wj =- 1) satisfy the minimal residual property (3.7).

4. On the breakdown of the complex symmetric Lanczos algorithm. In
the general nonsymmetric Lanczos process a breakdown--more precisely, division by
0--may occur, before an invariant subspace has been found (see, e.g., [43, p. 389]).
Although this happens very rarely in practice, the possibility of such breakdowns has
brought the nonsymmetric Lanczos method into discredit and has certainly kept many
people from actually using the algorithm. On the other hand, it is possible to devise
so-called look-ahead [42], [38], [27], [3] modifications of the Lanczos algorithm which
allow it to skip--except in the very special case of an incurable breakdown [42], [37]--
over those iterations in which the standard algorithm would break down. Note that
this was already observed by Gragg [21, pp. 222-223] and, in the context of the partial
realization problem, by Kung [30, Chap. IV] and Gragg and Lindquist [22]. However,
a complete treatment of the modified Lanczos method and its intimate connection
with orthogonal polynomials and Pad approximation was presented only recently by
Gutknecht [23].

Like for the general nonsymmetric Lanczos process, the complex symmetric Algo-
rithm 2.1 may break down, i.e., stop with vTv 0 and v :/= 0. Recall that, throughout
3, possible breakdowns of the complex symmetric Lanczos recursion were explicitly
excluded by assuming (3.1). In this section we briefly sketch the basic idea of the look-
ahead procedure for the special case of the complex symmetric Lanczos recursion and
derive a new theoretical result concerning so-called incurable breakdowns for complex
symmetric matrices.

Assume that a breakdown occurs in Algorithm 2.1. In view of Proposition 2.2, this
happens if and only if there is no complete set of m, Lanczos vectors v K(r0, A),
k 1,..., m,, which are orthonormal (cf. (2.3)) with respect to the indefinite inner
product (2.6). Clearly, there exists a maximal subset

kl < <... <
such that for each j 1, 2,... J there exists a vector vk K (to, A) satisfying the
orthonormality relations

(4.2) vkv 0 for all v Kk-(ro, A) and vkvk
By the definition of Krylov subspaces, Kk(ro, A) {P(A)ro P e Hk_}, and espe-
cially

(4.3) vk P_(A)ro with Pk- H_.
Therefore, we can rewrite (4.2) in terms of polynomials:

(4.4) (Pkj-, P) 0 for all P Hk-2, (Pk-,Pk-) 0,

436 ROLAND W. FREUND

with the indefinite inner product

(4.5) (P, Q) "= rToP(A)Q(A)ro.
A polynomial Pk-i E IIk_ that fulfills (4.4) is called a regular orthogonal (with
respect to (4.5)) polynomial of degree kj 1. It is well known [7], [23] that three
successive regular orthogonal polynomials are connected via a three-term recurrence.
By (4.3), it follows that there is a corresponding three-term recurrence relating the
vectors vk-, Vk, and vk+. The look-ahead Lanczos procedure is a modification of
Algorithm 2.1 which--based on this three-term relation--generates the vectors vk,
j 1, 2,..., J. These vectors can then be completed to a basis of Kkj by setting,
e.g.,

vk Ak-kvk for k kj + 1, kj + 2,..- kj+ 1, j 0, 1,... J- 1,

(cf. [19]). Here, for j 0, we set k0 :- 1. We remark that the resulting look-ahead
Lanczos algorithm produces block tridiagonal matrices Tk, j 1,... J, of the type
(2.1) with (kj ki_ (ki kj_l) matrices ak on the block diagonal.

In exact arithmetic, the outlined algorithm terminates with the block tridiagonal
Tkj. Suppose that kj m, in (4.1). Then Tkj represents the restriction of the matrix
A to the A-invariant subspace Kin. (r0, A). Obviously, in view of (2.2), the solution of
(1.1) can then be computed from the quantities generated by the look-ahead Lanczos
procedure. On the other hand, if kg < m, in (4.1), it is not possible to obtain the
solution of (1.1) by means of the Lanczos process. For this reason, the case kg (m,
is called incurable breakdown.

Next, we derive a criterion for the occurrence of incurable breakdown in the
complex symmetric Lanczos algorithm. In the following, it is assumed that A is
diagonalizable. Then (e.g., [25, Thm. 3.4.13]), A has a complete set of orthonormal
(with respect to (2.6)) eigenvectors. In particular, r0 can be expanded into eigenvectors
of A. More precisely, by collecting components corresponding to identical eigenvalues,
we get

m.

(4.6) r0 p,u,

wherept0, Aut Atut, and, iflj, ArrAy, uuj O.

Notice that, unless all eigenvalues ofA are distinct, quasi-null vectors ut may occur
in (4.6). In view of the following theorem, this is equivalent to incurable breakdown.

THEOREM 4.1. Let A AT be a diagonalizable n n matrix and ro Cn. Then
in (4.1), kj m, if and only if the eigenvectors in the expansion (4.6) of ro satisfy

(4.7) uut O for all l= l,... ,m,.

Proof. We need to show that (4.7) is equivalent to the existence of a regular
orthogonal polynomial of degree m, 1 with respect to the inner product (4.5). From
the general theory of orthogonal polynomials, it is well known (e.g., [4, pp. 11-12])
that regular orthogonal polynomials of degree k exist if and only if the corresponding
moment matrix Mk := (ttj+t)j,t=0,... ,k is nonsingular. For the case of (4.5), by (4.6),
we have

m.

(4.8) # := roTAr0 E Pt At uut, j-O, 1,....
l--1

COMPLEX SYMMETRIC LINEAR SYSTEMS 437

Note that moment matrices are, in particular, Hankel matrices. By applying Kro-
necker’s theorem on the rank of infinite Hankel matrices [18, pp. 204-207] to Mo
(#j+l)j,t=o,1,..., it follows that

(4.9) rank Mc rank Mk rank Mm_l m for all k >_ m- 1,

where m is the number of poles of the rational function

f(z) :=
zj+

j=0

Using (4.8) and Yj--o)/zJ+ =_ 1/(z- ,), we obtain the following expansion of f"
m, 2 T

(4.10 f(z) E pu u for all Izl > max 1141.
Z ’l /=1,.." ,m,

/=1

In particular, by (4.10), m <_ m, with equality holding if and only if (4.7) holds true.
Hence, in view of (4.9), Mm.-1 is nonsingular if and only if (4.7) is fulfilled. This
concludes the proof.

As mentioned, (4.7) is guaranteed if A has only simple eigenvalues. Thus we have
the following corollary.

COROLLARY 4.2. If A AT is an n x n matrix with n distinct eigenvalues, then
incurable breakdowns cannot occur in the complex symmetric Lanczos Algorithm 2.1.

5. Complex versus equivalent real linear systems. In this section, we study
connections between (1.1) and its equivalent real versions. Unless stated otherwise, A
is now assumed to be a general complex n x n matrix.

Im x Im b

A second real version of (1.1) is

5.1. Equivalent real linear systems. By taking real and imaginary parts in
(1.1), we can rewrite (1.1) as the real linear system

A,._ [ReA -ImA]Im A Re A

(5.2) A**
Re x Re b

A** :=Im x Im b Im A Re A

Obviously, (5.1) and (5.2) are the only essentially different possibilities of rewriting
(1.1) as a real 2n 2n system. Furthermore, note that A, is nonsymmetric if and only
if A As is non-Hermitian, whereas A** is symmetric if and only if A AT. Hence,
for complex symmetric linear systems the approach (5.2) appears to be especially
attractive since it permits the use of simple CG-type methods such as SYMMLQ and
MINRES [36] for real symmetric matrices.

In the following proposition, we collect some simple spectral properties of A, and
A-k-k

PROPOSITION 5.1. (a) Let J X-AX be the Jordan normal form of A. Then
A, has the Jordan normal form

(5.3) J 0 1 X -iX
0 - -XjA.X. where X,:=- -iX -In particular,

(5.4) a(A.) a(A) U a(A).

438 ROLAND W. FREUND

(b) The matrices A** and-A** are similar. In particular,

(5.5) -, ,- e a(A**) for all e a(A**).
Moreover,

a(A**) {A e C[A2 e a(A)}.
(c) Let A AT be complex symmetric. Then, there exists a singular value de-

composition (the so-called Takagi SVD) of A of the form
(5.6) A UEUT, U unitary, E diag(al,a2,... ,an) >_ O.

Moreover, A** is a real symmetric matrix with spectral decomposition

Z Y 0 - Z Y where Y=ReU, Z=ImU.

Proof. (a) First, note that

0
where S:= -iI I

In particular, (.8) shows that with X also X is nonsingular. We readily verify that

SHA,S= [A 0]0

and, in view of (5.8), this implies (5.3). Equation (5.4) is an obvious consequence of

(b) Since

-In 0 A** -I 0

the real matrices A** and -A** are similar. Hence, (5.5) holds true. The relation
between a(A**) and a(AA)is known (see [25, p. 214] for a proof).

(c) Equation (5.6) is the well-known Takagi singular value decomposition for
symmetric matrices (e.g., [25, Cor. 3.4.4]). By rewriting (5.6) in terms of the real and
imaginary parts of A and U, we obtain (5.7) (cf. [25, pp. 212-213]). [:]

Roughly speaking, Krylov subspace methods are most effective for coefficient
matrices A whose spectrum, except for possibly a few isolated eigenvalues, is contained
in a half-plane which excludes the origin of the complex plane. On the other hand,
if this half-plane condition is not satisfied and if a large number of eigenvalues of
A straddle the origin, usually the convergence of CG-type algorithms is prohibitively
slow. Typically, in these situations (see [8], [13], [14] for examples), iterations based on
Krylov subspaces generated by A offer no advantage over solving the normal equations
(1.5) by standard CG. See Theorem 5.4 for a theoretical result along these lines.

For complex linear systems that arise in practice the half-plane condition is usually
satisfied. Indeed, mostly

(5.9) a(A) C { e C lImA >_ 0}.
However, by rewriting (1.1) as real linear systems (5.1), respectively, (5.2), we de-
liberately create coefficient mtrices whose spectra are most unfavorable for Krylov
subspace methods. The case (5.2) is especially bad since, in view of (5.5), a(A**) is
symmetric with respect to real and imaginary axis and hence the eigenvnlues Mways
embrace the origin. Similarly, by (5.4), the coefficient matrix A, of (5.1) in general
has eigenvalues in the upper as well as in the lower half-plane. In particular, if (5.9)

COMPLEX SYMMETRIC LINEAR SYSTEMS 439

holds and, as in most applications, the Hermitian part (A + AH)/2 of A is indefinite,
the spectrum of A, straddles the origin and the half-plane condition is not satisfied
for A,. The following example illustrates this behavior.

Example 5.2. Consider the class (3.28) of complex symmetric matrices A
T + iaI, where T TT is real and a > 0. Obviously,

(5.10)
a(A) {,

c + +
Here p and PM denote the smallest and largest eigenvalue of T, respectively. Note
that the complex line segment S is parallel to the real axis and always contained in
the upper half of the complex plane. In view of (5.4), (5.10) implies

We remark that S S is a tandem slit consisting of the two complex intervals S
and S, which are parallel and symmetric to each other with respect to the real axis.
Moreover, the eigenvalues of A, straddle the origin if the Hermitian part T of A is
indefinite. Finally, using (3.28) and part (b) of Proposition 5.1, we obtain

Note that the class (3.28) is closely related to shifted skewsymmetric matrices. Indeed,
if, instead of Ax b, we rewrite -lAx -ib as a real system (5.1), we obtain

-T I =h-N, N:= T 0

Then the eigenvalues are contained in a line segment which is parallel to the imaginary
axis and symmetric with respect to the real axis:

a((-iA),)
5.2. Correspondence of Krylov subspace methods. In analogy to (1.6)

for complex linear systems (1.1), a Krylov subspace method for the solution of the
equivalent real systems (5.1), respectively, (5.2) generates iterates

respectively,

(5.13) [Rexk]___imxk Imx0 Imr0

Here and in the sequel, II- denotes the subset of IIk-1 of polynomials with real
coefficients. Furthermore, the notation

will be used.
At first glance it might appear that Krylov subspace iterations (1.6), respectively,

(5.12)-(5.13) for the original complex systems, respectively, its equivalent real versions
correspond to each other. However, as the following proposition shows, this is not the
case in general.

440 ROLAND W. FREUND

PROPOSITION 5.3. Let k E N.
(a) Let P E Hk-1. Then, xk xo + P(A)ro is equivalent to

(5 14) Rexk Rex0 + PI(A,) Imr0 -Rer0Imxk Imxo

where P PI + iP2, P1, P2 l-I) 1"

(b) Let P e II)1" Then, (5.13)is equivalent to

(5.15) xk Re xk + Imxk Xo + R(AA)V5 + S(AA)Aro

where R II(r) and S II(r) defined by P()) R(A2) + AS(A2)[(k-)/2J [(k-2)/2J are

Proof. First we note that, for j 0, 1,...,

ImAJ ReAJ and (A**) _im(A)j Re(A)J
as is easily verified by induction on j.

(a) Let j and 5j be the coefficients of the real polynomials P and P2, respectively.
Then

k-1

Re P(A) E(’j ReAJ 5 ImA/),

k-1

ImP(A) E(J ImAJ + 5j Re A).
j=0

By reformulating xk xo + P(A)ro, by means of (5.17) and the first relation in (5.16),
in terms of real and imaginary parts, we immediately obtain (5.14).

(b) A routine calculation, using the second identity in (5.16), shows that (5.13)
can be rewritten as

-Imxk]= [Rex0
-II{R(--A)o+S(-A)-ro}Imx0

Hence (5.13) and (5.15) are equivalent.

In view of part (a) of Proposition 5.3, the corresponding real equivalent of com-
plex Krylov schemes (1.6) are iterations of the type (5.14) and not the obvious real
Krylov subspace methods (5.12). Clearly, the actual choice of the polynomials in

(1.6), respectively, (5.12)-(5.13) is aimed at obtaining iterates which are--in a certain
sensebest possible approximations to the exact solution of the corresponding linear
system. By using schemes of the type (5.12), from the first, we give up k of the 2k
real parameters which are available for optimizing complex Krylov subspace methods
(1.6). Consequently, it is always preferable to solve the complex system (1.1) rather
than the real version (5.1) by Krylov subspace methods. Furthermore, numerical tests
reveal that the convergence behavior of the two approaches can be drastically different
(see 6).

5.3. A connection between MR and CGNR for complex symmetric
matrices. Now assume that A is a complex symmetric n n matrix. Then, in view
of part (c) of Proposition 5.1, A** is a real symmetric indefinite matrix whose spectrum
is given by

(5.18) a(A**) {+/-aj j 1,... ,n}.

COMPLEX SYMMETRIC LINEAR SYSTEMS 441

Here aj aj(A) >_ 0, j 1,... n, denote the singular values of A.
Since there are simple extensions [36] of classical CG to real symmetric indefinite

matrices, it is especially tempting to solve (5.2) by one of these methods. The iterates
of these algorithms are defined either via a Galerkin condition or a minimal residual
(MR) property. Here we consider the MR approach. Applied to (5.2) it generates a
sequence of iterates zk, k 1, 2,..., which are characterized by

(5.19) lib** A**zkll min
zezo+g(kr) (r*,A**

Here we have set

(5.20) b** [Re bJimb

lib** A**zll, Zk e zo + Kk(r)(r*, A**).

Rexk] fork=0,1,..., r*’=b**-A**z0.zk’= --Imxk

Roughly speaking, CG-type algorithms for real symmetric indefinite systems converge
slowly if the coefficient matrix is strongly indefinite in the sense that it has many pos-
itive as well as many negative eigenvalues. Unfortunately, since by (5.18), a(A**) is
even symmetric to the origin, A** exhibits this undesirable property. Indeed, numer-
ical tests show that the convergence behavior of the MR method (5.19) is practically
identical to that of the tabooed approach to (1.1) via solving the normal equations
(1.5) by standard CG [24]. In the sequel, we refer to this latter method as CGNR.
Notice that the iterates xk of CGNR are defined by the minimization property

(5.21) lib- Axll min lib- Axl[, x e xo + K(AHro, AHA).
xExoWKI(AHro,AH A)

Next we prove that MR and CGNR are even equivalent if the starting residual

r* satisfies a certain symmetry condition. Note that, corresponding to the spectral
decomposition (5.7), r* can be expanded into eigenvectors of A** as follows:

(5.22) r*= [Y -Z 1Z y c with c

THEOREM 5.4. Let xk
M

E R2n.

C2n

respectively, X/CGNR denote the iterates generated by
(5.19)-(5.20), respectively, (5.21) starting with the same initial guess xo E C,n. Assume
that c in the expansion (5.22) of r* satisfies

(5.23) Icjl ICn+jl, j 1,2,’" ,n.

The,

(5,24) xCGNP X2R MR 0, 1X21+l,

Proof. First note that, in view of (5.7) and (5.22), cj and cn+j are components
corresponding to a pair of symmetric eigenvalues =l=aj of A**. However, for any real
symmetric linear system A**z b** with "symmetric" eigenvalues and "symmetric"
starting residual r* in the sense of (5.18) and (5.23), respectively, the MR method

((r) (A**r* A2**) (see, e.g., [14]). Consequentlygenerates iterates with z E z0 + [k/2J
the iterates defined by (5.19) satisfy

(5.25) z2t z2t+l e zo + K[r) (A**r*,A**).
In particular, by (5.20), (5.25) shows that x2g X2/+I.MI:t

442 ROLAND W. FREUND

It remains to prove the first relation in (5.24). To this end, we remark that

(5.26) lib** A**zll lib- Axll for all z _Imx x e

Moreover, by using (5.20) and part (b) of Proposition 5.3 (applied to polynomials
P(A) =_ AS(A2)), we deduce

(5.27) zo + Kr)(d**r*, (d**)2) -Imx x e xo + (mgro,

(notice that d dg in (5.15)!). In view of (5.25)-(5.27), (5.19) (for a be
rewritten in the form

(5.28)]b-dxR] min]]b-dx]], x e xo+gr)(dgro, mgd).
xexo+Kv) (AH rO ,AH A)

Finally, note that the iterates of CGNR always correspond to real polynomials, i.e.,

xCNR e xo+gr)(Agro, dHd). Hence, by comparing (5.21)with (5.28), we conclude
that xGNa x.

Clearly, the special symmetry condition (5.23) will not be satisfied in general.
Nevertheless, all our numerical experiments showed (cf. 6) that (5.24) is still fulfilled
approximately, i.e.,

l=0,1,....

6. Numerical examples. We have performed numerical experiments with all
algorithms considered in this paper in numerous cases. In this section, we present a
few typical results of these experiments.

Consider (1.2) on the unit square G (0,1) x (0,1) with al a constant
and 62 a real coefficient function. First assume that u satisfies Dirichlet boundary
conditions. Then, approximating (1.2) by finite differences on a uniform m x m grid
with mesh size h := 1/(m + 1) yields a linear system (1.1) with A an n x n, n "= m2,
matrix of the form

(6.1) A T + ihD, T := Ao ah2I, D diag(d,d2,... ,dn).

Here A0 is the symmetric positive definite matrix arising from the usual five-point
discretization of -A and the diagonal elements of D are just the values of 62 at the
grid points.

Similarly, if we consider the real Helmholtz equation (1.2), i.e., 62 0, but now
with a typical complex boundary condition such as

Ou
on < <On

(which is discretized using forward differences) and Dirichlet boundary conditions on
the other three sides of the boundary of G, we again arrive at (6.1), where

f /h, ifj=lm, l=l,.-.,m,
dj

0, otherwise.

The test problems presented in this section are all linear systems Ax b with
complex symmetric coefficient matrices of the type (6.1). For Example 6.1, the mesh
size h 1/64 was chosen resulting in a 3969 x 3969 matrix A. In Examples 6.2-6.4,
h 1/32 and thus A is a 961 x 961 matrix. The right-hand side b was chosen to be a

COMPLEX SYMMETRIC LINEAR SYSTEMS 443

vector with random components in [-1, 1] / i[-1, 1], with the exception of Example
6.2 where b had constant components 1 + i. As starting vector, x0 0 was chosen

As stopping criterion, we used

(6.3) Rk := lib --Axkll < 10_6.
I1 - A 011

In Figs. 6.1-6.4, the relative residual norm (6.3), Rk, is plotted versus the number Nk
of matrix-vector products with A, A,, or A**. Note that Nk k is identical to the
iteration number, except for CGS, respectively, CGNR, which both require two matrix-
vector products A.v, respectively, A.v, A. v per iteration and for which Nk 2k.
For GMRES [40], work and storage per iteration step k grows linearly with k and in
practice it is necessary to use restarts. In the sequel, GMRES(k0) and GMRES,(k0)
refer to complex and real versions--restarted after every ko iterations--of the GMRES
method applied to (1.1) and (5.1), respectively.

In a first series of experiments, QMR (with different weighting strategies) and
BCG were compared. The natural choice (3.11) turned out to be the best strategy in all
cases. In the following, QMR always refers to Algorithm 3.2 with weights (3.11). Then
QMR produces residual vectors whose norms are almost monotonically decreasing and
generally smaller than those of the BCG residuals. However, convergence of QMR
and BCG typically occurred after a comparable number of iterations. The following
example is typical.

Example 6.1. Here (6.1) is a 3969 3969 matrix with al 200, and the diagonal
elements of D are given by (6.2) with a 10. In Fig. 6.1, the convergence behavior
of BCG, QMR, and of the unweighted version (wj 1) of the QMR Algorithm 3.2 is
displayed.

10

10

10o

10.1
BCG10-2

10-3

10-4

10
0 50 100 150 200 250 300 350 400 450 500

number of matrix-vector products

Fro. 6.1

Next we compared the CGS Algorithm 2.5 and complex GMRES with QMR
and BCG. Typically, CGS needed slightly fewer iterations than QMR and BCG to

444 ROLAND W. FREUND

reach (6.3). However, per iteration, QMR and BCG require only about half as much
work and storage and thus CGS is more expensive than QMR or BCG for complex
symmetric matrices. Due to the necessary restarts, GMRES was never competitive
with QMR, BCG, or CGS.

Example 6.2. In (6.1) we set n 961, al 100, and dj; j 1,... ,n, are
chosen as random numbers in [0, 10]. Figure 6.2 shows the convergence behavior of
GMRES(20), QMR, BCG, and two runs of CGS with different starting vectors so,
namely, so r0, respectively, so with random components in [-1, 1] + i[-1, 1]. Notice
the extremely large residual norms in the early stage of the CGS iteration.

10

106

100

10-3

CGS(so to)
/

GMRES(20)

number ofmatrix-vector products

FIG. 6.2

In the following two examples we compared CG-type methods for Ax b with
real schemes for the equivalent real systems (5.1), respectively, (5.2).

MR(A**) denotes the minimal residual method (5.19) applied to the real sym-
metric system (5.2).

Example 6.3. Here, in (6.1), n 961, or1 100, and dj are given by (6.2) with
100. In Fig. 6.3, the convergence behavior of QMR, MR(A**), GMRES(20),

GMRES(5), GMRES,(5), and CGNR is shown. Notice that, although the symmetry
condition (5.23) is not fulfilled, the curves for CGNR and MR(A**) are almost identi-
cal. This confirms (5.29). Finally, we tried GMRES(k0) and GMRES,(k0) also with
other restart parameters k0. For this example, both methods never did converge.

Example 6.4. Let A be the 961 961 matrix (6.1) with or1 1000, D cr2I,
or2 100, and set cr := a2h2. Note that A is a shifted Hermitian matrix of the
form (3.28) (cf. Example 5.2). In particular, A belongs to the class of matrices (1.3)
for which efficient true minimal residual algorithms for solving Ax b exist. Here we
used the particular implementation, MR(A), derived in [16, Algorithm 2]. Recall that,
by rewriting -iAx -ib as a real system (5.1), we obtain a shifted skewsymmetric
matrix (5.11), (-iA),. Again, for such matrices an efficient true minimal residual
algorithm, denoted by MR((-iA),), exists [9], [13]. Figure 6.4 shows the convergence

COMPLEX SYMMETRIC LINEAR SYSTEMS 445

behavior of MR(A), MR(A**), MR((-iA),),CGNR, and GMRES(20). Notice that

MR((-iA),) and CGNR are nearly identical. This is typical for the case in which a

is small compared to the spectral radius of T. Furthermore, if a 0, i.e., (-iA), in

(5.11) is skewsymmetric, CGNR and MR((-iA),) are even equivalent [13].

10o

10-1

10.2

10.3

10-4

10-5

10.6
0

GMRES(20) MR(A**)

IQMR

500 1000 1500 2000

number of matrix-vector products

FIG. 6.3

10o

10-I

10-2

10.3

104

10-5

10-6
0

-._.--_ GMRES.(20)

’ M,R(A**), ’"100 200 300 400 500 600 700 800

number of matrix-vector products

FIG. 6.4

446 ROLAND W. FREUND

7. Concluding remarks. Complex linear systems Ax b, which arise in prac-
tice, often have complex symmetric coefficient matrices A. In this paper we have
explored the use of a variant of the nonsymmetric Lanczos process for complex sym-
metric matrices for the solution of such linear systems. In particular, we have proposed
a new method of defining approximate solutions of Ax b via a quasi-minimal residual
(QMR) property. In contrast to the biconjugate gradient (BCG) approach, the QMR
iterates are well defined as long as the basic Lanczos recursion does not break down.
Moreover, unlike the wildly oscillating BCG residuals, the QMR residuals converge
almost monotonically. Also, existing BCG iterates can be easily computed from the
quantities generated during the QMR iteration. Finally, possible breakdowns--except
incurable ones--of the complex symmetric Lanczos recursion can be overcome by us-
ing a look-ahead version of the Lanczos process. Incurable breakdowns occur only
in very special situations. For example, they cannot occur if all eigenvalues of A are
distinct.

It is very tempting (and often done in practice!) to avoid complex linear systems
by solving equivalent real systems instead. We have presented some theoretical and
numerical results which show that this--at least for Krylov subspace methods--is a
fatal approach. Typically, the resulting real systems are unequally harder to solve by
conjugate gradient-type algorithms than the original complex ones.

In this paper we have not addressed the question of how to choose preconditioners
M for complex symmetric linear systems. This will be the subject of a forthcoming
report. Here, we remark only that complex symmetry is preserved under precondi-
tioning as long as M is complex symmetric. In particular, all algorithms for A AT
that we have considered can be used in conjunction with a complex symmetric pre-
conditioner M. Note that the standard techniques, such as incomplete factorization
[34], applied to A AT generate complex symmetric preconditioners M.

Finally, we would like to mention that the quasi-minimal residual approach can
also be used to stabilize the general nonsymmetric biconjugate gradient algorithm [17].

REFERENCES

[1] A. BAYLISS AND C.I. GOLDSTEIN, An iterative method for the Helmholtz equation, J. Comput.
Phys., 49 (1983), pp. 443-457.

[2] C.S. BIDDLECOMBE, E.A. HEIGHWAY, J. SIMKIN, AND C.W. TROWBRIDGE, Methods for eddy
current computation in three dimensions, IEEE Trans. Magnetics, MAG-18 (1982), pp.
492-497.

[3] D. BOLEY AND G.H. GOLUB, The nonsymmetric Lanczos algorithm and controllability, Sys-
tems Control Lett., 16 (1991), pp. 97-105.

[4] T.S. CHIHARA, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York,
1978.

[5] B.D. CRAVEN, Complex symmetric matrices, J. Austral. Math. Sou., 10 (1969), pp. 341-354.

[6] J.K. CULLUM AND R.A. WILLOUGHBY, Lanczos Algorithms for Large Symmetric Eigenvalue
Computations, Volume 1, Theory, Birkhuser, Basel, 1985.

[7] A. DRAUX, Polynmes Orthogonaux Formels--Applications, Lecture Notes in Mathematics
974, Springer-Verlag, Berlin, 1983.

[8] S.C. EISENSTAT, Some observations on the generalized conjugate gradient method, Numerical
Methods, Proceedings, Caracas, Venezuela, 1982, Lecture Notes in Mathematics 1005, V.
Pereyra and A. Reinoza, eds., Springer-Verlag, Berlin, 1983, pp. 99-107.

[9] S.C. EISENSTAT, H.C. ELMAN, AND M.H. SCHULTZ, Variational iterative methods for non-

symmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345-357.

COMPLEX SYMMETRIC LINEAR SYSTEMS 447

[10] V. FABER AND T. MANTEUFFEL, Necessary and sujrficient conditions for the existence of a

conjugate gradient method, SIAM J. Numer. Anal., 21 (1984), pp. 352-362.
[11] , Orthogonal error methods, SIAM J. Numer. Anal., 24 (1987), pp. 170-187.
[12] R. FLETCHER, Conjugate gradient methods for indefinite systems, Proc. Dundee Conference on

Numerical Analysis, 1975, Lecture Notes in Mathematics 506, G.A. Watson, ed., Springer-
Verlag, Berlin, 1976, pp. 73-89.

[13] R. FREUND, ber einige cg-iihnliche Verfahren zur LSsung linearer Gleichungssysteme, Doc-
toral thesis, Universitt Wiirzburg, FRG, May 1983.

[14] Pseudo Ritz values for indefinite Hermitian matrices, Tech. Report 89.33, RIACS,
NASA Ames Research Center, Moffett Field, CA, August 1989.

[15] Conjugate gradient type methods for linear systems with complex symmetric coefficient
matrices, Tech. Report 89.54, RIACS, NASA Ames Research Center, Moffett Field, CA,
December 1989.

[16] , On conjugate gradient type methods and polynomial preconditioners for a class of
complex non-Hermitian matrices, Numer. Math., 57 (1990), pp. 285-312.

[17] R.W. FREUND AND N.M. NACHTIGAL, QMR: a quasi-minimal residual method for non-Her-
mitian linear systems, Tech. Report 90.51, RIACS, NASA Ames Research Center, December
1990.

[18] F.R. GANTMACHER, The Theory of Matrices, Vol. 2, Chelsea, New York, 1959.
[19] G.H. GOLUB AND M.H. GUTKNECHT, Modified moments for indefinite weight functions,

Numer. Math., 57 (1990), pp. 607-624.
[20] G.H. GOLUB AND C.F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,

Baltimore, MD, 1983.
[21] W.B. GRAGC., Matrix interpretations and applications of the continued fraction algorithm,

Rocky Mountain J. Math., 4 (1974), pp. 213-225.
[22] W.B. GRAG(AND A. LINDQUIST, On the partial realization problem, Linear Algebra Appl., 50

(1983), pp. 277-319.
[23] M.H. GUTKNECHT, A completed theory of the unsymmetric Lanczos process and related algo-

rithms, Part I, IPS Research Report No. 90-16, ETH Ziirich, Switzerland, June 1990.
[24] M.R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,

J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.
[25] R.A. HORN AND C.R. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge,

U.K., 1985.
[26] D.A.H. JACOBS, A generalization of the conjugate-gradient method to solve complex systems,

IMA J. Numer. Anal., 6 (1986), pp. 447-452.
[27] W.D. JOUBERT, Generalized conjugate gradient and Lanczos methods for the solution of non-

symmetric systems of linear equations, Ph.D. thesis, Department of Computer Sciences,
University of Texas, Austin, TX, January 1990.

[28] W.D. JOUBERT AND D.M. YOUNG, Necessary and suJficient conditions for the simplification of
generalized conjugate-gradient algorithms, Linear Algebra Appl., 88/89 (1987), pp. 449-485.

[29] J.B. KELLER AND D. GIVOLI, Exact non-reflecting boundary conditions, J. Comput. Phys., 82
(1989), pp. 172-192.

[30] S. KUNG, Multivariable and multidimensional systems: Analysis and design, Ph.D. thesis,
Department of Engineering, Stanford University, Stanford, CA, June 1977.

[31] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differen-
tial and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp. 255-282.

[32] , Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur.
Standards, 49 (1952), pp. 33-53.

[33] , Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956.
[34] J.A. MEIJERINK AND H.A. VAN DER VORST, An iterative solution for linear systems of which

the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.
[35] G. MORO AND J.H. FREED, Calculation of ESR spectra and related Fokker-Planck forms by

the use of the Lanczos algorithm, J. Chem. Phys., 74 (1981), pp. 3757-3773.
[36] C.C. PAIGE AND M.A. SAUNDERS, Solution of sparse indefinite systems of linear equations,

SIAM J. Numer. Anal., 12 (1975), pp. 617-629.
[37] P.N. PARLETT, Reduction to tridiagonal form and minimal realizations, preprint, University

of CMifornia, Berkeley, CA, January 1990.
[38] B.N. PARLETT, D.R. TAYLOR, AND Z.A. LIU, A look-ahead Lanczos algorithm for unsymmetric

matrices, Math. Comp., 44 (1985), pp. 105-124.

448 ROLAND W. FREUND

[39]

[4o]

[41]

[42]

[43]

Y. SAAD, The Lanczos biorthogonalization algorithm and other oblique projection methods for
solving large unsymmetric systems, SIAM J. Numer. Anal., 19 (1982), pp. 485-506.

V. SAAD AND M.H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Statist. Comput., 10 (1989), pp. 36-52.

D.R. TAYLOR, Analysis of the look ahead Lanczos algorithm, Ph.D. thesis, Department of
Mathematics, University of California, Berkeley, CA, November 1982.

J.H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, U.K.,
1965.

SIAM J. SCI. STAT. COMPUT.
Vol. 13, No. 2, pp. 449-458, March 1992

1992 Society for Industrial and Applied Mathematics
001

A SCHEME FOR PARALLELIZING CERTAIN ALGORITHMS FOR THE
LINEAR INHOMOGENEOUS HEAT EQUATION*

STEVEN M. SERBINt

Abstract. This paper proposes a technique for parallelizing some algorithms for the inhomogeneous
heat equation developed by Brenner, Crouzeix, and Thome. It is known that "reduction of order" may
occur unless special treatment is afforded the inhomogeneity; their schemes do so without imposing
"unsatisfactory" conditions on the forcing term. Certain distinct pole rational functions with matrix argument
are expanded into partial fraction form and instructions are given on how this can be used to apportion
the work of solving the corresponding linear algebraic systems to processors operating concurrently; this
will allow for the implementation of a high-order scheme in essentially the same time as that of a less
powerful lower-order scheme such as implicit Euler. Some numerical results for the implementation are
presented, which is compared to a sequential implementation for the same scheme and a similar one which
is based on a rational function with a multiple pole.

Key words, parallel methods, inhomogeneous heat equation, order reduction, partial fractions

AMS(MOS) subject classifications. 65M05, 65M20

1. Introduction. The purpose ofthis note is to synthesize two basic ideas to produce
an implementation strategy for the approximate solution of the linear inhomogeneous
heat equation. It has been observed by Crouzeix [3] and also by Verwer [14] and
Sanz-Serna, Verwer, and Hunsdorfer [10] (in the context of implicit Runge-Kutta
methods) that the order achieved in fully discrete schemes for such problems may fail
to meet that which is expected from the usual ordinary differential equation (ODE)
analysis for the corresponding semidiscrete equations. Numerical examples of this
"order reduction" may be found, for instance, in the report of Verwer [14], and so
the issue of avoiding this reduction is quite real. The approach we wish to follow here
is specific to the linear inhomogeneous heat equation and thus is based upon the
analysis of Brenner, Crouzeix, and Thom6e. They describe in [2] (and summarize in
[13]) a class of fully discrete schemes which achieve optimal (unreduced) order of
convergence while avoiding the imposition of "unsatisfactory" boundary conditions
on the forcing term and certain of its derivatives.

To accomplish the time-stepping procedures which constitute these implicit
algorithms, certain systems of linear algebraic equations must be solved at each time
step. The second basic component of our strategy is the decomposition of certain
rational functions with matrix argument into partial fraction form. Of itself, this
approach is, to some extent, known. Swayne [11] used such a decomposition for a
class of low-order schemes for systems of ODEs. Recently, Sweet [12] exhibited the
utility of the partial fraction approach to obtain parallelism in cyclic reduction methods
for solving certain block tridiagonal linear algebraic systems. Also, it was brought to
our attention by one of the referees that Gallopoulos and Saad [4] had undertaken
independently a similar study. Their approach, as ours, involves the partial fraction
expansion of rational matrix functions, but applies essentially only to the homogeneous
semidiscrete problem (the forcing term being constant). While illuminating and impor-
tant computational studies and numerical experiments performed on a true parallel
system may be found in their work and associated references cited therein, our results
reported here aim specifically at the issue of the inhomogeneity and thus complement
their work.

* Received by the editors October 1, 1989; accepted for publication (in revised form) October. 17, 1990.
t Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300.

449

450 STEVEN M. SERBIN

Similar to the approach utilized by Gallopoulos and Saad for their problem, we
shall note how the partial fraction approach allows, within each time step, the creation
of subtasks which will be able to be accomplished concurrently; the resulting solutions
will then be combined to produce the approximate solution of the heat equation at
the next time level. One feature of our approach will be the ability to create the
appropriate rational functions directly in partial fraction form, rather than having to
use the more traditional expansions as intermediaries.

We will begin by presenting the problem and describing the Brenner-Crouzeix-
Thom6e algorithms. We will show the role ofthe partial fraction approach and elaborate
on the conditions required and their fulfillment. We will show in general how these
schemes can be implemented employing concurrency, and then demonstrate our
approach with a particular fourth-order scheme. We will conclude with numerical
examples which have been constructed to compare the partial fraction approach to a
traditional computational scheme, as well as to investigate the order reduction question.

2. The inhomogeneous heat equation and some fully discrete numerical schemes. The
problem described by Brenner, Crouzeix and Thom6e is as follows. Let fl be a bounded
domain in Rd with smooth boundary; we wish to determine a function u(x, t) satisfying

ut- Au =f in fl x [0,),

(2.1) u 0 on dO x [0, o),

u(.,0)=0 in

Here, A is, as usual, the Laplace operator. In this section, we shall not attempt
to present all of the stages leading to the fully discrete algorithms developed in [13].
To establish notation, though, we recount that (2.1) is first approximated by the
semidiscrete problem

(2.2)
Uh,, AhUh fh Pof for >= 0,

uh(O) =0,

where Ah is the "semidiscrete" Laplacian defined on an appropriate finite-dimensional
subspace Sh of L2(fl), Uh :[0, cO)--> Sh is the semidiscrete approximation to u, and Po
denotes the L2 projection operator from fl to Sh. In turn, (2.2) will then be discretized
in time to yield a scheme of the form

(2.3)

un+l= r(kAh)Un + k q,(kAh)Pof(tn + ’ik),
i=1

n =0, 1, 2,

where k is the time step, t, nk, r(A) and qi(A), i= 1,..., m are rational functions
bounded on the spectrum of kAh uniformly in k and h and the quadrature nodes

1,. ., m are distinct real numbers (which are taken to be in [0, 1]). Each U" Sh
is then an approximation to Uh(tn).

The aim of any such scheme (2.3) is to produce an efficient procedure which
admits an "optimal" error estimate of the form IlUn-uh(tn)ll=c(h +kP), where h
represents an appropriate spatial discretization parameter and the exponent/3 reflects
the approximation property of the subspace Sh, while the exponent p is determined
by the properties of the rational function r and q(h), 1,. ., m.

Certain conditions obtained by Brenner, Crouzeix, and Thom6e are imperative.
They first require the time discretization (2.3) to be "accurate of order p" (in a sense

PARALLELIZING ALGORITHMS FOR HEAT EQUATION 451

defined by applying the scheme to a scalar analogue), and establish the equivalence
of the condition to the requirements

r(X)=eX+(Xp+I) asA0(2.4)

and

(2.5) i=1 rtq,(A)=+-i =oj!]+(AP-’) asAO, O<=l<=p.

To promote computational efficiency, an additional constraint on the schemes is that
r(A) and all qi(A) share the same denominator. With this choice, we shall discuss the
usual implementation of (2.3), as well as our approach affording parallelism, in 4.

When m =p, it turns out that (2.4)-(2.5) are easily satisfied (with the aid of a
Vandermonde system to fix the qi(A)). However, a reduction of m at no loss in order
of accuracy would lead to a more efficient scheme, so that possibility should be admitted.

Even when schemes are restricted to satisfy (2.4), (2.5), and, in addition, a certain
stability condition imposed on r(A) for A in the spectrum of kAh, a further objection
is registered. Namely, the analysis is performed in certain Sobolev spaces HS(f), and
conditions requiring ft)(t) to lie in certain of these spaces (s =max (/3, 2p)-2/, l<p)
in order to obtain desired estimates force "unsatisfactory" boundary conditions on f
and its derivatives, conditions that "are not necessary to ensure existence and unique-
ness of the exact solution" of (2.1).

Strides are then taken to remove these objections. In doing so, it is necessary to
reformulate the accuracy condition. Defining (with a slight notational deviation from
[13])

(2.6) p,(A) =T r(A)- ’,q,(A), /=0,...,p- 1
j=0 i=1

and

(2.7) pp(A)=A-771 r(A)=oj!]
then accuracy of order p is equivalent to

(2.8) p,(A) ’(AP-’), A -->0, /=0,..., p.

In addition, strict accuracy of order Po--< P is defined to be

(2.9) p,(A) =0, 1=0,..., Po- 1.

After they perform further analysis, including the introduction of certain functions
h(A), and in particular,

(2.10) hp_l(A)=l-(p-1) E ’,P-2q,(A) +A E -lq,(A)
i=1 i=1

the goal of the paper is achieved. Namely, by requiring (2.8), (2.9) with Po =P- 1, the
stability condition Ir(A)l_-< 1 for A in the spectrum of kAh, and the condition that

(2.11) or(A)---- hp_l(A)/(A(1 r(A)))

be bounded on the spectrum of kAh uniformly in k and h, the optimal estimates are
obtained, requiring appropriate regularity in the solution of (2.1), but not the objection-
able boundary conditions on f.

452 STEVEN M. SERBIN

Finally, for purposes of construction of the schemes for rn < p, it is shown that
the accuracy conditions needed should be (2.4), and, additionally,

(2.12) p(X) 7(Ap-t) h 0, /=0, , m- 1

and a moment condition on the quadrature nodes,

(2.13) o(z)zj d- 0, j =0,. , p- m- 1

where o9(-)

3. Rational approximation via partial fractions: Selection of schemes. We suppose
that

(3.1) e E = r(z)
=o 1 yz

where {y}=o is some specified collection of distinct real numbers, with Yo 0. Thus,
we are dealing here only with the case of rational approximation with real poles; the
inclusion ofcomplex poles indeed appears to be very interesting, and has been discussed
for the homogeneous problem by Gallopoulos and Saad. For our problem, though, a
general theory linking the optimal order of the scheme to the minimal number of
quadrature nodes is unknown (to our knowledge) and so the case of complex poles
will be deferred to a later study.

The approximation (3.1) will be of order at least v (in the usual algebraic sense)
if, letting E(z)= e-r(z), it occurs that E()(0)=0,j 0, z But, since differenti-
ation of the individual terms in (3.1) and their subsequent evaluation at z 0 is trivial,
the condition for order v becomes simply

(3.2) l=j’{ "riUi j =0, .
In the case that v , (3.2) is then a Vandermonde system of order p + 1:

(3.3)

1 a(o’) [1/0!
7. a!’) /1/’. 1!

which we shall abbreviate as V(")a(’)= ().
It is well known that this system has a unique solution, which can be described

as follows. Define

1-ILo,,#, (x- r)(3.4) g,(x) H=0.-’jI-(7’ ’)"
If the coefficients of a matrix C(), {ci}, i,j 0,. .,/x are defined via the expansion

(3.5) g,(x)= E ci.x
j=O

then it follows easily that [V(")]-1= C(’), so that

(3.6) a0")= C(")().

PARALLELIZING ALGORITHMS FOR HEAT EQUATION 453

We can express the coefficients of C() in terms of elementary symmetric poly-
nomials as follows. The elementary symmetric polynomial of degree K on/z arguments
is

(3.7) S(Ol,""", otx)-- E ojj2 oj.
Jl <J2

Denote

(3.8) d}’)= I-I
j=O.j#i

It follows by expanding out (3.4) that

(3.9)

so by (3.6),
c.= (-1)’-1Sv._1(7o, 7,,""", "/,-,, 7,+,,""’, 7.)" dv’),

Cj(3.10) al"= .I"j=0

(Alternatively, Golub and Van Loan [5] describe a recursive way to generate the
solution of a Vandermonde system.)

We now undertake the task of selecting the reciprocal poles {yi}, determining the
qi(h), the quadrature nodes {zi}, and fulfilling the conditions of 2 under which the
optimal estimates are obtained. In light of the decision to restrict our attention to real
poles, we recall the result ofWanner, Hairer, and Norsett 15] that confines the maximal
order of approximation in (3.1) to be p =/z + 1. Moreover, using the nomenclature of
[8], the N-polynomial is defined to be

*-i

(3.11) N(t)= (-1)’S,
i=o

(where S without any arguments is taken to mean Si(’)tl, ’)t/a,)), and the surfaces
(sheets) on which the maximal order p =/z / 1 is actually achieved are characterized as

(3.12) M= 2,=(71,72,...,%,)1 N(t) dt O

This will provide us guidance in our choice of parameters.
Since the operator Ah will have its spectrum on the negative real axis, we wish to

choose the poles y-l,..., ,)/1 SO that the required order is obtained and that r(A) is
Ao-acceptable. We have shown in [1] that it suffices that each y >-1/2 for the desired
stability to occur. Next, Brenner, Crouzeix, and Thom6e instruct us to satisfy (2.13)
if strict accuracy of order m is to be obtained; in this case, m =p-1= is desired.
Then, it is possible to specify the rational functions q(A) from

(3.13) 2 zliqi(A)= r(h)- b/+(A), I=0,. ", m- 1.
i=1 j=0

Once again, we have a Vandermonde system, with solution

(3.14) q,(A) Xj=I (-1)m-JSm-i(’rl, "ri-1, "/’i+l,""", "I’m)
bj(A).

While this is not delivered to us in partial fraction form, we will indicate such an
expansion momentarily.

454 STEVEN M. SERBIN

For, we will show that each b+l(h), I=0,... ,-1 can be expressed as the
rational function l+l(h)/Q(A), with deg i+1 </z, and deg Q =/. From (3.14), it then
follows that each qi(h) 0 as h -c, so it has the partial fraction expansion

(3.15) q,(h)
j=l 1--TjA

The asseion about b+(h) follows easily from the results of [8]" under the assumption
that r(a) P(h)/Q(A) approximates ea to order at least then

(3.16) O(h)=
i=0

and

g (-1)
(3.17) P(A)= Y, A S

=o i=o (j-i)!"

Clearly, then

L hj P(A)- Q(A) Z=o hJ/j
(3.18) r(h)- 2. .==o Q(A)

upon expansion of the numerator, a polynomial of degree +/x, the coefficients of h ,
0,. ., vanish. Thence,

is indeed a polynomial of degree (l +)- (l + 1)=- 1, as promised.
The coecients in (3.15) will be found, for any paicular scheme, in the usual way:

(3.19) }’= lira (1-I)q(I).
1/i

We shall show below a paicular expansion of the form (3.15) for our model scheme.
Finally, we must address the condition (2.11). By viue of the choices made in (3.13),
a simple computation shows that h_()=-I0-(), so the condition (2.11) can be
rephrased as follows: (I) -0_(I)/(1 r(1)) must be bounded uniformly in k and
h on the negative real axis. From (2.8), we know that 0-(I)= if(1), and, similarly,
from (3.16) and (3.17), P(1)- Q(1) I+ ff(1), Q(1) (1) so (I) (1) as I0-.
That (I) is bounded as I-m follows from our asseions following (3.17) with
/==p-1, as well as the already discussed behavior of the {q(1)}. So (I) is
bounded for all I N 0.

4. Ileetfim Pllels. By viue of the fact that r(1) and all q(1) share
the same denominator Q(1), the usual" implementation of (2.3) involves solution of
problems of the form Q(kh) Un+ v. Since Q(kh) (I jkh), this results
in a sequential algorithm requiring the solution of subproblems of the form (I--
k&h)gn+’j= gn+’j- with U+’=v and U+’"= U+. We note that in this
instance, the poles need not all differ. By contrast, our computational approach is as
follows. Inseing the paial fraction forms for r(kh) and qi(kh), i.e., (3.1) and
(3.15), into the fully discrete scheme (2.3), we find that

(4.1)U+=a"U+ a}"(I-kh)-U+k 2 2
j=l i=1 j=l

PARALLELIZING ALGORITHMS FOR HEAT EQUATION 455

A simple rearrangement yields the following equation (since we have set ft m):

")-{a,,)U " (,)(4.2) V"+’ ao" U" + Y (I ykAh + k Y .. Pof(t, + z,k)
j=l i=1

and therein lies the opportunity for parallelism. We define W’ S by

(4.3) (I-yjkAh)W"’=aJ’)U"+k 6’)Pof(t,+z,k), j=l,...,/x
i=1

and then assemble

(4.4) U"+= ao’) U" + Y W"’j.

Indeed, (4.3) is normally manifested in a collection of large, sparse systems of
linear algebraic equations, which can be solved concurrently on/z processors, one for
each index j. Further, in a usual implementation, each processor would perform at the
outset of the computation the appropriate matrix factorization, which is then available
for the back substitutions performed at each time step. This approach then appears to
be most suitable for a shared memory architecture with a relatively small number of
processors. We mention, though, that a further opportunity for parallelism in the
solution of each system corresponding to index j of (4.3) could also be explored.

5. A sample method: Numerical results. We elect to present as an example of our
approach a fourth-order (p =4) scheme with/z m 3. Choosing 7-1 =0, 7-2 .5, and
7" --1, the moment condition (2.13), j =0, is obviously met, and this selection of 7-’s
clearly saves one evaluation of Pof at each time step. With the specification of the Ti’s
deferred, we shall proceed under the assumption that (3.9)-(3.10) will provide us with
the necessary set of coefficients {a")}. The other collection of required coefficients,

(i)the { , require elaboration for the case at hand. One can first invoke (3.13) to
produce, with Q(A)==1 (1-TA), the formulae qi(A)= J(A)/Q(A) with

JI(A) [A -" (1/2S 2S2 + 4S3)A + (-1/2S1 + $2- $3)A2],
(5.1)

and

Jz(A) [+ (-2S1 + 4S2- 8S3)A]

J3(A [+ (-+1/2S1- 2Sz + 4S3)A + $3}[2].

Then, performing the operations indicated in (3.19), we determine that

I,j

We present a numerical example utilizing this scheme with the following purpose
in mind. We wish to explore how the partial fraction approach compares to the usual
sequential implementation for the approximate solution of the semidiscrete problem.
We also wish to produce evidence that order reduction does not occur when the
schemes investigated here are applied to an example of a problem obtained from
semidiscretization of an inhomogeneous heat equation with homogeneous Dirichlet
boundary conditions. So, we have chosen a class of test problems similar to that
employed by Verwer [14] in his study.

Namely, we semidiscretize the problem (2.1) in one space dimension with f/= [0, 1
by applying a uniform grid second-order finite difference approximation in the spatial

456 STEVEN M. SERBIN

variable, so that we consider the standard system Ut +AU F(t) with A the usual
symmetric N x N tridiagonal finite difference matrix with Ai,i+l -h-2 and A, 2h -2,
with h=l/(N+l). With exact solution chosen to be u(x, t)=tx(1-x), we have
F(t)= t"-l[axi(1-x)+2t]. One result of this choice is that as the solution to the
partial differential equation (PDE) problem is quadratic in x, the spatial error vanishes
(in theory), and thus the global error is totally controlled by the time step. This in no
way obscures the issue of order reduction. Indeed, Verwer does report the occurrence
of order reduction when this test problem is treated by the use of a standard diagonally
implicit Runge-Kutta scheme. He has investigated the test problem described here
using the exponent a =2. We cannot make use of this choice; having chosen a
fourth-order scheme of the form (4.1), in fact the semidiscrete solution turns out to
coincide (up to roundoff) on the spatial grid with the exact solution of the PDE.
Hence, we report here results of experiments using exponents a 3 and 4.

It is known (cf. [9]) that among all choices of the { yi} on a sheet of M described
by (3.12), the smallest error constant results when the poles coalesce into a single pole
of multiplicity/z. For the fourth-order case at hand, enforcing the Ao-stability condition
restricts attention to one sheet of M on whichthe pertinent root of y3__y2 "’1/2’)/- 2---0
is y 1.068579021301629. However, we obviously cannot choose the multiple pole and
still obtain the partial fraction decompositions desired. One objective of our numerical
example, then, is to demonstrate (at least for this case) that we can move along this
sheet of M to a nearby position where the poles are distinct and not effect a significant
change in the quality of the scheme. This will be evidenced in two ways. We have at
first the comparison between the triple pole scheme and the distinct pole algorithm.
Further, we have the options ofthe sequential versus the partial fraction implementation
of the distinct pole algorithm to consider. We note that we have not attempted here a
study of the partial fraction version of the algorithm on actual parallel hardware, as
in the spirit of [4]; our computations have been performed in double precision on a
SUN SPARC 1+ workstation. We remark that as observed also by Gallopoulos and
Saad in their context, even when implemented on a serial machine, the partial fraction
version affords a significant saving in operations, in that the matrix multiplications by
the numerators of r(kAh) and (qi(kAh)} in (2.3) are eliminated, at the expense only
of the linear combinations in (4.3) and (4.4).

This, in fact, defines our algorithm. Given a choice of poles, we determine (a)}
from (3.7)-(3.10) and ()o} from (5.1)-(5.2), and then in each time step, we solve (4.3)
for W’ for j 1,. .,/ and then form U+ from (4.4).

We see no obvious way to pick the distinct poles from the sheet of M. Perhaps
stretching the point, we have chosen somewhat arbitrarily yl 1.06, and Y2 1.07, as
perturbations ofthe triple pole above, and then have determined Y3 1.07589033521764
to satisfy (3.12). In terms of the error constant, a brief computation shows that it suffers
a magnification of only 1.000095 from the minimal value at the triple pole. The resulting
coefficients are ao -.6304261005497924, a 1,454.094874359267, a2
-3,794.673554929712, a3=2,342.209106670995, /$=3,567.278607850113, (21=
-9,621.288547664747, (31 6,054.176606481301, y2 -7,319.518083718724, (2
19,811.01919385797, 5(32=-12,490.83444347257, 53=5,293.580042689434, t5(23=
-14,250.03134996801, and (33=8,956.617973945243, It is arguable whether or not
these particular coefficients may be termed "of moderate size," but the numerical
results in columns one and two of Tables 1 and 2 indicate that for this example the
sequential and partial fraction versions produce nearly identical results, with agreement
to about the tenth decimal place. We have recorded here the error at T 1 with
step k= 1/K measured in the norm lloo maxl_,_ [u(x,, T)- Uirl; the same trends

PARALLELIZING ALGORITHMS FOR HEAT EQUATION 457

TABLE
Maximum norm of error at 1" a 3.

Sequential Partial Sequential
algorithm; fraction algorithm;

1/h / k distinct poles / algorithm / triple pole

10 10 .44770D-04 .44770D-04 .44769D-04
10 20 .55086D-05 3.20 .55086D-05 3.02 .55083D-05 3.02
10 40 .53259D-06 3.37 .53259D-06 3.37 .53256D-06 3.37
10 80 .42229D-07 3.66 .42228D-07 3.66 .42225D-07 3.66
10 160 .29244D-08 3.85 .29254D-08 3.85 .29242D-08 3.85
10 320 .18851D-09 3.96 .18953D-09 3.95 .18850D-09 3.96
20 20 .55182D-05 .55182D-05 .55180D-05
40 40 .53516D-06 3.37 .53516D-06 3.37 .53512D-06 3.37
80 80 .42500D-07 3.65 .42488D-07 3.65 .42497D-07 3.65
160 160 .29400D-08 3.85 .29308D-08 3.86 .29397D-08 3.85
320 320 .18897D-09 3.96 .20733D-09 3.82 .18900D-09 3.96

TABLE 2
Maximum norm of error at 1" a 4.

Sequential Partial Sequential
algorithm; fraction algorithm;

/ h 1/k distinct poles / algorithm / triple pole

20 20 .19818D-04 .19818D-04 .19817D-04
40 40 .19203D-05 3.37 .19203D-05 3.37 .19201D-05 3.37
80 80 .15201D-06 3.66 .15200D-06 3.66 .15200D-06 3.66
160 160 .10460D-07 3.86 .10452D-07 3.86 .10459D-07 3.86
320 320 .66866D-09 3.97 .68620D-09 3.93 .66868D-09 3.97

are present if we use an 12 error. For our other objective, comparing columns one and
three of both tables, we see that the effect of moving away from the triple pole is
almost negligible in the sequential implementation, and then, of course, only very
slight when the distinct pole partial fraction form is compared with the triple pole
case. Finally, we have shown in Table 1 results for a 3 both with h fixed and k
decreasing, to exemplify the usual ODE order, but also in additional runs we have
simultaneously reduced both h and k (making h k) to examine the order uniform in
h. Table 2 contains results for a 4 and only the uniform order is investigated. Using
adjacent entries in the tables, we estimate the order as/= In g(ki)/(k)]/ln [ki/k].
It is quite clear that fourth-order accuracy is being approached in both manners, and
that order reduction does not occur.

We hesitate to claim that these very small differences in results between the
sequential and partial fraction versions would appear all the time (i.e., larger problems,
higher-order algorithms), but the results do encourage us to believe that the approach
is valid and to continue similar investigations concerning different choices for the poles
and to other possible situations, such as the study of second-order systems arising
from the forced wave equation.

We close with the acknowledgment that there is a definite relationship between
the methods here and certain implicit Runge--Kutta methods being studied, for a
broader range of problems, for example, by Keeling [7] and Karakashian and Rust
[6]. We believe that the approach here is particularly germane to the problem at hand,

458 STEVEN M. SERBIN

in that Brenner, Crouzeix, and Thom6e have pursued the study of this particular linear
problem and their results are couched in that framework. In fact, we are indebted to
Professor Thom6e for the insistence that we attach our interest to the PDE problem,
rather than just looking at ODE systems, so that we accomplish our computational
objective while satisfying the special needs of the inhomogeneous PDE system.

REFERENCES

1] L. A. BALES, O. A. KARAKASHIAN, AND S. M. SERBIN, On the Ao-acceptability ofrational approxima-
tions to the exponential function with only real poles, BIT, 28 (1988), pp. 70-79.

[2] P. BRENNER, M. CROUZEIX, AND V. THOMIE, Single step methodsfor inhomogeneous linear differential
equations in Banach space, RAIRO Anal. Num6r., 16 (1982), pp. 5-26.

[3] M. CROUZEIX, Stir l’approximation des g.quations diffg.rentielles olSerationelles ling.aires par des mdthodes
Runge-Kutta, Ph.D. Thesis, Universit6 de Paris VI, Paris, France, 1975.

[4] E. GALLOPOULOS AND Y. SAAD, On the parallel solution ofparabolic equations, CSRD Report Number
854, Center for Superomputing Research and Development, University of Illinois at Urbana-
Champaign, Urbana, IL, 1989.

[5] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1983.

[6] O. A. KARAKASHIAN AND W. RUST, On the parallel implementation of implicit Runge-Kutta methods,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1085-1090.

[7] S. L. KEELING, On implicit Runge-Kutta methods with a stabilityfunction having distinct real poles, BIT,
29 (1989), pp. 91-109.

[8] S. P. NORSETT AND G. WANNER, The real-pole sandwich for rational approximations and oscillation
equations, BIT, 19 (1979), pp. 79-94.

[9] S. P. NORSETT AND A. WOLFBRANDT, Attainable order of rational approximations to the exponential
function with only real poles, BIT, 17 (1977), pp. 200-208.

[10] J. M. SANZ-SERNA, J. G. VERWER, AND W. H. HUNSDORFER, Convergence and order reduction of
Runge-Kutta schemes applied to evolutionaryproblems in partial differential equations, Numer. Math.,
50 (1986), pp. 405-418.

11] D. A. SWAYNE, Computation of rationalfunctions with matrix argument with application to initial-value
problems, Res. Report CS-75-14, Department ofComputer Science, University ofWaterloo, Canada,
1975.

12] R.A. SWEET, Aparallel and vector variant ofthe cyclic reduction algorithm, SIAM J. Sci. Statist. Comput.,
9 (1988), pp. 761-765.

[13] V. THOMIE, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 1984.
[14] J. G. VERWER, Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the

method of lines, in Numerical Analysis, D. F. Griffiths and G. A. Watson, eds., Pitman Research
Notes in Mathematics Series, Essex.

[15] G. WANNER, E. HAIRER, AND S. P. NORSETT, Order stars and stability theorems, BIT, 18 (1978),
pp. 475-489.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 459-483, March 1992

1992 Society for Industrial and Applied Mathematics
002

COMPARING ALGORITHMS FOR SOLVING SPARSE NONLINEAR
SYSTEMS OF EQUATIONS*

MARCIA A. GOMES-RUGGIEROf, JOSI MARIO MARTiNEZt,
AND ANTONIO CARLOS MORETTH"

Abstract. This paper describes implementations of eight algorithms of Newton and quasi-Newton type
for solving large sparse systems of nonlinear equations. For linear algebra calculations, a symbolic manipula-
tion is used, as well as a static data structure introduced recently by George and Ng, which allows a partial
pivoting strategy for solving linear systems. A numerical comparison ofthe implemented methods is presented.

Key words, nonlinear systems of equations, sparse matrices, LU factorizations, Newton’s method,
quasi-Newton methods

AMS(MOS) subject classification. 65H10

1. Introduction. Many real-life problems require the solution of large systems of
nonlinear equations"

F(x) :0,
(1.1)

F=(fl,""",f) r,
where F:Rn-->Rn is a nonlinear cl-function, and its Jacobian matrix J(x) is sparse
(see [15], [41], [46]). The best-known method for solving this type of problem is
Newton’s method. This is an iterative method, where the successive approximations
to the solution of (1.1) are calculated according to the following formula:

(1.2) Xk+I Xk--J(Xk)-IF(xk).
Hence, in most cases, at each iteration of Newton’s method, the derivatives dfi/Oxj
must be calculated, and the linear n x n system

(1.3) J(Xk)S --F(Xk)

must be solved, in order to obtain Xk+ When analytic derivatives are not available,
they may be estimated using finite differences (see [7]).

Quasi-Newton methods [2]-[5], [12]-[15], [19], [22], [23], [27]-[29], [34]-[38],
[40], [42], [44], [48] were also introduced to deal with situations where analytic
derivatives are not available or are very expensive to calculate. They obey the formulae

(1.4) BkSk --F(Xk),

(1.5) x+1-- Xk -Jl- Sk,

At each iteration of a quasi-Newton method, only the function values F(xk) are
calculated and the linear system (1.4) is solved. The new matrix B+I is obtained from
B using recurrence relations which only involve x, X+l, F(x), and F(X+l). Usually,
B+ is chosen as one of the matrices which satisfy the "secant equation"

(1.6) Bk+lSk Yk F(Xk+l) F(Xk).

The best-known quasi-Newton method for small dense problems is Broyden’s first
method [2], [14], [15]. This.method uses a rank-one correction matrix to obtain Bk/l

* Received by the editors May 31, 1989; accepted for publication (in revised form) October 3, 1990.
This work was supported by Fundaio de Amparo Pesquisa do Estado de Silo Paulo (FAPESP) and
Conselho Nacional de Desenvolvimento Cientffico e Tecnol6gico (CNPq).

Applied Mathematics Laboratory, IMECC-UNICAMP, CP 6065, 13081-Campinas, SP, Brazil.

459

460 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

from Bk

(1.7) Bk+l Bk d-
(Yk BkSk S

Using (1.7) and the Sherman-Morrison formula [21 p. 3], Bk+I may be obtained
from B using O(n2) flops. Moreover, a QR factorization of Bk+ may be obtained
from a QR factorization of Bk using O(n2) flops (see [40]). Hence, if (1.4), (1.5), and
(1.7) are used, not only is the time for computing derivatives saved, but also the
computational work for solving linear systems may be considerably reduced in relation
to the computational work needed to solve (1.3) (O(n3) flops). For this reason, in
many cases, Broyden’s first method may be more efficient than Newton’s method, even
when derivatives are easily available, in spite of its lower speed of convergence.

The situation in the large sparse case is somewhat different. In fact, if Bk is a
sparse matrix, and (1.7) is used, Bk+ generally turns out to be a dense matrix, which
may have little relation to true Jacobian matrices. Broyden [3] and Schubert [37], [44]
developed a variant of Broyden’s first method where matrices Bk keep the same pattern
of sparsity as J(xk), satisfying the secant equation (1.6), and using a minimum variation
principle. However, the difference Bk+l--Bk is no longer a rank-one matrix as in
Broyden’s first method, and so no easy relationship between factorizations of Bk and
Bk+ seems to be possible. Therefore, when Schubert’s method is used to generate the
Bk’S, the resolution of (1.4) is as expensive as the resolution of (1.3).

These observations motivated Dennis and Marwil [12] to develop the first quasi-
Newton method where an LU factorization of Bk+l is obtained directly from an LU
factorization of Bk, giving a substantially lower cost in the resolution of (1.4) in relation
to the resolution of (1.3). Basically, the Dennis-Marwil method keeps the L-factor
fixed and modifies the U-factor from one iteration to the following, preserving the
sparsity pattern of U and using a Schubert-type formula. Unhappily, convergence
properties of the Dennis-Mrwil method are not quite satisfactory. In fact, local
convergence is only obtained if the algorithm is restarted with Bk --J(Xk) when k is a
multiple of a fixed integer q. Martinez [34] introduced a method where the LDM7"

factorization of Bk (see [21]) is stored and only the factor D is modified from one
iteration to another, in order to obtain the factorization of Bk/l. This method belongs
to a larger family introduced later in [35]. Unlike the Dennis-Marwil method, the
methods in this family have local convergence properties without restarts, but super-
linear convergence is only obtained using restart procedures. Chadee [5], generalizing
a method of Johnson and Austria [28], introduced a locally superlinear method where
the LU factorization of Bk/l is obtained simultaneously modifying the LU factors of

Bk. Unfortunately, the inverses ofthe triangular matrices L must have a definite sparsity
pattern for Chadee’s method to be useful, and so its applicability seems to be limited
to special structures of the Jacobian matrices. Martinez [36] introduced a very large
family which includes most superlinearly convergent methods for solving systems of
nonlinear equations. The Dennis-Marwil method does not belong to this family, but
it may be interpreted as a limit case (0- 1) of a parametric subfamily where the case
0 1/2 is Chadee’s method.

In this paper, we compare Newton’s method, the modified Newton method,
Schubert’s method, the Dennis-Marwil method, three methods in the Martinez family
[35], and the first method of Broyden.

As we mentioned above, sparsity of the Jacobian matrix is not preserved by
Broyden approximations generated by (1.7). Therefore, as recommended in [38], we
do not store Bk ill our implementation of Broyden’s method but instead the vectors

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 461

which define the successive rank-one corrections. Both storage and computer time
inerease at each iteration and hence the process must be restarted when the iteration
becomes excessively expensive. Storage and computer time economy is also obtained
using a strategy of dropping old updates, but higher speed of convergence is achieved
using Newton restarted iterations.

The implementation of methods for solving sparse nonlinear systems of equations
requires a decision about the algorithm that is going to be used for linear algebra
calculations. Lopes [30], [31] called our attention to some ill-conditioned banded
linear systems, derived from approximation of diffusion problems using variational
principles (see [30], [52]). According to [30], the resolution of these systems using the
general purpose sparse linear system solver MA28 [16] with a default tolerance
parameter c 0.1 was completely unreliable, but good results were obtained using a
very strict tolerance c 0.999. This choice is very similar to the use of LU factorizations
with partial pivoting (see [17], [18], [21]) which is one of the most stable ways of
solving linear systems using LU factorizations. These very impressive experiments
motivated us to privilege numerical stability over economy of storage in our
implementations of nonlinear equations solvers. So we decide to use LU factorizations
with partial pivoting.

Another reason of a more theoretical nature led us to the decision of using LU
factorizations with partial pivoting. Namely, the local convergence theorems for the
methods introduced in [12], [35] impose that the same pivoting rule which allows the
LU factorization of J(xo) will also allow the LU factorization of J(x.), the Jacobian
matrix at the solution. This objective is most likely attained if the partial pivoting rule
is used, since it is intuitively evident that the larger the chosen pivots are for the
factorization of a given matrix, the greater is the distance between that matrix and the
set of matrices for which a zero pivot appears using the same permutation rule.
According to these observations, we decided to use the George-Ng [20] factorization
algorithm for all the linear algebra manipulations of our algorithms, an algorithm
which uses partial pivoting, a static data structure, and a symbolic factorization scheme
to predict fill-in in calculations.

The use of the George-Ng scheme has some additional advantages as a subroutine
of a code for solving nonlinear systems. Since all Jacobian matrices J(Xk) have the
same structure, it is interesting to perform symbolic manipulations before the first
iteration of the algorithm so that linear algebraic calculations at each iteration are
exclusively numeric (not symbolic). Clearly, it is impossible to avoid nonnumeric
manipulations when using a general sparse matrix package, such as MA28, unless we
decide to use the same pivoting sequence at every iteration. However, this decision
may be disastrous from the numerical stability point of view.

We would like to mention that Zambaldi [53] reported many experiments showing
that the George-Ng method uses less CPU time (and, of course, is more stable) than
MA28 (with the default parameter 0.1) for solving sparse linear systems with certain
structures which appear frequently in applications. Of course, there exist structures
for which the George-Ng scheme produces an excessive amount of fill-in, even after
application of some minimum degree-type preprocessing scheme (see [17]), but we
feel that in most of these cases iterative linear methods are more adequate than any
direct linear equation algorithm, especially if we are dealing with the systems of linear
equations which arise when solving nonlinear systems. In those cases, which certainly
include discretizations of three-dimensional operators, inexact Newton methods are
the best alternative (see [10]).

The efficiency of the George-Ng method is not restricted to systems with band
structure. In fact, roughly speaking, the fill-in predicted by the George-Ng scheme is

462 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

the same as the fill-in produced by the QR factorization of the matrix (see [21]) when
Q is calculated using Householder transformations stored in product form. Therefore,
the class of matrices for which the George-Ng scheme does not produce much fill-in
is much larger than the class of band matrices, but even for band structures we found
that the possibility of permuting rows to preserve stability is a positive advantage over
band solvers (see [17, Chap. 8]), when numerical stability is critical.

This paper is organized as follows. In 2 we describe the "local versions" of the
algorithms used for our comparisons. That is, according to the descriptions in this
section, the approximation Xk/l is always computed using (1.3) or (1.4) and (1.5)
ignoring increases of the norm of F. These methods have local convergence properties,
which are surveyed in 3. In 4 we describe our test functions and we present a
numerical comparison of the local methods. In 5 we discuss "global modifications"
of the local methods and we present numerical experiments concerning the methods
described in 2 with a particular global modification. Finally, in 6 we state some
conclusions and we suggest some lines for future research.

2. The local algorithms. As we mentioned in 1, we selected eight algorithms
for our comparison: Newton’s method, the modified Newton method, Broyden’s first
method, Schubert’s method, the Dennis-Marwil method, and three methods of Mar-
tinez’s family [34], [35]. We call the latter the diagonal-scaling method, the row-scaling
method and the column-scaling method. All these methods use a small tolerance
parameter TOL> 0, to detect and modify singularity of the matrices involved, and a
step control A, to inhibit very large steps Xk+ Xko Moreover, a symbolic phase precedes
the first iteration of all the algorithms, and even the first iteration is common to all of
them. The symbolic phase corresponds to the symbolic manipulation of the George-Ng
algorithm [20], and the first iteration corresponds to the following algorithm with k 0.

ALGORITHM 2.1. NEWTON ITERATION.

Step 1. Compute F(Xk), J(xk). Set Bk J(Xk).
Step 2. Compute a permutation P, a lower-triangular matrix L=(/o), an upper-
triangular matrix U (uij), and 2n sets I, IU, i= 1,..., n such that

(2.1) PBk LU,
(2.2) /,, 1, i= 1,..., n,

(2.3) Ileal_--<1 forallj=l,...,i, i=l,...,n,

I/{1,... ,n},
(2.4) IU {1,...,n}, i=l,...,n,

(2.5) l 0 for allj I, j i, 1,. ., n,

(2.6) u 0 for allj IU, j i, 1,. ., n.

Step 3. If [u,[< TOLB =- TOL max,j I(Bk)ijl, replace u, by

sg(u,) TOLB, 1,. ., n.

Step 4. Solve

(2.7) Lw -PF(xk),
and

(2.8) Us= w.

Step 5. If s I1> a, replace Sk by SkA/ I1,
Step 6. Xk+l Xk + Sk.

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 463

Matrices L, U, and the sets I, I which satisfy (2.1)-(2.6).are computed using
the George-Ng algorithm, lij may be equal to zero for some j < i, j I, and u0 may
be equal to zero for some j > i, j I. In fact, the sets I, I represent the structural
nonzero elements of any pair of matrices L, U when the partial pivoting algorithm is
performed on a matrix with the nonzero structure of PBk.

Algorithm 2.1 is a Newton iteration, with the safeguards against singularity and
large steps given by Steps 3 and 5. Therefore, our Newton method may be described
by the following algorithm.

ALGORITHM 2.2. NEWTON’S METHOD. Given an arbitrary initial point Xo, com-
pute Xk+l, k--0, 1, 2," ", using Algorithm 2.1.

The modified Newton method is described by the following algorithm.

ALGORITHM 2.3. MODIFIED NEWTON METHOD. Given Xo, compute x using
Algorithm 2.1. For k 1, 2,..., compute Xk+ performing Steps 4-6 of Algorithm 2.1.

Our implementation of Schubert’s method requires the definition of n additional
sets of indexes Ic {1,..., n}, i= 1,..., n. We define

(2.9) I={j{l n}lOf(x)#OforsomexinthedomainofF}.OXj

With this definition, Schubert’s method is described by Algorithm 2.4.

ALGORITHM 2.4. SCHUBERT’S METHOD. Given Xo, compute x using Algorithm
2.1. For k 1, 2,. ., compute x+ performing the following steps:

Step 1. Compute Yk-1 F(Xk) F(Xk-1).
Step 2. Solve the optimization problem

Minimize [1B Bk-1 % s.t.

(2.10) B=(bj), bij=0 ifjIi, i=l, n,

BSk_ Yk-

(Problem (2.10) always has a solution, the Frobenius projection of Bk-1 on the
feasible set, which is a linear manifold. Compact formulae for finding Bk, the unique
solution of (2.10), are given in [37], [44].)
Step 3. Perform Steps 2-6 of Algorithm 2.1.

Algorithms 2.5-2.8 describe the Dennis-Marwil method, the diagonal-scaling
method, the row-scaling method, and the column-scaling method, respectively. In the
description of these methods, we denote {el,"’’, en}, the canonical basis of R n.

ALGORITHM 2.5. DENNIS-MARWIL METHOD. Given Xo, compute x
Algorithm 2.1. For k 1, 2,. ., compute Xk/I performing the following steps:

Step 1. Compute Yk-1 F(Xk) F(Xk_I).
Step 2. Solve Lw PYk-1.
Step 3. Define v USk-1.
Step 4. For 1,. ., n perform Step 5.
Step 5. If

)2 > 10-4 IIS-lll(ejSk-1

using

perform Step 5.1. Otherwise, increment and repeat Step 5.

464 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

Step 5.1. For each j such that u0 # 0, compute

Uij <’- glij’- eSk-l’[eTi w- eTl)]/ji (esT" sk-1)2.

Step 6. Perform Steps 3-6 of Algorithm 2.1.

The diagonal-scaling method [34], [35], the row-scaling method, and the column-
scaling method belong to the family introduced by Martfnez in [35].

As suggested by one of the referees of the first version of this paper, the diagonal-
scaling method may be interpreted as follows. Given the factorization PJ(xo)= LU,
consider the function (z) defined by

p(z) L-1PF(U-1 z).

Define Zk UXk for all k_>-0. Clearly, ’(Zo) I. So, the diagonal-scaling method
reduces to an iteration of the form

z+ z- B-,I,(z,),

where the matrices B are chosen to be diagonal and to satisfy (if possible) the secant
equation

Bk+l(Zk+l Zk) O(Zk+l) (I)(Zk).

If some entry of B,+I exceeds some a priori bound, it is left unchanged.
Similarly, the row-sealing method and the column-sealing method may be deduced

by considering O(z)= U-L-IpF(z) (with z=x) and O(z)= F(U-IL-Ipz) (with
z, P-LUx), respectively.

ALGORITHM 2.6. DIAGONAL-SCALING METHOD. Given Xo, compute Xl using
Algorithm 2.1. Set D Diag (d**) Diag (u,) and replace U by W-1 W. For k 1, 2,. ,
compute X+l performing the following steps:

Step 1. Compute Yk-1 F(Xk)- F(Xk-1).
Step 2. Solve

Lw PYk-1.
Step 3. Define

(2.11) U Uk_

Step 4. For i= 1,. ., n, execute Step 5.
Step 5. If

]ei vl>-_ 10-4l]Sk_lll,
set d, erw/efv; otherwise increment and repeat this step.
Step 6. For i= 1,..., n, if Id,] < TOLB, replace

d, <- sg(d,) TOLB.

Step 7. Solve

LDUsk --PF(xk).

Step $. Perform Steps 5 and 6 of Algorithm 2.1.

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 465

ALGORITHM 2.7. Row-SCALING METHOD. Given Xo, compute xl using Algorithm
2.1. Define D Diag (d,), d,- 1, 1, , n. Compute Xk+ performing the following
steps:

Step 1. Compute yk-1 F(Xk)- F(Xk_l).
Step 2. Define

(2.12) v LUSk_l.

Step 3. Define w= PYk-1.
Step 4. For 1,. ., n, execute Step 5.
Step 5. If

e,vl _-> lO-4ll F(x) I[,
set d, eTw/efv; otherwise increment and repeat Step 5.
Step 6. For i= 1,. ., n, if d,,I < TOLB, replace

d,i <-- sg d,, TOLB.

Step 7. Solve

LDUsk PF x).

Step 8. Perform Steps 5 and 6 of Algorithm 2.1.

ALGORITHM 2.8. COLUMN-SCALING METHOD. Given Xo, compute xl using
Algorithm 2.1. Define D Diag (d,), d, 1, 1, , n. For k 1, 2, , compute
x+ performing the following steps"

Step 1. Define z as the solution of

(2.14) LUz PF(xk-1).

Step 2. Solve

(2.15) tUw nF(Xk).

Step 3. Set

Step 4. For i= 1,..., n, execute Step 5.
Step 5. If

le, _ll __> 10-411s_ll,
set d, ev/eTiSk_l otherwise increment and repeat Step 5.
Step 6. For 1, , n, if Id, < TOLB, replace

dii <- sg d,) TOLB.

Step 7. Solve

OSk --W.

Step $. Execute Steps 5 and 6 of Algorithm 2.1.

Clearly, the row-scaling method and the column-scaling method may also be
viewed as the methods which iterate according to (1.4) and (1.5), with Bk+ Ok+iJ(xo)
or Bk+ J(xo)Ok+l, respectively, when the diagonal matrices Ok+ are chosen so as
to satisfy the secant equation, if this is possible. Therefore, they may be interpreted

466 M. A. GOMES-RUGGIERO, J. M. MARTfNEZ, AND A. C. MORETTI

as improvements (or variants) of the modified Newton method, and their implementa-
tion is hardly more expensive than the implementation of Algorithm 2.3. The expecta-
tion that the incorporation of secant information may consistently improve the perform-
ance of the modified Newton method motivated us to include Algorithms 2.7 and 2.8
in our comparative study. At Step 5 of Algorithms 2.5-2.8, we essentially test if it is
possible to satisfy the secant equation for the ith component, with some relative
tolerance. Later, we will comment on the relationship of this test to the overall
performance of these algorithms.

Let us now describe our implementation of the first method of Broyden. As we
mentioned in 1, we used the inverse formula

(Sk B-1yk)SB-
k/l B1+

sB-y
storing at each iteration the vectors Sk and Sk- BIyk Hence we have the following

lk+lproduct form for -1

or

(2.16)
where

-1Bk+l [I + UkS] [I + Uo$]n-ff 1,

Sl B-f yt
(2.17) U 0, 1,. ., k.

s]’B-f yl

Using (2.16) and (2.17), we may describe Broyden’s method as follows.

AL6ORIa’HM 2.9. BROYDEN’S METIaOD. Given Xo, compute Xk/l, k =0, 1, 2,’’"
performing the following steps:

Step 1. If k 0 execute Steps 1-4 of Algorithm 2.1. Go to Step 3.
Step 2. (Complete the computation of Sk.)
Compute

s (I + u_S_l)_.
Step 3. (Normalize and compute the new point.)

Sk -- Sk,

sk 1s where

Xk+ Xk -I-

Sep 4. (Compute u.)
Execute Steps 4.1-4.3.

Sep 4.1 (Compute =-B-1F(x+).)
Execute Steps 4.1.1-4.1.2.

Step 4.1.1 (Compute
Solve LUg=-PF(x+I).
If k 0 set and go to Step 4.2.
Step 4.1.2
Compute
k (I + uk_ls-x) (I + UoSro)g.

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 467

Step 4.2 (Compute Vk B-lyk =- B-IF(xk+I) B-IF(xk).)
v s\.
Step 4.3
Compute u (s v)/(sv).

Step 5. k ,- k + 1.

The computational cost of one iteration of Broyden’s method, as described above,
is 2nk + 2n flops plus the resolution of two sparse triangular systems. Griewank [23]
proposed an alternative implementation which has the same complexity as the one
proposed here.

Of course, since both the memory and time of one iteration of Algorithm 2.9 tend
to infinity with k, this algorithm must be restarted, say, when k is a multiple of some
fixed integer q.

Remark. We used the words "solve" or "compute" to indicate that some calcula-
tion must effectively be performed, and the word "define" to indicate that the result
of the calculation may be obtained from previous computations.

2.1. Singularity and step control. Step 3 of Algorithm 2.1 and Step 6 of Algorithms
2.6-2.8 correct the LU factorization when a nearly singular matrix Bk appears. However,
a very ill conditioned Bk may still occur, provoking very large steps -B-IF(Xk).
Therefore, in practical implementation of methods for solving nonlinear systems of
equations, some control in the size of increments Xk+I--Xk is recommended (see [20],
[25]). In our codes, we adopted a very simple way of controlling the stepsize. Assuming
that A is given by the user as an estimate of the distance between the initial guess and
the solution, we simply test if I1 11oo-II-BZ’F(x)lloo is less than A or not. If it is, then
the increment Sk is accepted. Otherwise, it is replaced by SkA/IISklIoo. This is done at
Steps 5 and 6 of Algorithm 2.1 and at Step 3 of Algorithm 2.9.

In Algorithm 2.9, the singularity of Bk+l is represented by the annihilation of the
denominator SVk when computing Uk at Step 4. Consequently, in this algorithm, we
decided to declare Bk+ singular if

IS l)k SQMAP Sk I1=
where SQMAP is the square root of the machine precision. When this "quasi
singularity" is detected, we reset Bk+- Bk.

2.2. Stopping criteria. A natural stopping criterion for algorithms which solve
nonlinear systems is

(2.18) IIF(x,,)ll_< El,

where e is a small positive number given by the user. When (2.18) occurs, we declare
"convergence of type 0."

In production codes, (2.18) is generally replaced by.a relative convergence criterion

liF(Xk)lloo <- elllF(x0)lloo
(see [15]), but for comparative studies (2.18) is adequate.

However, sometimes criterion (2.18) is very dicult or impossible to achieve,
maybe because of a large Jacobian at the solution. So we incorporate another conver-
gence test:

(2.19) I111 < :llx+’ll+ 10-5.
en (2.19) holds, we declare "convergence of type 1."

Algorithms like Algorithms 2.2-2.9 are local in nature, and, therefore, divergence
may occur for arbitrary nonlinear systems if Xo is far from the solution. We declare

468 M. A. GOMES-RUGGIERO, J. M. MARTfNEZ, AND A. C. MORETTI

"divergence" when, for some large positive number BIG, given by the user, the following
inequality holds:

(2.20) IIf(x)ll> BIG.

As in the case of the first convergence criterion, this "divergence criterion" is used
only for comparison purposes. In production codes, we prefer to use criteria based
on "lack of enough progress" as recommended, for example, in [39], [33]. We will
return to this discussion in 5.

Finally, the execution of the programs is interrupted when either a previously
defined computer time or some large number of iterations is exceeded.

2.3. Restarting criteria. Sometimes, rather than executing Algorithms 2.3-2.9 in
their original version, it is more efficient to restart the iterative process, performing a
Newton iteration (Algorithm 2.1) instead of the original iteration, at certain steps k.
The most natural restarting criterion is to execute Algorithm 2.1 for obtaining Xk+l
when k is a multiple of a fixed integer q. For the modified Newton method, in absence
of sparsity, an optimal q may be determined using Ostrowski’s efficiency index (see
1], [32], [47]). However, the optimization of Ostrowski’s efficiency proposed by Brent

[1] is based on the theoretical asymptotic behavior of the algorithms and so it may
not be very useful far from the solution of the system. So, we decided to develop a
local efficiency restarting criterion (LERC) based on the following arguments.

Let us call tk the computer time used by some algorithm at iteration k. Assume,
further, that

(2.21 f(x+,)11 0 F(x)ll.
Therefore, if relation (2.21) is maintained throughout the calculation with Ok < 1 and
the same type of iteration is used, the computer time to achieve (2.18) should be
proportional to -tk/lOg Ok. This justifies the definition of Ek, the efficiency of iteration
k, as

(2.22)

-log 0kEk if Ok < 1,
tk

Ek 0 otherwise.

Assume now that is the last index of a Newton iteration previous to iteration k. We
adopt the following criterion for deciding whether to use a "normal" iteration or a
Newton-type one at iteration k / 1. If Ok > 1 or El >-- Ek, iteration k / 1 must be a Newton
iteration. Otherwise, iteration k + 1 must be a "normal" iteration.

A similar criterion is used in 11] for minimization problems, with good numerical
results.

3. Theoretical properties. Let us assume that F: f c n n,f an open and convex
set, F C(f), F(x.)= O, J(x.) nonsingular, and, for all x 12,

IlJ(x) J(x,) <= LIIx x,
for some L, p > 0.

For a local convergence analysis, consider the algorithms described in 2, without
correction of singularity and with no control of the stepsize. That is, eliminate Steps
3 and 5 of Algorithm 2.1, Step 4 of Algorithm 2.5, Step 6 of Algorithms 2.6-2.8, and
the correction of Sk at Step 3 of Algorithm 2.9. In fact, local convergence theorems
show that these steps are not necessary with the hypotheses above, if Xo is near enough
x.. Let us survey here the convergence results related to Algorithms 2.2-2.9. The first
one concerns local convergence of Newton’s method and the modified Newton method.

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 469

THEOREM 3.1. Given re (0, 1), there exists e e(r) >0 such that if [Ixo-x,
the sequences (Xk) generated by Algorithm 2.2 or 2.3 converge to x. and satisfy

(3.1) IIx +l-x, II-<- rllx -x,
for all k 0, 1, 2, . Moreover, for Algorithm 2.2 (Newton’s method), there exists c > 0
such that

(3.2)

for all k=0, 1,2,....
Proof. See [15], [41], [46].
Like many quasi-Newton algorithms, Broyden’s method and Schubert’s method

satisfy not only the linear convergence result (3.1), but a stronger (superlinear) conver-
gence result which, on the other hand, is weaker than (3.2).

THEOREM 3.2. Given re (0, 1), there exists e e(r)>0 such that if IIx0-x.ll _<- e,
the sequence (Xk) generated by Algorithm 2.4 (Algorithm 2.9) converges to x. and satisfies
(3.1). Moreover, the speed of convergence is Q-superlinear, that is,

(3.3) lim Xk+1 X, II/II Xk x, 0.

Proof. See [15].
Algorithms 2.6-2.8 have the same type of convergence result as the modified

Newton method.
THEOREM 3.3. Given re (0, 1), there exists e e(r) > 0 such that if IIx0-x, II--< ,

the sequences (Xk) generated by Algorithm 2.6, 2.7, or 2.8 converge to x. and satisfy (3.1).
Proof. See [34] for the convergence of Algorithm 2.6. For proving the convergence

of Algorithms 2.7 and 2.8, we need to interpret them as particular cases of the family
introduced in [35]. This may be easily done: for Algorithm 2.7, C(B)= I, D(B)= I,
E (B) B, and for Algorithm 2.8, C(B) B, D(B) =/, E(B) L Since these functions
are trivially continuous, Theorem 2.1 of [35] may be applied.

We are almost sure that the Dennis-Marwil method, without restarts, is not locally
convergent. However, the members of a closely related family of methods introduced
recently in [36] have local and superlinear convergence. We call the members of this
family "quasi-Dennis-Marwil" methods. Given a (0, 1), the quasi-Dennis-Marwil
method defined by a may be described by the following algorithm.

ALGORITHM 3.1. Given Xo, obtain x using Algorithm 2.1. For computing Xk,

k 1, 2," , use the recurrence

(3.4) Xk+l Xk (LkUk)-’PF(xk),

Lk+l, Uk+l as the solution of the following optimizationcomputing, at each iteration,
problem:

Minimize,vallM- Lclll2F+(1-)ll U Ull% s.t.

USk Myk,

(3.5) Sk --Xk+l--Xk,

Yk P[F(Xk+I)- F(Xk)],

U=(uo)luo=O ifj:IU.
The relation between the Dennis-Marwil method and the method described above

is given in the following theorem.

470 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

THEOREM 3.4. Suppose Xk, Lk, Uk are given, and let us call Lk+l, Uk+l the matrices
obtained using the Dennis-Marwil method. Of course, Lk+l-" Lk. Let us call Lk+l(a),
Uk+l(t) the ones obtained using Algorithm 3.1. Then,

(3.6) limLk+l(a)=Lk+l,

(3.7) lim Uk+l(O Uk+

Proof. See [36].
The quasi-Dennis-Marwil methods are not practical for solving sparse nonlinear

systems because sparsity of Lk is not preserved from one iteration to another. However,
they have the same local convergence properties as Schubert’s method (see [36]).
Therefore, although the Dennis-Marwil method seems to have the poorest convergence
properties among the algorithms described in 2, the fact that "very analogous"
methods in the sense of (3.6) and (3.7) have good local convergence properties makes
us feel that "some part" of these properties is inherited by the Dennis-Marwil
method.

Up to now, we have considered the convergence properties of the "pure"
algorithms of 2. If restarts are incorporated, the convergence results for quasi-Newton
methods look very similar. In the following theorems, we consider the
"restarted" versions of Algorithms 2.3 and 2.5-2.8. This means that for infinitely many
iterations, Xk/I is computed using Algorithm 2.1, which involves a complete resetting
of the LU factorization.

THEOREM 3.5. Assume that (Xk) is obtained using Algorithm 2.3, 2.6, 2.7, or 2.8,
except thatfor k Ko, an infinite set ofindexes, the LU factorization ofJ(Xk) is computed
and Xk/ is calculated using Algorithm 2.1. Then there exists e > 0 such that if Xo- x, -<-
e, (Xk) converges Q-superlinearly to x,.

Proof. See [35] or use Theorems 3.1 and 3.3.
For the Dennis-Marwil method, the following slightly weaker result holds.
TI-IEOREM 3.6. Assume that (Xk) is obtained using Algorithm 2.5, except that for

k Ko, an infinite set of indexes, the LU factorization ofJ(Xk) is calculated and Xk+ is
computed using Algorithm 2.1. Assume further that the difference between any pair of
consecutive indexes of Ko is never greater than a fixed integer q. Then the thesis of
Theorem 3.5 holds for the sequence (xk).

Proof See 12].
Remark. As a final remark in this section, let us stress the relationship between

local convergence results of Algorithms 2.5 and 2.6. As we mentioned in 1, the
convergence results for these algorithms impose that the pivoting rule P which is used
to factorize J(xo) will also allow the factorization of J(x.). This property will be
satisfied by any pivoting rule which uses a threshold strategy like the one described
by Dennis and Marwil in 12]. Now the partial pivoting strategy is just the strongest
threshold strategy, since it uses the larger tolerance parameter/x 1. Therefore, it is
adequate for use in this type of algorithm. Moreover, if we use the partial pivoting
strategy at J(xo), it is more likely that the same permutation matrix P allows the
factorization of J(x.) than if we use less strict strategies, since the coefficients of the
LU factorization (given P) are continuous functions of x. Therefore, the size of the
neighborhoods of Theorems 3.5 and 3.6 is expected to be greater when we use partial
pivoting than when we use any other threshold strategy.

4. Numerical experiments with the local algorithms. We wrote a FORTRAN code
which implements the methods described in 2. All the reported tests were run on a

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 471

VAX11/785 at the State University at Campinas, using the FORTRAN 77 compiler
and the VMS Operational System. Single precision was used for real variables in all
our tests. A compatible IBM-PC version of the code was also written using a Microsoft
Fortran compiler. The results for this version were consistent with the results of the
VAX version of the code.

We use the following notation:
N: Newton’s method (Algorithm 2.2),
MN: Modified Newton method (Algorithm 2.3),
S: Schubert’s method (Algorithm 2.4),
DM: Dennis-Marwil method (Algorithm 2.5),
DS: Diagonal-scaling method (Algorithm 2.6),
RS: Row-scaling method (Algorithm 2.7),
CS: Column-scaling method (Algorithm 2.8),
B: Broyden’s method (Algorithm 2.9).
The numerical performance of the algorithms is described in Tables 1 and 2. In

Table 1 we report the number of iterations used for an algorithm on each particular
problem. The exit condition is represented by an output parameter IER. IER may
assume five values: 0 for convergence of type 0, 1 for convergence of type 1, 2 for
divergence, 3 for exceeded number of iterations and 4 for exceeded CPU time. In
Table 2 we report the respective CPU times.

Each algorithm was run without restarts and with restarts based on the efficiency
criterion described in 3.

Let us describe the functions used in our numerical study.

Function 1. Broyden Tridiagonal. See [2], [3].

TABLE
Number of iterations used by the local algorithms.

Function n Restart N MN S DM DS RS CS B

5000 No 3(3)* 9 (1)1 6(1) 5(1) 5(1) 6(1) 5(1)’ 6(1)
5000 Yes 9(1) 4(2) 5(1) 5(1) 6(2) 5(1) 6(1)

2 5000 No 4(4) 17(1) 9(1) 11(1) 6(1) 6(1) 6(1) 9(1)
2 5000 Yes 17(1) 5(3) 8(2) 6(1) 6(1) 6(1) 9(1)

5000 No 8(8) 100(1) , 46(1) 100(1) 13(1) 100(1) 11 (1)
xo =O_

5000 Yes 13(5) 10(5) 12(4) 12(3) 11 (3) 12(3) 13(3)
Xo=_0

5000 No 6(6) 100(1) 11 (1) 12(1) 19(1) 100 (1) 13(1) 6(1)
"-’0.3
3 5000 Yes 11 (3) 7 (4) 8 (2) 9 (3) (3) 9 (3) (3)
-’0.3
4 225 No 3(3) 5(1) 4(1) 5(1) 7(1) 6(1) 6(1) 4(1)
4 225 Yes 5(1) 4(2) 5(1) 4(2) 5(2) 5(2) 4(1)
4 961 No 4(4) 5(1) 5(1) 5(1) 8(1) 5(1) 6(1) 4(1)
4 961 Yes 5(1) 4(2) 5(1) 4(2) 5(2) 6(2) 4(1)

1000 No 4(4) 11 (1) 6(1) 7 (1) 6(1) 6(1) 6(1) 7 (1)
100

1000 Yes 11 (1) 4(2) 7 (1) 6(1) 6(1) 6(1) 7 (1)
100
6 5000 No 4(4) 14(1) 7(1) 8(1) 10(1) 7(1) 8(1) 8(1)
6 5000 Yes 14(1) 5(3) 6(2) 6(2) 6(2) 6(2) 8(1)
7 5000 No 9(9) 100 (1) 100(1) 12(1) 12(1) 12(1) 34(1)
7 5000 Yes 16(5) 11 (6) 11 (6) 12(1) 12(1) 12(1) 13(2)

The number in parentheses is the number of Newton iterations.
The superscript is the exit condition (IER). If IER 0, the superscript is omitted.

overflow.

472 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

TABLE 2
CPU time (seconds) used by the local algorithms.

Function n Restart N MN S DM DS RS CS B

5000 No 3.97 4.97 9.2 4.67 3.78 4.23 3.66 4.79
5000 Yes 5.1 6.07 4.95 3.70 4.94 3.70 4.72

2 5000 No 19.9 23.7 49.7 25.1 11.5 11.5 11.6 16.6
2 5000 Yes 23.0 28.2 21.4 11.6 11.5 11.3 16.7
3 5000 No 15.0 NC* NC NC NC NC NC NC

X0= _0
3 5000 Yes 15.3 18.2 16.2 13.0 12.5 13.2 16.9

xo=O_
3 5000 No 11.7 NC 19.8 14.4 16.3 NC 11.8 NC

Xo=0.3
3 5000 Yes 11.4 13.3 10.9 11.0 9.86 10.9 10.9

X0 0.3
4 225 No 1.97 1.08 2.71 1.38 1.33 1.27 1.23 1.05
4 225 Yes 1.15 2.7 1.34 1.70 1.74 1.63 0.99
4 961 No 40.9 13.1 51.5 16.1 16.2 13.4 13.5 13.1
4 961 Yes 13.7 41.2 16.1 23.6 23.1 23.6 12.6
5 1000 No 38.8 16.4 58.1 17.1 13.6 13.0 12.9 13.8

b= 100
5 1000 Yes 17.3 39.5 17.8 13.4 13.0 13.0 13.9

b= 100
6 5000 No 10.0 10.5 23.0 12.8 9.73 7.06 7.92 9.08
6 5000 Yes 11.0 14.7 11.1 8.19 8.01 8.2 9.38
7 5000 No 12.9 NC NC NC 8.21 8.12 8.41 56.2
7 5000 Yes 12.5 18.1 13.2 8.18 8.21 8.35 11.3

* NC nonconvergence. (See Table 1.)

fl(x) (3 hXl)Xl- 2x2+ 1,

f(x) (3 hxi)x x-i 2x+1 / 1, 2," ., n 1,

f,,(x) (3- hx,,)x, --Xn_ "1I" 1,

Xo=(-1,. .,-1)r

Algorithmic parameters: el e2 10-4, TOL 10-7, A 10, BIG 101.
We ran this test with h 0.5 and h 2 and for n 1000, 2000, 3000, 4000, and

5000. Since no qualitative differences were detected, we report the results in Table 1
only for h 2 and n 5000. The computer CPU time of the symbolic phase of the
methods (previous to the first iteration) obeys approximately the law

time 0.33n milliseconds.

Now we give the observed relationships between n and CPU time of a typical iteration
of the Algorithms 2.2-2.9"

N: time=0.25 n milliseconds,
MN" time 0.09 n milliseconds,
S" time- 0.29 n milliseconds,
DM" time 0.17 n milliseconds,
DS, RS, and CS: time 0.11 n milliseconds,
B: time (0.13 +0.005k) n milliseconds.
Function 2. Band Broyden[31.

f(x) (3 + 5xi)x, + 1 ., (x.i + x.),
jli

i=l,...,n,

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 473

where

Ii { il i2}--{i},

il max { 1, 5}, i2 min {n, + 5},

Xo= (-1, ", -1) r, el e2 10-4, TOL= 10-7, A= 10, BIG= 101.
We ran this test for n 1000, 2000, 3000, 4000, and 5000. For the same reasons

as in Problem 1, we report in Table 1 the results only for n 5000.
The CPU time ofthe symbolic phase of the George-Ng algorithm is approximately

1.22n milliseconds.
The CPU time of a typical iteration of each of the implemented methods obeys

the following relationships:
N: time= 1.02 n milliseconds,
MN: time =0.22 n milliseconds,
S: time 1.15 n milliseconds,
DM: time 0.39 n milliseconds,
DS, RS, and CS" time 0.24 n milliseconds,
B" time (0.24+0.015 k) n milliseconds.
Function 3. Trigexp [481.

fl(x)=3x3+2x2-5+sin (Xl-x2)sin (Xl+X2),
fi(x) --Xi-1 e(x’-l-x’) + xi(4 + 3x/2) + 2Xi+l

+sin(xi--Xi+l) sin(xi+xi+l)--8, i=2,...,n-l,

f,(x)=-X,_l e(X"--x") + 4x, 3.

Initial points: (0, , 0) r and (0.3, , 0.3) r.
Algorithmic parameters" el e2 10-4, TOL 10-7, A 10, BIG 101.
The Jacobian matrix of this system is tridiagonal, as in Problem 1. Therefore, the

CPU time of the symbolic factorization is the same as in Problem 1. But the function
is far more expensive to evaluate in this case. The CPU times of typical iterations of
the algorithms, as functions of n, obey approximately the following laws:

N: time=0.39 n milliseconds,
MN: time 0.15 n milliseconds,
S: time 0.34 n milliseconds,
DM: time =0.22 n milliseconds,
DS, RS, and CS" time 0.17 n milliseconds,
B" time (0.17 +0.02 k) n milliseconds.

As in the previous cases, we ran this problem for n 1000, 2000,..., 5000, but
we report the results only for n 5000.

Fulaetion 4. Poisson Prolflem [451. This problem is the nonlinear system of equations
arising from finite difference discretization of the Poisson boundary value problem

u
AU=l+s2+t, 0----<s<----I, 0_<_t<-l,

u(O, t)= 1, u(1, t)-2-e t, t [0, 1],
u(s, 0)= 1, u(s, 1) =2-e, s[0, 1].

We use an L grid with L- 15 and L-31. Therefore n -225 and n =961, respectively.
We ran the algorithms with Xo (-1,...,- 1)r, el e2-" 10-4, BIG 101, A 5
The CPU times of the symbolic phase of the method of George and Ng for L 1

and L 31 were 1.31 seconds and 16.63 seconds, respectively. The CPU times of one
ordinary iteration of the algorithms (in seconds) are shown in Table 3.

474 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

TABLE 3

Algorithm L 15 L 31

N: 0.66 10.2
MN: 0.10 0.67
S: 0.68 10.3
DM: 0.17 1.23
DS: 0.13 0.74
RS: 0.10 0.53
CS: 0.11 0.88

B(k= 1): 0.15 0.89

As expected, the CPU times of Newton’s and Schubert’s iterations are roughly
proportional to L4(-- L2n) while the CPU times of the other iterations are proportional
to L3(Ln).

Function 5.

fl(x) -2x21 + 3Xl- 2x2 + 0.5x, + 1.0,

f(x)=-2x2+3xi-xi_l-2Xi+l+O.5x,+l.O, i=2,... ,n-l,

f, (x) -2x2,, + 3x, Xn_ "1
t- 0.5Xc + 1.0

for ai, i= 1,2,..., n, randomly chosen in the intervals: ai{Cirnin, Crnax}, where
ai min max {1, i-b} and a min {n, i+ b} for a parameter b which defines the
bandwidth.

We used (-1,. , -1)7- as an initial point and, as in previous tests, el e2-- 10-4,
TOL 10-7, A-- 10, BIG 10l. The structure of some typical Jacobian matrices with
n 40, for different bandwidths and their correspondent data structures for LU factoriz-
ations, are given in Figs. 1 and 2.

The CPU time of the symbolic phase of the algorithm (with b 100 and n 1000)
was 12.37 seconds.

The CPU time of typical iterations of the implemented methods for b 100,
n 1000, was the following:

N: 9.7 seconds,

o:e

FIG. 1. Structure ofthe Jacobian matrix and data structurefor the LUfactorization ofFunction 5 (b 15).

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 475

FIG. 2. Structure ofthe Jacobian matrix and data structurefor the LUfactorization ofFunction 5 (b 30).

MN: 0.67 seconds,
S: 9.68 seconds,
DM: 1.23 seconds,
DS: 0.78 seconds,
RS: 0.66 seconds,
CS: 0.64 seconds,
B: 0.68 seconds.
Function 6.

fl(x) -2x21 + 3Xl + 3Xn-4-- Xn-3 Xn-2 "+-0.5Xn-1 Xn -F 1,

f(x) -2x+ 3xi xi-1 2x+1 + 3Xn-4-- Xn-3 Xn-2-F O.5Xn-1 Xn -F 1,

i=2,...,n-l,

fn(X) -2x2,, + 3Xn Xn-1 + 3Xn-4-- Xn-3- Xn-2 -" 0.5Xn-1 Xn d- 1.

We used (-1,...,-1) T as initial point and the algorithmic parameters el e2-- 10-4,
TOL 10-7, A 1 O, BIG 10l.

The structure of the Jacobian matrix and the correspondent data structure for the
LU factorization produced by the symbolic phase of the George-Ng algorithm for
n 40 is given in Fig. 3. The CPU time of the symbolic phase was 0.69n milliseconds.
The CPU times of typical iterations of the implemented methods obey approximately
the following laws:

N" time 0.51 n milliseconds,
MN: time=0.12 n milliseconds,
S" time 0.68 n milliseconds,
DM: time 0.31 n milliseconds,
DS, RS, and CS" time 0.18 n milliseconds,
B" time (0.16+0.008 k) n milliseconds.
Function 7. Singular Broyden.

fl(x)=((3-hXl)Xl-2X_+ 1)2,
f(x) ((3 hxi)x Xi_ 2Xi+ -+" 1)2,
f,(x) ((3- hx,,)x,, -x,,-1 + 1)2.

Initial point (- 1, , 1) . i-2,...,n-l,

476 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

FIG. 3. Structure of the Jacobian matrix and data structure for the LU factorization of Function 6.

Algorithmic parameters e e2 10-4, TOL 10-7, A 10, BIG 101.
Clearly, this problem is equivalent to Problem 1, but its Jacobian matrix is singular

at the solution. It was concluded in our comparative study to investigate the behavior
of different algorithms in the presence of singular Jacobians. The computer CPU times
of individual iterations are very similar to those of Function 1. As in Function 1, we
will report the results only for h 2 and n 5000.

5. Global implementations. Many researchers and users of nonlinear equations
codes think that too much consideration is given in the literature to local convergence
properties of algorithms without regard to the possibility of developing global con-
vergent methods derived from the local convergent ones.

However, there are a number of good reasons for that detected "deviation."
(a) Many practical problems have natural initial points which are not very far

from the solution or, at least, are near enough to ensure a good behavior of purely
local algorithms. This is the case of many boundary value problems and of the methods
based on restoration of nonlinear feasibility in nonlinear programming.

(b) The most natural objective function which is associated to problem (1.1) is
the sum of squares:

(5.1) f(x) 1/211 F(x)II
"Globally convergent" algorithms are ensured to converge to a stationary point of
f(x), possibly a local minimizer of f. Unhappily, Vf(x) may be zero at a point where
F(x) 0 if J(x) is singular. Clearly, a local minimizer of f is not a good answer to
problem (1.1), if F(x) O. Many times, globally convergent implementations converge
to undesirable local minimizers of f, while local methods (with a suitable control of
steplength) converge to solutions of (1.1).

(c) Frequently, a sequence (Xk) generated by a particular local method converges
to a solution x. of (1.1) but Ilf(x)ll= is not monotonically decreasing. In these cases
a "global modification" of the sequence produces decrease of IIF(x)ll at each iteration
but at a cost of a lower speed of convergence. Sometimes, as was mentioned in [6],
the new sequence converges to an undesirable local minimizer of f.

(d) Many times quasi-Newton methods exhibit a "jumping behavior," that is,
while the modified Newton method usually converges in a monotone way (say, with
Ilxk+,- x.llo+ <= Ilxk x.ll+ for all k), many quasi-Newton algorithms fail to exhibit that

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 477

monotonical behavior but, finally, they converge much more quickly than the modified
Newton method. For instance, when Broyden’s method is applied to a linear system
of equations (with Bo I), it is common to detect a number of apparently chaotic
iterations before finite convergence occurs when k 2n, according to Gay’s theorem
19]. So, imposing norm decreasing in these cases destroys, in some sense, accumulated
information of the sequence and slows down speed of convergence.

(e) When local algorithms do not converge at all, one of the most effective ways
of solving problems is the "continuation strategy" (see [9], [41], [43], [49]-[51], etc.).
This strategy essentially consists in replacing (1.1) by a family of problems h(x, t)=0,
t[0, 1], such that F(x) =- h(x, 1) and the solution of h(x, 0)=0 is known. Sometimes
the choice of h is suggested by the physical nature of the problem, but some standard
mathematical choices are known to be effective (see [50]). The central idea is that one
solves a sequence of problems h(x, tk)= 0 SO that problem k + 1 is easy to solve using
a local algorithm if the solution of problem k is known. Therefore the global continu-
ation (or homotic) strategy essentially needs good local algorithms to be successful.

(f) Due to the numerical studies of Cosnard [8] and Mor6 and Cosnard [39], we
know that trust region-like modifications of local algorithms (like the dogleg strategy
of Powell [42]) may not be entirely satisfactory to ensure robustness of methods to
solving nonlinear equations. After many numerical experiments, those authors found
that the purely local Brent’s method (see [1], [32]) was surprisingly effective when
compared with the hybrid method of Powell [42], which is a global modification of
Broyden’s method. Of course, they also detected some cases where Powell’s method
converged while the local method did not. Due to the difficulty of incorporating global
strategies based on the norm of F to Brent’s method (the whole vector F(Xk) is not
calculated at any point in this method), Mor6 and Cosnard developed some step
control procedures which turned to be very useful to add robustness to local methods
and which, certainly, must be incorporated to production codes.

(g) Strategies for minimization off(x)(=-1/211F(x)[12) use Vf(x)(J(x)TF(x)) and,
thus, the Jacobian matrix of F or some difference approximation. An exception is the
global strategy for Broyden’s method introduced by Griewank [22], but his strategy
requires additional hypotheses on F. In fact, quasi-Newton directions of the type
produced by Algorithms 2.2-2.9 are not necessarily descent directions for f. Some
authors (for instance, Toint in his implementation ofpartitioned quasi-Newton methods
[48]) choose Xk/I as some point in the line defined by Xk and the direct prediction
point such that f(Xk+l) is "sufficiently smaller" than f(Xk) (see [15, p. 179]). However,
it may be impossible to find that point if the line is orthogonal to Vf(Xk), SO the
effectiveness of this strategy seems to be confined to practical situations where "quasi
orthogonality" is unlikely to occur.

In spite of the considerations above, we decided, for completeness of our study,
to implement global modifications of Algorithms 2.2-2.9.

The considerations on the nonmonotone behavior of quasi-Newton methods
inspired in us a "tolerant global strategy" which essentially consists in imposing
decrease of [[F[[only (say) every q iterations where q is a user-supplied parameter.
Clearly, this "tolerant strategy" is in the spirit of the watchdog technique for avoiding
the Maratos effect in nonlinear programming (see [6]) and it is also related to the
nonmonotone line search technique of Grippo, Lampariello, and Lucidi [26].

Given Xo, Xl,’", Xk (and f(x) defined by (5.1)), we define

ak Argmin {f(xo),f(xl),’’" ,f(x)}

for all k=0, 1, 2,....

478 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

Assume that q >= 0 is a given integer, and 0 (0, 1). At some stages, the global
tolerant strategy will use "special iterations," which are defined by the following
algorithm.

ALGORITHM 5.1. SPECIAL ITERATION. Given Xk, compute Xk+ performing the
following steps:

Step 1. Compute the LU decomposition of J(xk) (Steps 2 and 3 of Algorithm 2.1). If,
for all 1, , nlu, > TOLB (so that no replacement occurred at Step 3 of Algorithm
2.1), perform also Step 4 of Algorithm 2.1, defining the Newton step Sk. Else, define
Sk --J(Xk) rF(Xk)(=--Vf(Xk)).
Step 2. If IIsll> A, replace sk <-" SkA/llSkllcx3.
Step 3. Using a safeguarded quadratic-cubic interpolation strategy (see [15,
p. 126-129]) compute Ak (0, 1] such that

f(Xk + akSk) <-- f(Xk) + lO-4XkVf(Xk) rSk.
Step 4. Define xk+l= xk +)tkSk.

Special iterations are combined with "ordinary iterations," which are the ones
defined by the "local" algorithms described in 2, according to the following "master
subroutine."

ALGORITHM 5.2.
Initialization" k O, FLAG <-- 1.
Given Xk, execute Steps 1-4.

Step 1. If FLAG- 1, obtain Xk+ using an ordinary iteration. Else, compute Xk+ using
a special iteration.
Step 2. If k 0(mod q) and FLAG 1, increment k -k/ 1. Return to Step 1.

Stel 3. Iff(Xk+l) <---- Of(ak) (see definition (5.2)), set FLAG- 1, k - k + 1 and return to
Step 1.
Step 4. Redefine Xk+l *-ak. Set FLAG-1, k -k+ 1 and return to Step 1.

As we mentioned above, the tolerant strategy consists in iterating using a standard
quasi-Newton algorithm testing every q iterations ifthe norm ofthe best point decreased
enough (Algorithm 5.2, Step 3). If the sufficient decrease condition does not hold, we
turn to a minimization algorithm based on Newton (or gradient) directions, which are
guaranteed to be descent directions. We continue with these special iterations as long
as the sufficient decrease condition of Step 3 is not satisfied. Clearly, if this condition
is satisfied an infinite number of times, we will have that liminfk_.]IF(Xk)II =0.
Conversely, if after some finite ko, all iterates are special, we will have, under mild
conditions, that limk_o IlVf(x)l1-0 (see [15]).

There may be many other possible global strategies. Here we want to show how
the algorithms presented in 2 adapt to this global modification, and we leave the
comparison between different global strategies to forthcoming works.

For comparison of Algorithms 2.2-2.9 with global strategy, we selected some
problems of the set presented in 4, with nonclassical initial points from which
Newton’s method had difficulties converging, or did not converge at all. We used
0 0.9. The problems were the following.

Problem 1. Function 1 with Xo (10-3, , 10-3) T and A 5000.
Problem 2. Function 2 with Xo (0,..., 0) " and A 10.
Problem 3. Function 3 with Xo (- 1, , 1) T and A 10.
Problem 4. Function 4, L 15, Xo (-3,...,-3), A 100.
Problem 5. Function 5, Xo (-0.0008, , -0.0008), A 104, n 100, b 100.

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 479

Problem 6. Function 6, Xo (0.8,. ., 0.8), A 10, n 100.
Problem 7. Function 7, x0 (5, , 5) r, A 20, n 100.
The results of these experiments are reported in Table 4. For each method, we

report the performance of the local version without restarts, and the performance of
the "global" version, with q 3.

6. Conclusions. Considering the results of our "local" experiments presented in

4, we may draw the following conclusions.

TABLE 4
Numerical results for the global algorithms.

Problem n Version N MN S DM DS RS CS B

1000 Local 17, 4.5* NCt NC NC NC NC NC NC

1000 Global 13, 3.8 24, 4.0 28, 10.0 19, 4.1 NC 31, 5.6 NC 28, 7.0

2 1000 Local 83, 81.0 NC NC NC NC NC NC NC

1000 Global 19, 22.0 23, 7.2 13, 14.0 NC NC 36, 24.0 36, 24.0 36, 26.0

1000 Local 14, 5.1 NC 12, 4.1 12, 2.9 29, 5.81 20, 3.81 29, 5.41 12, 2.91
1000 Global 9, 3.7 8, 2.0 10, 3.6 10, 2.6 18, 3.5 18, 3.6 17, 4.3 11, 2.9

4 225 Local NC NC NC NC NC NC NC NC

225 Global 7, 5.0 20, 4.4 16, 11.0 NC NC 27, 6.3 19, 4.3 18, 4.0

100 Local NC NC NC NC NC NC NC NC

100 Global 12, 5.9 21, 3.5 16, 7.9 20, 4.0 24, 4.6 24, 4.6 26, 4.2 29, 4.6

6 100 Local NC NC NC NC NC NC NC NC

100 Global 20, 1.51 20, 1.11 20, 1.61 20, 1.31 20, 1.11 20, 1.11 20, 1.11 21, 1.31
7 100 Local NC NC NC NC NC NC NC NC

100 Global 72, 3.91 90, 4.21 42, 2.61 21, 0.81 * 51, 1.9 59, 2.1 18, 0.71

The first number (an integer) is the total number of iterations. The second (real) number is CPU time (in seconds).
NC nonconvergence.
The superscript indicates "convergence of type 1." Absence of superscript indicates "convergence of type 0."

overflow.

(a) There are no important differences between the secant Algorithms 2.4-2.9 in
terms of robustness or number of iterations. Clearly, Algorithm 2.3 (modified Newton)
behaves worse than all the secant methods. Since superlinear convergence (without
restarts) is only proved for Broyden’s method and Schubert’s method, while DS, CS,
and RS have only linear local convergence properties and DM has an even weaker
convergence theorem (see 2), we conclude that additional theory is necessary to
explain the clear superiority of Algorithms 2.5-2.8 over MN, and the very analogous
behavior of these algorithms in relation to Broyden and Schubert.

The relation between the effectiveness of DM, DS, CS, and RS and the number
of iterations where the "secant stability test" at Step 5 of Algorithms 2.5-2.9 is satisfied,
was studied by us, and the results were very impressive. In fact, we verified that good
performances of these algorithms are associated with situations where the test was
always satisfied, that is, the secant equation held at all iterations. Conversely, in the
cases where Algorithms 2.5-2.9 had a poor behavior, we detected many iterations (from
20-90 percent in some cases) where the test of Step 5 failed.

(b) Schubert’s method is not useful for problems where derivatives are not difficult
to calculate. This is not surprising since in those cases the computational work involved
in one Schubert iteration is essentially the work involved in a Newton iteration.
However, since in terms of robustness and number of iterations Schubert’s method
did not perform better than the other tested secant methods, we may conclude that
Schubert’s method is not a reliable alternative to other secant methods, even if
derivatives were difficult to obtain. There exist secant methods which solve a linear

480 M. A. GOMES-RUGGIERO, J. M. MARTNEZ, AND A. C. MORETTI

system of equations at each iteration but incorporate information about the problem
in a more clever way than Schubert’s method does. These are the pointwise family of
quasi-Newton methods [27], [29] for boundary value problems, and partitioned quasi-
Newton methods [48] for finite element problems. The first family may be defined in
the original infinite-dimensional space where the boundary value problem takes place,
and thus exhibits mesh independence properties, that is, its behavior does not depend
on the discretization. Partitioned quasi-Newton methods seem to exhibit mesh indepen-
dence in practice (see [23], [24]) but a theoretical justification is due. Both pointwise
methods and partitioned quasi-Newton methods are more efficient than Schubert’s
method for the particular problems to which they are applied, but we do not know if
this efficiency compensates the disadvantage of solving a linear system per iteration
for comparison with other secant methods.

(c) Secant methods (except Schubert) outperformed Newton’s method in "not
difficult" problems where the Jacobian matrix has a "bad" structure for the application
of the George-Ng algorithm, notably Problems 4 and 5. However, only Newton’s
method did not present any failure (nonconvergence) in this set of experiments. Of
course, none of these facts is surprising since it is well known that the region of
convergence of local versions of Newton’s method is larger than that of quasi-Newton
methods.

(d) Except for Problem 4, the "diagonal methods" DS, RS, and CS were slightly
better than Broyden’s method, on the average, both in terms of number of iterations
and CPU time. Problem 4 (Poisson) deserves more careful analysis. In fact, this was
the only problem where DM, DS, RS, and CS were not better than the modified
Newton method, that is, in this case, the derivative information provided by the secant
equation did not add any improvement to the convergence properties of MN. On the
other hand, Broyden was the best method in this case. Griewank observed that since
Broyden’s method is invariant for regular linear changes in the range of F, the
application of this method to F(x) 0 (with Bo J(xo)) is equivalent to its application
to G(x)= J(xo)-lF(x)=0 using Bo L Then, using the LU factorization of J(xo), one
essentially preconditions the system by the inverse of the Laplacian and thus obtains
conceptually a Fredholm integral equation of the second kind, for which Q-superlinear
convergence of Broyden’s method on the underlying infinite-dimensional problem has
been proved [25].

(e) Nonconvergence only occurred in some nonrestarted executions of quasi-
Newton methods. The main contribution of restarts was to correct with opportunistic
Newton iterations a "wrong trajectory" of some quasi-Newton methods. In the cases
where this correction was needed, the final performance of the restarted quasi-Newton
was very similar to the performance of Newton.

(f) In contrast to modified Newton, Schubert, Dennis-Marwil, and Broyden, the
methods DS, RS, and CS behaved surprisingly well in the singular Problem 7. Some
research is needed to detect if there exist theoretical properties behind this empirical
fact.

Before commenting on the results of the "global" algorithms, some explanation
is necessary. We performed many experiments besides the ones reported in Table 4.
We ran many problems where Newton’s method did not converge, and its global
modification or the global modifications of quasi-Newton methods, even with q 1,
did not converge either, or most frequently converged to undesirable local minimizers
of IIF(x)ll. In the problems reported in Table 2, the global version of Newton behaved
better than the local version. We selected these problems with the aim of testing the
behavior of the quasi-Newton algorithms in those situations.

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 481

Our main observations concerning the global implementations are"

(a) Unlike the local cases, there are no meaningful differences between the
modified Newton method and the secant Algorithms 2.4-2.9. In fact the global MN
was better than the global Newton four times, while RS, CS, and Broyden outperformed
Newton in three cases (the Schubert, DM, and DS did it only in two cases).

(b) Only in Problem 6 did all the global methods fail to find a solution of the
system and converge to the same local minimizer of IIF(x)ll. In Problem 7 most methods
converged to (different) local minimizers of IIF(x)ll and only RS and CS found a
solution of the system.

(c) The tolerant strategy was successful for improving the performance of quasi-
Newton methods in the following sense: in many cases where the performance of the
local quasi-Newton was very poor, the global quasi-Newton with tolerant strategy
succeeded in finding the solution and it was more efficient than "global Newton" in
about 50 percent of the experiments. Generally, only a few special iterations are
necessary for putting the quasi-Newton method on a "right trajectory."

The implementation and testing of a global strategy led us to discover many "very
difficult problems," where even Newton’s method with a global strategy which imposes
sufficient decrease at each iteration failed to find a solution of the system. The present
challenge is to implement new global strategies which will "jump" over local minimizers
to solutions of F(x)= 0 (which are, of course, global minimizers of the norm).

A production code, which, instead of the risky divergence criteria adopted in this
comparative study, uses the steplength controls and stopping criteria given by Mor6
and Cosnard [39], is being elaborated.

Acknowledgments. The authors acknowledge A. Griewank and two referees for
very helpful suggestions.

REFERENCES

[1] R. P. BRENT, Some efficient algorithms for solving systems of nonlinear equations, SIAM J. Numer.
Anal., 10 (1973), pp. 327-344.

[2] C. G. BROYDEN, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19
(1965), pp. 577-593.

[3], The convergence of an algorithm for solving sparse nonlinear systems, Math. Comp., 25 (1971),
pp. 285-294.

[4] C. G. BROYDEN, J. E. DENNIS, JR., AND J. J. MORI, On the local and superlinear convergence of
quasi-Newton methods, J. Inst. Math. Appl., 12 (1973), pp. 223-245.

[5] F. F. CHADEE, Sparse quasi-Newton methods and the continuation problem, TR SOL no. 85-8, Dept.
of Operations Research, Stanford University, Stanford, CA, 1985.

[6] R. W. CHAMBERLAIN, C. LEMARtCHAL, H. PEDERSEN, AND M. J. D. POWELL, The watchdog
technique for forcing convergence in algorithms for constrained optimization, Math. Programming
Stud., 16 (1982), pp. 1-17.

[7] T. F. COLEMAN, B. S. GARBOW, AND J. J. MOR, Software for the estimation of sparse Jacobian

matrices, ACM Trans. Math. Software, 10 (1984), pp. 329-345.
[8] M. Y. COSNARD, A comparison offour methods for solving systems of nonlinear equations, TR 75-248,

Dept. of Computer Science, Cornell University, Ithaca, NY, 1975.
[9] D. F. DAVIDENKO, On the approximate solution of nonlinear equations, Ukrainian Mat. Z., 5 (1953),

pp. 196-206.
[10] R. S. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer. Anal.,

19 (1982), 400-408.
[11] J. E. DENNIS, JR., N. ECHEBEST, M. T. GUARDARUCCI, J. M. MARTNEZ, H. D. SCOLNIK, AND

C. VACCINO, A curvilinear search using tridiagonal secant updates for unconstrained optimization,
Report no. 9/90, IMECC-UNICAMP, Campinas, SP, Brazil, 1990.

[12] J. E. DENNIS, JR. AND E. S. MARWIL, Direct secant updates of matrix factorizations, Math. Comp.,
38 (1982), pp. 459-476.

482 M. A. GOMES-RUGGIERO, J. M. MARTfNEZ, AND A. C. MORETTI

[13] J. E. DENNIS, JR. AND J. J. MORI, A characterization ofsuperlinear convergence and its application to

quasi-Newton methods, Math. Comp., 28 (1974), pp. 549-560.
[14] Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), pp. 46-89.
[15] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and

Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
16] I. S. DUFF, MA28ma set ofFortran subroutines for sparse unsymmetric linear equations, AERE R8730,

HMSO, London, 1977.
17] I. S. DUFF, A. M. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Clarendon Press,

Oxford, 1986.
[18] G. FORSYTHE AND C. B. MOLER, Computer Solution of Linear Algebraic Equations, Prentice-Hall,

Englewood Cliffs, NJ, 1967.
[19] D. M. GAY, Some convergence properties of Broyden’s method, SIAM J. Numer. Anal., 16 (1979),

pp. 623-630.
[20] A. GEORGE AND E. NG, Symbolic factorization for sparse Gaussian elimination with partial pivoting,

SIAM J. Sci. Statist. Comput., 8 (1987), pp. 877-898.
[21] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,

Baltimore, MD, 1983.
[22] A. GRIEWANK, The "global" convergence ofBroyden-like methods with a suitable line search, J. Austral.

Math. Soc. Ser. B, 28 (1986), pp. 75-92.
[23] ., The solution of boundary value problems by Broyden based secant methods, CTAC-85, in Proc.

of the Computational Techniques and Applications Conference, University of Melbourne, J. Noye
and R. May, eds., North-Holland, Amsterdam, August 1985.

[24] On the iterative solution of differential and integral equations using secant updating techniques,
in The State of Art in Numerical Analysis, A. Iserles and M. J. D. Powell, eds., Clarendon Press,
Oxford, 1987, pp. 299-324.

[25], The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert space, SIAM
J. Numer. Anal., 24 (1987), pp. 684-705.

[26] L. GRIPPO, F. LAMPARIELLO, AND S. LUCIDI, A nonmonotone line search technique for Newton’s
method, SIAM J. Numer. Anal., 23 (1986), pp. 707-716.

[27] W. E. HART AND S. O. W. SOUL, Quasi-Newton methods for discretized nonlinear boundary problems,
J. Inst. Math. Appl., 11 (1973), pp. 351-359.

[28] G. W. JOHNSON AND N. n. AUSTRIA, A quasi-Newton method employing direct secant updates of
matrix factorizations, SIAM J. Numer. Anal., 20 (1983), pp. 315-325.

[29] C. T. KELLEY AND E. W. SACHS, A quasi-Newton methodfor elliptic boundary value problems, SIAM
J. Numer. Anal., 24 (1987), pp. 516-531.

[30] V. R. LOPES, Solu6es pot elementos finitos de equaf.6es de difusto lineares via princfpios externos duais,
Ph.D. thesis, Dept. of Mathematics, USP, S. Carlos, Brazil, 1988.

[31] Private communication, 1988.
[32] J. M. MARTiNEZ, Generalization of the methods ofBrent and Brown for solving nonlinear simultaneous

equations, SIAM J. Numer. Anal., 16 (1979), pp. 434-448.
[33] ., Solving nonlinear simultaneous equations with a generalization ofBrent’s method, BIT, 20 (1980),

pp. 501-510.
[34] , A quasi-Newton method with a new updating for the LDU factorization of the approximate

Jacobian, Mat. Apl. Comput., 2 (1983), pp. 131-142.
[35] , Quasi-Newton methods withfactorization scalingfor solving sparse nonlinear systems ofequations,

Computing, 38 (1987), pp. 133-141.
[36], Afamily of quasi-Newton methods for nonlinear equations with direct secant updates of matrix

factorizations, SIAM J. Numer. Anal., 27 (1990), pp. 1034-1049.
[37] E. S. MARWIL, Convergence results for Schubert’s methodfor solving sparse nonlinear equations, SIAM

J. Numer. Anal., 16 (1979), pp. 588-604.
[38] H. MATTHIES AND G. STRANG, The solution ofnonlinearfinite element equations, Internat. J. Numer.

Methods Engrg., 14 (1979), pp. 1613-1626.
[39] J. J. MOR AND M. Y. COSNARD, On the numerical solution ofnonlinear equations, ACM Trans. Math.

Software, 5 (1979), pp. 64-85.
[40] J. J. MORI AND J. A. TRANGENSTEIN, On the global convergence ofBroyden’s method, Math. Comp.,

30 (1976), pp. 523-540.
[41] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution ofNonlinear Equations in Several Variables,

Academic Press, New York, 1970.
[42] M. J. D. POWELL, A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear

Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, London, 1970, pp. 87-114.

ALGORITHMS FOR SPARSE NONLINEAR SYSTEMS OF EQUATIONS 483

[43] W. C. RHEINBOLDT, Numerical Analysis of Parametrized Nonlinear Equations, Wiley-Interscience,
New York, 1986.

[44] L. K. SCHUBERT, Modification ofa quasi-Newton methodfor nonlinear equations with a sparse Jacobian,
Math. Comp., 24 (1970), pp. 27-30.

[45] H. SCHWANDT, An interval arithmetic approach for the construction of an almost globally convergent
method for the solution of the nonlinear Poisson equation on the unit square, SIAM J. Sci. Statist.
Comput., 5 (1984), pp. 427-452.

[46] H. SCHWETLICK, Numerische L6sung nichtlinearer Gleichungen, Deutscher Verlag der Wissenschaften,
Berlin, 1978.

[47] V. E. SHAMANSKII, A modification of Newton’s method, Ukrainian Mat. Z., 19 (1967), pp. 133-138.
[48] Ph. L. TOINT, Numerical solution oflarge sets ofalgebraic nonlinear equations, Math. Comp., 16 (1986),

pp. 175-189.
[49] L. T. WATSON, A globally convergent algorithm for computing fixed points of C maps, Appl. Math.

Comp., 5 (1979), pp. 297-311.
[50], Engineering applications of the Chow-Yorke algorithm, in Homotopy Methods and Global

Convergence, B. C. Eaves and M. J. Todd, eds., Plenum Press, New York, 1983, pp. 287-307.
[51] L. T. WATSON, S. C. BILLUPS, AND A. P. MORGAN, Algorithm 652: HOMPACK: A suite of codes

for globally convergent homotopy algorithms, ACM Trans. Math. Software, 13 (1987), pp. 281-310.
[52] J. V. ZAGO, Approximate solution ofgeneralized Hamiltonian equations with applications, Ph.D. thesis,

Dept. of Mathematics, University of Wisconsin at Madison, Madison, WI, 1976.

[53] M. C. ZAMBALDI, Estruturas est6ticas e dinmicas para resolver sistemas no lineares esparsos, Tese
de Mestrado, Departamento de Matemitica Aplicada, UNICAMP, Campinas, Brazil, 1990.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 484-498, March 1992 003

KNOT SELECTION FOR LEAST SQUARES THIN PLATE SPLINES*

JOHN R. McMAHON" AND RICHARD FRANKE:

Abstract. An algorithm for the selection of knot point locations for approximation of functions from
large sets of scattered data by least squares thin plate splines is given. The algorithm is based on the idea
that each data point is equally important in defining the surface, which allows the knot selection process
to be decoupled from the least squares. Properties ofthe algorithm are investigated, and examples demonstrat-
ing it are given. Results of some least squares approximations are given and compared with other approxima-
tion methods.

Key words, knot selection, least squares, thin plate splines, Dirichlet tessellation, scattered data

AMS(MOS) subject classification. 65D10

1. Introduction. The problem of fitting a surface to small sets of given data has
been addressed in many different ways, and several computer programs are currently
available which enable one to deal with the problem effectively. Many of the methods
available involve a global interpolation or approximation scheme and often involve
solving a system of equations with an equivalent number of unknowns. For very large
sets of data, the problem is computationally intractable. This consideration provides
the motivation behind the development of a way to pare the problem down to a more
manageable size.

We wish to construct a function F which approximately fits the data, since we
assume the data collection is subject to measurement error. We propose to use approxi-
mation by least squares thin plate splines (TPS), where the surface function is con-
structed so as to minimize an error function subject to certain constraints. Solving the
approximation problem will also involve as many equations as there are data points,
but the number of unknowns will be significantly fewer. Part of the appeal of TPS
approximation lies in the fact that it minimizes a certain linear functional and involves
a linear combination of functions with no greater complexity than the natural logarithm
of the distance function.

Interpolation of scattered data by the method ofTPS was developed from engineer-
ing considerations by Harder and Desmarais [6]. It can be thought of as a two-
dimensional generalization of the cubic spline, which models a thin beam under point
loads subject to equilibrium constraints. The TPS function is derived from a differential
equation which gives the deformation of an infinite, thin plate under the influence of
point loads. A point load is applied at each data point so that the interpolating surface
can be constructed as a sum of fundamental solutions of the TPS equation.

In using the least squares TPS approximation method to fit the surface, a fewer
number of basis functions than the number of given data points is employed. These
basis functions are centered at a different, smaller set of points, which, in analogy with
the univariate case, we call the knots. Therefore, the problem at hand is one of selecting
the knot points, and hence the basis functions. This approach differs from the use of
smoothing splines, which were introduced by Wahba and Wendelberger [13] in the
multidimensional case, and called Laplacian smoothing splines (LSS). LSS minimize

* Received by the editors October 26, 1987; accepted for publication (in revised form) October 29, 1990.
f Department of Mathematics, United States Military Academy, West Point, New York 10966.
$ Department of Mathematics, Naval Postgraduate School, Monterey, California 93943. The work of

this author was supported in part by the Office of Naval Research under Program Element 61153N, Project
No. BR033-02-WH.

484

KNOT SELECTION FOR. THIN PLATE SPLINES 485

a certain functional which is a linear combination of a term measuring fidelity to the
data and one measuring smoothness of the function (a generalization of the usual TPS
functional). In this case there is still one basis function for each data point, but the
interpolation condition is relaxed.

Given a "large" set of data points, (xi, yi,f), i= 1,..., N, we wish to find a
smaller set of knot points, (j, j),j 1,..., K, which will "represent" the former
reasonably well. This could be accomplished by choosing a subset of the original set
or by some process which produces a representative set. The ultimate goal is to
approximate the surface from which the original data arose using the representative
set. Hence, a surface fit to the large set and one fit to the representative set should be
essentially the same.

Approximation by least squares TPS is straightforward once the knot points are
known. We construct the TPS function

K

F(x,y)= E Ad}log(d)+ax+by+c,
j=l

2where d (x x)2 + (y -y) and the coecients Aj, a, b, and c are chosen to minimize
the error function

N

E ., {[F(x,, y)-f]/s,}.
i=1

The ordinates, f, may be subject to random errors, say, with standard deviation si at
the ith data point. We model the plate under the point loads at the knot points (as
opposed to the data points); therefore, the constraint equations for the least squares
TPS method, which may be thought of as "equilibrium conditions" on the plate, should
be satisfied. Thus the error function is minimized subject to the following constraint
equations"

K K K

E a =0, E E
j=l j=l j=l

We use LINPACK [1] subroutines to do the actual calculations.
Previous attempts have been made to minimize the error function by considering

it to be a function of the knot point locations as well as the coefficients, wherein a
total of 3K parameters are involved. As reported on by Schmidt 11], the initial knot
configuration was taken to be of tensor product form. The overall minimization process
is a large nonlinear one, and is complicated by possible coalescence of knots as well
as nonunique solutions (as indicated by consideration of one-dimensional cases). Also,
the objective function may have many local minima so that avoiding poor local minima
or searching for better local minima may be necessary. Because of these kinds of
problems, our goal is to decouple the knot selection process from the least squares
process.

When data are somewhat uniformly distributed, methods involving tensor product
cubic splines may be desirable. Tensor product methods place knot locations on a
grid, which may not reflect the actual disposition of the data points; in fact, there
could be no data nearby. Even though these problems are surmountable, they could
lead to nonuniqueness of the solution. The minimum norm solution that is often used
may not be aesthetically appealing. We will say more about this later.

A different point of view is considered here wherein the knot point locations are
predetermined based on two criteria. These criteria evolve from considerations relating
the density of data to the dependent variable and mandating the importance of each

486 JOHN R. McMAHON AND RICHARD FRANKE

individual data point. The solution of the overdetermined system of equations follows
the knot point selection. A summary of the approach and results will be presented.
Examples are given which illustrate rather well the ability of the scheme to select knot
locations which reflect the underlying density of the data. We also report on actual
surface fitting and comparison with two other methods, the LSS of Wahba and
Wendelberger [13] and the tensor product bicubic Hermite method due to Foley [4].
We point out, however, that each of these approaches is geared toward a different
problem than ours and thus it is difficult to compare them in a meaningful way.

We also point out three related ideas which are attempts to decrease the number
of basis functions to be considered. Each is an attempt to choose a subset of points
to be used to construct the approximation. Schiro and Williams [10] used an adaptive
process for subset selection and overlapping regions to construct underwater topo-
graphic maps. Bozzini, diTisi, and Lenarduzzi [2] gave an algorithm for selecting a
subset of points which were important to proper definition of the surface. Both of
these methods made no assumptions about the density of the data points relative to
the behavior of the surface, and both required consideration of the ordinate values.
Another approach is an adaptive procedure suggested by LeM6haut6 and Lafranche
[7]. The underlying approximation is a piecewise polynomial over a triangulation; it
is assumed that all derivative data necessary to construct the smooth approximation
is available. Points are removed from the set as long as the approximation from the
remaining set of points is accurate to within a specified tolerance.

2. The knot selection process. Given a priori flexibility in knot placement, the
problem becomes the selection of knot locations, followed by solution of the system
by least squares. Since the selection of knot locations is to be decoupled from the
solution of the least squares problem, we establish a connection between these aspects
of the problem by making two somewhat vague assumptions. First, we assume that
the independent variables of the data indicate something about the behavior of the
dependent variable. For example, the density of the data points may be dependent on
the curvature of the surface. Hence, where relatively many data points are found, the
function is assumed to be changing behavior rapidly, whereas a low density of data
indicates slowly changing behavior. Although this assumption is not universally satisfied
in practice, it does not seem to be an unreasonable one.

The second assumption is that each data point is equally important in defining
the underlying surface. Therefore the number of data points represented by each knot
should be the same or nearly the same. This leads to "equal representation" of the
data points by the knot points where each data point is "close" to a knot point. A key
advantage achieved in pursuing this approach is the existence of a natural heuristic
for moving the knots around the plane in searching for a good knot configuration.
This point will be elaborated later in the paper.

2.1. A local minimum property. We want each data point to be close to a knot
point, so we try to minimize the sum of the distances squared from each data point
to the nearest knot point, that is, minimize the "global" value,

N

GNU: Z min [(Xi--,j)2+(yi--j)2].
i=1

This function is continuous and piecewise quadratic in 2K variables. The expression
leads naturally to a "default" Dirichlet tessellation, a partitioning of the plane with
respect to the knot points (see Fig. 1). Thus we say each data point belongs to some
knot point according to the Dirichlet tile in which it lies. Data points on any of the

KNOT SELECTION FOR THIN PLATE SPLINES 487

-0.1 0.0

[]

0

[]

[]

D

[]

[]

[]

0

[] [] []

o
[] []

LEGEND
[] = DATA POINTS
o = KNOT POINTS

1.1

FIG. 1. A Dirichlet tessellation with five tiles. It is constructed by connecting the perpendicular bisectors

of the lines joining each of the knot points.

tile boundaries (ties) must be resolved by a determination of to which tile they belong
or some sharing mechanism. Our initial guess at the knot point configuration was taken
to be quasi-gridded.

Differentiation of GN2 with respect to the : and 3 show that at the minimum,
each knot point will occupy the centroid with respect to the data points inside that
tile. Given the initial configuration of knot points with its Dirichlet tessellation, the
following algorithm for iteration to a local minimum GN2 value is employed.

ALGORITHM 2.1. (a) Compute the centroid of each tile with respect to the data
points contained within each tile.

(b) Move the knots to the corresponding centroids, which results in a new Dirichlet
tessellation and a new set of knot point-data point associations; this is the configuration
for the next iteration.

(c) Quit when two successive iterations yield the same knot locations, which
means that a local minimum value of GN2 has been found.

This algorithm was formulated in discussions at the Istituto per le Applicazioni
della Matematica e dell’Informatica in 1983 [9], after the problem was posed by
Nielson and Franke. The algorithm is known in clustering analysis as the method of
k-means 12].

488 JOHN R. McMAHON AND RICHARD FRANKE

We note that the value of GN2 will necessarily decrease as the iterations continue
until two successive iterations yield the same configuration; this will be proven below.
In the case where no data points lie in a tile for some knot point, the knot point is
moved to the nearest data point. This mechanism avoids knots without data points.
Furthermore, if a data point lies on a tile boundary, it is assigned to the knot with the
smallest subscript (amongst the appropriate choices of knot points). Employment of
a different criterion for the resolution of ties may yield different results. We note that
knots cannot coalesce.

The following theorem is pertinent to this algorithm.
THEOREM 2.1. The function GN decreases with each iteration which involves

movement of a knot point.
Proof. Write GN2 in the more convenient form

K

(1) GN2= . [(x,-:j)+(y,-3)2],
j=l iIj

where/ {i: (xi, Yi) in the tile for (j,)}. In (1), the interior sum is the sum of the
distances squared from the data points in a tile to the knot point in that tile, and the
exterior sum is over all K of the tiles. Let a prime denote the new knot points and
index sets. This form leads to the expressions

(,)3)=(xi/ n, , y/ n)
ilj iIj

where n is the number of indices in the set/. The new knot points will lead to a new
tessellation, followed by the new index sets I. Then the expression (1) is greater than
or equal to

because the new knot point locations minimize the contribution of the interior sums.
This expression (2), in turn, is greater than or equal to

K

(3) . 2 [(x,-:):Z+(Y- fij)2]
j=l ielj

since an index moves to another set only in the case wherein the corresponding data
point is now closer to a different knot point, thus decreasing its contribution to the
global GN value.

Finding a local minimum of GN is well served by Algorithm 2.1; however, as
demonstrated in a one-dimensional example [8], the function GN2 is rife with local
minima, and the local minimum value found depends on the initial configuration of
knots used. We can draw similar conclusions for the multidimensional case based on
the one-dimensional analogy.

The process of locating each knot occurs in two distinct steps: first, each data
point is assigned to the closest knot and second, a determination is made within each
tile as to the location of the centroid of its data points. The minimum distance in the
expression for the GN2 function causes it to be piecewise and it is quadratic. The
minimization of GN: corresponds to locating each of the knots at the centroids of
their respective Dirichlet tiles. As a direct result of the centroid requirement, the GN2

function will stabilize at a local minimum value of the particular quadratic piece
defined by stable knot locations.

KNOT SELECTION FOR THIN PLATE SPLINES 489

The local minimum value of GN- will frequently occur out of the domain of one
or more ofthe corresponding quadratic pieces. This leads to a "cascading" phenomenon
which continues until a local minimum value occurs within the domain defined by the
current set of knots. However, the global minimum value will not necessarily be attained.

2.2. The objective function. This inconsistent performance of Algorithm 2.1 in
finding the global minimum value of GN2 leads to consideration of a somewhat
different criterion for locating a good configuration of knot points. We wish to exploit
the second assumption specified at the end of 2.1, while taking advantage of the
minimization of the GN function. Since each data point is assumed to be equally
important, the Dirichlet tile for each knot should contain about the same number of
data points. Thus we wish to minimize the sum of the squares of the differences between
the number of knots in each tile and the average number of data points that should
belong to each tile, that is, minimize the quantity

K

D= .. (n.- N/K).
j=l

The new algorithm for determining knot locations is based on the minimization of D,
subject to the constraint that each knot be located at the centroid of its tile.

This optimization leads to a natural heuristic for moving knots from a stable
configuration to a possibly better configuration. We call the current configuration of
knots a "base" configuration, and iterate through the algorithm as follows.

ALGORITHM 2.2. (a) Generate a new guess for the knot locations by moving the
knot(s) with the smallest number of data points in their tile(s) toward the knot(s) with
the largest number of knot(s) in their tile(s); the distance moved is initially a large
fraction of the total distance between the knots.

(b) Iterate to a stable configuration using the first algorithm, compute the values
of GN2 and D, and compare D to the smallest value achieved to date, as represented
by that of the base configuration.

(c) Repeat the process above when a smaller value of D is obtained, with the
present configuration as the base configuration.

(d) When a smaller value of D is not found, take a shorter step in the movement
of the knot(s) and repeat the process above.

(e) Continue with smaller and smaller steps until a smaller value of D is found
(or an equal value of D with a smaller GN2 value) or until the knot locations return
to the base configuration.

(f) Perform the search in the symmetrical way when the base configuration is
returned to, that is, move the knot(s) with the largest number of data points in their
tiles toward the knot(s) with the smallest number of points in their tile.

(g) Quit when no smaller value of D is found.

The movement of the knots is justified by the rationale that a more equitable
distribution of data points can be found by moving the tile boundaries across data
points. Note that the algorithm for computing a local minimum of the GN2 function
value is embedded in Algorithm 2.2.

3. Results and examples. Using Algorithm 2.1 for the a priori selection of the knot
point locations, experiments were conducted to test the scheme using different sets of
test data. This was followed by verification of the scheme on two sets of real data.
Results from two sets of the test data are presented here, one consisting of 200 data
points called "cliff," and one consisting of 500 data points called "humps and dips."

490 JOHN R. McMAHON AND RICHARD FRANKE

Both sets of data were generated using known functions (see Franke [5]) in a way that
forced the density of points to be approximately proportional to the curvature of the
sampled function.

Figures 2 and 3 show these two test data sets graphically and illustrate the optimized
knot point configurations found using Algorithm 2.1.

We also investigated how closely the constructed surface F and the "true" surface
resemble one another for the cases where the data was generated from a known function.
This comparison is made in the context of the root-mean-squared error (RMS) of the
residuals (at the data points) and on a rectangular grid of locations in the plane. The
two data sets constructed above, and one other which was generated in a similar
manner, were used to compare RMS errors for the least squares Algorithm 2.1 developed
here with the LSS method of Wahba and Wendelberger and the bicubic tensor product
Hermite method of Foley.

The comparisons made here should be viewed in the proper perspective since the
use of TPS (or other radial basis function methods) is not efficient in the construction
of surfaces when compared with tensor product methods such as Foley’s. This is true
even apart from cost of the knot selection process, which may be significant. Thus it
makes little sense to compare them on the basis of cost alone. The situation in which
we envision the use of our method to be viable is one in which we expect difficulties
(amounting to failure) with tensor product methods, such as those that may occur with
greatly varying density of data. Such a case is mentioned in [3], and a solution within
the context of least squares tensor product splines proposed. It is probable that there
are situations in which the proposed solution would also fail, although we have not
attempted to find any. In the case of such failures, one may be willing to make significant
expenditures of computational effort to obtain a viable approximation. We believe our
scheme is capable of being successful in many cases, and should be one of those
available to users. No doubt the knot selection process should often be implemented
as a preprocessing phase.

The dependent variable values of the experimental data sets were generated in
two ways: (1) using a known function, and (2) contaminating the known function by
the injection of independent, identically distributed normal random errors with a
composite standard deviation of 0.05. In the first case, we would expect the RMS error
on the data points and on the grid to be about the same, and to decrease as the number
of knot points used to represent the data is increased.

In the contaminated case, the dependent variable at each data point is the sum
of the unknown underlying function value and the error function value so that the
difference between the constructed surface and the "true" surface is mainly attributable
to the presence of error in the data. In the best situation, we expect the RMS error in
the residuals to match the composite standard deviation of the random error injected
to obtain the contaminated data. At the grid points, we expect the RMS error to be
smaller than the composite standard deviation, since the grid sample is larger (33 x 33)
and the errors are distributed more evenly throughout the entire region of interest.

Some observations can be made regarding Tables 1-3. The general trend of the
RMS error on both the data points and the grid is to diminish as the number of knot
points is increased. As expected with the exact data, the RMS error of the residuals
and the RMS error on the grid are roughly equivalent. For the contaminated data, the
RMS error of the residuals roughly matches the composite standard deviation of the
data, and the RMS error on the grid is smaller than the RMS error of the residuals,
as expected. In Table 1, the errors over the grid increase as the number of knot points
is increased, and that of the residuals’ RMS is less than the RMS of the injected errors.

KNOT SELECTION FOR THIN PLATE SPLINES 491

3 3

0 0 0 0

0 0 0 0
0 00", 0 0 0

O00

o o o o o
0 0 0 00 O 0 O00

0 0o 0
0 o

0 0 0 0

0 0 0 000 0
0 0 0

0
O0

0 0 000 00 00 0 0 0 00
0 0

0o o o c o
oo

o o o
o o o o o oo o o o co oo

o
o
o o

o o o
o o o

o o
o o

o o o

o o o

o
o

o o
o

o
o o

o
o

o o

o o o o0
o o o

Oo o
o o o

oo o
0

0
_0 00 0

o o o o
Oo

o o
o o o o o

o o

o o o o o o c 6 o o

492 JOHN R. McMAHON AND RICHARD FRANKE

D
D

[]
D

[] []
[] []

D D n
D

[]

[]

D

l’I 6"0 ,’0 ’0 ’0

[]

[]

D

KNOT SELECTION FOR THIN PLATE SPLINES 493

TABLE
Comparison of RMS errors on "cliff," 200 points.

Method

Number of
Data Points/ No Errors
Knot Points in Data Contaminated Data

Residual Grid Residual Grid

Least Squares TPS
Least Squares TPS
Foley
Least Squares TPS
Foley
Smoothing

200/20 0.01562 0.01474 0.05214 0.01795
200/25 0.01179 0.01154 0.04805 0.02040
200/5 x 5 0.00777 0.00613 0.05996 0.04819
200/35 0.00626 0.00616 0.04590 0.02146
200/6 x 6 0.00512 0.00417 0.05113 0.03745

200 0.0 0.00096 0.04272 0.01806

TABLE 2
Comparison of RMS errors on "humps and dips," 200 points.

Method

Number of
Data Points/ No Errors
Knot Points in Data Contaminated Data

Residual Grid Residual Grid

Least Squares TPS
Least Squares TPS
Foley
Least Squares TPS
Foley
Smoothing

200/20 0.05525 0.05465 0.07571 0.05866
200/25 0.02520 0.02646 0.05603 0.03385
200/5 x 5 0.01206 0.01332 0.04819 0.04965
200/35 0.01662 0.01843 0.05274 0.02853
200/6x6 0.00968 0.01144 0.05028 0.03962

200 0.0 0.00254 0.03900 0.02789

TABLE 3
Comparison of RMS errors on "humps and dips," 500 points.

Number of
Data Points/ No Errors

Method Knot Points in Data Contaminated Data

Residual Grid Residual Grid

Least Squares TPS 500/20 0.02402 0.02517 0.05256 0.02738
Least Squares TPS 500/25 0.01664 0.01766 0.04818 0.02283
Foley 500/5 x 5 0.01346 0.01230 0.05844 0.03767
Least Squares TPS 500/50 0.00645 0.00845 0.04544 0.01961
Foley 500/7 x 7 0.00645 0.00552 0.05696 0.04864

In this case, undersmoothing has occurred, and the surface is "drawing" toward the
error.

In comparing least squares TPS to the smoothing spline method in the exact data
case, we note that the smoothing spline method yields a residual RMS error of zero.
This could be expected, since there is no error in the data and the spline of interpolation
is chosen. On the grid, the RMS error is small. When the data is not contaminated,
the RMS error of least squares algorithm only begins to become as small as that of

494 JOHN R. McMAHON AND RICHARD FRANKE

the smoothing splines method when the number of knots used becomes large. We also
note that in the 500 data point set, no comparison is made since a potential limit for
computing smoothing splines is 200-300 data points.

Foley’s method for the contaminated case gives errors nearly equal to the composite
standard deviation injected into the data. However, on the grid, the least squares
method does better, an indication that smoothing is occurring, as expected. We also
note that an increase in the number of grid points does not significantly improve the
RMS error in Foley’s method, even though an increase in the number of knots in the
least squares method usually yields improved results. We used the default local
approximations in Foley’s method, and we note that performance of the method may
be improved by using lower degree local approximations to estimate the grid values
to be used.

Figure 4 depicts hydrographic data collected in Monterey Bay, consisting of 1669
points with greatly varying density. Figure 4(b) shows the results of applying Algorithm
2.1 with 100 knots, and is particularly interesting because the density of the data is
faithfully replicated by the knots. We note, however, that the assumption regarding
the density of the data points being indicative of the dependent variable is not
necessarily a viable one in this particular application of the algorithm. These results
demonstrate the ability of Algorithm 2.1 to produce reasonably representative sets of
knots.

We discuss one further example arising from a practical problem. The general
problem occurs with some frequency in practice, and it is not clear what the best
method is for handling such data. The data consists of digitized height contours of a
glacier. The contours were very densely sampled, with a total of 8345 points available.
The contours were thinned by taking every third point, since this resulted in almost
uniform density over part of the region while still leaving evidence of the contours.
Those within a certain square were then retained, giving the total of 873 points shown
in Fig. 5(a). In order to obtain an example which is not unreasonable, and under
which our procedure can be expected to give reasonable results while other methods
may encounter difficulties, a number of contours were stripped out of the data to leave
the set of 678 points shown in Fig. 5(b). Admittedly this is a contrived example and
one made to illustrate difficulties that tensor product methods can have when there
are voids in the data. It is a situation which may occur in practical problems, however,
and the missing data gives an opportunity to validate behaviors. The knot selection
process applied to the data of Fig. 5(b) with 100 knots then gave the results shown in
Fig. 5(c).

Figures 6(a) and (b) show the results when Foley’s method (a 10x 10 grid was
used) is applied to the data of Figs. 5(a) and (b), and Fig. 6(c) shows the least squares
TPS using the knots in Fig. 5(c). Figure 6(b) shows the potential misbehavior of tensor
product methods in voids, while the TPS in Fig. 6(c) is well behaved. Outside of these
regions the behavior of the methods is quite similar, although both Figs. 6(b) and (c)
show that the details at the rear edge of the surface are incorrect because of the missing
data. The RMS value of the residuals is comparable in the three cases" 5.2, 5.1, and
5.7, respectively (the contour interval is 25).

4. Conclusions. Again, we emphasize that we envision this scheme to be a useful
one when other less costly schemes perform poorly or cannot be used because of the
large systems of equations that must be solved. In particular, our scheme does not
place knots in data deserts, avoiding the necessity of providing special handling for
such cases. We caution that the search for a best knot configuration can be rather

KNOT SELECTION FOR THIN PLATE SPLINES 495

c)

C::)

><

o

0 O
O o o

o o
O [] O

0 o 0 0 O

0 0 0 0

o []
[] 00 0

[] oo 0
o

o o
o 0

0
0 0

0 o
o 00

0

o

o

0

0
o

o

o 0

o
0

0
0

o

0
0

o
0

o o

o
o

[] 0

0 o o
o

O 0
0 0 o

IO o 0 o

q 0 f+’O ’0 ’0 I’0 0"0 I’O-

496 JOHN R. McMAHON AND RICHARD FRANKE

KNOT SELECTION FOR THIN PLATE SPLINES 497

X310’

498 JOHN R. McMAHON AND RICHARD FRANKE

expensive. For a large number of data points with a moderately large number of knot
points, such as our last two examples, the computations took up to an hour on an
IBM 3033 computer. We are investigating ways of speeding up Algorithm 2.1. One
idea we are pursuing is to use a method of simulated annealing along with a simpler
search process. Again, the results are dependent on the initial guess, although they
generally look quite good for any reasonable initial guess. It may be viable to incorporate
a divide and conquer scheme such as that suggested in [14] for clustering problems
using k-means. In our situation, only a good set of knots is needed, and it is unclear
whether great efforts will be worthwhile since the criteria are only based on reasonable,
and not rigidly correct, assumptions.

REFERENCES

[1] J. DONGARRA, C. MOLER, J. BUNCH, AND G. STEWART, LINPACK User’s Guide, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1979.

[2] M. BOZZINI, F. DITIsI, AND L. LENARDUZZI, A new method in order to determine the most significant
members within a large sample, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 98-104.

[3] M. G. Cox, Data approximation by splines in one and two independent variables, in The State of the
Art in Numerical Analysis, A. Iserles and M. J. D. Powell, eds., Clarendon Press, Oxford, 1987,
pp. 111-138.

[4] T. FOLEY, Interpolation and approximation of 3-D and 4-D scattered data, Comput. Math. Appl., 13
(1987), pp. 711-740.

[5] R. FRANIE, Scattered data interpolation: Tests ofsome methods, Math. Comp., 38 (1982), pp. 181-200.
[6] R. HARDER AND R. DESMARAIS, Interpolation using surface splines, J. Aircraft, 9 (1972), pp. 189-191.
[7] A. LEMIHAUTI AND Y. LAFRANCHE, A knot removal strategyfor scattered data in R2, in Mathematical

Methods in CAGD, T. Lyche and L. L. Schumaker, eds., Academic Press, New York, 1989,
pp. 419-426.

[8] J. MCMAHON, Knot selection for least squares approximation using thin plate splines, M.S. thesis, Naval
Postgraduate School, Monterey, CA, June 1986.

[9] G. NIELSON, R. FRANKE, L. LENARDUZZI, AND F. UTRERAS, Personal communication on the
Venezia criterion.

10] R. SCHIRO AND G. WILLIAMS, An adaptive application of multiquadratic interpolants for numerically
modelling large numbers of irregularly spaced hydrographic data, Surveying Mapping, 44 (1984),
pp. 365-381.

11] R. SCHMIDT, Ein Beitrag zur Fliichenapproximation iiber Unregelmiissig Verteilten Daten, in Multivariate
Approximation Theory III, W. Schempp and K. Zeller, eds., Birkhiuser-Verlag, Basel, 1985,
pp. 363-369.

[12] S. Z. SELEM AND M. A. ISMAIL, K-means-type algorithms: A generalized convergence theorem and
characterization of local optimality, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6 (1984),
pp. 81-87.

13] G. WAHBA AND J. WENDELBERGER, Some new mathematical methodsfor variational objective analysis
using splines and cross validation, Monthly Weather Rev., 108 (1980), pp. 1122-1143.

14] S.J. WAN, S. K. M. WONG, AND P. PRUSINKIEWICZ, An algorithmfor multidimensional data clustering,
ACM Trans. Math. Software, 14 (1988), pp. 153-162.

SIAM J. SCI. STAT. COMPUT.
Vol. 13, No. 2, pp. 499-511, March 1992

1992 Society for Industrial and Applied Mathematics
004

NUMERICAL APPROXIMATION OF PARAMETRIC ORIENTED
AREA-MINIMIZING HYPERSURFACES*

HAROLD R. PARKS"

Abstract. A numerical method for finding a function nearly minimizing the gradient integral among
functions having given boundary data is described. Such functions can be used to approximate parametric
oriented area-minimizing hypersurfaces. Results of using this method are presented.

Key words, least gradient method, area-minimizing surfaces, area-minimizing currents, functions of
least gradient

AMS(MOS) subject classifications. 65N99, 49Q05, 49-04

1. Introduction. This paper presents the results of what we believe to be the first
successful implementation of a numerical method for finding the solution to the least
area problem without restricting the topological type of the surfaces considered.

The problem of finding a surface of least area with given boundary was first
investigated by Lagrange ILl in the mid-eighteenth century. Since that time, the least
area problem and the related study of minimal surfaces and their generalizations have
captured the interest of many mathematicians. Often the attention given to the subject
is motivated solely by its beauty; however, there are connections to physical problems,
and practical applications have arisen. Soap films provide the most well known physical
realization of the least area problem, but other related physical problems are
Tschaplygin gas flows and nonlinear elasticity theory. The reader should consult the
introduction of Nitsche’s book [NJ] and the references mentioned there for a more
complete discussion.

Only in very special circumstances can one analytically compute the area-
minimizing surface which spans a given boundary. Thus for many years, going back
at least to 1928 when Jesse Douglas published a paper on the subject [DJ], there has
been interest in numerical methods for approximating area-minimzing surfaces. In
case the area-minimizing surface being sought is not the graph of a function, i.e., is
parametric, there is no analytical method to determine in advance even such a gross
characteristic of the surface to be approximated as its topological type. This can be a
significant difficulty, because it seems to be more natural for a numerical method to
lessen the topological complexity of a surface as the method proceeds than it is to
increase the complexity. In [PH1] and [PH2], the author has developed the theoretical
basis for a method for numerically approximating parametric oriented area-minimizing
hypersurfaces which can be applied without prior knowledge of the topological type
(or, for higher dimensions, the singularity structure) of the minimizing surface. Indeed,
the applications described in this paper show that the method will, in practice as well
as in theory, produce surfaces with the needed topological complexity even if the
starting data consists of only topologically trivial surfaces.

The method from [PH1] and [PH2], which we will refer to as the least gradient
method, is applicable in Euclidean space of any dimension, and it allows the approxima-
tion of a parametric oriented area-minimizing hypersurface spanning a given boundary,

* Received by the editors December 26, 1989; accepted for publication (in revised form) November 20,
1990. This work was partially supported by Office of Naval Research U.R.I. grant :N00014-86-K-0687.
Equipment was provided, in part, by National Science Foundation grant # DMS-8703928 and by Hewlett-
Packard Corporation.

f Department of Mathematics, Oregon State University, Corvallis, Oregon 97331.

499

500 HAROLD R. PARKS

provided that the given boundary is extreme in the sense that it lies on the bounding
surface of a convex domain. The least gradient method is based on the fact that any
level set of a function which minimizes the integral of the norm of its gradient is an
area-minimizing hypersurface. This is a nontrivial theorem of Bombieri, De Giorgi,
and Giusti [BDG, Thm. 1]. Underlying this result is the coarea formula [FH, 3.2.11],
which, as a special case, states that the three-dimensional gradient integral is equal to
the integral of the areas of the level sets,

Ic Du d3 I ,q2112 ["l u r dr,

where is a domain in R3,]Du] denotes the Euclidean norm of the gradient of u,
denotes Lebesgue measure, and 2 denotes two-dimensional Hausdorff measure. In
particular, the least gradient integral is equal to the integral of the areas of the minimal
surfaces with the appropriate boundary values. It turns out, as was shown in [PH1]
and [PH2], that if a function only nearly minimizes the integral of the norm of its
gradient, then its level sets can be used to approximate area-minimizing hypersurfaces.

This paper reports on the implementation of the least gradient method in the
approximation of two-dimensional oriented parametric area-minimizing hypersurfaces
in R3. To implement the least gradient method, the problem which must be solved
numerically is a discrete approximation to the following.

(1 a) Minimize f Dul d.’3

subject to the Dirichlet boundary condition

(lb) u o on

where 12 is a bounded convex domain in 3. The boundary data q in (lb) is chosen
so that the one-dimensional system of curves we wish to span with an area-minimizing
surface occurs as a level set of 0. The appropriate level set ofthe discrete approximation
to the solution to (la) and (lb) is then used as the approximation to the desired
area-minimizing surface. We will apply the least gradient method to three examples.

(i) The surface to be approximated can be found analytically and is actually a
graph, namely, a portion of Enneper’s surface.

(ii) The surface to be approximated can be found analytically and is either two
discs or a catenoid depending on the exact choice of boundary conditions.

(iii) The surface to be approximated cannot be obtained analytically (at least as
far as we know) and the topological type is either that of two discs or an annulus
depending on the exact choice of boundary conditions.

We remark here that in [PH1] and [PH2] certain strict assumptions were made
about 1 in order to prove theorems of general applicability. One such theorem
concerned the existence of a Lipschitzian function of least gradient satisfying the
Dirichlet boundary condition. Here we will be solving specific problems. In each case
we can easily give a proof of the existence of a Lipschitzian function of least gradient,
so it is not significant that we have not worked precisely in the settings of the theorems
in [PH1] and [PH2].

Various methods can be used to solve the numerical problem described above;
one of the more promising methods has been investigated by Overton in [OM1] and
[OM2]. In [OM1], Overton has proved the quadratic convergence of a method for
minimizing a sum of Euclidean norms which, at each iteration, computes a direction
of search by solving the Newton system of equations, projected, if necessary, into a

APPROXIMATION OF AREA-MINIMIZING HYPERSURFACES 501

linear submanifold. In [OM2], Overton has applied the method from [OM1] to the
problem consisting of (la), (lb), and an additional constraint, but with f/a domain
in RE; in that case, the minimization problem arose from collapse load analysis (see
[SG]). While it was noted in [OM2] that the hypotheses required for the theorems in
[OM1] were not satisfied, the numerical results obtained were nonetheless in close
agreement with known exact solutions. We have set up our discretization so that
Overton’s method can be applied; however, our experience in applying Overton’s
method to our problem has been less sanguine than in [OM2]. Indeed it has proved
essential to use search directions other than those arising from the Newton system.
The difficulties here are still not fully understood.

To apply Overton’s method in [OM2] without making prohibitive demands on
the machine memory certain technical details were essential. (Specifically, in the
notation of [OM2], the problem is storing and factoring .) The same difficulty arises
here. A major portion of the exposition in this paper deals with this. It is most efficient
to assume the reader is familiar with [OM2] and limit ourselves to discussing the
modifications needed.

2. Discretization. The domain lI will be an open subset of the unit cube in R3.
The unit cube, denoted by C, will be tessellated by subdividing the cube into (k-1)
congruent subcubes and then dividing each such subcube into six quadrirectangular
tetrahedra. (In Fig. 1, the six tetrahedra are illustrated.) The fact that each tetrahedron
has three mutually orthogonal edges turns out to be crucial. In that sense this subdivision
ofthe cube, which was well known to many (see for example [TG]), is the generalization
of the subdivision of the square into two right triangles; once this three-dimensional
subdivision has been done, it is fairly easy to see that this construction can be continued
to any dimension.

The total number of mesh points will be

(2) n=k3.

Note that k is the number of mesh points which lie on the x axis, and

(3) h=l/(k-1)

FIG. 1. Decomposition of the cube.

502 HAROLD R. PARKS

is the edge length of the subcubes, or mesh size. We will denote the mesh points by
X1, X2,"’ ’, Xn. The function p will be assumed extended to C- fl. The function u
in (1) will be replaced by a piecewise linear finite element approximation D, which is
to agree with tp at mesh points in C -II. Thus we obtain a finite-dimensional optimiz-
ation problem for which the variables are the function values t(Xi) at the given mesh
points lying in

There are

m =6(k-l)
tetrahedra in this tessellation of the unit cube. We will denote the tetrahedra by T1,
T2,’ ", Tin. The vertices of T will be denoted by

Xo,,), x,.,), x,,), x,,).
We will assume that (as illustrated in Fig. 1), for each i, the vectors from Xo,i) to

Xv,i), from X,i) to Xv2,), and from X2,) to X3,0 are pairwise orthogonal and
are, in fat, simply nonzero multiples of the standard basis vectors. Since is piecewise
linear over this tessellation, the components of its gradient on T multiplied by the
volume of T (i.e., h3/6) are, possibly in some other order,

(a (Xv(,,)) a (Xv(o,,)))(h2/6),
(a (Xv2,,)) a (Xv(1,,)))(h2/6),
(a (X<3.i)) a (Xv<2.i)))(h2/6).

We now define a vector vR by setting vi =a(Xi), and we form a matrix Ai of
dimension n x 3 with

Ai,v(1,i), Ai,/(2,i),2 Ai,/(3,i),3- h2/6,
Ai,(o,i), Ai,v(,i),2 mi,v(2,i),3 -h2/6,

and all other entries equal to zero. Note that the matrix A has only two nonzero
entries in each column and those entries add to zero; this is a consequence of the fact
that each tetrahedron in the tessellation has a set of three mutually perpendicular
edges. This special structure of A turns out, as will be seen later, to be crucial to
solving the problem economically. (It is also an economy that A need not be saved
separately for each i, since it is readily constructed from %) Using the matrix A, we

see that

IDol d-- Ia,ul,

so that minimizing the integral of the gradient of over II is equivalent to the following
problem:

(4a) Minimize F(v) Y, IATvl
over vectors v R" which satisfy the boundary conditions

(4b) vi (Xi) if Xi is not an interior point of

3. Adapting the algorithm. In solving the problem (4a), (4b), we will be following
the procedure described in [OM2] which was, in turn, an adaptation of the algorithm
proposed in [OM1]. As in [OM2] we set

ri(1)) AS v, the residuals,

J(v)= {i’lr,(v)l=O}, the active set,

(v) =[A,1, A,2, "], where J(v) ={il, i2,...}.

APPROXIMATION OF AREA-MINIMIZING HYPERSURFACES 503

The problem (4a), (4b) is difficult because the gradient of the objective function,
F, becomes discontinuous and the Hessian becomes unbounded whenever a residual
vanishes. The idea of the algorithm is to project the objective function into the linear
submanifold where zero residuals remain unchanged and where the boundary condi-
tions (4b) are satisfied. In that space F is locally continuously differentiable. To
accomplish this projection, we will construct a matrix Z consisting of a maximal set
of independent n-dimensional columns such that

(5) ri(v+p)=ri(v)=O ifiJ(v) and p(Z),

where (Z) is the span ofthe columns ofZ (i.e., the range space ofZ). The requirement
(5) of maintaining zero residuals is expressed by

z=0,
but to incorporate the boundary conditions we must add columns to A. For each
boundary vertex X we add a column which has a one in the rth row and has zeros
for all its other entries; this matrix is denoted by . To maintain the zero residuals
and satisfy the boundary conditions we require

(6) Z 0.

In [OM1], the matrix A was assumed to be of full rank and the required Z was to be
found by QR factorization. In our situation, as in [OM2], A may quite well be rank
deficient, and, in any case, n will surely be too large for storing and ,factoring , to be
practical. It is in getting around this difficulty that the special form ofA comes into play.

DEFINITION. (i) Denote by 9 .n,l the collection of n x matrices such that each
column contains at most two nonzero entries, and if a column does contain two nonzero
entries, then they add to zero.

(ii) For A , we define an equivalence relation, , on {1,2,..., n} by setting

i+j if and only if there exists a sequence il,
i2," ", it, with i= il,j it, such that the ilth row and the it+lSt row each
have a nonzero entry in the same column, for 1, 2, , r- 1.

The equivalence class of will be denoted {i}.
(iii) An equivalence class {i} will be called null if there is j {i} such that the

jth row of A contains a nonzero entry which is the only nonzero entry in its column.
(iv) Given A 6 9 we construct Z ZA as follows:

For each equivalence class { i} which is not null include in Z a column which
has a one in the jth row if and only if j 6 {i} and for which all other entries
of the column are zeros.

With these definitions made, the following lemma should be obvious.
LEMMA. IfA 9, then Z- ZA is a maximal rank matrix such that ATZ O.

The main consequence of this lemma is that if we apply it to ,, then the required
maximal rank Z satisfying (6) is easily constructed. In fact, , and Z can be represented
as linked lists as was done in [OM2]. The remaining discussion of the adaptation of
the algorithm from [OM1] is exactly as in [OM2].

4. Degeneracy. It was indicated in [OM2] that the most difficult step in adapting
the algorithm from [OM1] to the problem (la), (lb) was the check on optimality. The
difficulty is referred to as degeneracy. A vector v that is optimal on the restricting
submanifold may not be optimal in the whole space. This seems to occur in our
applications in which a nonunique solution to the area-minimization problem leads

504 HAROLD R. PARKS

to a so-called lens: the region in between two area-minimizing surfaces on which the
function of least gradient is constant.

Since we must obtain a global optimal solution we have employed a relaxation
method to reduce the objective function further once the optimality condition holds
on the restricted manifold. We do a simple minimization varying each component of
v separately. Since there are many components this is obviously slow. One efficiency
is that any specific mesh point is a vertex of only 24 tetrahedra, so it is only necessary
to compute a small part of the objective function. We have used the Golden Section
Search [NR, 10.1] to accomplish the one-dimensional minimization.

In 4.6 of [OM1], Overton comments that it is unlikely that a residual will be
mistakenly set to zero. Essentially, this is because a set of codimension two or higher
does not disconnect space. Apparently this intuition is misleading, because it has been
necessary, in the problems involving a change in topological structure from initial data
to optimal data, to apply the relaxation method to get ott the restricted manifold.

5. Numerical results. There are situations in which it is possible to calculate
analytically the exact solution to a least gradient problem. The simplest such situation
is when the boundary data is the restriction of a linear function. This trivial case was
useful for debugging.

5.1 As our first nontrivial test, we have used our method to approximate a portion
of Enneper’s surface. Since an exact parametrization is available (see [BC]) we can
readily estimate the accuracy of our approximation. Specifically, we use the portion
of the surface parametrized by

x 3(u -u3 + uv2),

z .43 + 3(u2- v2),
which lies in the unit cube; the surface has purposely been positioned so as not to be
symmetric. Supposing the part of the above surface which lies in the unit cube is given
nonparametrically by

z= d/(x, y),

we can easily and rapidly determine (x, y) numerically by solving for (u, v) through
the iteration

Uo 0, v0 0

Un+ X -I-’(Un)3 Un)(tn 2,
v,,+ -1/2(y -1/4) +(v.) (Un)2(On).

One can then verify that the height of the surface varies from about .2 to about .8.

TABLE
Approximation to Enneper’s surface.

Ratio of error
k n Initial F Final F Error to mesh size

7 343 1.1029466511 1.0746701779 .0045223315 .0271340
9 729 1.1016168059 1.0643732799 .0034019702 .0272158

11 1331 1.1305241338 1.0633118971 .0030688406 .0306888

APPROXIMATION OF AREA-MINIMIZING HYPERSURFACES 505

(a)

(b)

FIG. 2. (a) Enneper’s surface by the usualformulas; (b) Enneper’s surface by the least gradient method.

.40|

400 .400 4|!

FIG. 3. Level curves for cross section of exact solution to the catenoid problem.

506 HAROLD R. PARKS

,,I

FIG. 4. Level curves for cross section of approximate solution to the catenoid problem.

The Dirichlet data imposed on the unit cube for the least gradient problem were
chosen to be zero on the base of the unit cube, one on the top of the unit cube, and
one-half on

{(x, y, d/(x, y))" xy(1- x)(1- y) =0}.

The values at the remaining boundary points were smoothly interpolated in such a

way as to be increasing in the z-direction. The solution to the least gradient problem
with such boundary values would necessarily be increasing in the z-direction, but we
know of no method for obtaining the solution analytically. The starting data was the
extension of the boundary data construction, but with a random term added.

The results of this test are summarized in Table 1. In that table, k is the number
of grid points on each axis, n is the total number of grid points as in (2), and F is as
in (4a). In each case the computed approximation to u was increasing in the z-direction.
Linearly interpolating between grid points along lines parallel to the z-axis, we located
the level where the function had the value 1/2. That defines our computed approximation
to @. The error is the maximum of the absolute value of the difference between @ and
the computed approximation to q, the maximum being taken over all grid points in
the unit square in the x,y-plane. As a measure of the accuracy, we have compared the
error with the mesh size, h.

APPROXIMATION OF AREA-MINIMIZING HYPERSURFACES 507

FIG. 5. Level curoes for cross section of initial guess for the problem which is not analytically solvable.

In Fig. 2, we have used the NCAR Graphics routine EZSRFC to illustrate the
portion of Enneper’s surface and the approximation obtained by our method; they are
visually indistinguishable.

5.2. Of course, for a nonparametric problem such as that illustrated in 5.1, a
numerical method was developed over sixty years ago by Douglas [DJ] which might
well be just as fast and accurate and is certainly much faster and easier to program,
but the most important attribute of our method is that it does not require a priori
knowledge of the topological type of the solution. To illustrate and test this our second
nontrivial problem involved the transition from two discs to the catenoid. In this case,
all mesh points (x, y, z) at distance greater than or equal to one-half from the line
((1/2,1/2, t)" t} will be assigned a fixed value, namely, Iz-1/21. The transition from
catenoid to plane solution should occur at [z-1/2[approximately equal to .264 (a better
estimate of this is .2638987).

The function, u, of least gradient with the values]z-1/21 on the boundary of the
cylinder

[/= {(x, y, z)" (x-1/2)2+ (y-1/2)2 <1/4, 0< z < 1}

can be directly evaluated at each point by solving a few analytic equations. To each

508 HAROLD R. PARKS

FIG. 6. Level curves for cross section ofapproximate solution to the problem which is not analytically solvable.

point (x, y, z) we associate

and

r [(x _1/2)2 + (y _1/2)211/2

h=z-.
Recall that the equation of a catenoid is

Ar cosh (Ah),

where A is a parameter that we can choose. We find the transition from discs to catenoid
by finding A* and h*> 0 such that

A*1/2 cosh (A’h*)

and the area of the catenoid, with parameter A*, between h =-h* and h h* is equal
to the area of two discs of radius 1/2. Given any (x, y, z) [l, we evaluate u as follows.
(i) If Ihl>_-h*, then u(x, y, z)= Iz-1/21, (ii) if Ihl < h*, then we let r* be the solution of

A’r* cosh (A’h),

and in case r <- r* we have u(x, y, z)= h*, while in the case r> r* we solve for A in
Ar cosh (Ah) and set u(x, y, z) equal to the solution of A1/2 cosh (Au).

APPROXIMATION OF AREA-MINIMIZING HYPERSURFACES 509

In Fig. 3, we have sketched, using the NCAR Graphics routine CONREC, the
level sets of u(x, 1/2, z) in the plane {(x, 1/2, z)" x, z }. The presence of the lens does
tend to confuse the level set routine, so we have chosen parameters for the routine
which give a nice looking diagram for the known analytic solution; we have continued
to use the same parameters in diagramming the approximation. The starting data we
have used is equal to Iz-1/21 at (x, y, z); with that data the level sets are all discs. In
this test the use ofthe relaxation method to get off the restricting manifold was essential.
In Fig. 4, we show the contour lines from the approximate solution. Note that the
topological type has become more complex, as it should.

5.3. In this case, we have taken I to be the entire unit cube and the boundary
data is given by

o(x, y, z) Ix + y + z -l + e(x, y),

Top View Isometric View

Front View Side View

FG. 7. Approximate minimal surface for the problem which is not analytically solvable (level .25).

510 HAROLD R. PARKS

Top View Isometric View

Front View Side View

FIG. 8. Approximate minimal surface for the problem which is not analytically solvable (level .30).

where

e(x, y) exp [-1/(1/2- 3(x)2- 4(y 1/2)2)], if1/2- 3(x-)2- 4(y _1/2)2 > O,

e (x, y) 0, otherwise.

We would suspect that there must be a transition from the topological type of the
disc to the topological type of the catenoid; however, there does not seem to be any
analytic method to determine exactly where it occurs or to find the catenoid type
solutions. (We would have used simply Ix +y+ z-[for the Dirichlet data, but it is
conceivable that the function of least gradient could have been obtained analytically,
since the minimal surfaces involved would all have polygonal boundaries. Of course,
such a computation would be very difficult.) We have used our approximation method
to approximate u(x, y, z). The contours of the cross section u(x, 1/2, z) are sketched for
the initial guess in Fig. 5 and for the function approximately of least gradient in Fig.

APPROXIMATION OF AREA-MINIMIZING HYPERSURFACES 511

6. Figures 7 and 8 illustrate the level sets with value .25 and .30, respectively, from the
same point of view. We emphasize that the topological type was not provided as part
of the initial information, but is rather a result obtained from the computation.

Since in this final case, the exact solution is not known, the accuracy, as approxima-
tions of minimal surfaces, of the final surfaces pictured is also not known. In [PH1]
and [PH2] it was proved that between two appropriate level sets there is a minimal
surface, but the estimates from those papers are for the worst case and would require
too large a value of k (recall k is the number ofmesh points on each axis). Computations
were terminated when the decrease in the gradient integral, especially as compared to
the change in v, became sufficiently small. (In calling the subroutine that implements
Overton’s method for minimizing the sum of norms, we used the tolerance ep 10-8

for the norm of the projected gradient.) The value of k was started at 7 and increased
by interpolating from the results of the previous run. Final termination occurred when
an adequate value of k was reached. Typically, k 11 was enough to produce a smooth
appearing contour plot for a cross section, while k 15 was enough to produce a
smooth appearing level set. For all practical purposes, our system limited us to k =< 25.

Acknowledgments. The author would like to thank Michael Overton for his gen-
erous assistance, including giving the author access to the FORTRAN code used to
produce the numerical results presented in [OM1] and [OM2]. Further, the author
would like to thank Jon Pitts and David Hendricks for their assistance with the
computational work. The referee also deserves thanks for his or her careful work and
helpful comments. Finally, the author would like to thank Frederick Almgren for
applying gentle, but continual, pressure.

[BC]

[BDG]

[DJ]

[FH]
ILl

[NJ]

[NR]

[OM1]

[OM2]

[PH1]

[PH2]
[SG]

[TG]

REFERENCES

J. L. M. BARBOSA AND A. G. COLARES, Minimal surfaces in R3, Lecture Notes in Mathematics
1195, Springer-Verlag, New York, 1986.

E. BOMBIERI, E. DE GIORGI, AND E. GIUSTI, Minimal cones and the Bernstein problem, Invent.
Math., 7 (1969), pp. 243-268.

J. DOUGLAS, A method of numerical solution of the problem of Plateau, Ann. of Math. (2), 29
(1928), pp. 180-188.

H. FEDERER, Geometric Measure Theory, Springer-erlag, New York, 1969.
J.-L. LAGRANGE, Essai d’une nouvelle mdthode pour ddterminer les maxima et les minima des

formules intgrales ind.finies, OEuvres de Lagrange I, pp. 335-362.
J. C. C. NITSCHE, Lectures on Minimal Surfaces, Vol. 1, Cambridge University Press, Cambridge,

New York, 1989.
W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, AND W. T. VETTERLING, Numerical Recipes,

Cambridge University Press, Cambridge, New York, 1986.
M. L. OVERTON, A quadratically convergent method for minimizing a sum of Euclidean norms,

Math. Programming, 27 (1983), pp. 34-63.
, Numerical solution ofa modelproblemfrom collapse load analysis, Computational Methods

in Applied Science and Engineering, VI, R. Glowinski and J. Lions, eds., North-Holland,
Amsterdam, 1984.

H. R. PARKS, Explicit determination of area minimizing hypersurfaces, Duke Math. J., 44 (1977),
pp. 519-534.
,Explicit determination ofarea minimizing hypersurfaces, II, Mem. Amer. Math. Soc. 60, 1986.
G. STRANG, A minimax problem in plasticity theory, Functional Analysis Methods in Numerical

Analysis, M. Z. Nashed, ed., Lecture Notes in Mathematics 701, Springer-Verlag, New York,
1979.

G. L. TINDLE, Tetrahedral triangulation, The Mathematics of Surfaces II, R. Martin, ed., Clarendon
Press, Oxford, 1987.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 512-530, March 1992

1992 Society for Industrial and Applied Mathematics
005

NONLINEAR MULTIGRID APPLIED TO A ONE-DIMENSIONAL
STATIONARY SEMICONDUCTOR MODEL*

P. M. DE ZEEUW]

Abstract. The nonlinear multigrid method is applied to a transistor problem in one dimension. A weak
spot in the linearization of the well-known Scharfetter-Gummel discretization scheme is reported. Further,
it is shown that both the residual transfer and the solution transfer from a fine to a coarse grid need special
requirements due to the rapidly varying problem coefficients. Some modifications are proposed which make
the multigrid algorithm perform well for the hard example problem.

Key words, semiconductor equations, multigrid methods

AMS(MOS) subject classifications. 65N20, 65H10

1. Introduction. There is a great demand for a proper numerical simulation of
semiconductors in order to reduce the costs of constructing expensive prototypes. The
search for a fast and robust algorithm has proven to be a challenge. So far only a few
papers have considered the multigrid solution of the discrete semiconductor equations
(e.g., see [1], [2], [6], [9], [13]) and therefore extensive further research is required.

In this paper we restrict ourselves on purpose to one space dimension as a
preparatory study for the case ofmore space dimensions. We study a particular example
problem which has been put forward by Schilders (Philips, the Netherlands). This
problem models a transistor and turns out to be much harder to solve than the forward
or reversed biased diode problem. We apply the nonlinear multigrid method and
encounter a serious difficulty due to the nonlinearity ofthe problem. Some modifications
are proposed which significantly increase the robustness of the nonlinear multigrid
method and which look promising also for the higher-dimensional case.

2. The problem. The behavior of a steady semiconductor device can be described
by the following set of equations (cf. [10]):

(2.1a) V(-eVq) q(p- n + D),

(2. lb) VJn =+qR,
(2.1c) VJp -qR,

where Jn and Jp are defined by

(2.2a) Jn =qtz,,(-Vn-nVd/),
(2.2b) Jp -qlZp (- Vp +pV@)
Substitution of (2.2) into (2.1) results in a system of three nonlinear partial differential
equations for , n, and p. In (2.1) represents the electrostatic potential, p and n
describe the concentration of holes and electrons, respectively. Equations (2.1b) and
(2.1c) are called the continuity equations, J, is the electron current density, Jp is the
hole current density, and R is the recombination-generation rate, a function of n and
p. The doping profile D is a function of the space variable x. The quantities e, q, a,

* Received by the editors June 21, 1989; accepted for publication (in revised form) November 14, 1990.
f Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.

512

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 513

it,, /zp represent the permittivity, the elementary charge, the inverse of the thermal
voltage, and the electron and hole mobility, respectively.

In this paper we consider the case of only one space dimension and assume e, a,
/x, and/z to be constant. It is common practice to replace the variables n and p by
the hole and electron quasi-Fermi potentials 4 and 4p defined by the relations

(2.3a) n n e’’(’-’’,,),
(2.3b) p=ne’(%-’).

On the one hand, by this change ofvariables, the nonlinearity ofthe problem is strongly
increased, on the other hand the values assumed by (q, b,, tbp) are in a much more
moderate range. For extensive discussions on the choice of variables see [9], [10].
Using (2.3) the equations (2.1) are transformed into

(2.4a)
(2.4b)
(2.4c)
where J is defined by

(2.5a)
and J,, J, are now defined by

(2.5b)
(2.5c)
with

-VJ n,q(e"<%-*)-
_VJ,, =+qR,

-VJ, -qg,

e(*-*-)) + qD,

J, eV,,

(2.5d) ft.
n,ql, p n,qtzt,

In this paper we adhere to the formulation (2.4)-(2.5).
2.1. A particular one-dimensional model problem. We will focus our attention to

a particular (hard) one-dimensional model problem which has been supplied by
Schilders [14]. Here the problem constants are

e 1.035918-o12 As V-1 cm-1, q 1.6021 -9 As,
(2.6) /, =/zp 500 V-1

S
-1 cm2, ni 1.221o1 cm-3,

k 1.38054-o23 V As K-1, T 300 K, t qkT.

The function R is given by
2

R
pn- ni

,r 10-6 s.
(p + n + 2n)’

The doping function D (in cm-3) is given by

D(x) 61o15 +6,0’9 exp (-(x/7.1 -)2)_ 2.151018 exp (-(x/1.15-)2)
019+1 11 exp (-((x-8-)/1.3-)2).

The equations (2.4) are defined on the domain f [0, 8-](cm). We have three contacts
to our semiconductor device (the one-dimensional model of a transistor)" the emitter
(E), the basis (B) and the collector (C) (see Fig. 1).

1.9to-4 81o-4

B C

FIG. 1. The contacts in the one-dimensional transistor problem.

514 P.M. DE ZEEUW

In Fig. 2 the doping function D(x) is shown after the transformation D-
sign(D)1 log (1 + IDI). Boundary conditions at the emitter E are:

(2.7a) p-n + D 0 (i.e., vanishing space charge),

(2.7b) b, VE,

(2.7c) Jp =0.

Boundary conditions at the basis B:

(2.8) tpp Va 0.

Boundary conditions at the collector C:

(2.9a) p n + D 0,

(2.9b) bn Vc,

(2.9c) 4p Vc.
For fifteen different cases, each characterized by a pair of voltages (V,, Vc), the
solution is required (see Table 4.1). Figure 8 shows the solution-component for the
subsequent cases.

3. Discretization. At the outset of this section we give a short preview of its
contents.

In order to abide by the law of conservation we use a finite volume technique
based on the piecewise constant approximation of J, J,, and Jp. As a consequence
we arrive at a cell-centered version of the well-known Scharfetter-Gummel scheme
[4], [9], 11]. We examine how the nonlinear discrete operator depends on the discrete
solution.

3.1. Box integration. The interval f (Xo, xN) is split up into disjoint boxes
Bj=(Xj_l,Xj), j-1 (1)N. A point xj is called a wall, a point X_l/2=(X_l+X)/2 is
called a center. The basis B is at the partition-wall between two boxes. Another set of

0.0 1.0 2.0 ’.o ’.o ’.o
X

FIG. 2. The doping profile.

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 515

subintervals {Dj} is defined by

Do (Xo, Xl/2),
Dj (x-1/2, Xj+l/2), j= 1 (1)N- 1,

DN =(XN-1/2, XN).
This set is called the set of dual boxes.

Now, by applying the Gauss divergence theorem in one dimension to (2.4) on the
domains B we find

-Jl:_,- nq I (e’,,-- e’-.) dfl q f D dfl

(3.1) -J.I_, q J-s, R dO 0,

-JPI’5 + q l R dO=O, j=I(1)N.

We can write (3.1) in symbolic form as

(3.2) (q) =f
where q denotes the vector (q,, 6,, bp)T, the nonlinear operator in the left-hand side
of (3.1) and f the right-hand side of (3.1).

3.2. Box discretization. We introduce the variables (tpj, b,,, bv,) T, j 1 (1) N,
which are associated with the centers x-1/2 ofthe boxes B. Let denote approximation
by midpoint quadrature. We then define

n,q J-n: (exp (a(bp- t))--exp (a (6 b,))) d,

Fq l Ddf,

(3.3)
Rq f Rdf,

j= 1 (1)N.
We make the assumption that Jz, J, and Jp are piecewise constant on the dual set
{D} (see [4], [9], [11]) and correspondingly we use the notation J., J,j, Jpj. By this
assumption and applying (3.3) we arrive at the following discrete equations:

Jo, -}" Jo, -1- Sj Fj

-J,.j + J,.j-I Rj O,

-Jp, + Jp,j-1 + R O,

(3.4a)

(3.4b)

(3.4c)
with

(3.5a) J.j e

(3.5b) J,. =/2,

(3.5c) Jpd p

Xj+I/2--Xj-1/2

exp (--On,j+l) -exp
exp (-a+l) exp Xj+I/2-- Xj-1/2

exp (Op,j+l) -exp (abv,j)
exp (aOS+l) exp (aOj) Xj+I/2-- Xj-1/2

516 P.M. DE ZEEUW

At the emitter E, basis B, and collector C similar equations are obtained; for full
details see [16]. Thus we have obtained the cell-centered version of the well-known
Scharfetter-Gummel scheme (see [4], [9], [11]). Summarizing, we have discretized
(2.4), together with the boundary conditions (2.7)-(2.9), into a set of 3N nonlinear
equations (3.4) with the 3N variables gg, b,,j, bp,; j 1 (1)N. We can write (3.4) in
symbolic form as

(3.6) h(qh) =fh
where h denotes the nonlinear difference operator and fh the right-hand side.

3.3. Properties of the discretized operator. In this subsection we study how the
Jacobian of the nonlinear discrete operator Mh depends on the discrete solution. We
assume the recombination term to be zero and confine ourselves to the dependency
on 4n. Results for p, can be derived analogously. We freeze the solution components
q and 4, and consider the b-stencil, at box B, defined by the triplet

(3.7a)

with

[stp(j, -1), stp(j, 0), stp(j, +1)]

(3.7b) stp(j, k) =a(-Jp,g + Jp,g_)

We introduce the notation

and the function s(z)’R-R by

k =-1, 0, 1.

(3.8) s(z)

By straightforward computation it can be verified that the following equalities hold:

(3.9a) stp(j,-1) =-a/2n exp (a(4},,-, gg))
Aj-1x

(3.9b) stp(j, O) a, exp (a(p,- q)) A_,x
+

(3.9c) stp(j, +1)= -a/.Zp exp

and

(3.9d) stp(j, O)=-(stp(j, -1)+ stp(j, +1))+ tr (-Jn,g + Jp,g_).

Because s(z)> 0 for all z, it follows that

(3.10) stp(j, -1) < 0, stp(j, 0)>0, stp(j, +1) < 0,

so the bn-stencils correspond with an -matrix. Further, at the exact discrete solution,
i.e., when -Jn,g + Jp,j-1 0 is satisfied, it follows from (3.9d) that

stp(j, O) -(stp(j, 1 + stp(j, + 1)),

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 517

SO then the -matrix also possesses weak diagonal dominance (provided there is at
least one stencil corresponding with a Dirichlet boundary condition, see [15]). However,
in the middle of some iterative process to determine the solution, we may well have
negative residuals so that (3.9d) implies the loss of diagonal dominance. Therefore
ill-conditioning and numerical difficulties can be expected.

4. The Newton method and expedients. An obvious way of solving the set of
nonlinear equations (3.6) is application of the Newton method. Because the Newton
method is not globally convergent and the operator h is strongly nonlinear in the
variables (,, thn, bp) we use two additional tools which are considered subsequently
in this section:

(1) Correction transformation.
(2) Smoothing of the Newton-iterates.

It turns out that these expedients make the Newton method well applicable. Other
modifications of the Newton method including inexact line searches and related
techniques have been found to be reliable elsewhere (see [4]).

In two or more space dimensions direct application of the Newton method to
(3.6) would involve large storage requirements and the solution of large linear systems.
If well designed, a nonlinear multigrid algorithm holds out a prospect of both a
computational complexity which is linear in the number of gridpoints and low storage
requirements even for the case of two or more space dimensions. Therefore we want
to apply the Newton method only for very coarse grids and we restrict the use of the
Newton method as a coarsest grid solver for multigrid methods (5).

4.1. Correction transformation. The correction transformation introduced by
Schilders 10] is a device to transform the Newton-correction (d@, dchn, dchp), computed
by linearisation with respect to (, b,, bp), into the correction for these very variables
that would be obtained if linearisation were applied with respect to (, n, p). Because
the system in terms of (, n, p) is much less nonlinear, a much better convergence
behavior of the Newton method can be expected. By performing the calculations in
terms of (, b,, bp) and applying a transformation afterwards, we avoid complications
due to the extremely wide range of values of n and p. In this way we take advantage
of the benefits of both variable sets [9], [10], [14].

4.2. Smoothing. In 4.1 we pointed out a technique to improve the global conver-
gence behavior of the Newton method. Even yet difficulties are encountered when we
apply the improved Newton method. As an example consider Fig. 3 which shows
subsequent Newton iterates for case 12 starting from the solution for case 11.

The dips in the iterates are attended with very small pivot numbers while solving
the linear systems. Section 3.3 explains the ill-conditioning whenever there is a large
residual somewhere. Artificially increasing the main diagonal of the Jacobian turned
out to be not efficient. Simply cutting off the correction at certain points is hardly
justifiable because oflack ofa more or less general criterion to do so. A more appropriate
way of handling the phenomenon sketched above is to apply relaxation or smoothing
sweeps at the beginning of the Newton process [9]. As a smoother the collective
symmetric Gauss-Seidel relaxation (CSGS) can be used. It is called collective because
at each box we solve collectively the three nonlinear equations which arise (employing
Newton’s method).

We will present here some numerical results to show the effect of smoothing. The
grid is more or less uniform and satisfies XN/4 B. The set of voltages {(VE, Vc)} for
which a solution is required is defined in Table 4.1. For each case > 0 the solution of
the previous case serves as a starting solution; in case 0 we start with bn, bp.j 0,

518 v.M. D ZZUW

LEGEND

1-ST IT.
2-ND
3-RD IT.
-TH IT.
5-TH IT.

o.o 1.0 2.0 3.0 5.0 6.0 7.0 8.0

X 10

FIG. 3. Subsequent Newton iterates of qbv.

TABLE 4.1
Subsequent voltages at the emitter and

collector for which a solution is required.

Case V. Vc

0 0 0.0
0 0.2

2 0 0.4
3 0 0.6
4 0 0.8
5 0
6 -0.2
7 -0.4
8 -0.6
9 -0.7
10 -0.8
11 -0.85
12 -0.9
13 -0.95
14 -1

for all j, and is determined by assuming space charge neutrality. We use the correction
transformation. For the solution of the linear systems we apply rowscaling followed
by rowpivotting. Table 4.2 shows the number of Newton sweeps required to reach a
correction with absnorm< 10-12, and the smallest pivot number encountered during
the solution process. Table 4.2 also contains the results for the case when in addition
a CSGS sweep is applied each time after a Newton-correction for which the infinity
norm of the correction was larger than 0.1. This method will henceforth be referred
to as Newton-CSGS. We observe that in the difficult cases 11-14 the application of
smoothing sweeps has a positive effect on the efficiency and robustness of the Newton
method. When smoothing is applied the smallest pivot numbers encountered keep a
substantial distance from zero which shows that then the Jacobians generated within

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 519

TABLE 4.2
Number of Newton and CSGS sweeps used, and smallest pivot numbers" N 32.

Case

No smoothing applied Smoothing applied

Smallest Smallest
Newton pivot Newton CSGS pivot
sweeps number sweeps sweeps number

0 6 31o-3 4 51o-1
5 21o-4 5 2 51o-1

2 6 1o-9 5 2 51o-1
3 5 21o-7 5 2 51o-1
4 5 1o-7 5 2 31o-1
5 5 4o-5 5 2 3o-1
6 5 3o-3 5 2 2o-1
7 5 31o-3 5 2 2o-1
8 5 2xo-4 5 2 21o-1
9 5 41o- 7 5 2 31o-
10 6 1o-7 6 3 31o-1
11 9 41o-9 7 3 2o-1
12 15 5o-13 8 4 41o-2
13 13 21o-ll 7 3 1o-1
14 10 5o-10 7 3 11o-1

the Newton method are far from being singular (e.g., compare to case 12 in Table 4.2)
and therefore no large dips in the Newton-corrections do occur. Experiments for
N 16, 64, 128 show results similar to Table 4.2.

5. The multigrid method. More advanced ways of solving a set of nonlinear
equations are the full approximation scheme (FAS) [5], and the nonlinear multigrid
method (NMGM) [7]. Both multigrid methods are very similar although the NMGM
is more general. The multigrid method has already found many specific applications
in the fields of elliptic, parabolic, and hyperbolic equations and integral equations as
well. Recently, also in the field of semiconductor equations research on multigrid
methods has been initiated ([1], [2], [6], [9], [13]). If well applied, a multigrid method
can be optimal in the sense that the rate of convergence is independent of the meshsize.
An important advantage of the FAS/NMGM method is that no large linear systems
need to be stored and solved. The subsequent stages of a usual FAS method, applied
to (3.6), are

(1) Apply p nonlinear relaxation sweeps; thus we get an approximation qh of the
solution which has a smooth residual dh fh [h qh).

(2) Transfer qh and dh from [’h to a coarser grid "n by means of the respective
restriction operators RH and R/_/.

(3) Solve (approximately) on fin the equation V/H(qH) /[/[u(RHqh)d-Rsdh.
(4) Interpolate the correction, computed on fin, onto fih and add the correction

to qh.

(5) Apply q nonlinear relaxation sweeps.
The combination of stages 2, 3, and 4 is called the coarse grid correction (CGC). Stage
3 may be obtained by applying a number of r FAS cycles on the coarser grid. In this
way a recursive procedure is obtained in which a sequence of increasingly coarser
grids is used. In this paper we use p q tr 1 throughout. In the subsections to come
we will define precisely the coarse grid correction and the grid transfer operators

520 v.M. ’DE ZEEUW

involved. In 6 a significant improvement of the CGC will be introduced. It consists
of a solution-dependent adjustment of the restriction of the residual dh.

5.1. Nested boxes. Let a coarse grid fin, a discretization of fl, be given by the set
of boxes {Bn,j}j=I(1)N. From fu we construct the next finer grid ’h {Bh,j}j=I(1)2N by
division of each Bn,j into two disjoint boxes Bh,2j-1 and Bh,2j. By repetition we obtain
thus a sequence of increasingly finer grids. By definition all boxes are nested. Of course,
the corresponding dual boxes are not nested. For all our numerical experiments in
this paper we assume in addition that Bh,2j- and Bh,2j have equal size.

5.2. Restriction operators. For the problem (3.2) on f, let S denote the domain
and V the range of nonlinear operator . For each discretization on fh, we have the
spaces Sh and Vh, the discrete analogues of S and V.

Let the restriction operator for right-hand side functions

(5.1a) Rh" V- Vh
be defined by

(5.1b) Rhf =fh,

(5.1C) fh,

_
fd,

h,j

It follows for the next coarser grid that

(5.2) (Rlf); (Rhf)2;-, + (Rhf)2;,
By this equality, Rn can be defined also on

(5.3a) Rn Vh "- VH,

(5.3b) (Rnfh)y fh,_l +fh,y,

Vj ath.

Vj atH.

Vj atfln.
The restriction operator for solutions

(5.4) Rh S Sh
may be defined by the well-known full weighting operator [5].

5.3. Prolongation/interpolation. A prolongation transfers a solution from a coarse
grid to a finer one:

(5.5) P. s. - &.
A common and simple choice for the prolongation should be linear interpolation.
However, two objections against this choice do arise. Firstly, by the use of linear
interpolation it is implicitly assumed that the solution behaves like a smooth function
on fu- Because of the exponential behavior of the solution in some areas, this is only
true on an unfeasibly fine grid. Secondly, linear interpolation does not satisfy here the
so-called Galerkin condition

(5.6) Rnth PhSH
which is a condition that ascertains the reduction of low frequency components in the
residual after a CGC. Hemker [9] has introduced a prolongation which is based on
the assumption of smoothness of fluxes, and which satisfies (5.6) for the simplified
case that all S and Rj are zero, see (3.4). Here, we use the same assumption but we
choose a short and convenient formulation in order to handle also the situation near
the inner boundary point B. Figure 4 depicts how the dual box [L, R] is divided into
the boxes [L, M] and [M, R].

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 521

O O fln (coarse)
L M R

0 I 0 0 ,0 Oh (fine)
L’ R’

FIG. 4. Staggering of a coarse and fine grid.

The assumption reads that J,, J,, Jp are constant on [L, R]. Given the values of
the variables (, b,, bp) at L and R we wish to compute the values at L’ and R’. From
(3.5a) it follows that [L, and ’ls’ can be computed by linear interpolation. For bp we
first determine the value at the wall M. If we write

(5.7)
then we derive that

blM

(5.8)

end if

end if

where the function z" R2 R is defined by

(5.9) z(u,v)=
1
log (exp (av)+)

Note that in (5.8) the function z is used with only nonpositive arguments and

log (2)
(5.10) Iz(u, v)l -< for u-<0, v<-0.

By repeating the interpolation procedure, we can compute bplt, from belL and
and bple, from b,[and bp[e. In the particular case that the wall M is the basis B,
we do not first determine bpl by interpolation, but simply state that

(5.11) bpl bls Vs.
Analogously, we can derive a formula for

522 P.M. DE ZEEUW

5.4. Coarse grid correction. Let qid and qd be given approximations to the
solution on flh and fin, respectively. The CGC is defined by

(5.12a) compute dn= n(f lh(q/d)),
(5.12b) solve n qW) ,/l.l q OHld + all4,

(5.12c) compute qW qtd + (phq_ phqd),
where Rn and Ph are the grid transfer operators defined in the previous subsections.
Note that qW in (5.12b) may be approximated by applying a number of FAS cycles
on the grid n with qd as an initial approximation. The approximation qd may be
given by means of full weighting:

(5.13a) qd Rnq,a,
old old old(5.13b) qn. =qh.2j-1 +qh,2j, j at

Another possibility is to take qff equal to q obtained from the last of previous
CGCs. The solution efficiency of many nonlinear problems is not influenced by either
choice of qff. In our case however it is (see 7).

5.5. Full multigrid. The full multigrid (FMG) algorithm provides the efficient
construction of an initial approximation to the solution on a fine grid, once a solution
on a coarse grid has been computed [5], [7]. Let flcoarse be the coarsest grid and
be the finest one. Intermediate grids are denoted by e N. Operators and grid functions
now have as a subscript instead of h or H. Here we introduce an improvement of
the usual FMG in a quasi-Algol description.

procedure BOX-FMG (’Jfine(qfine) ffine t, input fne, output"
begin
(1) for from fine 1 by 1 to coarse
(2) do J R,+
(3) end do
(4) SOLVE (tgcoarse(qcoarse) fcoarse input fcoars, output" qco,s)

(5.14) (5) for from coarse+ 1 to fine
(6) do qt Ptq-1
(7) tov
(8) do FAS (’/t(qt)=j’, input:f, in/output" q)
(9) end do

(10) end do
end procedure

where R: is defined by (5.3). The improvement is in the lines (1)-(3) of the procedure.
The grid function J is independent of ql; the components represent

(5.15) J’J A, D dfl,

i.e., the dope function integrated over box Bj. By means of (1)-(3) we compute the
integral as a Riemann sum over a larger number of subintervals. This is more accurate
because D is a rapidly varying function. In the numerical experiments to come we use, 1 throughout. For SOLVE we use the techniques of 4.

6. Adaptation of the coarse grid correction. Hemker [9] successfully applied box
centered multigrid FAS iteration to the forward and the reverse biased diode problem.
A key feature in his application is the prolongation based on locally constant fluxes.

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 523

This prolongation has been reformulated and made suitable for the transistor problem
in 5. Application of the same MG algorithm to the transistor problem gives rise to
a complication in the CGC due to drastically varying problem coefficients. This
complication and possible remedies are the topics of this section.

6.1. Improper solution transfer. The first attempt of applying multigrid to our
specific problem was done by employing BOX-FMG with only two grids. The coarse
grid problem (5.12b), within the CGC of FAS, was to be solved up to machine accuracy
by means of Newton-CSGS. For several cases of our test problem it turned out that
the two-grid algorithm gets stuck precisely at stage (5.12b) of the CGC. This is
remarkable because Newton-CSGS was shown in 4.2 to be successful foru(qn) fu
even for rather coarse grids. Apparentlyf is within an appropriate range of while
the right-hand side of (5.12b) may be outside such a proper range of . The
computational difficulty occurs in CSGS on the coarse grid exactly where one or more
of the three solution components depicts a steep gradient. Consider two adjacent boxes
B and B on the fine grid which together constitute a box B on the coarse grid.
Because of the steep gradient it may well occur that the problem coefficients, i.e., the
entries of the Jacobian of , show a quite different order of magnitude on B and
B, respectively. Grid function d, the restriction of the residual, is dominated by the
fine grid box with the large coefficients. On the other hand, the operatoru is generated
by the paicular choice of q. This paicular choice may be full weighting applied
to qt, or the last q available, etc. Because of the steep gradient in ql there is a
large range of possible values for qa at Bu. Depending on the choice of q the
operatoru may have either large or small coefficients at box Bu due to the exponential
behavior of the entries in the Jacobian as a function of the solution. In the case of
small coefficients, the right.hand side of (5.12b) may become out of the appropriate
range for u (d does not depend on the paicular choice of q) and the two-grid
algorithm gets stuck.

We will now confirm the foregoing by considering our discretized problem in
more detail. Consider the center of the ,-stencil given by (3.9b) and let us suppose
that is monotonous on [xj_3/2, Xj_l/2]; then either s(-aA_O) 1 or s(aAO) 1.
If both [A_@] and]A@[are sufficiently small then stp(j, O) is approximated by

stp(j,O)a,exp(a($,j-$)). ,IX+
If both and are sumciently large then stp(j, O) is approximated by

if
stp(A O) a exp (a($pj))"

-a if

These approximations show that indeed the $-stencil is extremely sensitive to the
difference ($j- $). Hence the $-stencil on the coarse grid is sensitive to how
and $ on the coarse grid are determined from their counterpas on the fine grid. If
qff is determined by applying full weighting (linear interpolation) to qta then

sp(j/2, O)exp -(0) .max {tp(j- 1, 0), stp(Z 0)}

where tp(j-1, 0), scp(j, 0) (j even) are defined at the fine grid a, and stp(j/2) at
the coarse grid g. If (- O) shows a steep gradiem then indeed

tp(j/2) max {tp(j- 1, 0), tp(j, 0)}.

524 P.M. DE ZEEUW

Note. The possible occurrence of the above sketched phenomenon has already been
noted (for general nonlinear problems) by Brandt [5, p. 279], where he discusses how
the transferred solution (i.e., qa) implicitly determines the problem coefficients on
the coarse grid.

6.2. Possible remedies. Let L and R be the centers of the two adjacent boxes Bh
and BhR on the fine grid [’h which together constitute a coarse grid box B with center
M on the coarse grid fin (see Fig. 5).

L R

0
M

FIG. 5. Nested boxes.

Let us assume that Oq,/Ox c is constant on Bh t.J BhR. The centers ofthe thp-stencils
at L,R are then determined by the coefficients ah=--exp(a(4,p-)lL)6, ahR =-
exp(a(qbp-q,)lR)6, respectively, and the center of the bp-stencil at M by a---
exp (a(4p- q)lM)6 with 6= a2plCl (see 6.1). Let aM(bp- q,) denote the variation
AM(p--d/)=(4p--q’)[l--(Chp--q)lL. The solution at m on the coarse grid somehow
relates to the solution at L and R on the fine grid (for instance by means of the full

Hweighting restriction). If AM(bp- q,) is small (a smooth solution) then obviously aM
does not differ much from either a h or a. If AM(bp-q) is large (a steep gradient in
the solution) then a may differ orders of magnitude from both ah and a, and
therefore the MG algorithm may get stuck as was pointed out in the previous subsection.
A radical remedy to meet this situation is to prevent AM(4p- q) from getting large,
i.e., to introduce local refinement of the mesh just where the solution has a large
variation AM(bp--q), e.g., by means of equidistributing the variation. However, we
want to be able to find solutions without much refinement, in order to apply coarse
grids in our MG algorithm. Besides, a solution without much resolution can serve as
a guide for where a local mesh refinement should take place. For these reasons we
resort to another remedy. Let us consider the CGC (5.12). Let dh(L), dh(R) be the
residuals at L, R (e.g., for the third equation (3.4c) only). At M the difference between
qW and qlHd may have the order of magnitude dH(M)/a with dH(M)=
dh(L)+dh(R). Because of (5.12c) at either L, R, or both L and R a correction with
order of magnitude dn(M)/at is added to the solution qtd. Assume that (because
of a steep gradient in the solution) the inequality

a<< max {ah, ah}
holds. Therefore

dn(M)/a >>(dh(L)+dh(R))/max {ah, ah},
which implies that the correction that will be transferred to the fine grid becomes far
too large and the solution qld gets spoiled. A way to prevent this situation is to multiply
the restricted residual dH with

H

(6.1) Ot =-- aM
max {ah, ah} 0< 0 _--< 1,

at each center M. For a smooth part of the solution this fraction will be near one, for

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 525

a rapidly varying part of the solution it will be near zero, so that the solution qld will
be preserved. The foregoing is the motivation for the following modification of the
FAS algorithm (MFAS) using the notation of 5.5"

Procedure MFAS (’J/gl(qt)=f’, input’fl, in/output" ql)
begin
(1) If =,coarse

(2) then SOLVE (’Ybgcoarse(qoarse) fcoarse ’, input fco,rse, in/output" qcoarse)
(3) else RELAX (’[l(ql)=fl ’, input’f, in/output" ql)
(4) d_l :-- Rl-l(fl l(ql))
(5) q- := Rl-lql (optional t)
(6) d_ :-- O/_l(,/l_l, [l)dl_l

(6.2) (7) dl-1 :-" dl-1 q ,/[l-l(ql-1)
(8) Sl-l :-" ql-1

(9) to tr

(10) do MFAS (’[l_(ql_l)--dl_’, input" dt_, in/output" ql-)
(11) end do
(12) q := q + Plql- PlSl-
(13) RELAX (’J/gl(ql) f ’, input f, in/output" ql)
(14) end if
end procedure

The modification is in line (6). Here O1-1 represents a diagonal matrix 3v<a,_,)_
3rv<,,_,) (N(f/_l) denotes the number of boxes at 121_1). It is defined by

)l_ldl_ (Ol_l,ldl_l,1, ", Ol_l,jdl_l,j, ", Ol_l,N(t_l)dl_l,N(12t_x)) T

.3 3with dl-l, 3 0l_l,j ..+ and

01_1, 0’ Ol_l,j,2
0 0 Ol_l,j,

Ol-l,j,k , k 1, 2, 3).
For our particular semiconductor problem the Ol-,,k are defined by:

Ol_l,j, 1,

01-,,,2 min {2 r/l-l,, 1}, r/l_l, ,
0-l,j,3 min {2:/_1,, 1}, :i-, ,

(6.3al)
(6.3a2)
(6.3a3)
where

l--1 max expnl--l,j =- exp (o(/-1- fn,j))
/=0,--1

(6.3b) /

/ max exp (a(’ -j+i))./_l,j exp (a(,1 @j-l))
i=0,-1

p,2j+i

The superscripts l-1, refer to _, i, respectively.
The first component of the restricted residual does not need to be adjusted. The

definition originates from the evaluation of expression (6.1). By means of (6.3a2)-
(6.3a3) the numbers 01-1,,2 and Ol_l,j, are rounded off upwards to 1 when 1-1,, i-,
are . Summarizing, we observe the following from (6.2)-(6.3)"

(i) Where qt is smooth, dl-1 will not be suppressed.
(ii) Where q depicts a steep gradient, dl_ may be strongly suppressed.
(iii) Let o be some fixed grid, then, for , the matrix O1_ becomes asymptoti-

cally the identity matrix.

526 P.M. DZ ZZZtJW

(iv) By a proper local mesh refinement the suppressiOn of d_l will decrease. The
performance of the modified FAS algorithm will be shown and discussed in 7.

In the nonlinear multigrid algorithm as proposed by Hackbusch [7, p. 187], the
restricted residual dl-1 is divided by a global parameter s >_-1 and the resulting coarse
grid correction is multiplied by s. The division by an appropiate s ensures that the
right-hand side of the coarse grid equation is within an appropriate range of the coarse
grid operator J//t-1. There are two main differences with our approach. First, the same
number s is used at each different box. Second, within our class of problems we have
to omit the multiplication of the correction by s. Such a multiplication would result
in a far too large correction and thereby a dip or peak in the fine grid solution. In
recent work of Hackbusch and Reusken 8] a global parameter is proposed by which
the coarse grid correction should be damped. For a limited class of problems an
appropriate b can be computed. Important differences with our approach are the
following:

(i) @ is a damping parameter for the correction, instead of the residual.
(ii) is a global parameter, i.e., the same @ is used at each different box.
(iii) After sufficient FAS sweeps the damping parameter @ converges to 1, the

parameters 0-1o,2, Ol--l,j,3 do not and should not converge to 1.
(iv) The parameter is meant to enlarge the domain of guaranteed convergence

on the analogy of the damping parameter in the Newton method; the (R)-1 operator
is meant to deal with discrepancies between the operators -1 and l due to rapidly
varying problem coefficients.

7. Numerical results. In this section we investigate the performance of our non-
linear multigrid algorithm. We focus our attention on the effects of local suppressing
of the restricted residual and the choice of the coarse grid solution. The residual norm
(ll’lle’) that we use is the maximum norm of the scaled residual. At level the said
scaling is done by multiplying the residual at each box with the inverse ofthe 3 x 3-matrix

0(, .,,
The performance of the MFAS algorithm is shown in Table 7.1. In the heading of the
table we use the following abbreviations:

case: see Table 4.1.
qOa. defined by..." see 5.4.
without (R): No local suppression of the restricted residual is applied.
with (R): Local suppression of the restricted residual is applied on all

coarser grids.
#MFAS, 10-1 red: The average number of MFAS sweeps necessary to obtain

an additional reduction factor 10-1 of the residual norm
after the application of BOX-FMG.

after FMG: The last column shows the scaled norm of the residual, after
application ofBOX-FMG (see (5.14), /= 1). In each case > 0
we obtain a starting approximation of the solution on the
coarsest grid by means of continuation and application of
Newton-CSGS (see 4.2).

For Table 7.1 the multigrid procedures are applied with 3 grids, with N 16, 32, 64,
respectively. In the event of no convergence the symbol * is written.

We observe that the use of the 19 operator, combined with a proper choice of the
coarse grid solution, gives convergence for all cases. In the cases 3-6 the use of the (R)

operator is essential for convergence. The use of the 19 operator does not slow down

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 527

TABLE 7.1

Performance of MFAS" use of 3 grids: N 16, 32, 64, respectively.

Case

qnld: Defined by full weighting qd: Defined by qH

Without With Without With With
O O O O O

#MFAS, #MFAS, # MFAS, # MFAS, After
10- red. 10-1 red. 10-1 red. 10- red. FMG

0 0.80 0.80 0.66 0.66 4.1 lo 4
1.07 1.07 0.88 0.73 8.8o-4

2 * 1.15 * 0.85 1.21o-3
3 * * * 1.03 1.21o-3
4 * * * 1.06 7.11o-4
5 * * * 0.89 5.7o-4
6 * * * 0.89 5.71o-4
7 * 1.38 * 0.89 5.71o-4
8 1.40 1.37 0.89 0.89 5.61o-4
9 1.54 1.37 0.87 0.90 5.7o-4
10 2.59 2.52 0.88 0.82 1.11o-3
11 1.22 1.22 1.25 1.25 1.31o- 3
12 1.75 1.74 2.01 2.01 9.11o-4
13 4.66 4.66 2.19 2.19 1.91o-3
14 2.44 2.43 1.76 1.77 2.5o- 3

convergence in the cases where it is not needed (cases 0-2 and 7-14). We observe
further that apparently the full weighting approximation of the fine grid solution on
the coarse grid may be a poor one. Experiments for more and finer grids showed
almost identical results for Table 7.1. Further we observe that mere application of
BOX-FMG, without further MFAS sweeps, already gives fairly accurate results which
may be good enough for practical purposes.

For two typical cases, case 4 and case 12, we investigate the grid-dependence of
the multigrid convergence. In Fig. 6 we show the 10-logarithm of the scaled residual
norms after subsequent FAS sweeps, starting from the result obtained by BOX-FMG.
The coarsest grid contains 16 boxes; for the finest grid we take 32, 64, 128, and 256
boxes, respectively; O is applied (without application of O case 4 persistently depicts
divergence). We observe that the multigrid convergence becomes grid-independent
when the meshsize of the finest grid decreases. This indicates that the semiconductor
problem has been treated correctly at each multigrid stage. Hereby it is shown that
even for the strongly nonlinear (and particularly hard) problem it is possible to compose
a multigrid method with optimal multigrid efficiency. Of course, considered in one
space dimension only, competitive methods are available. However, the multigrid
method as developed in this paper offers several clues for the foundation of an MG
algorithm which solves the semiconductor problem also in more space dimensions
with a computational complexity that is linear in the number of gridpoints.

In order to give some insight into the behavior of the O operator, we show in
Fig. 7 the solution components and thn for case 4 on a 64-grid and a graph of 02,j,2
(see (6.3a2)).

We observe the typical behavior that 02,,: equals 1 almost everywhere, except for
some isolated points.

Fig. 8 shows the electrostatic potential $ as computed on a grid of 128 boxes.

528 v.M. DE ZEEUW

I0 II 12
FI=IS-SWEEPS

(a) ()

Fc. 6. Multigrid convergence hsores’, he coarsest grd numbers 16 boxes: (a) case 4; (b) case 12.

J

LCSENO
n- PSl
o- PHIN

FIG. 7. The components and 4,, of the solution for case 4 and the corresponding O.

8. Conclusions. We find, by deriving explicit expressions for the entries of the
Jacobian, that the linearization of the Scharfetter-Gummel discretization scheme
contains a weak spot. When applying full multigrid followed by FAS/NMGM-iterations
to our one-dimensional transistor problem, we find a serious lack of robustness which
is explained by the strong nonlinearity of the discretized problem. This difficulty is
met by adaptation of the coarse grid correction, which looks to be equally applicable
for the higher-dimensional case. A proper choice of the coarse grid solutions is of
importance too, e.g., the full weighting approximation is not satisfactory. Furnished
with the improvements as proposed, we obtain a robust multigrid algorithm with a
convergence which is independent of the meshsize.

Acknowledgements. The author wishes to thank Prof. Dr. P. W. Hemker and Prof.
Dr. P. Wesseling for their useful comments and Ms. M. Middelberg for typing the
manuscript.

MULTIGRID APPLIED TO A SEMICONDUCTOR MODEL 529

o.

o.

CASE- 0
CASE-
CASE- 2
CASE- 3
CASE- 4
CASE- 5

’o’o" /.o ’.o "3.0 41.0 5.0 6.0t 7.0 8’.0
X

LEGEND
CASE- 5
CASE- 6
CASE- 7
CRSE- 8
CRSE- 9
CRSE-O

I’ t
0.0 1.0 2.0 3.0 4.0 5.0 6.0 ?.0 8.0

X I0

0.0 1.0 2.0

O CASE’IO
0 CASE-11
& CASE’12
+ CASE’t3
x CASE-I

3.0 4.0 5.0 6.0 7,0 8.0
X I0

FIG. 8. The electrostatic potential #/on a 128-grid.

530 v.M. DE ZEEUW

REFERENCES

1] R. E. BANK, J. W. JEROME, AND D. J. ROSE, Analytical and numerical aspects ofsemiconductor device
modelling, Computing Methods in Applied Sciences and Engineering, R. Glowinski and J. L. Lions,
eds., North-Holland, Amsterdam, 1982, pp. 593-597.

[2] R. E. BANK AND H. D. MIqELMANN, Continuation and multi-grid for nonlinear elliptic systems,
Multigrid Methods II, W. Hackbusch and U. Trottenberg, eds., Springer-Verlag, Berlin, New York,
1986, pp. 23-37.

[3] R. E. BANK AND D. J. ROSE, Analysis of a multilevel iterative method for nonlinear finite element
equations, Math. Comp., 39 (1982), pp. 453-465.

[4] R. E. BANK, D. J. ROSE, AND W. FICHTNER, Numerical methods for semiconductor device simulation,
SIAM J. Sci. Statist. Comput., 4 (1983), pp. 416-435.

[5] A. BRANDT, Guide to multigrid development, Lecture Notes in Mathematics 960, W. Hackbusch and
U. Trottenberg, eds., Springer-Verlag, Berlin, 1981, pp. 220-312.

[6] S. P. GAUR AND A. BRANDT, Numerical solution ofsemiconductor transport equations in two dimensions
by multi-grid method, Advances in Computer Methods for Partial Different Equations II, R.
Vichnevetsky, ed., IMACS (AICA), New Brunswick, NJ, 1977, pp. 327-329.

[7] W. HACKBUSCH, Multi-grid methods and applications, Springer Series in Computational Mathematics
4, Springer-Verlag, Berlin, 1985.

[8] W. HACKBUSCH AND A. REUSKEN, On global multigrid convergence for nonlinear problems, Robust
Multigrid Methods, Notes on Numerical Fluid Dynamics, W. Hackbusch, ed., Vieweg-Verlag,
Braunschweig, 1988.

[9] P. W. HEMKER, A nonlinear multigrid methodfor one-dimensional semiconductor device simulation: The
diode, BAIL V Proceedings of the Fifth International Conference on Boundary and Interior Layers,
Shanghai, China, 1988.

[10] S. J. POLAK, C. DEN HEIJER, W. H. A. SCHILDERS, AND P. A. MARKOWlCH, Semiconductor device
modellingfrom the numerical point of view, Internat. J. Numer. Methods Engrg., 24 (1987), pp. 763-
838.

11 D. SCHARFETTER AND H. K. GUMMEL, Large-signal analysis ofa silicon Read diode oscillator, IEEE
Trans. Electron Dev., ED-16, (1969), pp. 64-77.

12] S. SELERHERR, Analysis and simulation ofsemiconductor devices, Springer-Verlag, Berlin, New York,
1984.

13] A.S.L. SHIEH, Solution ofcoupled systems ofPDEs by the transistorized multi-grid method, in Proceedings
of a Conference on Numerical Solutions of VLSI Devices, Boston, 1984.

[14] B. P. SOMMEIJER, W. H. HUNDSDORFER, C. T. H. EVERAARS, P. J. VAN DER HOUWEN, AND

J. G. VERWER, A numerical study of a 1D stationary semiconductor model, Note NM-8702, Dept.
of Numerical Mathematics, Centre for Mathematics and Computer Science, Amsterdam, the
Netherlands, 1987.

[15] D. M. YOUNG, Iterative solution of large linear systems, Academic Press, New York, London, 1971.
[16] P. M. DE ZEEUW, Nonlinear multigrid applied to a 1D stationary semiconductor model, Report

NM-R8905, Dept. of Numerical Mathematics, Centre for Mathematics and Computer Science,
Amsterdam, the Netherlands, 1989.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 531-540, March 1992

1992 Society for Industrial and Applied Mathematics
006

AN ITERATIVE METHOD FOR MATRIX SPECTRAL FACTORIZATION*

T. J. HARRIS AND J. H. DAVISqt

Abstract. A computationally efficient algorithm is implemented to factorize a multivariate spectrum at
a discrete number of frequencies. This method uses an iterative causal projection procedure to factorize the
spectrum. The causal projection is computed using fast Fourier transforms.

Key words, multivariable spectral factorization, Ricatti equation, conjugate periodic function, discrete
Hilbert transform, optimal control, attenuation factors

AMS(MOS) subject classifications. 15A09, 49D40, 62M10, 65F05

1. Introduction. The spectral factorization of para-Hermitian matrices arises in
prediction theory [20], [24], [25]; linear optimal control theory [6], [13], [19]; and in
the construction of approximate inverses for multivariable control [18]. Numerous
computational procedures have been proposed. Generally, these may be classified as
either parametric or nonparametric methods. In the parametric approach, the matrix
to be factored is expressed explicitly in terms of the Laplace or z-transform operator.
Constructive methods for factorization may employ (i) symmetric factor extraction
[4], [22]; (ii) construction of a state space realization and solution via the Ricatti
equation [1], [2], [9], [23]; (iii) an iterative Newton-Raphson solution to a set of
bilinear equations [16], [24]; or (iv) decomposition of block Hankel and Toeplitz
matrices [19], [21], [26]. In the nonparametric approach, the matricial spectrum at a
discrete number of frequencies is factored using a Newton-Raphson iteration as in
[24], [25] or an optimal gain iteration as in [6]. These techniques involve a causal
projection operator in the iteration, and hence rely on the properties of functions
which are analytic and harmonic in and upon the unit disk.

In this paper a computationally efficient algorithm is implemented to factorize
the matricial spectrum at a discrete number of frequencies. This method uses an iterative
causal projection procedure to factorize the spectrum. To calculate the causal projection
in each iteration, it is necessary to numerically approximate a discrete Hilbert transform.
This is accomplished with a fast Fourier transform. The use of attenuation factors 12]
is investigated to reduce the computational requirements. A benchmark example and
an application arising in the control of a pilot scale packed bed reactor are used to
illustrate the methodology. The proposed method is also compared to the parametric
method proposed in [26] with respect to computation time and solution accuracy.

2. Preliminaries. Consider an m x m matrix function H(ej) defined on the inter-
val [-Tr, 7r] which has the following properties:

(1) H(e) is Hermitian, i.e., H(e) HT"(e-J), where 7- denotes transpose,
(P) (2) H(e) is positive definite on the interval, i.e., H(e) >0,

(3) H(e) is in the ring of absolutely convergent Fourier series.

H(e) thus admits a Fourier series expansion of the form

(1) H(e) _, Hk ek.

* Received by the editors May 29, 1989; accepted for publication (in revised form) December 6, 1990.
This work was supported in part by the Natural Sciences and Engineering Research Council of Canada.

f Department of Chemical Engineering, Queen’s University, Kingston, Ontario, Canada, K7L 3N6.
t Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada, K7L 3N6.

531

532 T. J. HARRIS AND J. H. DAVIS

Since H(ej) is Hermitian, the coefficients Hk are real and H_k H’.
A fundamental result is that a function H(e) having properties (P) can be

factorized as [10]:

(2) H(e) F(e) WF*(e).

F(e), known as the left factor, is an m x m matrix function having a Fourier expansion
in nonnegative powers of ej,

(3) F(e) Y Fk ek
k=0

with Fo =/. Furthermore, the coefficients (Fk) are real valued. F*(e) denotes the
conjugate transpose of F(e). W is a positive definite matrix.

F(e) admits an extension to the interior of the unit disk such that

(4) F(z)= E Fkzk
k=0

is analytic in the region]z < 1. The generating function F(z) is invertible in the sense
that F(z) has all its zeros in z, outside the unit circle. In the case of the convolution
algebra approach to the factorization problem, the condition is invertibility in the
convolution algebra [10]. Properties (P) are sufficient for H(e) to be characterized
as a full rank spectral density function [20]. The factorization of H(e") via equation
(2) is commonly known as spectral factorization.

Wilson [24] has developed two iterative procedures for spectral factorization. Both
methods are based on a second order Taylor series expansion and subsequent Newton-
Raphson iteration. In the first, the coefficients (Fk) are determined directly from the
coefficients (Hk). This algorithm can be applied when the Fourier expansion of H(z)
can be represented by truncated series of degree L. Fo is constrained to be upper
triangular, and W is taken as the identity matrix. The method requires the solution of
a bilateral polynomial equation. This equation can be transformed to a system of linear
equations which require inversion of a matrix of dimension (Lm2x Lm2). Jezek and
Kucera [16] demonstrated that a Shur reduction can be used to solve the bilateral
polynomial equations. This eliminates the need to invert the aforementioned matrix.
Their approach requires the calculation of a determinant of an rn x m polynomial
matrix of degree L.

The second approach of Wilson is an iteration for F(eJ), where 0 is evaluated
at a number of equispaced points on the unit circle. The coefficients of the generating
function are then determined by taking the inverse Fourier transform of F(e). A
much more streamlined algorithm than the one proposed by Wilson is obtained,
however, by insisting upon the normalized factorization described above. The following
iterative procedure is arrived at [6].

Define the sequence of iterates, F,,+l(eJ), F,,(e) via

(5) F,,+l(e)= W-[F*(e)-H(e)F,,(e-)-]+(e)F,,(eJ)

for 0 s [0, 2r]. Wn is the constant coefficient in the Laurent expansion of the power
series for F*(e)- H(e) F,,(e)-1. The projection operator []/ of a function G(z)
in terms of the Fourier expansion

(6) G(z) , Gzk, Izl 1
k

AN ITERATION FOR MATRIX SPECTRAL FACTORIZATION 533

is

(7) [G(z)]+=] I=I_-< 1.
k=0

The proposed factorization involves an iteration for F.(ej) and an iteration for
W,. The iteration (5) is initialized with Fo(ej) L The origin and properties of the
iteration (5) are discussed in [6, Appendix A].

The iteration (5) requires calculation of W,, which is the mean value of the
function G(eJ) F*n(eJ)-lH(eJ)Fn(eJ)-1. Wn is given by

1 o=(8) W, -- G(ej) dO.

The projection operator must be calculated on Izl- 1. [G(eJ)]+(ej) can be calculated
from the formulas of Sokhotskyi [15]

(9) [G(eJ)]+(eJ)=1/2[W, + G(eJ)+jH[G(e)](eJ)],
where H[G(eJ)](ej) is the Hilbert transform of G(ej) and is given by

(10) H[G(eJ)](ej) 1/(27rj)PV G(eJ)(ej + eJ)/(eJ-ej) dr.

PV denotes that the integral is to be interpreted in the principal value sense. Equation
(10) is recognized as the Cauchy principal value integral ofthe function G(z), for]z] 1.

The form of the iteration and restrictions on H(e) guarantee that the elements
of G(e) are representable by Fourier series. Therefore the (p, q)th element, denoted
by gpq(ej) admits a Fourier series expansion of the form

ejko(11) gpq(e) E apq
k=

The representation ofthe Hilbert transform of gpq (e) in terms ofthe Fourier expansion
for gpq(ej) is [8]

1, k>0,
(12) [G(eJ)](e)=-J E ekapqk ejk, ek= 1 0, k=0,

k=-oo
--1, k<0.

3. Numerical procedure. In the frequency domain calculation (8)-(12) are evalu-
ated at N-2+ 1 equispaced points on the half circle between [0, qr]. These points
on the half circle are denoted by 0, r 0, 1,..., N. It is not necessary to evaluate
H(e) for negative 0 since H(e) is Hermitian. The values of G(e) for negative 0
are simply the conjugate of those for positive 0.

The function gpq(ej) is approximated by the truncated series
N

(13) pq(eJ) ’ apqk~ e jk.
k=-N

The denotes that the summation is to be taken with the factor 1/2 when k- +/- N.
The circumflex denotes that the quantity is associated with the truncated expansion.
lpqk is the approximated Fourier coefficients of gpq(e) [8]. The approximate Hilbert
transform, denoted by l[pq(eJ)](e), is given by

1, k>O,
(14) pq (eo) (eo) _j , eklpqk e jkO, ek 1 O, k O,

k=-N
--1, k<0.

534 T.J. HARRIS AND J. H. DAVIS

A fast Fourier transform (FFT) can be used to evaluate the Fourier coefficients (lpqk)
and an inverse transform can be used to evaluate ,pq(ej) at Or, r=0, 1, 2,. , N [11].
Since G(e) is an even function, the coefficients (dpqk) are real valued. It is also
straightforward to verify that H[gqp(eJ)](eJ)---[H[,pq(eJ)](eJ)]* for p q. This
latter identity reduces the computational requirements of the algorithm since it is only
necessary to evaluate m(m + 1)/2 FFTs in each iteration. The proposed FFT solution
method is computationally more efficient than the method of Wilson [24] where the
principal value integral in (10) is evaluated as an ordinary improper integral using
Simpson’s rule integration formula.

Remarks. (1) To obtain a factorization of the form H(eJ) E*(eJ)WE(eJ),
the algorithm is applied to H*(eJ). E(eJ), known as the right factor, is calculated
as E (e) F*(eJ).

(2) The algorithm is terminated whenever

1 -[o 2s.max--II-H(e) F(e)WF*,(e)]lo<e forO O=rr/2,r=O, 1
o m

(3) A bound on the achievable accuracy is

1 1H ,2s.max--lI-H(e) (e)]oo for 0 Or-- rTr/2, r=O, 1
o m

(4) Frequently one wants to obtain the spectral factor of H(z), where the solution
is given in terms of the generating function. To employ the above procedure, the
spectrum H(e) is obtained by evaluating H(z) at N 2 + 1 points on the unit circle,
i.e., z exp (jrTr/ N), r O, 1, 2, , N. The algorithm described above is implemented.
The coefficients of the generating function (Fk) are obtained by taking the inverse
Fourier transform of F(e).

(5) As indicated in [6, Appendix A], (5) can be used instead of a parametric
method to obtain the steady state gain for the Kalman-Bucy filtering problem in state
variable form.

4. Error analysis. The primary source of errors in the algorithm arises from
truncating the Fourier expansion (14) approximating the Hilbert transform with (12).
An estimate of the error in evaluating the Hilbert transform arising from truncation
of the Fourier series is [8]

(15) IH[gpq(e)](e)-H[ff,pq(e)](eJ)[<=2 ’ [apqk[.
I,I=>N

The denotes that the term with k N is to be taken with the factor 1/2. A tighter
estimate has been developed in [14]. The truncation error is zero when gpq(ej) has a
Fourier expansion in fewer than N terms. The truncation error can be reduced by
increasing the number of terms used to approximate g,q(e). This increases the
computational overhead in the algorithm. An alternate approach is to use the theory
of attenuation factors [3], [7], [12]. This approach is equivalent to using either a
windowed or smoothed estimate for the Fourier coefficients or a periodic spline to
approximate gpo(e). In either case, the result is that ek in (14) is a function of
frequency and independent of the projected function G(e). For an Euler spline of
order r, ek is [3]

>0,
(16) e= O, k=O,

-(1-(k/N)’), k<0.

AN ITERATION FOR MATRIX SPECTRAL FACTORIZATION 535

Error estimates for the conjugate function have been developed in [3], [12]. The error
estimates of [3] require that the norm of the derivative of gpq(ej) be less than one in
magnitude. Gutknecht [12] has shown that attentuation factors based on spline inter-
polants have certain optimality properties in the sense of minimizing a norm of
-[gpq(eJ)](e) --[pq(e)](eJ). However, the optimality of the attenuation factors
based on spline interpolants does not ensure that the error is minimized at the
interpolation points. The effectiveness of attenuation factors is examined in the next
section.

Chawla and Ramakrishnan [5] developed an N point quadrature formula for
approximating Hilbert transforms that is exact if the Fourier expansion for g(e) has
fewer than 2N terms. It is straightforward to show that their procedure is equivalent
to calculating the approximated Hilbert transform using an Euler spline of order one,
and correcting the expression in (12) by adding the term -[dg(e)/dO]/N. The
derivative of g(e) is not known. It may be approximated by a central difference
formula. Alternatively, this derivative can be approximated from the Fourier expansion
for g(e). If the latter approach is taken, it can be shown that the approximate Hilbert
transform is given by (13).

5. Numerical examples. The first example is taken from [24]. The dimension is
m 2. The calculations are performed at N 1 / 2 points between [0, r] with s taking
on values between 3 and 7. Attenuation factors were calculated using linear interpola-
tion and a cubic interpolation polynomial [12]. These attenuation factors are shown
in Fig. 1. The quadrature procedure of [5] was also implemented with a central
difference approximation for the derivative.

1.000

0.500

0.000
0.(

a- EULER SPLINE ORDER

b LINEAR INTERPOLATION

c CUBIC SPLINE

)00 0.500 1.000
k/N

FIG. 1. Attenuation factors. Example 1.

To investigate the effectiveness of attenuation factors, the maximum infinity norm
of1/2[I- H(e)-l[F,(e) W,F*,(e)]I was calculated after six iterations ofthe algorithm
for increasing values of N. The infinity norm was calculated using 129 equispaced
points on the interval [0, r]. These results are summarized in Table 1. Included in this
table are the CPU times, and a bound on the achievable accuracy. The calculations
were performed on an IBM 3081. From this table, we note that the use of attenuation

536 T.J. HARRIS AND J. H. DAVIS

TABLE
Error norm and computation time for example 1.

Attenuation Method

Equation Linear Cubic
(14) interpolation spline

Euler spline
tr 1, derivative Relative
approximation time

3 0.46 0.12 0.78
4 0.18 0.60 0.28
5 0.41E-02 0.12 0.21E-01
6 0.22E- 03 0.30E- 01 0.17E- 02
7 0.45E 04 0.45E 03 0.30E 04

0.12 1.00
0.42 1.15
0.59E-01 1.42
0.22E-03 2.09
0.40E- 03 3.21

Notes. (1) The error norm is defined as

max1/2[I-H(eJ)-l[Fn(eJ)Wnf*,(eJ)][oo, O=Or=rr/128, r=0, 1,..., 128.

(2) The achievable error bound

max1/2lI-H(eJ)-IH(e)[, O=Or=rr/128, r=0, 1,...,128

was calculated as 0.81E-5.
(3) The calculations were performed on an IBM 3081. The computation time is relative to the time

taken to solve the problem from the first line of this table, which was 0.47 seconds. The computation time
was essentially independent of the method used to calculate the attenuation factors.

factors can reduce the accuracy. Of the methods examined, no single method con-
sistently gave more accurate results than using no attenuation factors.

Based on these results, one would conclude that the use of attenuation factors
may not be desirable. An effective strategy is to use as many equispaced points as
possible, without using attenuation factors. A heuristic approach was adopted to select
the number of points on the unit circle. The algorithm is implemented as described
with 2s+ 1 points, with s typically 4 or 5. s was increased by 1 whenever

N/2 N/2

(17) (la’l/[_[}-_>.001 Y p, q= 1,2,.’’, m.
k=N/4 k=l

This procedure was continued until some upper limit on s was reached. For many
examples studied, s- 7 was found to be adequate. The computation time is typically
reduced by forty percent compared to using a fixed value of s- 7.

The second example is taken from [17]. In designing a controller to regulate the
exit concentrations from a pilot scale chemical reactor, it is necessary to compute the
left spectral factor of the matrix polynomial H(z)= MT(z)M(z-1), where M(z-1) is
given by

1.8-6.64z

M(z-1) -0.7498 2.62z-1 2.266z-2 0.1592z-2- 0.0866z-3 J.0.1069z-3 0.3453 z-4 0.0614z-4 0.0594z

The determinant of M(z-1) has a zero located at infinity and zeros located at z-
-5.3514, z=-.5791, z=.4735+.5145j, z=.6701+.2291j. To compute the spectral
factor, the spectrum of H(z) is evaluated at 129 points between 0 and r by letting
z=exp(Trjr/N), r=0,1,...,128. H(ej) satisfies properties (P). The condition
number of H(ej) is shown in Fig. 2.

AN ITERATION FOR MATRIX SPECTRAL FACTORIZATION 537

w

Z
Z

Z

2000

1500

1000

500

0
0.000 0.500 1.000

FREQUENCY

FIG. 2. Condition number of spectrum. Example 2.

The iteration described above was employed. The initial value for s was 4.
The final value was 7. The iteration was terminated when the max1/2lI-
H(eJ)-l[Fn(eJ)WnF*(eJ)]lo<.O01. Six iterations and 0.69 seconds of CPU time
were required. The maximum infinity norm upon termination was 0.12E- 4. The bound
on the achievable performance was 0.76E-5. The coefficients (Fk) were determined
by taking the Fourier transform of F(eJ). The final values for Ft/(z-1) are

F11(z-1) 1.000-1.192z-1 + 0.497z-2 + 0.080z-3 + 0.0167z-4,

F12(z- 0.029z-1 0.032z-2 + 0.020Z-4 + 0.001Z-5,

F21(z-1 -2.076z-1 + 4.115z-2 +0.683z-4+O.148z-5,

F22(z-) 1.000- 0.329z-] 0.333z-2 + 0.221 z-3 0.083z-4 0.025z-5.

6. Comparison with a parametric method. In this section, we compare the computa-
tion time and solution accuracy of the proposed algorithm to the parametric method
proposed in [26] which involves a Bauer-type factorization. The iteration proposed in
[26] involves the Cholesky factorization of an m x tn matrix in each iteration. The
computations can be carried out in place, in a vector of length m2x(L+ 1)(L+2),
where L is the degree of the polynomial to be factored. That algorithm exhibits both
geometric and monotone convergence 19]. Unlike the nonparametric method proposed
in this paper, the algorithm in [26] is capable of factorizing a spectrum whose
determinant has zeros on Iz] 1.

We want to find the left spectral factor of the m x m matrix polynomial H(z)=
MT(z)M(z-1), where M(z-) is of the form

(18) M(g-1) Mo+ M1z-1 +" "+ Mz-.
A comparative study is influenced by the dimension rn and L, the location of the zeros
of the determinant of M(z-1), the condition number of the spectrum, and the desired
accuracy. To provide a manageable basis for comparison between these two methods,
the matrix Mk was chosen to be lower diagonal with common elements k + 1. The

53 T. J. HARRIS AND J. H. DAVIS

? ?

AN ITERATION FOR MATRIX SPECTRAL FACTORIZATION 539

zeros ofthe determinant of M(z-1), in the z-plane, are given by the roots ofthe equation

(19) (zL+ 2ZL-1 +’’" + Lz +(L+ 1)) --0.

All of the zeros of this polynomial are greater than one in magnitude.
We seek a solution of the form

(20) H(z)- FW(z) WF(z-1),

where F(z-1) is an m x m matrix polynomial of degree L. It is readily verified that the
solution is given by

(21) R1/2Fk ME-k, k 0,. , L

where R is the lower diagonal Cholesky factor of W.
The common feature to both algorithms is that an estimate of W is produced in

each iteration. Both algorithms were terminated using the criterion suggested in [26],
that is, when 1/m trace (I-Wn/l WI) <.0001. The infinity norm error discussed in
the previous sections was calculated for each method after termination at 129 equi-
spaced points on the interval [0, r]. An estimate of the achievable accuracy was also
calculated.

The results of this numerical simulation are summarized in Table 2 for L--2, 5,
10, 20, 25, 30, 40, and 50 and m 2, 5, and 10. The computation time is that required
to perform the factorization and to calculate the infinity norm error. No more than
seven iterations were required to satisfy the termination criterion using the nonpara-
metric method. The parametric method requires that at least L iterations be performed.
On average, L+ 5 iterations were required to terminate the algorithm. Several con-
clusions are apparent from the data in Table 2. First, the time to compute the
nonparametric solution is much less sensitive to the degree of the matrix polynomial
than is the solution time for the parametric method. Second, there is a crossover point
at which the solution time for the parametric method increases very rapidly. Third,
with the exception of the case where rn 10 and L 2, the frequency-dependent error
norm was less for the nonparametric method than for the parametric method, even
though both methods employed the same termination criterion.

7. Summary. A computationally attractive algorithm has been developed for the
spectral factorization of a multivariable spectrum using fast Fourier transforms. In the
examples studied, it was found that attenuation factors do not ensure that a more
accurate solution is obtained. An area of future work is to develop the algorithm to
enable a factorization when the determinant of H(z) has zeros on Izl 1, and to
investigate how readily the algorithm can be vectorized.

REFERENCES

[1] B. D. O. ANDERSON, An algebraic solution to the spectralfactorization problem, IEEE Trans. Automat.
Control, 4 (1967), pp. 410-414.

[2] B. O. O. ANDERSON, K. HITZ, AND N. D. DIEM, Recursive algorithm for spectralfactorization, IEEE
Trans. Circuits and Systems, 21 (1974), pp. 742-750.

[3] H. BRASS, Zur Numerischen Berechnung der Konjugierten Funktion, in Numerical Methods of Approxi-
mation Theory, L. Collatz, G. Meinardus, and H. Werner, eds., 6, Birkh/iuser, Basel, 1982, pp. 43-62.

[4] F. M. CALLIER, On polynomial matrix spectral factorization by symmetric extraction, IEEE Trans.
Automat. Control, 30 (1985), pp. 453-464.

[5] M. M. CHAWLA AND T. R. RAMAKRISHNAN, Numerical evaluation of integrals ofperiodic functions
with Cauchy and Poisson type kernels, Numer. Math., 22 (1974), pp. 317-323.

540 T. J. HARRIS AND J. H. DAVIS

[6] J. DAVIS AND R. G. DICKINSON, Spectralfactorization by optimal gain iteration, SIAM J. Appl. Math.,
43 (1983), pp. 289-301.

[7] W. GAUTSCHI, Attenuation factors in practical Fourier analysis, Numer. Math., 18 (1972), pp. 373-400.
[8] D. GAIER, Ableitungsfreie Abschatzungen bei Trigonometrischer Interpolation und Konjugierten-Bestim-

mung, Computing, 12 (1974), pp. 145-148.
[9] T. T. GEORGIOU, On a Schur-algorithm based approach to spectral factorization: State-space formulae,

Systems Control Lett., 10 (1983), pp. 123-129.
[10] I. C. GOHBERG AND M. G. KREIN, Systems of integral equations on a half line with kernels depending

on the difference of arguments, Amer. Math. Soc. Transl., 14 (1960), pp. 217-288.
11] M.H. GUTKNECHT, Fast algorithmsfor the conjugateperiodicfunction, Computing, 22 (1979), pp. 79-91.
12] ., The evaluation of the conjugatefunction ofa periodic spline on a uniform mesh, J. Comput. Appl.

Math., 16 (1986), pp. 181-201.
13] T. J. HARRIS AND J. F. MACGREGOR, Design ofmultivariable linear-quadratic controllers using transfer

functions, AIChE J., 33 (1987), pp. 1481-1495.
[14] P. HENRICI, Pointwise error estimates for trigonometric interpolation and conjugation, J. Comput. Appl.

Math., 8 (1982), pp. 31-32.
[15], Applied and Computational Complex Analysis, Vol. III, John Wiley, Toronto, Canada, 1986.
[16] J. JEZEK AND V. KUCERA, Efficient algorithm for spectral factorization, AutomaticamJ. IFAC, 21

(1985), pp. 663-670.
[17] D. J. KozuB, J. F. MACGREGOR, AND J. D. WRIGHT, Application of LQ and IMC controllers to a

packed bed reactor, AIChE J., 33 (1987), pp. 1496-1503.
[18] D. J. KOZUB, J. F. MACGREGOR, AND T. J. HARRIS, Optimal IMC inverses: design and robustness

considerations, Chem. Engrg. Sci., 44 (1989), pp. 2121-2136.
[19] V. KUCERA, Discrete Linear Control: The Polynomial Approach, John Wiley, Toronto, Canada, 1979.
[20] P. MASANI, Recent trends in multivariate prediction theory, in Multivariate Analysis, P. R. Krishnaiah,

ed., Academic Press, New York, 1966, pp. 350-382.
[21] J. RISSANEN, Algorithm for triangular decomposition ofblock Hankel and Toeplitz matrices with applica-

tions to factoring positive matrix polynomials, Math. Comp., 27 (1973), pp. 147-153.
[22] E. ROBINSON, Multichannel Time Series Analysis, Holden-Day, San Francisco, 1967.
[23] W. G. TUEL, Computer algorithm for spectral factorization of rational matrices, IBM J. Res. Develop.,

(1968), pp. 163-170.
[24] G. T. WILSON, The factorization of matricial spectral densities, SIAM J. Appl. Math., 23 (1972),

pp. 420-426.
[25] A convergence theorem for spectral factorization, J. Multivariate Anal., 8 (1978), pp. 222-232.
[26] D. C. YOULA AND N. N. KAZANJIAN, Bauer-type factorization ofpositive matrices and the theory of

matrix polynomials orthogonal on the unit circle, IEEE Trans. Circuits and Systems, 25 (1978),
pp. 57-69.

SIAM J. SCI. STAT. COMPUT.
Vol. 13, No. 2, pp. 541-549, March 1992

(C) 1992 Society for Industrial and Applied Mathematics
007

ON THE STRUCTURE OF JACOBIANS FOR SPECTRAL METHODS FOR
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS*

ROBERT D. RUSSELL,, DAVID M. SLOAN:, AND MANFRED R. TRUMMER

Abstract. When solving nonlinear partial differential equations with periodic boundary conditions, one
frequently uses spectral methods. Implicit time-stepping, the computation of steady-state solutions, or the
approximation of inertial manifolds lead to nonlinear equations which can be solved by Newton’s method.
In this note the structure ofthe Jacobian matrix is described for typical nonlinearities, namely, those involving
products of the unknown function and its derivatives.

Key words, spectral methods, Galerkin methods, nonlinear PDEs, convolutions

AMS(MOS) subject classifications. 65P05, 42A10, 65J15, 65N30, 35K55, 42A85

I. Introduction. There is a growing interest in computing solutions of evolutionary
partial differential equations (PDEs), and highly accurate discretisation in space is
often achieved using spectral methods. Two of the most commonly used spectral
methods are the standard spectral Galerkin method and the pseudospectral method
[1], [5]. The latter, which is algebraically equivalent to a collocation method, differs
from a Galerkin method in its treatment of nonlinear terms. Convolution sums are
evaluated in a way that introduces aiiasing errors. These errors arise due to the inability
of a discrete grid to distinguish between large classes of periodic functions. There is
ample evidence to suggest that for many problems---particularly nonevolutionary
problems with smooth solutions--aliasing errors have little influence on accuracy once
sufficient resolution has been obtained. However, in long-time integrations of nonlinear
evolutionary problems, the presence of aliasing errors can influence the onset of
nonlinear instabilities (see 12], 13]). The aliased pseudospectral method is less likely
than the alias-free Galerkin method to yield semidiscrete equations which satisfy
appropriate conservation properties. Since lack of conservation can have a deleterious
effect on stability, it follows that Galerkin methods have some advantages in such
circumstances. There are techniques which may be used to remove aliasing errors from
pseudospectral computations (see [2]), and the de-aliased method is then algebraically
equivalent to the Galerkin method. However, the removal of aliasing adds to the
computational cost and reduces the efficiency relative to the Galerkin method.

Here we describe a technique which simplifies the treatment of certain non-
linearities by the alias-free Galerkin method. When solving nonlinear evolutionary
equations using the Galerkin method with implicit time-stepping techniques, one can
face the problem of evaluating Jacobian matrices in terms of the expansion coefficients.
In this paper we expose the structure ofJacobians arising from a variety ofnonlinearities
in Fourier spectral methods, and we suggest efficient ways to compute the Jacobian

* Received by the editors August 1, 1990; accepted for publication (in revised form) January 6, 1991.
Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia,

V5A 1S6, Canada. The research of this author was supported by Natural Sciences and Engineering Research
Council of Canada grant A8781.

Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, Scotland. The research of
this author was supported by Natural Sciences and Engineering Research Council of Canada grants A8781
and OGP0036901.

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia,
V5A 1S6, Canada. The research of this author was supported by Natural Sciences and Engineering Research
Council of Canada grant OGP0036901.

541

542 R. D. RUSSELL, D. M. SLOAN, AND M. R. TRUMMER

and to evaluate nonlinearities. An important application for which this structure has
been exploited successfully is the computation of approximate inertial manifolds for
dissipative equations (see [11]).

This note was originally motivated by the study of the Kuramoto-Sivashinsky
equation [8]

(KS) ut+4u,,,c,,+O[Uxx+UU,]=O, u(x, t)=u(x+2m t), (x, t)Rxll.

If one discretises in space using a spectral method, the PDE is transformed into a
system of ordinary differential equations (ODEs). For instance, if we try to find an
odd solution of (KS) of the form

(1) u(x, t) bk(t) sin kx,
k=l

then the Galerkin approach yields the following system of nonlinear ODEs for the
Fourier coefficients b := (bl,. , b,) T.

d
bk(t) + 4k4bk(t) + O[-kEbk(t) + hk(b)] 0, k 1, , n,(2) d-

where

(3) hk(b) =- -k b.b;+k + jb;bk_;
j=l j=l

Let AR"" denote the diagonal matrix with kth entry Akk :=4k4-Ok2, and let
h(b) := (hi(b), ., h,(b)) T. We may rewrite system (2) in vector form

(4) b(t) + Ab(t) + 0h(b(t)) 0.

Whether we integrate (4) with an implicit time-stepping scheme or compute steady-state
solutions directly by setting I 0 in (4), we are faced with solving a nonlinear system
of algebraic equations for b, with the essential nonlinearity h(b).

For general nonlinear PDEs, the resulting nonlinear algebraic equations are
frequently solved by ordinary fixed-point iteration. However, it turns out that for many
nonlinearities the Jacobian matrix (ghj(b)/gbk) has a fairly simple structure and can
be computed rather efficiently. Therefore, Newton’s method becomes a viable alterna-
tive to ordinary iteration procedures. Higher accuracy in time can be achieved more
efficiently, commensurate with spectral accuracy in space.

2. Complex and real Fourier series. In 3 we compute Jacobian matrices of special
nonlinearities, using complex Fourier series for u and the convolution theorem. While
one can instead use a (truncated) cosine/sine series for the unknown real-valued
2or-periodic function u, this often tends to obscure the underlying simple structure of
the Jacobian. To see this consider both representations, namely truncated series of
complex exponentials,

+n

(5) U(X) . Ck e ikx,

where 2 1, and trigonometric polynomials

(6) u (x) "+ ak COS kx + bk sin kx.
k=l k=l

JACOBIANS FOR SPECTRAL METHODS FOR NONLINEAR PDEs 543

The relation between the complex Fourier coefficients ck and the real cosine/sine
coefficients ak, bk is given by

(7)
ak Ck + C-k, Ck =1/2(ak- ibk),

bk Ck C-k), C-k 1/2(at, + ibk).

Let F(u) be a (nonlinear) function. Restricting F to the finite-dimensional subspaces
spanned by complex exponentials or trigonometric polynomials as in (5) or (6),
respectively, we write

(8) u PF(u(x))= , fk eik gk COS kx + hk sin kx,
k=-n 2 k=l k=l

where the gk, hk, and fk are related in the same way as the ak, bk, and Ck in (7). P
denotes the orthogonal projection onto the space containing functions of the form (5)
or (6), respectively. Equation (8) gives rise to two related mappings on finite-
dimensional vector spaces, namely,

(9C) cf

on the complex vector space C2n+l, and

(9R) (a, b) (g, h)

on the real vector space R2n/1. (If u and F(u) are not real-valued, there is no need to
avoid the complex Fourier series.)

For many types of nonlinearities, it is fairly straightforward to compute the
Jacobian matrix cgf/cc of (9C), as we see below. The Jacobian matrix of the mapping
in (9R) can then be obtained easily using gk =fk +f-k, hk i(fk--f-k). Letting J,k :=
cf/CgCk, the chain rule gives

f 1
(10)

Obk 2

The formulas relating the Jacobian J of (9C) and the Jacobian of (9R) can be written
in compact form as a unitary transformation

Ogj/Oak] 1 1 1 1 [J,]
(11) Ogj/Obkl l--ii -’’

Oh/O,I -i -i I J-’ I"
Oh; /obkJ 1 --1 --1 1 LJ_j,_kJ

3. Jaeobian of "monomials." We now return to the problem of computing the
matrix J =0f/Oc and present an algorithm for the case where F(u) involves products
of powers of the unknown function u and its space derivatives ux, uxx, etc. Our basic
tool is the convolution theorem of Fourier analysis (see, e.g., [7]). Note that we write
the unknown function u as a sum of complex exponentials in (5), even though u is
usually real-valued.

The convolution of two sequences x (x) and y (yj) is the new sequence x*y
given by

(12) (x*y)k := E xyk_.

The identity element for convolution is the sequence e (e), with e0 := 1, and eg := 0
for j 0. The convolution of two sequences is well defined if both sequences x, y are

544 R. D. RUSSELL, D. M. SLOAN, AND M. R. TRUMMER

square summable. For the new sequence x*y to be square summable, it is sufficient
that, in addition, one of the sequences has compact support. In our applications, all
sequences involved have compact support, and all subsequent results hold without
any further technical assumptions. However, it is important to bear in mind that all
these results hold for bi-infinite sequences and bi-infinite matrices only, although in
practical terms one just needs to use sufficiently large vectors and/or matrices. See
also the comments on bandwidth below.

We remark that sequences and convolution form a semigroup. Since convolution
is commutative and since there is an identity element, this semigroup is a commutative
monoid (all properties of an Abelian group except for the existence of an inverse
element).

For simplicity, we start with powers of u only. If u has Fourier coefficients c, then
u2 has Fourier coefficients c*c. The Fourier coefficients of u are the elements of the
sequence e*" := e* *e, the m-fold convolution ofe with itself. This definition extends
to the case m 0, with e* := e.

Convolutions can also be expressed in terms ofmatrices and matrix multiplications.
DEFINn’ION 1. Let e= (cj) be a sequence. We define the (bi-infinite) complex

Toeplitz matrix F(e) by

(13) r(c)

Then e is the zeroth column of the matrix F(c), c*c is the zeroth column of the
matrix F(e)2, and e*’ is the zeroth column of the matrix F(c)’, for every nonnegative
integer m.

it is straightforward to prove the following proposition by induction.
PROPOSITION 1. Let m>--_ 1, and F(u)=u". The Jacobian matrix of the induced

mapping c f(c)= c*" is given by

0f m(e.,_l)j_k.(14)
Oc

With the matrix interpretation above, this can also be simply expressed as

de
,,

(15) J- mF(c)m-1

Proposition 1 is the analogue to differentiating powers in calculus. Note that if

c 0 for IJl > n, then F(e) has bandwidth n, and F(c) has bandwidth mn. Even if in
the end we only look at Fourier modes with frequencies not larger than n, we still
must allow the intermediate bandwidth to grow in order to capture all nonlinear
interactions.

We proceed to state the product rule for differentiating convolutions. Notice that,
unlike a scalar product, the convolution of two sequences is yet another sequence. We
therefore extend the definition of the convolution operation to a convolution product
of a sequence with a (bi-infinite) matrix. Doing this in a "natural" way results in a
matrix as the product.

DEFINITION 2. Let A =(ajk) be a bi-infinite matrix, and x= (Xk) be a sequence.
We further denote by e the jth standard basis sequence, i.e., the sequence consisting
of all zeros, except for the jth component which equals 1 (convolution x*e corres-
ponds to shifting the sequence x by j). Then B := x*A is the bi-infinite matrix whose
jth column is the (ordinary) convolution of the jth column of A with the sequence x:

(16) (x*A)e := x*(Ae).

JACOBIANS FOR SPECTRAL METHODS FOR NONLINEAR PDEs 545

The reason for writing x*A rather than A*x lies in the way this convolution
corresponds to ordinary matrix multiplication and the Toeplitz matrices defined in (13).

PROPOSITION 2. Let I be the identity matrix, let S be a diagonal matrix, and let
x (xj) be a sequence. Then

(17) x*I F(x), x’S= F(x)S,

where F is defined in (13).
PROPOSITION 3. F as defined in (13) is a homomorphism between the commutative

monoid (semigroup) of sequences with the convolution operation, and the commutative
monoid (semigroup) of Toeplitz matrices with matrix multiplication. If x (xj) and
y (y) are sequences, then

(18) r(x*y) r(x)r(y).

Furthermore, this homomorphism is consistent with the definition of the convolution of a
sequence with a matrix in the following sense"

(19) x*F(y) r(x*y)= r(x)r(y).

Proof. We compute the (j, k)-element of the matrices in (18),

r(x*y) E Xpy-k-p Y Xj-qyq-k E r(x)r(y)o (r(x)r(y)).
p q q

To prove (19), we use Proposition 2 and the associative law"

x*r(y) x*(y* I) (x’y)*I r(x*y). [3

PROPOSITION 4 (PRODUCT RULE). Let x (x and y (y be sequences depending
on the sequence ct= (ak). Denote the Jacobians of x(ct) and y(ct) by jx:= 0x/0ct and
JY := 0y/0ct, respectively. Then the Jacobian of z := x*y is

Oz
(20) JZ:==y*jX+x*JY.

Oct

The proof is straightforward, using commutativity of (ordinary) convolution.
Proposition 1 allows us to compute Jacobians of positive integral powers of u. To

find the Jacobian of a product involving u and its space derivatives u, U,,x, etc., we
need to employ the Fourier spectral derivative matrix

(21) D:-diag(...,-in,-/(n-1),...,-2i,-i, 0, i, 2i,...,i(n-1),in,...).

The pth derivative of u has Fourier coefficients DPc.
There is an interesting relationship between D and the matrix F defined in (13),

which allows us to write F(DPc) in terms of products of F(c) and D.
PROPOSITION 5. Let c= (cj) be a sequence, and D the Fourier spectral derivative

matrix defined in (21). Then

(22) r(O) =fD, rc]:= Or(c)-r(c)D.

F(Dc) is the commutator of D and F(c), and (22) can be used recursively to express
F(DPc) in terms of F(c) and D only.

This result can be shown by direct calculation, or, more elegantly, by comparing
the Jacobians of uux and 1/2(u2)x (see Example 1 below).

546 R. D. RUSSELL, D. M. SLOAN, AND M. R. TRUMMER

We now give a few examples which show how products of u, ux, ux, etc., can be
handled.

Example 1. F(u) umu, m >= O. Noting that u"u (1/(m + 1))(u’+l), we obtain
from (15) the Jacobian as

(23) J DF(c)’.

Let us have a closer look at the case m= 1, i.e., F(u)= uux. This is the Burgers’
nonlinearity arising in the Kuramoto-Sivashinsky equation, or in the nonlocal Burgers’
equation (e.g., [4]). The product rule gives

(24) J= Dc*I +c*D= F(Dc)+ F(c)D,

which equals DF(c) because of (22).
Example 2. F(u) uuxx. Using the product rule and Proposition 3, we can express

the result as

(25) J= D2c*I +c*D2= F(D2c) + F(c)D:.
Noting that uux 1/2(u2) 2-u,, the Jacobian can also be written as

(26) J O2F(c) 2I’(0c) O.

The expressions (25) and (26) are equal, because from (22)

F(D2c) DF(De) F(De)O DF(c) 2DF(c)D+ F(c)D,
SO

r(Dc) + r(c)o or(c)-2(Or(c)-r(c)O)D= or(c)- 2r(Dc)O.

Example 3. F(u)= u. The product rule applied to De*De gives

(27) J 2Dc*D 2F(Dc)D,

which can also be found using the chain rule for mappings between vector spaces. For
example, the Kolmogorov-Sivashinsky-Spiegel equation (KSS) (see, e.g. [3]) has a

2term u. The same equation features the term treated in the next example.
Example 4. F(u)= (u3)x. First we compute the Jacobian K of u. From Example

3 and the product rule, we get (note that we compute the Jacobian of De*De*De)

K Dc*2F(Dc)D+(Dc*Dc)*D.

From Propositions 2 and 3 we finally obtain

(28) K=2F(Dc*Dc)D+F(Dc*Dc)D=3F(Dc)D.
By induction we can also show that the Jacobian of u is mF(Dc)m-ID.

The function F(u) has an outer derivative, which corresponds to a diagonal scaling
by D from the left to yield the Jacobian

(29) J=3DF(Dc)2D.
Example 5. F(u)= (u’). This nonlinearity occurs in the one-dimensional Cahn-

Hilliard equation [4]. Applying our convolution calculus we obtain

(30) J mD2F(c)"-1.
2For m 2 we can also write (u2) 2(u + uux). The Jacobians of each of the two

terms are in Examples 2 and 3"

(31) J 2{2F(Dc)D + F(Dc) + F(c)D}.

JACOBIANS FOR SPECTRAL METHODS FOR NONLINEAR PDEs 547

Equivalently, if we use (26) instead of (25), we obtain

(32) J= 2{2F(Dc)D + D2F(c)-2F(Dc)D} 2D2F(c),
which agrees with (30).

As long as we compute with sufficient bandwidth, we can use any form of the
function F to compute the Jacobians. However, if we compute with a fixed bandwidth
(i.e., 2n + 1 by 2n + 1 matrices), different ways of writing F may lead to different results.

4. Application to the Kuramoto-Sivashinsky equation. One important application
for which the structure of the Jacobian matrix is of special interest is the computation
of approximate inertial manifolds for dissipative PDEs [11], [9]. This problem moti-
vated the study of the structure of the Jacobians presented in this paper. While skipping
many details, we give a brief account ofthe method. We consider the evolution equation

(33) ut+Au+F(u)=O,

where A is a self-adjoint positive operator defined on a Hilbert space H, and F is the
nonlinear part defined on the domain of A. Let wl, w2, be orthogonal eigenfunctions
of the operator A with corresponding eigenvalues 0< hi--< h2 -<’’" P denotes the
usual (orthogonal) spectral projection onto the subspace spanned by the first m
eigenfunctions, and Q is the spectral projection onto the subspace spanned by
w,,/l, , w,. We also set p := Pu and q := Qu. An approximate inertial manifold (AIM)
q 4(P) for (33) can then be constructed by solving the differential algebraic equations

(34a) p+ Ap + PF(p + q)=0,

(34b) Aq+QF(p+q)=O

(see [11], [14]). This AIM is referred to as the steady AIM, and has many nice
properties. The relationship q b(p) can be determined by solving (34b); substituting
q= th(p) into (34a) yields an approximate inertial form of (33), and the resulting
finite-dimensional ODE system has, under certain assumptions, many of the long-term
dynamics features of the original equation (33).

To solve (34b) accurately, we use Newton’s method. Here p is fixed, and we need
the Jacobian matrix of QF(p+ q) with respect to the "high frequency modes" q. We
are therefore only interested in the (n- m)x (n- m) trailing principal submatrix of
the full Jacobian matrix OF/Ou corresponding to the partial derivatives of the high
frequency modes of F(u) with respect to the high frequency modes of u. It is easy to
see that in the common case n 2m the Jacobian only depends on the low frequency
modes for quadratic nonlinearities like u2, uux, , uux,, etc. Therefore, the relation
between the high frequency spectrum and the low frequency spectrum is a linear one
and Newton’s method for solving (34b) converges in one step (see [11]). For cubic or
higher order terms this dependence is no longer linear.

We illustrate this for the Jacobian of uu (the essential nonlinearity of equation
(KS)) in the odd case, i.e., on the subspace spanned by the first n sine functions
sin x,..., sin nx. From Example 1 the Jacobian matrix is

(35)

Using (7), we express J in terms of the b by substituting c =-1/2 sign (k)iblI. Finally,
from (11) we obtain

(36)
-1/2{ ijc_- qc+ + ijc__- ijc_+ }

1/2j{sign (j- k)bl_k b+}.

548 R. D. RUSSELL, D. M. SLOAN, AND M. R. TRUMMER

Any bk with an index falling out of the range 1 -_< k <-_ n is set to zero. Thus, the Jacobian
0h/0b is the sum of a skew-symmetric Toeplitz matrix and a Hankel matrix, with a
diagonal scaling from the left. If S diag (1, 2, 3,..., n), and

(37) T:=

0 -bl -b2 b,_

bl 0 -bl
b2 bl 0 bn-3

.bn_ bn_2 bn_ 0

"b: b b4 b5 O"

b3 b4 b5 0

b4 b b6 0

b. 0 0 0

0 0 0 0

then

Oh
(38) Ob-1/2S(T-H).
In inertial manifold computations, when n 2m, we are only interested in Ohj/c3bk for
j, k m + 1, , 2m n, i.e., in the lower right-hand submatrix of (38). With T the
trailing principal m by m submatrix of T (T is skew symmetric and Toeplitz, with

)T(0, bl, b2, , b,_l as its first column), and diag (m + 1, m + 2,. , 2m), the
Jacobian of the Fourier coefficients hk of the last m modes of uux with respect to the
Fourier coefficients b,+,..., b2, is simply 5SZ Clearly, this matrix is independent
of bm+l, b2m.

5. Conclusions. We presented an algorithm to compute Jacobians of nonlinear
functions arising in the application of (Fourier) spectral methods to dissipative PDEs.
We believe that this algorithm is an excellent way to derive the form of these Jacobians
analytically. Note that the nonlinear function itself could also be computed via
convolutions. Our method applies to the Fourier spectral method in general, not only
to computing ineial manifolds (where we used it).

One could use the procedure outlined above to numerically evaluate Jacobians.
In this case, one would not perform the matrix multiplications, but rather compute
via convolutions, in paicular, compute F(c) as F(c*). If c has compact suppo
with cj 0 for lj{ > n, one chooses the length of the sequence to be at least 2mn + 1,
i.e., pad the sequence c with (m- 1)n extra zeros on either side. The convolutions can
then be performed via (discrete) fast Fourier transforms (FFT) (see, e.g., [6], [7]) in
O(mn log (mn)) operations. Expressions like F(c)F(Dc)D can be evaluated as
efficiently, with a bandwidth of n times the degree of the expression; in this case we
have three F-matrices, hence the degree is 3 and the required bandwidth is 3n. Again,
the nonlinear function c f (cf. (9C)) can also be evaluated via convolutions and FFT,
provided there is sufficient padding of the sequences. Even though all these Jacobians
can be expressed in terms of D and F(c) only, for practical computations there is often
no advantage in doing so. It is just as economical to perform convolutions with c and
DPc as with c alone. One should simply aim to keep the number of terms as small as
possible. The convolution approach using FFTs will be faster only for a fairly large
number of modes--experiments indicate a threshold of 64 to 128 modes. However,
similar thresholds for efficiency are observed for Fourier spectral methods in general.

A wide variety of (dissipative) PDEs arising in physical applications has non-
linearities of the types discussed in this note. Among these equations are equation
(KS); the Cahn-Hilliard equation (e.g., [10]),

JACOBIANS FOR SPECTRAL METHODS FOR NONLINEAR PDEs 549

Burgers’ equation,

(B) u, VUxx + uux 0;

the Kolmogorov-Sivashinsky-Spiegel equation [3],

(KSS) u, + Uxxxx + ((2- O)ux)x + U2x + au 0;

and the Chafee-Infante reaction-diffusion equation (see, e.g., [4]),

(CI-RD) ut vu,,,, + u u O.

REFERENCES

1] J. P. BOYD, Chebyshev and Fourier Spectral Methods, Springer-Verlag, Berlin, 1989.
[2] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI, AND T. A. ZANG, Spectral Methods in Fluid Dynamics,

Springer-Verlag, New York, 1987.
[3] P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, AND R. T.MAM, Spectral barriers and inertial manifolds

for dissipative partial differential equations, J. Dynamics & Differential Equations, (1989), pp.
45-73.

[4] ., Integral Manifolds and Inertial Manifoldsfor Dissipative Partial Differential Equations, Springer-
Verlag, New York, 1989.

[5] D. GOTTLIEB AND S. A. ORSZAG, Numerical Analysis of Spectral Methods: Theory and Applications,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1977.

[6] P. HENRICI, Fast Fourier methods in computational complex analysis, SIAM Rev., 21 (1979), pp. 481-527.
[7] ., Applied and Computational Complex Analysis, Vol. III, John Wiley & Sons, New York, 1986.
[8] J. M. HYMAN AND B. NICOLAENKO, The Kuramoto-Sivashinsky equation: A bridge between PDE’s

and dynamical systems, Phys. D, 18 (1986), pp. 113-126.
[9] M. S. JOLLY, I. G. KEVREKIDIS, AND E. S. TITI, Approximate inertial manifolds for the Kuramoto-

Sivashinsky equation: Analysis and computations, Phys. D, 44 (1990), pp. 38-60.
[10] A. NOVICK-COHEN AND L. A. SEGEL, Nonlinear aspects of the Cahn-Hilliard equation, Phys. D, 10

(1984), pp. 277-298.
11] R. D. RUSSELL, D. M. SLOAN, AND M. R. TRUMMER, Some numerical aspects of computing inertial

manifolds, SIAM J. Sci. Statist. Comput., to appear.
12] D. M. SLOAN AND A. R. MITCHELL, O/I nonlinear instabilities in leap-frog difference schemes, J. Comput.

Phys., 67 (1986), pp. 372-395.
[13] A. STUART, A note on high/low-wave-number interactions in spatially discrete parabolic equations, IMA

J. Appl. Math., 42 (1989), pp. 27-42.
14] E. S. TITI, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl., 149

(1990), pp. 540-557.

SIAM J. SCl. STAT. COMPUT.
Vol. 13, No. 2, pp. 550-572, March 1992

() 1992 Society for Industrial and Applied Mathematics
008

IMPROVING THE ACCURACY OF INVERSE ITERATION*

ELIZABETH R. JESSUPf AND ILSE C. F. IPSEN

Abstract. The EISPACK routine TINVIT is an implementation of inverse iteration for computing
eigenvectors of real symmetric tridiagonal matrices. Experiments have shown that the eigenvectors computed
with TINVIT are numerically less accurate than those from implementations of Cuppen’s divide-and-conquer
method (TREEQL) and of the QL method (TQL2). The loss of accuracy can be attributed to TINVIT’s
choice of starting vectors and to its iteration stopping criterion.

This paper introduces a new implementation ofTINVIT that computes each eigenvector from a different
random starting vector and performs an additional iteration after the stopping criterion is satisfied. A
statistical analysis and the results of numerical experiments with matrices of order up to 525 are presented
to show that the numerical accuracy of this new implementation is competitive with that of the implementa-
tions of the divide-and-conquer and QL methods. The extension of this implementation to larger order
matrices is discussed, albeit in less detail.

Key words, symmetric tridiagonal eigenvalue problem, inverse iteration, EISPACK

AMS(MOS) subject classification. 65F15

1. Introduction. Our goal is to determine an accurate method for computing all
eigenvalues and eigenvectors of real symmetric tridiagonal matrices that is efficient
both sequentially and in parallel. Experimental results in [16], [17] indicate that
bisection with inverse iteration is generally the fastest and most efficient parallel
eigensolver on a distributed-memory hypercube multiprocessor such as the Intel iPSC
and that it is also the fastest sequential method for many problems. The computed
eigendecompositions, however, are less accurate than those computed by existing
implementations of Cuppen’s divide-and-conquer method (TREEQL) [5], 12] or the
QL method (TQL2) [3], [22]. The tested implementations ofbisection are the EISPACK
routines BISECT and TSTURM [22], both of which produce eigenvalues to high
absolute accuracy [22]. With minor modification, each of these routines would produce
eigenvalues to high relative accuracy when small relative changes in the matrix lead
to small relative changes in the eigenvalues [7]. The loss of accuracy can thus be
attributed to the tested implementation of inverse iteration (EISPACK’s TINVIT). In
this paper, we identify the factors influencing the accuracy of inverse iteration and
present a new serial implementation of inverse iteration that computes eigenvectors
to high absolute accuracy.

Suppose that T is an n x n real symmetric tridiagonal matrix with eigendecompo-
sition

T= UAUT, A= ".. U--(lll Un)
A.

where the diagonal elements A arc the cigcnvalucs of T and the column u of the
orthogonal matrix U is the eigenvcctor associated with eigenvaluc A. Given an

* Received by the editors March 12, 1990; accepted for publication (in revised form) January 2, 1991.
The work presented in this paper was supported by Defense Advanced Research Projects Agency under
contract N00014-88-K-0573.

" Department of Computer Science, University of Colorado, Boulder, Colorado 80309-0430
(jessup@boulder.colorado.edu).

Department of Computer Science, Yale University, New Haven, Connecticut 06520
(ipsen@cs.yale.edu).

550

IMPROVING THE ACCURACY OF INVERSE ITERATION 551

accurately computed eigenvalue j, inverse iteration computes the corresponding
eigenvector uj by performing the power method with the shifted matrix (T-

(o)
Y

ALGORITHM 1.1 (Inverse Iteration)

Select a starting vector y(O).
For k 1, 2,... until convergence:

Solve T-I)y(k) y(k-) for y(k).
a y(k)/ lly(k)ll 2.

(o)Representing the starting vector y
i--1 iu gives for the first iterate

as a linear combination of the eigenvectors

i=1 hi kj tli"

If the contribution / of uj in y(O) is not too small, and if. is close to h, the contribution
//(h-j) of u in the next iterate y(1) is large, and y(1) is a better approximation to

u than is y(0) [24, p. 321]. Likewise, in the next iteration, the contribution of u in
increases to b/(hj-)2 and so on for subsequent iterations. Thus, the iterates y(k)
usually converge to u in only a few iterations.

If all eigenvalues are well separated, and if the starting vector in each eigenvector
computation contains a large enough component /, inverse iteration using shifts
1,"" ,n in turn computes an orthogonal set of eigenvectors. However, if some
eigenvalues are close together, inverse iteration as outlined in Algorithm 1.1 produces
eigenvectors that are not orthogonal. An additional step to orthogonalize iterates
associated with close eigenvalues is necessary.

This discussion of the inverse iteration algorithm shows that if the eigenvalues
are determined to working precision (which is true for BISECT) and if the linear
system solution and the orthogonalization of iterates corresponding to close eigenvalues
are carried out accurately (which is true for TINVIT), the overall accuracy of inverse
iteration is determined by

(1) the choice of starting vector,
(2) the reorthogonalization criterion,
(3) the iteration stopping criterion.

We will examine the EISPACK routine TINVIT with regard to each factor in turn
and gradually improve its accuracy to that of the implementations of the QL and
Cuppen’s divide-and-conquer methods. The numerical experiments presented involve
matrix orders up to n 525. We also discuss in less detail the extension of the
implementation to larger order problems.

This paper is organized as follows: A simple perturbation result is presented in
2 to define measures of high absolute accuracy for the computed eigenvalue decompo-

sition. The EISPACK implementation TINVIT is described in 3, and its lack of
numerical accuracy explored in 4. A new implementation of inverse iteration based
on the experiments in 4 is presented in 5. The numerical accuracy of this improved
implementation is compared to implementations of Cuppen’s divide-and-conquer
method and of the QL method in 6. The use of random starting vectors in the new
implementation of inverse iteration is justified by a statistical analysis in 7. The most
important points of this paper are summarized in 8.

2. The computed eigendecomposition. This section shows that the computed eigen-
decomposition has high absolute accuracy if its residual and the deviation of the
eigenvectors from orthogonality are small.

552 E. R. JESSUP AND I. C. F. IPSEN

Suppose that the diagonal elements of A are the eigenvalues of T UAUT in
descending order

AI-->-- "->-An,

and that the column ui of the orthogonal matrix U is the eigenvector associated with
Ai satisfying Ilu, ll 1. The spectral radius of T is denoted by

[Almax max (IA,I, IA, I.
It is further assumed throughout the paper that the matrix T is unreduced, that

is, that none of the immediate sub- or superdiagonal elements of T is zero. Otherwise,
the matrix would consist of a direct product of disjoint, lower order matrices whose
eigendecompositions can be computed independently [24, p. 315]. Although an unre-
duced tridiagonal matrix has distinct eigenvalues in exact arithmetic, it may still have
computationally coincident ones in finite precision.

Number the computed eigenvalues so that they satisfy the same order as the
corresponding exact eigenvalues, i.e.,

The accuracy of the computed eigendecomposition 0/0-1 of T is then determined
by the largest residual error of any computed eigenpair and by the deviation from
orthogonality of the computed eigenvectors"

1

whr IXl x--max {IX,I, IX l}, The particular norms for and e were chosen, because
they are convenient to analyze and to compute. The outcome of the numerical experi-
ments in the later sections does not change if the matrix norm is replaced by the
vector norm maxl,n I1(00 I)e, ll. Our analysis is restricted to the above norm-
based criteria; other quality measures that are applicable when T is known to very
high accuracy are discussed in [2], [6]-[8].

Theorem 2.1 below shows that the computed eigendecomposition /- is the
exact eigendecomposition of a matrix T+ E close to T if residuals and deviation from
orthogonality are small. The error matrix E is in general neither symmetric nor
tridiagonal; hence, U is not in general exactly orthogonal.

THEOREM 2.1. Let OfO- be the computed eigendecomposition of a symmetric
tridiagonal matrix T and let

-’.max T,- X,a, I1=.

Then there exists a matrix E such that

T+ E OX

Proof. Let

E1 [[ax (TU _/.r/), E2 /.rT/./-- I.

Because for any nn matrix A, IlAll=-<_4ffmax,____,. [[Ae,[[2, where ei is the ith
canonical vector,

IIEII= max IIEe, ll== , IIEll IIE=ll= e.
lin

IMPROVING THE ACCURACY OF INVERSE ITERATION 553

From the definition of El,

Tl[l_r-1 ()r /r--1][maxE1)r--1,
so that

()r//.r- T/.rl_r-1- IlmaxE .)r- T+ E,

where E -It[maxE1 [-1, and

lIE I1= ItlmaxE1 t-’ I1= <-- IlmaxllE, il=ll t-’ II=-
We use the Neumann lemma [14, p. 59] to bound

t3-’ N-I1(6Tdr)-lll2- I1(I /

1 1

Thus,

Under the assumptions

t3--TU I1= < , tt I I1= <

the error matrix is bounded above by

IXlmax

which is independent of the matrix order. A related result is prown in [14, p. 416].

3. Te ISPCK routine TIIT. The steps for computing all eigenvectors
of an unreduced symmetric tridiagonal matrix T by inverse iteration are given in
Algorithm 3.1.

ALOORITHM 3.1 (Basic Implementation of Inverse Iteration)

Forj n, n- 1,. 1:
1. Choose a starting vector yj.
2. Solve T jI) zj yj for zj.
3. If the reorthogonalization criterion is satisfied, orthogonalize zj against

iterates associated with computed eigenvalues close to j.
4. If the stopping criterion is not satisfied, set yj zj/II zj and go to step 2.
5. e computed eigenvector is j zj/II zj I1=.

As suggested in [23, p. 143] and [24, p. 329], the EISPACK implementation
TINVIT performs the linear system solution in step 2 by Gaussian elimination with
paial pivoting and the ohogonalizations in step 3 by the modified Gram-Schmidt
algorithm. Because TINVIT yields less accurate eigenvectors than do existing
implementations of the QL method (TQL2) [3], [22] or Cuppen’s divide-and-conquer
method (TREEQL) [5], [12], the loss in accuracy must be due to one or more of the
following three factors: the choice of staing vector, the reohogonalization criterion,
and the stopping criterion. TINVIT deals with these issues as follows.

554 E. R. JESSUP AND I. C. F. IPSEN

3.1. The starting vector. As argued in 1, a good starting vector yj has a large
enough contribution of an eigenvector associated with the current eigenvalue A) to
yield an iterate with dominant components in the eigenspace associated with

Without advance knowledge of the eigenvectors, however, it is difficult to ensure
a high quality starting vector. For instance, the canonical basis vectors el and en should
not be used as starting vectors because they are often nearly orthogonal to some
eigenvectors of a symmetric tridiagonal matrix T [23, p. 147]. The vector of all ones
is also a poor choice as it is orthogonal to half of the eigenvectors of a symmetric
tridiagonal Toeplitz matrix 15].

Analytic determination of a good starting vector is complicated by the role of
roundoff error in inverse iteration. As shown in [21], [23]-[25], one or two iterations
in finite precision arithmetic are generally sufficient to produce a significant iterate
component in the correct direction unless the starting vector is exactly orthogonal to
that direction.

In agreement with [23, p. 147], TINVIT avoids explicit formation of the starting
vector y) as follows. The tridiagonal system T- ..iI)z) y) is solved by using Gaussian
elimination with partial pivoting to factor the matrix T-TkjI LU. (Throughout this
paper, we disregard the permutation matrix for simplicity.) The vector y) is chosen so
that the result of the forward substitution equals e, the vector of all ones. That is, the
computation L)e =y) need never be carried out, and the solution of the first linear
system in each eigenvector computation amounts to solving only the second of the
two triangular systems Uz) e.

When computationally coincident eigenvalues (i.e., eigenvalues that are identical
to working precision) are used as shifts, their iterates converge to a single eigenvector
and fail to span the whole eigenspace. However, these iterates are very sensitive to the
value of) [24, p. 329]. Wilkinson suggests that the computationally coincident eigen-
values be slightly perturbed so as to make them distinct and that inverse iteration be
used with the perturbed eigenvalues to produce iterates that are linearly independent.
The increased distance of ’i+1,""" ,ki+k from i should affect only the speed of
convergence and not the accuracy of inverse iteration [24, p. 329].

TINVIT replaces computationally coincident eigenvalues i i-1 7ki_k by
X, <X,+ ell TII, <"

where eM is machine epsilon, and

TII max {1%1 + I/3)1}
l<--_j<=n

for a matrix T with diagonal elements O1,’’" a and off-diagonal elements
/32,’’ ",/3n, and /31---0. Note that IITIl does not satisfy the definition of a matrix
norm but that an unreduced tridiagonal matrix T satisfies 11T[IR <- Tilde.

3.2. The reorthogonalization criterion. The above strategy for perturbing computa-
tionally coincident eigenvalues is intended to produce computed eigenvectors that are
linearly independent. To assure orthogonal computed eigenvectors, the iterates associ-
ated with close eigenvalues are reorthogonalized against each other. In TINVIT, two
adjacent eigenvalues) and)+1 are considered close if

’j--’j+l < 10-311TIIR.
Note that eigenvalues close enough for reorthogonalization may or may not be computa-
tionally coincident. The process of reorthogonalizing the iterates proceeds as follows.

The eigenvectors are computed successively, according to the ascending order of
the eigenvalues. That is, at the time of computation of a), the computation of the

IMPROVING THE ACCURACY OF INVERSE ITERATION 555

eigenvectors /j+l, , /n has already been completed. If a computed eigenvalue j is
close to the computed eigenvalue +1, then the iterate z is reorthogonalized against
t+l and against all eigenvectors against which t+l was orthogonalized. In the outline
ofTINVIT in 3.4, the data structure CLUSTER(i) contains the indices + 1, , + k
of all those vectors, against which zi must be orthogonalized.

3.3. The stopping criterion. In [23, p. 145], Wilkinson shows that if an iterate zj
has a large norm after reorthogonalization but before normalization, the eigenpair
(, z) has a small residual error. Specifically, the large iterate norm
leads to the small residual]](T-.I)zllz=O(eMn 1/2) [23, p. 145]. Furthermore, the
large norm of zj (after reorthogonalization) indicates that the iterates associated with
+1,""", , were linearly independent (before reorthogonalization) so that the com-
puted eigenvector a z/[[z[[2 is orthogonal to/j+l, /n" (The connection between
large iterate norm and successful orthogonalization by the modified Gram-Schmidt
procedure is demonstrated in 4.1.)

From the perturbation result in 2 we can then conclude that (, z) is an eigenpair
of a matrix close to T and hence that z is an accurate eigenvector. Because zj -> IIzj 11 ,
the two-norm can be replaced by the cheaper infinity norm for convergence testing.
Thus, if Ily ll - 1 and llz ll > 1, then z is a good eigenvector approximation. The
difficulty lies in determining just how large IIzjIl should be. TINVIT stops iteration
if e,[Izll-> 1 (ignoring scaling factors).

3.4. Implementation of inverse iteration. A sketch ofthe EISPACK routine TINVIT
is given as Algorithm 3.2 below. Numerical details such as scaling factors used to
prevent overflow are not included. The computed eigenvalues are in descending order
1 >-" -> ,, and e is machine epsilon.

ALGORITHM 3.2 (Outline of TINVIT)
Forj=n,n-1,. ., 1

O. Perturb computationally coincident eigenvalues" ifj < n and -+1 <--
O, then replace with +1 + IITII.

1. Initialize the set of eigenvalues close to " CLUSTER(j)=. Ifj < n
and X -X / <10- IITII , then CLUSTER(j)=CLUSTER(j+I)
U{j+I}.

2. Initialize the iterate norm O’j--O.
3. Factor T- jI LjUj.
4. Loop until elvtO >- 1 (error exit after 5 iterations).

4.a. If this is thefirst iteration, solve Ujzj e, otherwise solve Lj Ujzj yj.
4.b. Reorthogonalize zj against all with 6 CLUSTER(j).
4.c. Set tr z I1 and yj z/

5. The computed eigenvector is a y/llyll2.
4. Experimental results. The experimental results in [17] show that TQL2 or

TREEQL generally yield residuals =(1/IXImax) max, IIT ,-X,a,I[2 ess than 10-14

for matrix orders n -<_ 525; and deviations from orthogonality 6 t Ill less than
10-14 for n 32, less than 10-13 for n 100, and less than 10-12 for n 512. (A similar
dependence on the matrix order occurs when the deviation from orthogonality is
instead measured by 6=max, II(0r0-I)e, .) The EISPACK routine TSTURM (a
combination of BISECT and TINVIT) yields respective residuals less than 10-14

10-13, and 10-12 and orthogonality measures 6 less than 10-12, 10-11, and 10-1 for
matrix orders 32, 100, and 512, respectively.

The numerical experiments in this section were designed to determine which
features of TINVIT need to be modified so that it is at least as accurate in practice as

556 E. R. JESSUP AND I. C. F. IPSEN

the QL routine TQL2 [22] and the divide-and-conquer routine TREEQL [12]. All
experiments were performed in double precision on a single Sequent Symmetry $81

processor using the Weitek 1167 floating-point accelerator. The eigenvalues were
computed with the EISPACK routine BISECT to working precision. On this machine,
machine epsilon e4 2.22 x 10-16.

This paper presents representative results selected from the ones in [17]. The first
test matrix 1, 2, 1] illustrates the case of matrices without close eigenvalues. The matrix
[1, 2, 1] is a symmetric tridiagonal Toeplitz matrix of order n having twos on the
diagonal and ones on the first sub- and superdiagonals. Its exact eigenvalues are well
separated and given by [15]

Aj=2 l+cos l<j <n.
n+

For matrix orders n _-< 525, the computed eigenvalues are also well separated.
+The second test matrix is the "glued Wilkinson matrix" Wg and represents one

of the most difficult test cases for dealing with groups of close eigenvalues. It is
constructed as follows: The "Wilkinson matrix" W2+l of order n 21 has diagonal
elements 10, 9,. ., 1, 0, 1,. ., 9, 10 and immediate off-diagonal elements equal to
one. It possesses pairs of eigenvalues that are very close [24, p. 309]. The spacing
between eigenvalues in a pair decreases with increasing magnitude of the eigenvalues,
and the eigenvalues in the largest pairs are computationally coincident with regard to
double precision. The glued Wilkinson matrix W of order 21j is formed by placing
j copies of W+ along the diagonal of the matrix and setting off-diagonal elements
equal to 10-4 at the positions f12, fl42," where the submatrices join. For matrix

+orders n > 200, Wg has clusters of eigenvalues near the integers 1, 2,..., [n/2J [20].
The conclusions drawn from numerical experiments with these two matrix types

are supported by tests on random matrices in [17].
4.1. Starting vectors. In this section, we examine the influence of the starting

vector on the accuracy of inverse iteration and on the number of iterations performed.
To this end, we use the following vectors as starting vectors for the computation of j.

1. The "correct" eigenvector j" This starting vector is the eigenvector computed
by inverse iteration with a random starting vector. Each starting vector 1," ", , has
residuals < 10-14 for all orders and orthogonalities tg< 10-4 for n-<42, < 10-13

for n _-< 105, and < 10-2 for n =< 525.
2. t, + ’" This linear combination of , and t is used as the starting vector to

compute j for 1 _-<j =< n 1, and a random starting vector is used to compute ,. When
-= 0 and ,-1 > ,, , +’ is roughly orthogonal to the eigenvectors associated with
A1," , A,_I. Increasing the value of - amounts to increasing the contribution of the
desired eigendirection in the starting vector and thus determines the minimal size of
the contribution that is sufficient for convergence.

3. Random vectors: These vectors have uniformly distributed pseudorandom
components between -1 and 1 generated with the linear congruential random number
generator from NETLIB [11]. For each matrix order n, a single n x n random matrix
is generated. In one set of experiments, we use the first column of this matrix as the
starting vector for all eigenvectors. In the second set of experiments, we use column
j of the matrix as the starting vector for the jth eigenvector.

4. The TINVIT starting vector y: This starting vector is not computed explicitly.
Instead it is assumed to be the right-hand side of the lower triangular system Le y,
where e is the vector of all ones, and T-I LjU is the LU decomposition (disregard-
ing the permutation matrix).

IMPROVING THE ACCURACY OF INVERSE ITERATION 557

For the purposes of this section, TINVIT was modified to perform the same
number of iterations for all eigenvectors (the number of iterations is determined by
the required accuracy but does not exceed five). Computationally coincident eigen-
values were perturbed as in step 0 of Algorithm 3.2 except when different starting
vectors were used for each shift. For different random starting vectors, the rate of
convergence and accuracy of inverse iteration are preserved even if computationally
coincident eigenvalues are not perturbed, that is, even if step 0 of TINVIT is omitted.
The following two sections distinguish between the experimental results for the cases
of well separated and close eigenvalues.

4.1.1. Starting vectors for matrices with well-separated eigenvalues. Table 1 shows
the number of iterations required by inverse iteration to compute the eigenvectors to
the same accuracy as TQL2 or TREEQL for each type of starting vector.

TABLE
Number of inverse iterations to compute eigenvector j for matrix

1, 2, of order n. The same number of iterations is performedfor each .
Starting
vector

n =32 n 100 n 512
Number of Number of Number of

iterations for iterations for iterations for
< 10-14 / < 10-14 < 10-14

< 10-14 < 10-13 < 10-2

t
t,, 2 2 4

/n + 10-16/j 2 2 3
a. + 10-8a 2 2 2

a. + 10-z 2 2 2
same random 2 2 2

different random 2 2 2
TINVIT 2 2 2

High accuracy is achieved in one iteration only when accurately computed eigen-
vectors aj are the starting vectors. More than two iterations are needed only for larger
n and only when the starting vector is orthogonal or nearly orthogonal to the computed
eigenvector (-=< 10-16). All other starting vectors require two iterations.

Thus, for matrices [1, 2, 1] of order n-< 512, a starting vector component r/j of
magnitude 10-8 in the desired direction u suffices for rapid convergence, i.e., two
iterations. Performing more iterations than listed in Table 1 does not significantly
change the accuracy. These results are supported by numerical experiments on random
matrices with minimal eigenvalue spacing of 10-4 [17].

In summary, when all eigenvalues are well separated the performance of inverse
iteration does not strongly depend on the starting vector: random starting vectors and
the TINVIT starting vector provide a large enough component in the desired direction
for fast convergence.

4.1.2. Starting vectors for matrices with groups of close eigenvalues. Table 2 shows
-t-.the number of iterations for the glued Wilkinson matrix Wg with n 42, 105, and 525

for the different starting vectors. As for matrix [1, 2, 1], accurate eigenvectors are
produced in one iteration only when the starting vector is the eigenvector. Two iterations
suffice when the starting vector has a correct component of size at least 10-8 or when
a different random starting vector is used for each eigenvector. The remaining starting

558 E. R. JESSUP AND I. C. F. IPSEN

TABLE 2
Number of inverse iterations to compute eigenvector ftj for the glued

oforder n. The same number ofiterations is performedWilkinson matrix Wg
for each .

Starting
vector

n =42 n 105 n 525
Number of Number of Number of

iterations for iterations for iterations for
< 10-14 / < 10-14 < 10-14

< 10-14 / < 10-13 < 10-12

tj
tn 3 3 > 5

a + 10-16/j 3 3 > 5

a. + 10-Stj 2 2 .2

a. + 10-2aj 2 2 2
same random 2 3 3

different random 2 2 2
TINVIT 2 3 > 5

vectors require more than two iterations. For n 525, inverse iteration does not converge
6^in five iterations when the iterations are started with un, n / 10- uj or with the TINVIT

starting vector.
Table 3 illustrates the connection between the convergence rate of the iterates and

their linear dependence for different types of starting vectors and the matrix W. The
numbers in Table 3 were obtained as follows: The iterates zj, 1-<j-< n, before the
reorthogonalization step 4.b in the first iteration of Algorithm 3.2 compose the columns
of an n x n matrix. The smallest singular value of this matrix is listed in the first column
ofnumbers, and the smallest norm attained by the z, 1 -<j -<_ n, after reorthogonalizing
in step 4.b is listed in the second column of numbers. The same information is given
for z in the second iteration of Algorithm 3.2 in the last two columns. These data
show that except in the case of different random starting vectors, the iterates after the
first iteration are linearly dependent. Thus, the modified Gram-Schmidt procedure
breaks down and produces vectors that are almost zero. Likewise, the second iteration
fails to produce linearly independent iterates for all but the different random starting
vectors. (The singular value for the matrix of iterates from the same random starting
vector is so small, 10-s, that the iterates can be considered numerically linearly
dependent.)

TABLE 3
Singular values of the matrix of iterates and the smallest iterate norm for the glued Wilkinson

matrix W of order n 525 after one and after two iterations of TINVIT.

Starting vector

Smallest Minimal Smallest Minimal
singular iterate norm singular iterate norm
value of min z I1o value of mins zllo

first after second after
iterates one iteration iterates two iterations

same random vector
different random vector

TINVIT

0 0 0 1.24d- 13
0 4.69d- 12 10-18 7.04d-04
0.02 4.94d 04 0.08 > 1.00
0 4.94d- 12 0 1.06d 12

IMPROVING THE ACCURACY OF INVERSE ITERATION 559

While the TINVIT starting vectors are difficult to analyze, the other choices suggest
a possible correlation between linearly dependent starting vectors and iterates: linearly
dependent starting vectors lead to linearly dependent iterates in the case of computa-
tionally coincident eigenvalues. Table 4 shows that the smallest singular value for a
matrix composed of n different random starting vectors is much larger than zero; the
only exception is n 512, where the 512th column is linearly dependent on the first
479. Because none of the test matrices has a group of eigenvalues including both the
479th and the 512th eigenvalues, inverse iteration starts out with linearly independent
random starting vectors for all iterates associated with the same group of close
eigenvalues.

TABLE 4
The smallest singular value for a matrix of

different random starting vectors.

Matrix order Smallest singular value

42 0.0362
100 0.0341
105 0.0198
512 1.d-229
525 0.0128

In summary, when a different random starting vector is used to compute each
eigenvector of the glued Wilkinson matrix, both the starting vectors and the iterates
are highly likely to be linearly independent. This correlation between linear dependence
of starting vectors and number of iterations can be observed to a lesser degree for
other large matrices with groups of close eigenvalues [17].

4.2. Stopping criterion. The experimental results in this section show that TIN-
VIT’s choice of stopping criterion causes inverse iteration to stop before highest
accuracy is attained. We will examine an alternative that consistently improves the
accuracy. For the experiments in this section, TINVIT was modified to compute each
eigenvector from a different random starting vector and to use unperturbed computed
eigenvalues as shifts.

For matrices 1, 2, 1 and W, Table 5 shows how the accuracy of the computed
eigendecomposition depends on the norm of the computed iterates (after reor-
thogonalization in step 4.b of Algorithm 3.2). The TINVIT stopping criterion works

-t-ocorrectly for both orders of the glued Wilkinson matrix Wg. unit iterate norm and full
accuracy are both attained on the second iteration. It fails, however, on the matrix
1, 2, 1], where all iterates have greater than unit norm but less than full accuracy on

the first iteration. The same conclusions can be drawn from experiments with random
matrices in [17]. It seems, therefore, that at least two iterations should always be
performed regardless of iterate norm when different random starting vectors are used.
In other words, after the iterate norm is large enough and the loop in step 4 of Algorithm
3.2 is exited, the algorithm should perform one more iteration. The additional iteration
was already suggested in [24, p. 324], but was not implemented in TINVIT.

We have not found a simple correlation between size of the iterate norms and the
number or size of the groups of close eigenvalues.

4.3. Reorthogonalization. For the purpose of this section, TINVIT was modified
to compute each eigenvector from a different random starting vector and to perform

560 E. R. JESSUP AND I. C. F. IPSEN

TABLE 5
after one andIterate norm, residual, and orthogonalityfor matrices 1, 2, and Wg

after two inverse iterations. A different random starting vector is usedfor each eigenvector
computation.

Matrix Iteration

Minimal Maximal Deviation from
iterate norm residual orthogonality

mini z I1o e

[1, 2, 1](n 100) >1.00 3.18d- 14 3.05d- 12
2 > 1.00 1.58d 16 3.20d 14

W(n 105) 0.14 1.47d- 13 1.68d- 11
2 > 1.00 8.70d- 16 3.85-15

[1,2, 1](n- 512) >1.00 1.60d- 11 4.62d 09
2 > 1.00 3.93d 16 1.57d 13

W(n 525) 4.94d-04 3.42d-09 6.02d-07
2 > 1.00 5.99d- 15 1.98d 14

one more iteration after the iterate norm becomes large enough, i.e., one more iteration
after exiting the loop in step 4 of Algorithm 3.2. In the numerical experiments below,
we vary the distance at which adjacent eigenvalues are considered to be so close as
to require orthogonalization of the associated iterates.

Table 6 shows the residuals and deviations from orthogonality for matrix
[1, 2, 1 of order n 100 as the reorthogonalization criterion is varied from 0 to 1011TII,
after one and after two inverse iterations. These data confirm that more orthogonaliz-
ation is not a substitute for extra iterations because small residuals are not attained
until the second iteration even with reorthogonalization of all eigenvectors. Table 7

+shows the same situation for Wg when n 105 and n 525, as well as the fraction of
inverse iteration time spent in the modified Gram-Schmidt procedure.

Increasing the reorthogonalization criterion beyond that of TINVIT does not
significantly improve the accuracy for matrices [1, 2, 1] and W. It can, however,
substantially increase the computation time. With the TINVIT criterion 10-31[TI[,,
most of the eigenvectors of W are reorthogonalized (80 percent when n 105 and
96 percent when n 525), but reorthogonalization occurs in many small groups. In
contrast, with the criterion 10IIT[I, all eigenvectors are reorthogonalized as one
group, and the cost rises markedly although the accuracy hardly changes.

TABLE 6
Accuracy for matrix [1, 2, 1] with different reorthogonalization criteria when n 100.

Criterion

Number
of vectors

orthogonalized

One iteration Two iterations

10’IITIIR
(all)

10-111TIIR
10-=IITII
10-IITII
0-IITII

0

99

97
33
2

0

6.09d 13 6.41d 15 2.12d- 16 5.75d 15

1.87d 12 7.40d 15 2.13d- 16 6.12d 15
7.69d 14 4.97d 12 1.67d 16 1.82d 15
3.18d 13 3.05d 12 1.58d 16 3.20d 14
1.10d 13 2.75d 11 1.90d 16 4.28d 14
2.28d 13 2.68d 11 1.61d 16 4.68d 14

IMPROVING THE ACCURACY OF INVERSE ITERATION 561

TABLE 7
after two inverse iterations with different reorthogonalization criteriaAccuracy and computation timefor Wg

when n 100 and n--525. The last column shows the fraction of reorthogonalization (MGS) time in inverse
iteration.

Time for
Number inverse Fraction

Order Criterion 9 of vectors iteration MGS time

n 105 1011TII 1.97d 16 4.57d 15 104 30.6 0.67
(aU)

lO-111 TII 1.60d- 16 3.14d- 15 88 27.7 0.10

10-311TII 8.70d 16 3.85d 15 84 1.4 0.07

10-511TIIR 2.09d- 16 2.52d- 13 78 1.4 0.05
0 1.85d-16 2.05 0 0 0

n 525 101[I TI[R 7.58d 15 1.53d 14 524 5807.1 0.98
(all)

10-11[TII R 4.69d- 15 3.51d- 14 523 5287.6 0.73

10-311TII 5.99d 15 1.98d 14 504 338.1 0.15

10-511TII R 3.46d 15 6.24d 13 498 253.1 0.12
0 2.04d 16 6.38 0 0 0

These experiments show that the best possible orthogonality can generally be
attained only by the time-consuming process of reorthogonalizing all eigenvectors. The
accuracy desired here, however, can usually be achieved by means of the TINVIT
reorthogonalization criterion along with different random starting vectors and the
improved stopping criterion of 4.2.

5. A new implementation of inverse iteration. The improvements to inverse iteration
developed in 4 are incorporated into the following algorithm. These changes are
based on experiments in 4 with matrix orders n <_-525 and may not apply to much
larger matrix orders. Some comments on solving larger order problems conclude this
section.

ALGORITHM 5.1 (Improved Inverse Iteration Algorithm (III))
Forj=n,n-1,. .,1

1. Initialize the set of eigenvalues close to j: CLUSTER(j)=0.
Ifj < n and . -,j+l < 10-311TIIR, then
CLUSTER(j) CLUSTER(j + 1) {j + 1}.

2. Generate a random vector xj with uniformly distributed components in
the interval [-1, 1], and form the starting vector y)= xj/[]xj

3. Initialize the iterate norm r)=-O.
4. Factor T-I= LjU.
5. Loop until euo)>-1 (error exit after 5 iterations).

5.a. Solve LUzj= y.
5.b. Reorthogonalize z against all i with CLUSTER(j).
5.c. Set tr z Iloo and yj z/o).

6. Repeat step 5 once.
7. The computed eigenvector is a y/Ily I1=.

Tables 8 and 9 compare the computation time of the EISPACK routine TSTURM
with that of the EISPACK routine BISECT combined with Algorithm III (B/III).
Because of the additional iterations performed, the computation time of III is substan-
tially higher than that of TINVIT. For matrix 1, 2, 1 of order n 5 12, however, very

562 E. R. JESSUP AND I. C. F. IPSEN

TABLE 8
Times, residuals, and orthogonalitiesfor eigensystems computed by TSTURM and by B/III for matrix 1, 2,].

TSTURM B/III

Time to Time to Time to
compute compute compute

eigenvalues eigenvectors eigenvectors
n (seconds) (seconds) t9 (seconds)

32 1.1 0.3 4.15d 15 4.00d 13 0.4 1.30d- 16 4.27d- 15
100 11.3 2.0 2.46d 14 8.48d 12 3.2 1.56d- 16 3.15d 14
512 276.7 72.2 1.26d 13 4.48d 11 125.8 4.11d 16 1.78d 13

TABLE 9
Times, residuals, and orthogonalities for eigensystems computed by TSTURM and by B/III for matrix W.

TSTURM B/III

Time to Time to Time to
compute compute compute

eigenvalues eigenvectors eigenvectors
n (seconds) (seconds) (seconds)

42 1.6 0.4 4.25d- 15 2.3d- 13 0.6 1.61d- 16 2.61d- 15
105 4.72 3.0 5.1 ld- 14 2.36d 12 4.8 6.98d 16 4.43d 15
525 23.3 171.1 1.14d 13 4.08d 11 333.4 5.55d 15 1.69d 14

little orthogonalization of eigenvectors takes place (see Table 6), and eigenvector
computation is cheap compared to eigenvalue computation. The longer time of
Algorithm III represents only a 13 percent increase in total computation time for B/Ill
over TSTURM.

The storage requirements for Algorithm III are the same as for TINVIT. The time
for generation of random starting vectors in Algorithm III is small compared to the
total computation time. It constitutes less than 4 percent of the total eigenvector

+computation time for matrix 1, 2, 1 of order n _-< 512 and for Wg of order n _-< 525. A
1000 1000 matrix of random elements can be generated in 14.00 seconds.

Algorithm III allows accurate solution of problems up to about order 525. It thus
gives a roughly four-fold increase of the order solved accurately (or at all) by TINVIT.
It also provides guidelines for solving problems of larger order. Experiments performed
on an IBM RS6000/520 after the compilation of data for this paper show that with
minor modification, the new implementation allows accurate solution of all tested
problems up to order 2000. (No larger orders were tried.) To achieve this accuracy, it
is necessary to perform two (rather than one) extra iterations after the iterate norm
grows sufficiently large. It is also necessary to separate computationally coincident
eigenvalues by a perturbation that is small relative to the magnitude of the eigenvalues.
Because the longer vectors are likely to have smaller infinity norms, it is also possible
to decrease the stopping criterion. If the maximum number of iterations is reached
without sufficient norm growth, it is advisable to compute the residual of the computed
vector before accepting it as a computed eigenvector. Even with a small residual, the
computed vector may not be fully orthogonal to the other computed eigenvectors. A
complete version of this code is available as routine DSTEIN in LAPACK [1].

IMPROVING THE ACCURACY OF INVERSE ITERATION 563

6. Comparison with other methods. This section offers an experimental comparison
of Cuppen’s divide-and-conquer method, the QL method, and bisection with inverse
iteration. The respective implementations are TREEQL [12], TQL2 [22], and B/III.
TREEQL switches from divide and conquer to TQL2 for subproblems of order n <_- 50.
For a given problem, the relative speeds of the three methods depend on the degree
of deflation in TREEQL, the amount of matrix splitting in TQL2, and the clustering
of eigenvalues for B/III. Because they illustrate the range of results for all matrices
from [17], we use the three test matrices [1, 2, 1], W, and [1, u, 1] as a basis for
comparison. The matrix [1, u, 1] has ones in its first subdiagonal and superdiagonal
and the value x 10-6 in the ith diagonal position. It undergoes little deflation when
its eigendecomposition is computed by TREEQL. As none of these test matrices
contains row sums of widely differing magnitudes, we exclude IMTQL2 from the
comparison: the performance and accuracy of TQL2 and IMTQL2 are nearly identical
for these test matrices [17].

Table 10 shows that the maximal residual =(1/llmax)maxl__<i__<n [[T-,iI[2
and deviation from orthogonality 6= of the eigendecompositions com-
puted by the three methods do not differ significantly.

TABLE 10
Maximal residual and deviationfrom orthogonality ofeigendecomposi-

tions computed by B/III, TREEQL, and TQL2 for matrices [1, 2, 1], W,
[1, u, 1].

Maximal Deviation from
Matrix residual orthogonality
order Method (?

n 32 or 42

n=100or105

n 512 or 525

TREEQL 3.26d- 15 5.59d- 15
TQL2 1.52d 15 1.30d- 14
B/Ill 1.80d 16 6.20d 15

TREEQL 6.07d 14 2.75d- 15
TQL2 2.39d- 15 1.06d- 14

B/Ill 3.67d- 15 8.52d- 14

TREEQL 3.96d 15 1.67d 13
TQL2 1.66d 14 2.50d- 13
B/Ill 6.05d- 15 7.92d- 13

As shown in Figs. 1-3, however, the computation times for the problems can differ
significantly. The top graphs in these figures show the different computation times for
matrix orders n <-60. B/Ill is slowest for matrices [1, 2, 1] and [1, u, 1] of order n <-20.
TQL2 is fastest for [1, 2, 1] and 1, u, 1] of order n <- 20 and slowest for all matrices

+of order 50 <- n <- 525. TREEQL is fastest for Wg of all orders and for [1, 2, 1] of order
20<- n <- 60 due to moderate ([1, 2, 1]) and heavy (W) deflation. The bottom graphs
in Figs. 1-3 show the different computation times for matrix orders 60 =< n <- 512. For
n 512, TREEQL is about 2 to 40 times faster than TQL2, and B/Ill is about eight
times faster than TQL2.

Because the degree of deflation and the grouping of eigenvalues are rarely known
in advance, it is generally not possible to select the fastest serial method for a given

564 E.R. JESSUP AND I. C. F. IPSEN

mo.r x order
motrx [1,2,1]

B0

0

200 300
mar.. r" x or" der"
matrix [1,2,1]

SO0

FIG. 1. Times for TQL2, TREEQL, and B/III versus matrix orderfor matrix [1,2, 1].

IMPROVING THE ACCURACY OF INVERSE ITERATION 565

0 20 ,0 60
maLrtx or’der

glued NtlKInson ma{,rix

o ;oo 200 300 oo 5o0
ma{.r x orcler

glued NtlKlnson martx

FIG. 2. Times for TQL2, TREEQL, and B/III versus matrix orderfor the glued Wilkinson matrix W.

566 E. R. JESSUP AND I. C. F. IPSEN

10
0 60

matrix order
ma,r Ix [1, u,

0 100 200 300 ,00

maLrlx or dec
matrix [l,u,l]

SO0

FIG. 3. Times for TQL2, TREEQL, and B/Ill versus matrix order for matrix [1, u, 1].

IMPROVING THE ACCURACY OF INVERSE ITERATION 567

problem. In all of our experiments, however, B/III is much faster than TQL2 and
equally accurate. For larger matrix orders, B! III is fastest for light to medium deflation,
while TREEQL is fastest for heavy deflation.

7. A statistical analysis of inverse iteration. The preceding sections establish experi-
mentally the design choices for an accurate implementation ofinverse iteration. Because
they rely on the use of starting vectors with randomly distributed components, we now
give a statistical analysis to explain some of the experimental observations. Section
7.1 states our assumptions, 7.2 defines a good eigenvector approximation, 7.3
determines the expected quality of a random starting vector and briefly discusses the
limitations of the analysis, and 7.4 estimates the error in applying the analysis based
on starting vectors with normally distributed components to starting vectors with
uniformly distributed components. Statistical analyses of methods for computing
eigenvalues can be found, for example, in [10], [19].

7.1. Assumptions. A unit-norm starting vector y-x/llxll= is computed from a
vector x with independent random components, each ofwhich has a normal distribution
with mean 0 and variance 1 (normal (0, 1)). Such vectors y are uniformly distributed
on the unit n-sphere [9]. Because the distribution of their components is invariant
under orthogonal transformations, these vectors can be represented in terms of the
orthonormal basis of eigenvectors {Ul, u2,’", un} of the symmetric tridiagonal
matrix T:

Y=(nl,r/2,’’’,r/n) r, where y Ui 112 1, r/2_
i=1 i=1

7.2. The quality of an approximate eigenvector. A vector y as defined above is a
good approximation to ui if r/i is much larger than any other component, i.e., if

2 > 1 e - for some error tolerance 0 < e < 1 Geometrically, the angle 0 between y
and ui satisfies cos 0=>x/1-e2. Similarly, y is a good approximation to a linear

d 2
E 2"combination of eigenvectors Ul," ", Ud if ’,=1 r/ => 1- Because random vectors

are uniformly distributed on the sphere, the probability that y is a good approximation
to the linear combination is just the fraction of the surface area of the sphere defined
by all vectors whose components :1, :d satisfy di=l :2>__ l--e2.

The probability that di= --> 1--e2 is determined by integrating the probability
density function of the sum i=1 7 2i between 1- e - and 1. If the component :i has a
normal (0, 1) distribution, then 7,2. 2 2

the sum a 2 d n-d
i/j=l has the beta distribution B(1/2,’-), and

--1 r/ has a B(,---) distribution [9] with probability density function
t(a/2)-l/2(1-t) (("-a)/2)-l. The probability that y is a good approximation to a linear
combination of eigenvectors ul,..., Ud is thus given in the following theorem.

THEOREM 7.1. Let x have independent random components, each with a normal
(0. 1) distribution, and let y x/ x I1 . (,1." . n) Given 0 <- e <- 1. the probability

d 2 E2that =1 rl >- 1- is

(1) P Y n>=l-e: =l-a t-(1-t)-:-dt=l-aI
i=1

with

where y(to) is the gamma function with argument to.

7.3. The quality of the starting vectors. The experiments in 4 show that random
vectors make good starting vectors for inverse iteration. It turns out that the random
starting vectors used were linearly independent and not orthogonal to the eigenvectors

568 E.R. JESSUP AND I. C. F. IPSEN

being computed. In this section, we demonstrate the practical usefulness of Theorem
7.1 and establish the number of times a random starting vector can be reused for
computing eigenvectors associated with well-separated eigenvalues.

For rapid convergence of an iterate to an eigenvector u, it is essential that the
starting vector y have a large enough component in the ui direction. The probability
that a component r/i is of size at least x/i e 2 is given in Theorem 7.1 with d 1. Table
11 gives these probabilities for matrix orders n 100, 1000, and 10,000 for a range of
1 e 2 values. The integral in Theorem 7.1 was computed by Gauss-Legendre quadrature
with 100 nodes. For n -< 10,000, the probability that any one component of y is at least
0.0001 is no smaller than 1-10-16, while the probability that any one component is
at least 0.001 is no smaller than 0.9. The unit two-norm of the starting vector guarantees
that not all components are very small. Recall from Table 2 that a component of size
10-8 is sufficient for fast convergence. For a given tolerance 1- e2, the probability
bounds decrease as n increases: as the number of components in a vector increases,
the probability that any one component is large decreases.

TABLE 11
Lower bounds on the probability that >_ 1- e2. Numbers in parentheses indicate

the number of zero decimal places.

For n 100 For n 1000 For n 10,000
x/1-e P(lrt,[>_- 41- e2) P(l,l_->,/1-
<10-4 1.00 (16) 1.00 (16) 1.00 (16)
10-3 0.99 0.97 0.90
10-2 0.92 0.76 0.34
10-1 0.34 0(2) 0(16)
>0.7 0(16) 0(16) 0(16)

Table 4 shows that sets of n randomly generated starting n-vectors tend to be
linearly independent. This observation is supported statistically by the result from 13]
restated here as Lemma 7.1.

LEMMA 7.1. Assume that the vectors x have independent random components with
normal (0, 1) distributions. Let 0-min denote the smallest singular value of X=

2 0.2(xl, , x,). Then, as 0. - O, the probability that 0.min is

p(2
o.rain < 0.2), 0.V/-’/’.

Thus, the probability of a nearly singular matrix of starting vectors X is small
but grows with increasing number of columns of X. For example, the probability of
0.min 10-16 is on the order of 10-7 when n- 512.

For the computation of eigenvectors associated with well-separated eigenvalues,
linear independence of the starting vectors seems less important, and one could try to
use the same random starting vector for all of them. Given e > 0, the same starting
vector y can be used to compute eigenvectors Ul, ’’’, Ua if /2>= 1-e2 for 1 < <= d.
The following theorem shows how the number d of eigenvectors for which y can be
used depends on the probability p with which each of the d eigenvectors provides a
significant contribution of y.

THEOREM 7.2. (Reuse of starting vectors.) Assume that x has independent random
components with normal (0, 1) distributions and that y x/]]xl]2. If d <- [l_j, then
q => 1-e2 for 1 < <= d with probability at least p.

IMPROVING THE ACCURACY OF INVERSE ITERATION 569

Proof. Let y x/llxll== (TI, "/n) T. Then

P(r/2>l-e2,=,l<i<d)=l-P(rl<l-e2,1<i<d)=
d

_-->1- Z P(r/=<l-e2)=1-
i=1

where the last equality comes from Theorem 7.1. Setting p 1-da gives d_<-

Table 12 shows values of d for several choices of x/1-e2 when n 100, 1000,
10,000: the number of times y can be reused decreases with increasing matrix order
n, for fixed p and e. This echoes the trend observed in Table 11: a long vector of norm
one is less likely to have large components and so is less acceptable for reuse. From
the numerical experiments, we know that a component of size 10-8 suffices for rapid
convergence. According to Table 12 all components are of size 10-4 for random vectors
up to length 1000 with probability 0.99 so that the same starting vector can be used
to compute all eigenvectors for matrices of order up to n 10,000 with probability 0.99.

TABLE 12
The number of times d a starting vector can be used, when rl 2>i= 1- 8 for

<-- <-- d with probability p.

For n 100 For n 1000 For n 10,000
/9 /1-e d d d

0.5 < 10-4 100 1000 10,000
10-3 50 16 5
10-2 6 2 <1
10-’ <1 <1 <1

0.9 < 10-4 100 1000 10,000
10-3 10 3
10-2 <1 <1
10-’ <1 <1 <1

0.99 < 10-4 100 1000 10,000
10-3 <1 <1
10-2 <1 <1 <1
10- <1 <1 <1

The main significance ofthe statistical analysis is in justifying the choiceofrandom
starting vector. The analysis can be applied to the results of inverse iteration in only
a limited way. If z (T-jI)-ky (’,,""", ’n)T is the unnormalized kth iterate, and
no reorthogonalization has taken place, the probability that any one component ’j is
larger in magnitude than x/1- e 2 is [17]

/-1/2(1 t) (n-3/2) dt.

According to the mean value theorem for definite integrals, the integral is bounded
above by (Aj--)2k(1- e2). Thus, if j is a good approximation to A, then is small
and the probability that z approximates u is close to one. If A- Aj/,-, then
zj approximates uj and u/ with equal probability. When A and A/ are close but not
equal, one of the two eigenvectors u and uj+ will be approximated better than the

570 E. R. JESSUP AND I. C. F. IPSEN

other only if (1-e2)(Aj-s) and (1-- E2)(Aj+I--j) lie where the integrand f(t)=
t-1/2(1-t) ("-3)/2 has a large derivative. Hence, although the effects of additional
iterations on the accuracy can be assessed in terms of the integral , a qualitative
interpretation seems difficult.

Just as the statistical analysis falls short in determining the preferred number of
iterations, it fails regarding stopping and reorthogonalization criteria" even the simplest
approximations of distributions become unwieldy [4], [17], [18], and probability
density functions become dependent on the exact eigenvalues and on other assumptions
that are difficult to verify 17]. Therefore, we did not extend the statistical analysis to
the iterates.

7.4. Practical considerations. The preceding statistical analysis qualitatively
confirms the experimental observations regarding the starting vectors in 4. However,
the analysis is based on starting vectors with independent, normally distributed com-
ponents, while the experiments were performed with uniformly distributed components
in [-1, 1 having some degree of dependence. Thus, the experimental starting vectors
of length n are not uniformly distributed on the unit n-sphere but rather on an n-cube
of height 2. Although normally distributed pseudorandom numbers can be generated
at a higher cost than uniform ones [9], we will now show that uniform random numbers
are acceptable substitutes.

The error in applying the analysis to uniformly distributed starting vectors may
be estimated by circumscribing an n-sphere of radius x/ about the hypercube. A vector

Y (TI, ’, Tn)T -’--i=1 Tiui on this sphere is a good approximation to a multiple
v/-ffui of the eigenvector ui if [r/il_-> v/n(1- e2). Following the derivation in 7.2, the
probability of this occurrence is

n(1-e2)

--1/2(n--3)/2P(rl2>n(1-e2))=l l-t) dt.

Lower bounds for this probability computed by Gauss-Legendre quadrature are given
in Table 13.

TABLE 13
Lower bounds on the probability that ,//2 __> n(1 e2). Numbers in parentheses indicate

the number of zero decimal places.

For n 100 For n 1000 For n 10,000
/1-e P(rl>=n(1-e)) P(rl>=n(1-e2)) P(rl>-n(1-e))

-----10-6 1.00 (16) 1.00 (16) 1.00 (16)
10-5 1.00 (16) 0.99 0.90
10-4 0.99 0.36 0.34
10-3 0.92 0.33 0 (16)
10-2 0.34 0(2) 0(16)

_->10- 0 (16) 0 (16) 0 (16)

The probability of a large component r/i in the uniform case is not as high as in
the normally distributed case, but components with magnitude 10-6 can be expected
with near certainty, and this value still suffices for fast convergence. The linear
independence of the pseudorandom starting vectors is demonstrated in Table 4.

8. Conclusions. Algorithm III presented in 5 of this paper replaces the EISPACK
routine TINVIT for computing the eigenvectors of a symmetric tridiagonal matrix by

IMPROVING THE ACCURACY OF INVERSE ITERATION 571

inverse iteration. Algorithm III both provides more accurate eigenvectors and allows
solution of larger problems than does TINVIT. These improvements follow from a
new iteration stopping criterion and the use of random starting vectors. The latter
allow us to formalize a portion of the algorithm formerly based solely on heuristics.
Namely, the statistical analysis in 7 proves that random vectors are usually linearly
independent and have sufficient components in the directions of the eigenvectors being
computed. The first property leads to linearly independent iterates, the second to fast
convergence.

9. Acknowledgment. The authors thank Stan Eisenstat and Jim Demmel for many
helpful discussions and the reviewers for their instructive comments.

REFERENCES

[1] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. DuCRoz, A. GREENBAUM,
S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK: A portable linear algebra
libraryfor high-performance computers, LAPACKWorking Note 20, Computer Science Department,
University of Knoxville, Knoxville, TN, 1990.

[2] J. BARLOW AND J. DEMMEL, Computing accurate eigensystems ofscaled diagonally dominant matrices,
SIAM J. Numer. Anal., 27 (1990), pp. 762-791.

[3] H. BOWDLER, R. MARTIN, AND J. WILKINSON, The QR and QL algorithms for symmetric matrices,
Numer. Math., 11 (1968), pp. 227-240.

[4] S. CRUMP, The estimation ofvariance components in analysis ofvariance, Biometrics, 2 (1946), pp. 7-11.
[5] J. CUPPEN, A divide and conquer methodfor the symmetric tridiagonal eigenproblem, Numer. Math., 36

(1981), pp. 177-95.
[6] P. DEIFT, J. DEMMEL, L.-C. LI, AND C. TOMEI, The bidiagonal singular value decomposition and

Hamiltonian mechanics, LAPACK Working Note 11, Computer Science Dept. Tech. Report,
Courant Institute, New York University, New York, NY, 1989.

[7] J. DEMMEL AND W. KAHAN, Accurate singular values of bidiagonal matrices, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 873-912.

[8] J. DEMMEL AND K. VESELI(, Jacobi’s method is more accurate than QR, LAPACK Working Note
15, Computer Science Dept. Tech. Report, Courant Institute, New York University, New York,
NY, 1989.

[9] L. DEVROYE, Non-Uniform Random Variate Generation, Springer-Verlag, Berlin, New York, 1986.
[10] J. DIXON, Estimating extremal eigenvalues and condition numbers of matrices, SIAM J. Numer. Anal.,

20 (1983), pp. 812-814.
11] J. DONGARRA AND E. GROSSE, Distribution ofmathematical software via electronic mail, Comm. ACM,

30 (1987), pp. 403-407.
[12] J. DONGARRA AND D. SORENSEN, A fully parallel algorithm for the symmetric eigenvalue problem,

SIAM J. Sci. Statist. Comput., 8 (1987), pp. s139-s154.
[13] A. EDELMAN, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., 9

(1988), pp. 543-560.
14] G. GOLUB AND C. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins University

Press, Baltimore, MD, 1989.
15] R. GREGORY AND D. KARNEY, A Collection of Matrices for Testing Computational Algorithms, John

Wiley & Sons, Inc., New York, 1969.
16] I. IPSEN AND E. JESSUP, Solving the symmetric tridiagonal eigenvalue problem on the hypercube, SIAM

J. Sci. Statist. Comput., 11 (1990), pp. 203-229.
17] E. JESSUP, Parallel Solution ofthe Symmetric Tridiagonal Eigenproblem, Ph.D. thesis, Dept. of Computer

Science, Yale University, New Haven, CT, 1989.
[18] N. JOHNSON AND S. KOTZ, Continuous Univariate Distributions, Houghton Mifflin Company, Boston,

MA, 1970.
19] J. KuczvSKI AND H. WO.NIAKOWSKI, Estimating the largest eigenvalue by the power and Lanczos

algorithms with a random start, Tech. Report, Dept. of Computer Science, Columbia University,
New York, NY, 1989.

[20] C. MOLER, Personal communication, 1987.
[21] B. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.

572 E. R. JESSUP AND I. C. F. IPSEN

[22] B. SMITH, Jo BOYLE, J. DONGARRA, B. GARBOW, Y. IKEBE, V. KLEMA, AND C. MOLER, Matrix
Eigensystem Routines-EISPACK Guide, Lecture Notes in Computer Science 6, Second Edition,
Springer-Verlag, Berlin, New York, 1976.

[23] J. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ, 1963.
[24], The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, U.K., 1965.
[25] ,Inverse iteration in theory andpractice, Symposia Mathematica, Vol. X of the Institute Nationale

di Alta Mathematica Monograf, Bologna, Italy, 19 (1972), pp. 361-379.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 573-595, March 1992

1992 Society for Industrial and Applied Mathematics
OO9

GENERALIZED SCHWARZ SPLITTINGS*

WEI PAI TANGt

Abstract. A classic mathematical technique, the Schwarz Alternating Method (SAM), has
recently attracted much attention from researchers in the field of parallel computations, as well as
theoreticians. Its advantages in parallelism, wide applicability and great flexibility in implementation
make SAM a competitive choice in parallel computations. However, the computational performance
of the classical SAM and its modern extensions strongly depend on the amount of overlap between
the neighboring subregions. Introducing a large overlap has changed the image of SAM from an
impractical theoretical technique to a rewarding numerical approach. However, the duplication of
work in these overlapped regions is undesirable. Reducing the amount of overlap without affecting
the speed of convergence has become an important performance issue.

Schwarz Splitting (SS) has been proposed as an extension of SAM in numerical linear algebra, and
a generalized SS is presented in this paper. The new approach allows utilization of the flexibility of
the splitting to further improve convergence speed and complexity. A fast convergence is obtained by
choosing a good splitting instead of increasing the overlap. The best performance of our generalized
SS is much better than that of a previously recommended SS, in which a large overlap is used. Both
convergence analysis and numerical results are presented here.

Key words. Schwarz Alternating Method (SAM), Schwarz Splitting (SS), generalized Schwarz
splitting, domain decomposition, parallel computation, overlap

AMS(MOS) subject classifications. 65F10, 65N10

1. Introduction. Experience with the new generation of parallel computers has
promoted efforts to search for truly parallel algorithms rather than parallelizing the
existing sequential algorithms. For coarse grain parallelism, domain decomposition
has become an increasingly important focus of research for the numerical solution of
partial differential equations.

A classic mathematical approach, the Schwarz Alternating Method (SAM) (1869),
[16] appears to offer promise for the parallel solution of the very large systems of lin-
ear or nonlinear algebraic equations that arise when elliptic problems in elasticity,
fluid dynamics, or other important areas are discretized by finite elements or finite
differences. With this approach, a large problem is decomposed into several coupled
subproblems. If a proper ordering is used, these subproblems can be solved indepen-
dently. Starting from a given initial guess, the solution is iterated in each subregion
and new values are exchanged on these coupled artificial boundaries. This process will
converge to the solution for the entire region. Flexibility in mapping these subprob-
lems into different parallel computer topologies and the advantageous ratio between
communication and computation make SAM a tempting choice in parallel processing.
It is also crucial for some complex fluid flow calculations that different modelings or
grids be applied to different subdomains of the flow. For example, in many appli-
cations we need to merge Euler’s equation, the Navier-Stokes equations, potential
flow, and other models in suitable subregions for a single large problem. There are
also applications where composite meshes in regions with complicated boundaries are
needed. SAM can provide a natural framework within which all these requirements
are met.

The recognition of SAM’s potential in numerical computations was a rather recent
event [2], [14], [11], [12], [5], [17], [4], [10], [3]. This delay may have been caused by

Received by the editors January 30, 1989; accepted for publication (in revised form) January
14, 1991. This research was supported by the Natural Sciences and Engineering Research Council of
Canada.

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

573

574 w.P. TANG

some disappointing experiments with earlier implementations of SAM [15]. During
the past several years, understanding of SAM’s computational behavior has become
clearer. If the area of the overlap regions is a constant fraction of the subregions, it
has been shown that the convergence of SAM is independent of the mesh [12], [3].

Several modern extensions of SAM have been proposed. For example, a gener-
alization of SAM in linear algebra--Schwarz splittings--was introduced in [14], [17],
and an additive version of SAM is being investigated [4], [3]. It is now known that the
convergence of the classical SAM and most of its extensions strongly depend on the
amount of overlap between subregions. Introducing a larger overlap does consider-
ably improve the performance of SAM [12], [8]. In conjunction with other acceleration
techniques, such as multilevel techniques, preconditioning or SOR accelerations, SAM
has proven to be a useful method in large scale scientific computations. However, one
undesirable feature of SAM is the duplication of work on the overlapped regions at
each iteration. Reducing the amount of overlap without affecting speed of convergence
has become an important performance issue.

Schwarz originally proposed a coupling between subregions which requires only
the continuity of the unknown. Kantorovich and Krylov ([9, pp. 617-626]) presented
a rather general convergence result of SAM for a second order partial differential
equation of the form

L(u) F x, y, u, -x’ -y’ Oxi’ Oy2]
O,

with Dirichlet boundary condition. They also used Dirichlet boundary condition on
the artificial boundaries. It is not difficult to observe that we can replace the continuity
of the unknown on these artificial boundaries by other couplings, for example, the
continuity of the unknown’s derivative. Several attempts to use different boundary
conditions on these overlapped regions were not very successful [17], [13], leading
us to conjecture a few years ago that "For different problems the best choice of the
type of boundary conditions may vary. It is a very interesting open problem for future
research." For the model problem, it was shown that the Dirichlet boundary condition
has a better convergence rate than the Neumann boundary condition [17].

In this paper, a new coupling between the overlap subregions is identified. If a
successful coupling is chosen, a fast convergence of the alternating process can be
achieved without a large overlap.

Before proceeding, let us introduce a generalized version of SAM. We consider
the Dirichlet problem for a second order elliptic operator L

L(u(x))- 0, x e ,
(1)

u(x) Ira (x), x e Fn,

where is a bounded region in k-dimensional space, Fn is the boundary of , and
x (xl,x2,’" ,xk} is the independent variable (Fig. 1 shows an example of the two-
dimensional case). To simplify the discussion, we consider a case for two subregions,
although direct generalization can be made to more subregions. We also assume that
the solution to this problem exists and is unique.

Split the solution domain into two overlapping subdomains 1 and ’2 (see Fig.
1), provided 2 N 2 q}. Denote FI, F., F12 the boundaries of , 2,
and 2, respectively. We denote Fi, i 1, 2, the part of boundary which belongs to

GENERALIZED SCHWARZ SPLITTINGS 575

rl

FIG. 1. Two overlapping subregions.

F. Let F i 1, 2, be the part of the artificial boundary in fl. We have

F F U F,

Fa F U F.
Denote u and u2 as the solutions on subdomain and gt2, respectively. Then,

the following couplings

(e)

(3)

() Iri= (u) Ir,
(-) Ir g2(TM) Ir.

are true on the artificial boundaries F and F, where

(4) gi(u) wiu + (1 wi) On’ 1, 2.

With these new couplings we can formulate two coupled subproblems

L(ul(x))--0. x (’1.
it1 (x) IF1 (x).

gl (Ul (x)) IF gl (u2(x)) IF.
L(u2 (x)) 0. x e gt2.

.(x) Ir (x).

(.(x)) Ir (.(x))

576 w.P. TANG

We have the following result.
THEOREM l. If the boundary value problem

L(w(x)) 0, x e ft12,

(7) ((x)) Irl 0,

((x)) Ir 0,

has only trivial solution and the solutions ul, u2 o.f (5) and (6) exist, then
1. ul(x)=u2(x), xeft2.. (x) (x), x e ad u(x) (x), x e ,

where u, and u, u2 are the solutions of (1) and, respectively, (5) and (6).
The proof of this theorem is straightforward and a direct generMization of this

result to a finite number of overlapping subregions can be made. However, the same
proof can work only for the ce in which no three subregions have a common overlap
region. We say that problem (1) is equivalent to (5) and (6), if 1 and 2 in Theorem 1
are true. A version of this result in linear algebra will be shown in the next section.
Following Theorem 1, we can replace problem (1) by (5) and (6).

Since there are unknowns which are coupled in the boundary conditions of (5)
and (6), we cannot solve the two problems independently. Given an initial guess

u)]rl 0, we will then be able to construct a sequence {u{i), ui) } follows:

n(uO) O, x fl,

(8) u’) Ir ,
g (ul) Irl g(’-)) Irl,

(9)

(u0) 0, x e a:,

u’) Ir ,
g2(ui)) IF- g2(ui)) IF, i 1,2,....

A key question to ask is "Under what conditions will the sequence {ui) ui) } converge
to the solutions {u, u2} of (5) and (6)?" If it converges, then the solution of (1) can
be constructed from the solution of (5) and (6). An analysis for the model problem
will be given in 3.

The generalized SAM provides us with a general framework. Several questions
of implementation which affect efficiency are left open. We can effectively tailor this
approach to different problems or a different computer architecture. In particular,
the following issues have an important impact on performance in real applications.

The choice of the couplings gi(u). A better choice of gi can yield substantial
improvement in the convergence rate (see numerical results in 3).
The decomposition of the solution domain. The flexibility in decomposition
makes it possible to choose the geometry of most of the subregions to meet
the requirements imposed by fast solvers or by grids. A fast biharmonic solver
on irregular domains using generalized SAM is studied in [1].
The selection of the individual solution technique for each subdomain. We are
able to use different solution techniques for different subproblems. It is also

GENERALIZED SCHWARZ SPLITTINGS 577

possible to use different ways to obtain the solution of the same subproblem
in the different stages of the computation, allowing us to use an optimal ap-
proach at any particular moment and in any particular location. Hierarchical
grid and inexact solution strategies are typical examples here [18], [7].
Numerical model for each subproblem. Special boundary shapes or local
behavior of the solution may require different models in different subregions.
The decoupled subproblems allow us to localize the special treatment to the
place where it is needed. Composite grids are a good example of this case.

A particularly important application of SAM is for parallel computations. In the
previous description of generalized SAM, the parallelism is not very obvious. When
the number of the subregions is greater than or equal to the number of processors,
we can color the subregions such that subregions with the same color can be solved
independently. There are many issues which need to be considered in practical parallel
implementation such as load balancing, communication, synchronization, and ordering
of the solution of the subproblems. These are very important in terms of parallel
efficiency; however, we shall not study them in depth here.

In the next section, a generalized Schwarz Splitting (generalized SS) and an equiv-
alence theorem are presented. This generalization is an analogy of the generalization
from SAM to Schwarz Splitting. Then, an application of this generalized SS to the
solution of elliptic equations is shown in 3. The convergence analysis of the strip case
and our numerical results indicate that the performance of a proposed generalized SS
depends mostly on a coupling parameter . A fast convergence rate based on a
proper choice of a can be obtained with very little overlap, thus the concern about
the duplication of computation in the traditional SAM can be alleviated.

2. (eneralized Schwarz Splittings. In this section we present an extension
of the generalized SAM to numerical linear algebra. For a matrix equation Ax f,
we first introduce a Schwarz enhanced equation A5 . The corresponding matrix
A is called a Schwarz enhanced matrix. A necessary and sufficient condition for the
equivalence of the original equation and the Schwarz enhanced equation is shown.
The analogy of applying generalized SAM to the matrix equation is equivalent to
applying a particular block Gauss-Seidel scheme to the Schwarz enhanced matrix.
The corresponding splitting of the Schwarz enhanced matrix is called generalized
Schwarz Splitting (generalized SS). With this extension, many classical results in
numerical linear algebra can be applied to this problem.

2.1. Definitions. As we mentioned in the introduction, the approach of the
generalized SAM to a problem is to create an equivalent problem which consists of
several loosely coupled subproblems, then to solve the subproblems iteratively. It
is not necessary to view SAM only as a way of solving elliptic partial differential
equations, as it can also be viewed as a general method for problem solving. Here the
generalized SAM is discussed in terms of matrix theory. This approach provides new
opportunities for generalizing and improving the original SAM.

Consider a matrix problem:

(10) Ax f,

where A is an N N nonsingular matrix, f and x are N vectors. A partitioned form
of (10) will be used in the rest of this paper. A partition is defined by the integers
nl n2,’. n2k+l such that

(11) nl + n2 +... + n2k+ N,

578 W.P. TANG

(12) n2{ > 0, n2+1 _> 0, i 1,... ,k.

Given a set {nJ=l2k+l which satisfies (11) and (12), the (2k + 1) x (2k + 1) partitioned
form of the matrix A is then given by

(13) A

A1 A1 2 A1 2k+l

A A A+

A2k+l A2k+l 2 A2k+l 2k+l

where A{ j is an n x nj submatrix. We always assume that the unknown vector x
and the known vector f in the matrix equation Ax f are partitioned in a form
consistent with A. Thus, if A is given by (13), then x is assumed to be partitioned as

(14) X XlX2" X2k+I

where x is an n x 1 matrix (column vector). An augmented vector of x

is defined such that all even subvectors x2, i 1,-.., k are duplicated once in their
places, and all odd subvectors remain the same.

We present the cases for N 3 and 5 here for readability. The generalization to
a large N is direct. A dense 3 x 3 partitioned matrix can be written as

A11 A2 A13 1A21 A22 A23
A31 A32 A33

If the operator L(u) in (1) is a linear second order elliptic operator, then the
discretized problem can be written as a matrix equation:

(16) Ax,= A21 A22 A23 2 f2 f.
A31 A32 A33 x3 f3

The order of the unknowns is arranged so that Ix1, x2] corresponds to the unknowns in
1, Ix2, x3] corresponds to the unknowns in D2, and Ix2] corresponds to the unknowns
in D12, which is the overlapped region. The numerical generalized SAM for the above
problem solves the following subproblems alternately:

(17)

All A12 xi) fl 0 A13 x._(-1/2) / 1)A2 B2 x2 f2 C2 A23 x3

B A23
x(3i) _+_ (i-1/2)A32 A33 f3 A31 0 x2

where

(18) A22 B2 + 62 B -+-C.

GENERALIZED SCHWARZ SPLITTINGS 579

The splittings in (18) correspond to the couplings in (2) and (3). In the next
section we will show that a good choice of the splitting of A22 can significantly affect
the convergence of SAM. It is therefore a very interesting research problem for further
improvement of SAM.

It is not difficult to observe that this procedure is equivalent to a 2 2 block
Gauss-Seidel iteration for the following matrix equation:

(19) A5

0 A13 :
C2 A23 :
B A23 J:
A32 A33 :

Under certain conditions [141, [171, we know that the procedure (17) will converge,
the solution of (19) satisfies 52 5, and [5,52, 53]T is a solution of (16). This is to
say, the augmented vector of the solution of (16) is the solution of (19) and vice versa.
Later we will prove that this conclusion can be true only when (B2-C)- exists. For
most approximations of an elliptic partial differential equation, this restriction is not
very difficult to satisfy. We shall call (19) the generalized Schwarz enhanced equation
of (16), and the corresponding matrix A in (19) the generalized Schwarz enhanced
matrix of the matrix A.

It may be observed that the second equation in (16) becomes a pair of dual
equations in (19):

A21l -4- B22 -4-C2 -4- A233

A211 -4- C2 + B2x2 -+- A233 f2.
They are almost identical, except the term A22x2 of the second equation in (16) is
split in two different ways:

A22x2 == B22 + C2,
I.. I,.IA22x2 == 62x2-4- B2x2.

Here is another example of a 5 5 block matrix equation and its generalized
Schwarz enhanced equation:

A15
A25
A35
Aa5
A55

Xl fl
x2 f2
X3 f3

All
A21
A21
A31
A41
A41
A51

A12

0

0

0

0

0 A13 A14
C2 A23 A24
B A23 A24
A32 A33 A34
A42 A43 B4
A42 A43 C
A2 A3 0

0

0

0

0

A54

A15
A25
A25
A35
A45
A45

X4

x
x

580 W.P. TANG

where

A22 B2 + C2 B + C,
Aaa Ba + Ca B + C.

For a general partitioned matrix (13), the splittings of the submatrices A2i 2i are

A2 2 B2 + C2 B / C.
From these examples, we can summarize the following rules for constructing the
Schwarz enhanced equation. The odd-numbered equations in Ax f are changed
to

2k+l

A1 jxj fl,
j--1

i-1 2k+l

j=l j=l

l<i<_k,

k+l k

j=l j=l

while the even-numbered equations become a pair of dual equations in the generalized
Schwarz enhanced equation:

(20)

i-1 2k+l
XA2 2j-1x2j-1 + A2 2jx + B2x2 + C2 2 + A2 jx f2

j=l j=l j=2i+l

i=l,...,k.

Only two terms are different in the two dual equations. We will not describe the
details of how to form the generalized Schwarz enhanced matrix in general cases, as
it is similar to the Schwarz enhanced matrix described in [17]. From the construction
of the generalized Schwarz enhanced equation, it is easy to see the following result.

LEMMA 1. If the vector x (Xl,X2,...,X2k+l)T i8 the solution of (10), then
it_s augmented reactor is the solution of the generalized Schwarz enhanced equation
A5- f, where f is the augmented vector of f.

The matrices A2i 2i, i 1,... ,k, are also called overlapped blocks. Let two
matrices B and C be the Schwarz enhanced matrices of the same matrix A and their
overlapped blocks are B2i 2i and C2 2, i 1,..., k, respectively. If B2 2 and C2 2

have a relationship such that each B2L2i is a submatrix of the corresponding C2i 2,

we then say C has more overlap than B. This overlap is closely related to the overlap
area of the solution regions for the subregions mentioned in the introduction. As
we have shown in [17], for the continuous model problem, if the amount of overlap
increases, then the convergence rate will increase if a traditional SAM is applied. For
the matrix model we have a similar result [12].

GENERALIZED SCHWARZ SPLITTINGS 581

2.2. Equivalence theorem. A necessary and sufficient condition for the equiv-
alence of (10) and its Schwarz enhanced equation (19) is given in this section. Let A
be the same partitioned matrix in (13) and A be its Schwarz enhanced matrix.

THEOREM 2. Let A(A), A(A), and A(B2i- Ci), i 1,...,k, be the sets of
eigenvalues of A,A, and (S2i- Ci), i-- 1,..., k, respectively. Then A(A) c A(A)U
(Uk=1%(B2 C)).

Proof. Let % be an eigenvalue of A and

be the corresponding eigenvector. Substituting 5 into the equation 2i and its dual
equation, we have

i-1 2k+l
A2 2j-l2j-1 + A2 2jx + B2i2 + C2 2 + ’ A2 x A2i,

j--1 j--1 j--2i-t-1

i-1 2k+l
g2i 2j--lX2j--1 2v A2i 2jX2j 2_ 62 2i 2t- - A2i

j=l j--1 j--2i+l

As we mentioned in the last section, only two terms are different in the left-hand sides
of the two equations. Subtracting the first equation from the second, we have

i-- 1,...,k.

If52i-x, 0 for some i, then we have e U,=I ,(B2,-C,). If U, A(B2,-C,),
then 52i has to be equal to 5i for i 1,..., k. Therefore, 5 is an augmented vector
of x (51,52,53,""", 52k+)T, which will satisfy equation

Ax Ax.

Thus A e A(A), which concludes the proof.
Define the Schwarz enhanced equation (19) as equivalent to (10) if A-1 exists

and the solution vector 5 is an augmented vector of the solution x of (10). Similarly,
we say that the Schwarz enhanced matrix . is equivalent to matrix A if -1 exists.
With this definition and the result from Theorem 2 we have the following theorem.

THEOREM 3. If a matrix A is a Schwarz enhanced matrix of the nonsingular
matrix A, then the following conditions are equivalent:

1. Matrix A is equivalent to matrix A.
2. 0 LJik__l A(S2,

kProof. If 0 (.Ji=l A(B2- Ci), then from Theorem 2 we know .- exists.

Applying thee same strategy used in the previous proof, we can show that the solution
5 of A5 f is an augmented vector of the solution x of Ax f.

kNow we show that 0 [.Ji= A(B2i Ci) is also a necessary condition. Suppose
there is a j such that 0 e A(B2j -Cj). We know that (B2j -Cj) is singular, hence
so is (Bj C2j), since (B2j Cj) (Bj C2j). Now, if we subtract row 2j from

2j in matrix A, we will have

(21) 0, , 0, (B2j C), -(Bj C2j), 0, , 0.

This means that A is singular. The proof is complete.

582 w.P. TANG

If a matrix is a positive definite matrix or an M-matrix,1 any principal minor of
this matrix is also a positive definite matrix or an M-matrix, respectively. Thus, if
we choose C2 0 and C 0,2 we immediately have the following corollaries.

COROLLARY 1. Any Schwarz enhanced matrix of a positive definite matrix A is
equivalent to A if C2 0 and C 0, i 1,..., k.

COROLLARY 2. Any Schwarz enhanced matrix of an M-matrix A is equivalent to
A if C2 0 and C 0, i 1,..., k.

3. A parameteri.ed generalized Schwar. Splitting. The general frame-
work of a generalized SS is given in the last section. Here, the convergence behav-
ior of a particular generalized SS for the elliptic equation, namely, parameterized
generalized SS, is studied. In a traditional approach to SS, we choose C2 =- 0. In this
case, it is well understood that the amount of overlap is a key factor which affects
the convergence rate. Even though a larger overlap means more duplication of work
on these overlapping regions, the overall complexity is still better than with a smaller
overlap. However, a natural question is raised: is a larger overlap the ultimate choice?
The generalized Schwarz Splitting discussed in the previous section provides a way to
explore possibilities of further improving the performance of SAM. In particular, we
will examine the importance of splitting

A2i 2i B2i + Ci Bi +

First, an application of generalized SS to a two-point boundary value problem is
investigated. A similar approach can also be applied to two-dimensional problems.

Consider a two-point boundary value problem

U"(x) + qU(x)-- f(x),

U(0)-- a0,

xe (0, 1),

U(1) ---al,

where q <_ 0. After discretization using a centered finite difference, the resulting linear
system is

(22) Tn()x b,

where

Tn() Tridiagonal(- 1, , -1}

and _> 2. If there is no ambiguity, it will be abbreviated as T. Denote

Tn(Xl,X2,X3)

as the same n n tridiagonal matrix Tn(x2), except the first diagonal element is xl
and the last is x3.

The generalized SAM for solving this problem divides the region into k overlapping
subregions i 1,..., k as shown in Fig. 2. (To simplify the analysis we assume the
overlap pattern is uniform). Let h be the grid size, the length of the overlap and

Any n x n matrix A (aij) with aij _< 0 for all j is an M-matrix if A is nonsingular, and
A-1 > 0.

2 In the traditional approach of SAM, we always choose C2i 0 and Ci 0.

GENERALIZED SCHWARZ SPLITTINGS 583

C-

FIG. 2. One-dimensional overlapping grid.

the length of every subregion. Then let n + 1 l/h, g/h and m + 1 /h. Here
we assume

< m/2,

which means no three subregions have a common overlap part. The open circle points
in Fig. 2 are the boundaries of the subregions.

We display the case of k 3 for readability. The general case can be easily
extended from this case. The partitioned form of (22) is now

0 0

0 0 r- r 1Xl bl
x2 b2
X3 b3
x4 b4 jL x5 55

Its corresponding Schwarz enhanced equation is

-E2 B2

-E2 C
0 0

0 0

0 0

0 0

0 0 0

C -F 0

B -F 0

-E3 T,-2 -F3

0 0

0 0

0 0

0 0

C4 -F40 -E4 B4

0 -E C
0 0 0

The quantities above are defined as

X3

X4

X5

bl

b2

b2

b

.b4

b4

b5

FI: an (m- l) matrix with zero elements everywhere except for a 1 in
position (m l, 1).
F2: an (m- 2/) matrix with zero elements everywhere except for a 1 in
position (m 21, 1).
F3: an (m- 2/) matrix with zero elements everywhere except for a 1 in
position (m 21, 1).

584 w.P. TANG

* Fa: an (m- l) matrix with zero elements everywhere except for a 1 in
position (m l, 1).

* E2: an (m- l) matrix with zero elements everywhere except for a 1 in
position (1, m 1).

* E3: an (m- 2/) matrix with zero elements everywhere except for a 1 in
position (1,1).
Ea: an x (m- 2/) matrix with zero elements everywhere except for a 1 in
position (1, m 2/).
Es: an (m- l) matrix with zero elements everywhere except for a 1 in
position (1,1).

There are many ways to split the matrix T. We will introduce a parameterized
generalized SS for this problem below. Let

F be an matrix with zero elements everywhere except for a 1 in position
(l, l) and

C C2 Ca cF, B B2 Ba T C.

E be an matrix with zero elements everywhere except for a 1 in position
(1, 1) and

B’ B B’a T -C’,

where 0 < < 1. It is not difficult to show that

det(B C’) det(T(c, , ()) 0,

provided _> 2. The resulting Schwarz enhanced equation is equivalent to (22). Then
the parameterized generalized SS of (22) is defined as

Tn M(o) N(o)
T 0 0 0 gl 0

0 T2 0 L2 0 U2
0 0 T3 0 L3 0

where

T T(Z,Z,Z-),
E2 E

L2= 0 0

0 0

u=[0 0

F F2 o u= o o
cF Fa

A simple calculation can show that the relationship between and w in (4) is

1-c

1-+hc

When 0, we have w 1. Thus, this parameterized generalized SS reduced to
the traditional SS, namely, a Dirichlet boundary condition, is used on these artificial

GENERALIZED SCHWARZ SPLITTINGS 585

boundaries. If/ > 2 and a 1, we have w 0. It is equivalent to using a Neumann
condition on the artificial boundaries. (If/ 2, we can use a Neumann condition on
only one of the boundaries for interior subregions. Otherwise, the resulting $chwarz

enhanced matrix is singular. For two-dimensional problems, if a strip decomposition
is employed, then a Neumann boundary condition can be used for both artificial
boundaries.) For 0 < a < 1, this generalized SS corresponds to

+

The convergence analysis of this parameterized generalized SS is therefore reduced to
calculating the spectral radius of the block Jacobi matrix J M-1N. Notice that
the matrix N(a) has only eight nonzero elements. So the matrix J M-1N has only
eight nonzero columns, provided < m/2. They are related only to the elements in
the last or first columns of the matrices T-I, T2-1, and T3-1. Let ti,j be the elements
of the matrix T-I(/) and Di(/) det T(/). We have the following results (see [6]):

sinh(n + 1)0/sinhO, > 2, 2coshO ,
Dk() n+ l, /= 2,

sin(n + 1)0/sinh 0, / < 2, 2 cos 0 =/,

Dj_l()Dn_i()/D,(), i j,
ti,j

Di_t()Dn_j()/Dn(), i < j.

Bed on this result, the elements of Tt and T can be eily derived from the
Sherman-Morrison formula. We will not elaborate on the detailed derivation here.

Denote the lt columns of the matrices T[andT by t(t) and t(2), respectively:

(d

Note that elements t) are functions of a. Since matrix T3-1 is a permuted matrix of
T-1, the first column of the inverse T3-1 can be derived from the last column of T-1
by a simple permutation. Let pT be a permutation matrix; permute columns m- l,
m-l+l;m+l,m+l+l;2m-l, 2m-l+l;2m+l, 2m+l+lto3m-k+l,
k 8, 7,..., 1, respectively. J can be similarly transformed to :

where

G

o

t2)

t(2)
t(2)
m--l+1
o

586 w.P. TANG

Note that matrix G has only four independent columns. After a simple reduction,
we know the following matrix includes four nonzero eigenvalues of G:

0 t)_t-at)_t+ 0 0

o o
0 0

0 0 0

0 0

a 0 0

0 0 0

Let

1

1 0 -1 0

0 1 0 -1

0 1 0 1

1 0 1 0

We have

0

HG’H g2 + g3

0

0

Thus, the four eigenvalues of G’ are:

gl 0 0

0 0 0

0 0 g2 g3

0 gl 0

+v/m(g +

Here we present two figures to show the relationship between the spectral radius
and the parameter (. For both cases, the size of each subproblem is m 10 and
f 2. When > 2, the generalized SS has a faster convergence rate. Figures 6
and 7 will show the results for the latter case. The x-axis is the parameter c, while
the y-axis is the spectral radius of the Jacobi matrix for the generalized SS. The
top figure shows the case of one overlapping node while the lower one demonstrates
the case of overlapping half the subregion. In Fig. 3, we can see that the traditional
SS (when c 0) has a very poor convergence rate, since the overlap is so small.
The convergence factor is 0.9. To reduce 12 norm of the residual by a factor of 106
requires more than 60 iterations. When the parameter a approaches 1, an amazing
improvement of the convergence rate appears. For (0.9, the convergence factor is
less than 10-4 That is to say, only very few iterations are needed for any particular
computation. From the second picture, we can observe when a 0.85 the convergence
rate of the generalized SS approaches the optimum. But the optimal convergence rate
in this case is even worse than having minimum overlap, and the only positive point
here is the sensitivity of the convergence rate with the parameter a.

GENERALIZED SCHWARZ SPLITTINGS 587

1.o

0.5

o.o

Three subregions with minimum overlap

_J ’i

0.5 .0

One dimensional problem)

1.o

0.5

o.o

Three subregions with half overlap

0.0 0.5 ..0

SpecLral radius versus alpha

FIG. 3.

A numerical test has verified this analysis. The problem we, are testing is

y"(z) 2e cos z, xe (0, 1),

y(0) 0, y(1) e sin(l),

which has a solution y(x) ex sin(x). The solution region is covered by three overlap
subregions with m unknowns each. Two neighboring subregions have one overlapping
grid node. A random initial guess is used when the iteration starts and the 12 norm
is used to measure convergence. For e 0.948, m 20, and 2, the residual is
reduced by a factor of 10la after three iterations. The results are the same for different
mesh sizes. For e 0.9, m 10, and 2, the residual is reduced by a factor of 1015
after three iterations. By comparison, the traditional SS with the same overlap will
take 60 iterations to reduce the residual by only a factor of 105.

588 w.P. TANG

We apply the traditional SS to the same problem with an overlap of half of
the subregion. Numerical testing shows that 11 iterations are needed to achieve a
reduction of the initial residual by a factor of 105. If an optimal c is used, 4 iterations
are needed. This again verifies the analysis shown in Fig. 3. The above results are
summarized in Table 1.

TABLE 1

Classical SAM

Generalized SAM

Minimum overlap

Convergence
factor

0.91

10-4

Number of
iterations

6O

Half overlap

Convergence
factor

0.68

0.06

Number of
iterations

11

In general, for k overlapping subregions, the nonzero eigenvalues of the Jacobi
matrix are included in those of the following (k 1) (k 1) block matrix:

D1 L 0 0 0

U D2 L 0 0 0

0 0 U D2 L
0 0 0 U D3

There will not be a closed form for the eigenvalues of Gk when k > 4. In Fig.
4 we present a numerical result for the spectral radius of J where five overlapping
subregions exist. The first picture is for the minimum overlap case, while the second
is for the overlapping half of the subregions. Again, a significant improvement can be
obtained by choosing a good parameter a.

For the two-dimensional problem

qU(x, f(x, (x, y) e (0, 1) (0, 1),

U(x, y) Ir g(x, y),

where q < 0, a matrix equation

Ax=b

can be derived using the centered finite difference. Given grid size h 1/(n + 1), A
can be written as

A Tn(/) (R) In + In (R) Tn(2),
where > 2. Decompose the solution region into three overlapping subregions (in
strip). The overlap pattern in the x-direction is exactly the same as in the one-
dimensional case. The corresponding Schwarz enhanced matrix is

A1 -F1 0

-El A2 -F
0 --El A3

GENERALIZED SCHWARZ SPLITTINGS 589

1.O

0.5

[3.0

Five su.bregions with minimum overlap

I’---

(One dimensional problem)

I.[3

[3.5

[3.[3

Five subregions with half

Spectral radius versus alpha

FIG. 4.

where

A1 T1 (R) I, + Im (R) Tn(2),

A2 T2 (R) In + Im (R) Tn(2),

A3 T3 (R) In -5 Im (R) T(2),

El E, (R) I,,

F= F, (R) I,,

Em is an m x m matrix with zero elements everywhere except for a 1 in
position (1, m- l) and a in position (1, m- l+ 1).

590 w.P. TANG

* Fm is an m m matrix with zero elements everywhere except for an a in
position (m, m- l) and 1 in position (m, l- 1).

The Jacobi iterative matrix for the generalized Schwarz splitting is

0 A- 0 E1 0 F1
0 0 A1 0 E1 0

Let

I(R)X, o o
o I.(R)x, o
o o .(R)x,

where Xn is an orthogonal matrix. Each column in Xn corresponds to an eigenvector
of matrix Tn(2) and XnT,(2)X, On diag {di}, di 2 + 2cos(ir/(n + 1)),
i 1,..., n. Note that U is orthogonal and UNU N. So

J’ UJUT

(UMUT)-IN
MN

where

A 0 0

M= 0 A 0

0 0 A3
Ai (Im (R) Zn)Ai(Im (R) Zn)T

T (R) In + Im (R) Dn.

Let P be the permutation matrix which permutes row (k-1)n/i to (i-1)3m+k,
k 1,...,3m, i- 1,...,n. Then

pj,pT

J(dl)
J(d2)

J(dn)

where each J(di) is the Jacobi iterative matrix of the generalized SAM for matrix
Tn(di) in the one-dimensional case. Similar to the traditional SAM, we found that
the convergence of the lower frequency components are slower than that of higher
frequencies. We present two pictures in Fig. 5 to show how PJ(d) changes when
di changes. The first represents three subregions with minimum overlap, while the
second shows the same number of subregions with half overlap.

Another two sets of figures (Figs. 6 and 7) present the relations between the
spectral radius Pg(d) and the parameter a. The first set is for J(2.01) and the other is

GENERALIZED SCHWARZ SPLITTINGS 591

0.3

0.2

O.

O.O

Three subreions with minimum overlap

(alpha 0.87)

O. I0

0.05

0.00

Three subreliions with half overlap

Spectral radius versus eigenmode

FIG. 5.

for J(5.99), which represent the lowest and the highest frequencies of the eigenmodes,
respectively. Both sets have one figure for minimum overlapping (one grid line) and
another for overlapping half of the subregion. We can see that the sensitivity of the
convergence rate with the parameter is better in a two-dimensional problem. It
is also noticeable that the convergence of the higher frequency mode is very fast for
all .

Numerical testing results for the model problem

AU(x, y) -2x(1 x) 2y(1 y), (x,y) e (0, 1) x (0, 1),

u(, u) I o

592 w.P. TANG

1.O

0.5

O.O

Three subregions with minimum overlap

0.0 0.5

(J(d,))

1.O

0.5

O.O

Three subregions with half overlap

0.0 0...% .0

Spectral radius versus alpha

FIG. 6.

are given in Fig. 8. We present the relations between the number of iterations and
the parameter a in these figures. Testing is carried out for three and five subregion
cases, and for each decomposition, both minimum overlap and half overlap are tested.
The initial guess is randomly generated. To make the programming easier, the grid
size is slightly different for each case. h is between 1/40 and 1/50. The results plainly
verify our analysis. The x-axis is the parameter c while the y-axis is the number of
iterations needed for reducing the initial error by a factor of 105.

4. Conclusion. From the above analysis, a generalization of the traditional
SAM is presented and the improvement of its performance is significant. The re-
sults of this study suggest that there may be other interesting splittings or couplings
with good or even better performance characteristics. So far, our analysis has been

GENERALIZED SCHWARZ SPLITTINGS 593

1oO

Three subregions with minimum overlap

o.o o.5 .o

(J(dn))

1.o

0.5

Three subregions with half overlap

o.o o.5 .o

SpecLral radius versus alpha

FIc. 7.

restricted to a simple case, namely, the strip decomposition. In particular, the close
form of the spectral radius did not provide us with an insight of how the convergence
is related to the decomposition and the parameter a. We do not have the same intu-
itive understanding we had for the classical SAM. More interesting problems remain
to be studied. The effects of different couplings on the convergence of SAM have also
been observed in a study for the fourth order equation [1].

We should also indicate that there is an extreme sensitivity between the param-
eter a and the convergence rate of generalized SS. A better understanding of this
sensitivity is needed to make this generalized SS a practical technique.

Acknowledgment. The author would like to thank G6rard Meurant and referees
for their valuable comments on this paper.

594 w.P. TANG

Three subreglons with minimum oerlap

12

I0

0.0 0.5 1.0

Three subregions with half overlap

0.0 0.5 l.O

Two dimensional problem

Five subregions with minimum overla

o.o 0.5 1.o

Five subregions with half overlap

15

I0

0.0 0.5 1.0

Number of iterations versus alpha
FIG. 8.

REFERENCES

[1] T. CHAN, D. GOOVAERTS, AND W. P. TANG, A fast biharmonic solver on irregular domains

using a generalized Schwarz alternating method, Tech. Report 37, University of Waterloo,
Waterloo, Ontario, Canada, 1989.

[2] R. V. DINH, R. GLOWINSKI, AND J. PERIAUX, Applications of domain decomposition tech-

niques to the numerical solution of the Navier:Stokes equations, Tech. Report, INF-LAB,
France, 1980.

[3] M. DRYJA, An additive Schwarz algorithm for two- and three-dimensional finite element elliptic
problems, in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Periaux, and O.
Widlund, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989,
pp. 168-172.

[4] M. DRYJA AND O. WIDLUND, An additive variant of Schwarz alternating method for the case

of many subregions, Tech. Report 339, New York University, New York, NY, 1987.

GENERALIZED SCHWARZ SPLITTINGS 595

[5] L. W. EHILICH, The numerical Schwarz alternating procedure and SOR, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 989-993.

[6] C. F. FISCHEtt AND R. A. USMANI, Properties of some tridiagonal matrices and their appli-
cation to boundary value problems, SIAM J. Numer. Anal., 6 (1969), pp. 127-142.

[7] G. H. GOLUB AND M. L. OVEttTON, The convergence of inexact Chebychev and Richardson
iterative methods for solving linear systems, Tech. Report, Stanford University, Stanford,
CA, 1987.

[8] A. GItEENBAUM, C. LI, AND H. Z. CHAO, Parallelizing preconditioned conjugate gradient
algorithms, Tech. Report, New York University, New York, NY, 1988.

[9] L. V. KANTOIOVICH AND V. I. KIYLOV, Approximate methods of higher analysis, Fourth
Edition, P. Noordhoff LTD, Groningen, the Netherlands, 1958.

[10] P. L. LIONS, On the Schwarz alternating method. I, in First International Symposium on Do-
main Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub,
G. Meurant, and J. Periaux, eds., Society for Industrial and Applied Mathematics, Philadel-
phia, 1988, pp. 1-42.

[11] U. MEIEtt, Two parallel SOR variants of the Schwarz alternating procedure, Tech. Report,
Zentralinstitut fiir Angewandte Mathematik, 5170 Jiilich, West Germany, 1986.

[12] J. OLIGER, W. SKAMAROCK, AND W. TANG, Convergence analysis and acceleration of the
Schwarz alternating method, Tech. Report, Computer Science Dept., Stanford University,
Stanford, CA, 1986.

[13] G. RODttIGUE, Personal communication, 1987.
[14] G. RODRIGUE AND J. SIMON, A generalization of the numerical Schwarz algorithm, in Com-

puting Methods in Applied Sciences and Engineering VI, R. Glowinski and J. Lions, eds.,
North-Holland, Amsterdam, New York, Oxford, 1984, pp. 273-282.

[15] R. SCHIEIBEI, Personal communication, 1986.
[16] H. A. SCHWArtZ, Ueber einige abbildungsaufgaben, J. Reine Angew. Math., 70 (1869), pp.

105-120.
[17] W. P. TANG, Schwarz splitting and template operators, Ph.D. thesis, Computer Science Dept.,

Stanford University, Stanford, CA, 1987.
[18] H. YSERENTANT, Hierarchical bases give conjugate type method a multigrid speed of conver-

gence, Appl. Math. Comput., 19 (1986), pp. 147-158.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 596-610, March 1992

()1992 Society for Industrial and Applied Mathematics
010

FOURIER ANALYSIS OF FINITE ELEMENT
PRECONDITIONED COLLOCATION SCHEMES*

MICHEL O. DEVILLE AND ERNEST H. MUND

Abstract. This paper investigates the spectrum of the iteration operator of some finite element
preconditioned Fourier collocation schemes. The first part of the paper analyses one-dimensional
elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of
the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers
the set of one-dimensional differential equations resulting from Fourier analysis (in the transverse
direction) of the two-dimensional Stokes problem. All results agree with previous conclusions on the
numerical efficiency of finite element preconditioning schemes.

Key words, finite element, collocation method, eigenvalue analysis

AMS(MOS) subject classifications. 65N30, 65N35

1. Introduction. In the recent past, Chebyshev collocation schemes have been
applied extensively to the numerical integration of the Navier-Stokes equations [1],
[3], [4]. For scalar elliptic problems, it is well known that the condition number of the
matrix system of discrete algebraic equations increases rapidly with N, the number of
degrees of freedom of the problem at hand. Therefore, the preconditioning technique
seems to be the only adequate tool in order to overcome this numerical burden. The
present authors [5], [6] demonstrated that finite elements (FE) constitute powerful
preconditioners for general second-order elliptic equations. In [3], several fluid flow
elements in velocity-pressure formulation were investigated. From the analysis of
the eigenspectrum of the iteration operator, it was shown that the Q2-Q1 element
is the best choice for the steady Stokes problem. As all the previous analyses on
finite element preconditioning were carried out numerically, the present note aims at
analytical results through use of symbolic manipulation languages (cf. [10]).

For the sake of simplicity, we will restrict ourselves to the study of a finite element
preconditioned Fourier collocation scheme. Although the Fourier collocation scheme
has a condition number of the same order of magnitude as finite element methods and
therefore does not require preconditioning per se, the Fourier case provides uniform
mesh and a much simpler algebraic treatment; moreover, there is numerical evidence
that the Fourier results extend to the more difficult cases like Chebyshev or Legendre
collocation [1]. In 2, a one-dimensional elliptic model is considered. The collocation
process is preconditioned by Lagrangian linear, quadratic, cubic, and Hermite cubic
elements, respectively. The Richardson iteration method is set up with these FE
preconditioners as approximate operators and algebraic solvers. Using the spatial
structure of the eigenvectors of the Fourier solutions, one may perform a full analysis
of the eigenvalues of the iteration operator. This theoretical investigation corroborates

*Received by the editors January 16, 1990; accepted for publication January 9, 1991.
f University! Catholique de Louvain, Uniti de Mcanique Appliquie, Louvain-La-Neuve, Belgium.

The research of this author was partially supported by National Aeronautics and Space Administra-
tion (NASA) contract NAS-1-18605 while he was in residence at the Institute for Computer Appli-
cations in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, Virginia.

:Universit! Libre de Bruxelles, Service de Mtrologie Nucl!aire, Brussels, Belgium, and Uni-
versit Catholique de Louvain, Unit! de Thermodynamique et Turbomachines, LQuvain-La-Neuve,
Belgium. This author acknowledges the continuous financial support of the Fonds National de la
Recherche Scientifique (FNRS).

596

PRECONDITIONED COLLOCATION SCHEMES 597

the previous numerical analyses [6]. In 3, a one-dimensional hyperbolic model is
investigated using linear and quadratic FE preconditioning. The upwinding technique
is also examined. A further model consists n an advecton-diffusion equation. In
4, the Stokes problem is reduced to a one-dmensional incompressible flow model
amenable to Fourier discretization. The Q2-Q1 and Q1-P0 elements are candidates as
preconditioners. A similar Fourier analyss is done. The results corroborate numerical
experiments carried out in the framework of Chebyshev collocation [3].

2. Elliptic model. Let us first consider the simple elliptic problem:

(2.) - = L 0 _< z _<

with periodic boundary conditions. The subscript indicates partial derivative. The
Fourier approximation of the dependent variable u is

(N/)-

(2.2) UN = E ftveir’a:’ 0 < j < N,
p=-N/2

where fry are the discrete Fourier coefficients and xj the collocation points defined by

27rj(2.3) xj = --, j e [0,Y[.

The linear system corresponding to (2.1) may be found in [1] and will be denoted by
Lc. The eigenfunctions of (2.1) are

(2.4) j(p) eir’:J, 0 < j < N,

with the corresponding eigenvalues

= e 2’ 2

The collocation problem will be preconditioned by finite elements. Introducing the
approximate FE operator , the preconditioned Richardson iteration is written as

ftv.+ = ft -aL-(L]),

where k is an iteration index; czk a relaxation factor; and fi, f the vectors corresponding
to the unknowns and source terms at the collocation points. The convergence of
(2.6) is governed by the spectral radius p(A) of the iteration operator defined by
A I otk-lLc. The optimal value of the relaxation factor is

2
(2.7) Gopt min-.max
where ,min and ,max are the minimum and maximum eigenvalues of]-ILc. An
approximate estimate of the number of iterations n needed to reduce the error norm
by a factor is given by

(2.8) n = log (/Roo(A),

598 MICHEL O. DEVILLE AND ERNEST H. MUND

where Ro(A) -logp(A) is the asymptotic rate of convergence of the iteration
matrix. The spectral radius p(A), which is involved in the error reduction process
with the use of aopt (2.7), is given by

(2.9) p(A) Amax- Amin
max " Amin"

In order to investigate this quantity for various preconditioners, we have to define
the finite element problem more precisely.

Lagrangian linear elements, Hermite cubic elements (i.e., Q1, P3 in Ciarlet’s
notations [2]) as well as higher-order Lagrangian interpolants have their vertices at
the Fourier collocation grid (2.3). However, for Lagrangian quadratics (Q2), midpoints
are added at

(2.10) xj+1/2 - + j e [0,g[,

while for Lagrangian cubics (Q3), we have additional grid nodes located at

(2.11) x:i+l/3,x:i+2/3, j E [0, N[,

with obvious definitions. For the Lagrangian case, the FE unknowns are the nodal
values, while for the Hermite case, the unknowns are u and u the prime denoting
the first-order derivative of u. In [5], the iteration operator is written as

A =_ I- SiMhlhLc,
where Sh is the stiffness matrix, Mh the mass matrix, and Ih an interpolation matrix
evaluating the Fourier interpolant of the collocation operator at the FE nodes. The
mesh size of the FE grid is defined by

h- 2r/N.

For Q1 elements, Ih reduces to the unit matrix; for higher-order interpolants, however,
the structure of this matrix is more complicated. In order to avoid writing the details
of Ih, we will systematically assume the use of static condensation. Consequently, the
iteration operator may be written as follows:

(2.13) A- I- 2hLc,
where h and/Qh refer to stiffness and mass matrices after static condensation.

2.1. Linear Lagrangian elements. For an interior node, the expressions for
the stiffness and mass matrices are well known:

(2.14)
1

Su (-u_ + 2u u+),

(2.15)
h

Mhf.i -(fj-,- + 4fj + fj+).

Fourier analysis of (2.14), (2.15) with the eigenfunction (2.4) leads to the expression
of the eigenspectrum of SMhLc, denoted by a(p),

(phi2)2 (2 + cosph) N N
(2.16) a(p) < p < 1

sin2ph/2 3 2

PRECONDITIONED COLLOCATION SCHEMES 599

0.7

0.6
10 20 30 40 50 60

FIG. 1. Eigenspectrum of lif/lhLe .for an elliptic model. Preconditioners: Q1 ("); Q2 (,);
Q3 (/x); Cubic nermite (0).

Typically, the second factor in the right-hand side of (2.16) comes from the contri-
bution of the mass matrix. In the case of finite difference (FD) preconditioning, this
factor is one. For p 0, a(p) 1, while for p -N/2,a(p) 7r2/12. This last value
should be compared to the FD equivalent, which is a(p) 7r2/4 [7]. The eigenvalue
spectrum of the FE preconditioning is reduced because of the beneficial presence of the
mass matrix. Figure 1 shows the behaviour of a(p) with respect to p for h 27r/100.
The function has a minimum value equal to 0.693. Therefore, the optimum value for
c is

(2.17) Ctopt - 1.18,

and overrelaxation is possible for FE preconditioning unlike the FD preconditioning
where underrelaxation is required to converge. In practice, the Q1 preconditioning
with a spectral radius of 0.18 converges twice as fast as the FD preconditioner whose
spectral radius is of the order of 0.42.

2.2. Quadratic Lagrangian elements. The equations related to nodes j and
j 4- 1/2 may be cast in the following matrix form:
(2.18)

u.-1

1 -8 14 -8 1
h 0 0 -8 16 -8 u:+/

u+

8 1 0 01 fj-1/2

0 1 8 1] fj+l/2
f+

The use of static condensation eliminates the contribution of u-1/2 and u+1/2 and
(2.18) reduces to only one relationship for node j on the collocation grid

1 h
-(--Uj-1 "t" 2tj --Uj+I) (fj-l/2 + fj + f+1/2)"

Note that for h on the left-hand side of (2.19), we recover the stiffness matrix Sh as-
sociated to Q1 elements, whereas in the right-hand side, h:/h corresponds to a different
quadrature rule. Carrying out the Fourier analysis of (2.19), we obtain

(phi2)2 1 N < p < N I(2.20) a(p)
sin2(ph/2) (1 + 2cos(phi2)), -- -

600 MICHEL O. DEVILLE AND ERNEST H. MUND

For the particular values p 0 and p -N/2, a(p) is equal to 1 and r2/12, respec-
tively. As a(p) is a monotically decreasing function with respect to p (Fig. 1), the
optimum value of a is

(.) o /(+ -/)= .0,
and the corresponding spectral radius p(A) is equal to 0.0974.

2,3. Cubic Lagrangian elements. For the sake of compactness, we give the
local stiffness and mass matrices over the uniform mesh:

-189/80 / -9/80 /0(2.22) Sh - 27/40 -297/80 27/5 --189/80
-13/80 27/40 -189/80 37/20

16/105 33/280 -3/70 19/840 /h 33/280 27/35 -27/280 -3/70(2.23) Mh --3/70 -27/280 27/35 33/280
19/840 -3/70 33/280 16/105

Assembling the matrices of (2.22), (2.23) over two adjacent elements and eliminating
the four unknowns attached to the interior nodes uj+/-l/a, uj+/-2/a, we are le with the
relation:

1
(-u_ + 2u u+) 6

(.a)

3
+ "fj-2/3 4r" 3fj-1/3

3 fj+l)+ +3+/+I+/+ 6

Here again, as in the previous case, we recover in the left-hand side of (2.24) the
stiffness matrix of Q1 elements. Fourier analysis of (2.24) leads to the eigenvalue
spectrum a(p):

(2.25)

(phi2)2
a(p) sin2(ph/2)1"-
N<p<N--_ -1.

COS3 + 3 cos + 5 cos + g

The particular values of a(p) corresponding to p 0 and p -N/2 are a(p) 1
and 49r2/480

_
1.007522. The optimal value of the relaxation factor is given by

2/(1 + 49r2/480)
_

0.9963 and the corresponding spectral radius p(A) is equal to
0.00375.

Looking back at the results in the previous subsections, one observes that the
spectral radius p(A) diminishes with increasing polynomial degrees. This does not
mean, however, that one should use higher-order elements in the preconditioning be-
cause they involve more computational work as the bandwidth of the algebraic system
increases.

2.4. Cubic Hermite elements. At node j, the discrete equations are

(2.26)
(j--1 27j -- Ztj+l) (Zt_ Ztjq_l)5h

13h2420 (f- f+) + 7 fJ- + fJ

PRECONDITIONED COLLOCATION SCHEMES 601

k(?J--110 Uj-I’I) 0(u-I 8U "-
42013h2(fJ-x fj/l) - ’-i gf} + f/l

Fourier analyzing (2.26), one gets the spectrum
(.s)

(phi2)2 1 (26 + 9cosph + 1--36Phsinph)a(p)
6sin2(ph/2 (phi2) sin(phi2) cos(phi2)

Iphl e [0,].

For p 0 and -N/2, a(p) 1 and 17r2/168
_

0.9987, respectively. Figure 1 displays
the behaviour of a(p), which is first slightly decreasing with respect to p, achieving its
minimum value 0.97722 and then increasing to 1. The optimal value of a is 1.01152
and the corresponding spectral radius 0.0115, an intermediate value between those of
Q2 and Q3 preconditioning.

3. Hyperbolic problems. We now turn our attention to the first-order differ-
ential equation

(3.1) us=f,

in the periodic case. The eigenfunctions of (3.1) are again (2.4) with the eigenvalues

INN 1](1 i, p e ,
3.1. Linear Lagrangian elements. Using the standard Galerkin approach, a

centered scheme is produced and yields the discrete equation

(3.2) uj+l uj_l h. (f-I +f + f+l).

By Fourier analysis, we obtain

(3.3) a(p)
ph 2 + cosph, Iphl e [0, r].

sinph 3

For p 0, a(p) 1, while a(-N/2) is obviously unbounded as in the FD case. The
presence of the mass matrix does not help to circumvent the difficulty.

One may proceed, however, using an upwinding technique. This has been a key
step in treating hyperbolic problems. In finite elements, the method uses separate test
and trial function spaces, i.e., the Petrov-Galerkin method. There are several ways to
implement upwinding. Let us introduce the weight functions wi(r), (i 1, 2), defined
on the reference interval [-1, d-l] by Heinrich and Zienkiewicz [8]:

(3.4) wi(r) g(r) d- (-1)ieF(r), -1

_
r _< 1,

where (r) are the linear Lagrangian trial functions, F(r) an auxiliary quadratic
element vanishing at both end points

3
(3.5) F(r) (1 r2),

602 MICHEL O. DEVILLE AND ERNEST H. MUND

1.5

1.o E

0.0

-0.5

-I.0

FIG. 2. Eigenspectrum of 11lhLc for a first-order operator. Upwinding with a parameter
is used.

and e the upwinding parameter to be given independently. Using i and w as trial
and test functions, respectively, one gets

(3.6)
1 + 1 2 + 3e 2 2 3

2h uj-1 + -uj +. 2h ’Uj+I 1---fj- + 5fj + ’12 fJ+"
This equation reduces to (3.2) when e 0 (no upwinding). With a value of e as yet
undefined, the Fourier analysis of (3.6) leads to complex eigenvalues given by

1 1

(3.7) 6 e(1 cosph) + isinph
(3ephsinph + 2iph(2 + cosph)),

Iph[e [0, r].
For p O,a(p) 1, while for p -N/2, a(p) -ir/6e. Vpwinding forces the
spectrum of S MhLc almost entirely inside the unit circle, as shown in Fig. 2, where
the eigenvalues (3.7) have been plotted for e 1 and positive values ofph. The spectral
radius of the matrix A in this case is approximately equal to vf/2 and underrelaxation
is required in order to ensure convergence of the preconditioning iterations. The
eigenvalues (3.7) being complex, the evaluations of aopt and the spectral radius p(A)
are no longer given by (2.7) and (2.9).

3.2. Quadratic Lagrangian elements. Another way to solve (3.1) consists of
using a FE preconditioner based on quadratic Lagrangian elements. Applying the
Galerkin approach and assembling the contributions of two adjacent elements at node
j, one obtains a set of three equations related to nodes j and j 4- 1/2 similar to (2.18),
which are cast in matrix form:

6 3
20 0

2_

__
uj -1 2 8 2 -1 fj26

uj+/2 0 0 2 16 2 fj+/2
uj+ fj+l

If static condensation is carried out through Gaussian elimination, the contribution of
the exterior nodes uj_, ug+l disappears and one is left with a staggered scheme:

2
(uj_/2 -uj+/2) ---(-fj_ + 12fj_/z + 18fj + 12fj+i/2 fj+),(3.9)

PRECONDITIONED COLLOCATION SCHEMES 603

1.05

1.00

0.95

0.90

0.85

0.80

0.75

a /4

i1,111111|111111111|111111111|

40 80 120

FIG. 3. Eigenspectrum of a first-order operator preconditioned by Q2 elements.

suitable for Fourier analysis. Its spectrum is given by
ph 9 4- 12 cos ph cosph2 2 Iphl E [0, r].(3.10) a(p)

sin ph 20
2

It is monotonically decreasing and bounded by r(0) 1 and a(-N/2) r/4 as shown
in Fig. 3. Note that the first factor in the right-hand side of (3.10) is identical to the
spectrum obtained in the FD case where the function is computed on the main grid
while the derivative is evaluated by first-order differences on a staggered grid. The
second factor whose maximum value is equal to one is induced by the presence of the
mass matrix and reduces to unity in the FD case. The optimal value of a is equal to

aopt 2/(1 + ’/4)= 1.1202,

and the corresponding spectral radius p(A) is equal to 0.1202. This staggered scheme
generated by Q2 elements is the key to success for FE preconditioning of Navier-Stokes
problems. This excellent behaviour explains the reason why in Demaret and Deville
[4], the relaxation parameter was almost independent of the Reynolds number.

3.3. Advection-diffusion model. The last scalar model analyzed in this paper
is the one-dimensional advection-diffusion problem. The differential equation writes

-u + cu I(x),
where a is the diffusion coefficient and c the constant advection velocity. Of particular
interest are advection-dominated problems, which impose severe conditions on the
element mesh size (cf. [9]). With the eigenvectors (2.4), the eigenvalues of (3.11) are

A(p) =p24
ifp [N N

--h-’ pE 2’ 2

where q, is the cell Reynolds number defined by " ch/a.
Using the linear FE basis and upwinding introduced in the previous section, one

gets the discrete equations

(3.12)
(1+ e) (1-e)1 + "y

2 ?j-1 + (2 + "ye)uj 1 f 2 Uj+l

h2

1" [(2 + 3e)fj-1 + 8fj + (2 3e)fj+i],

604 MICHEL O. DEVILLE AND ERNEST H. MUND

where e is the upwinding parameter of (3.4). With no upwinding (i.e., e 0), stability
requirements of FD and FE schemes restrict 9’ to values <_ 2 [9]. The Fourier analysis
of (3.12) is straightforward. The eigenvalues of (3.12) are complex and given by

(Ph)3 (2 + cosph)+ 9’2Ph- sinph + i[9"-3h (2 + cosph)- (Ph2)2 sinph]
(3.13) 2(2 + eT) sin2 vh + i9’ sinph2

In absence of upwinding, (3.13) reduces to an analytical expression whose real and
imaginary parts may be written in compact form:

Re(a(p)) ph4ph sin2 2h + 9’2 sinph 2 + cosph,
16 sin4 ph + 9"2 sinph 3

2(3.14)
4 sin2 ph ph sinph 2 + cosph

Im((p)) 9"ph 2

16 sin4 ph + 9’2 sinph 3
2

The factor (2 / cosph)/3 in the right-hand side of (3.14) is another example of the
contribution of the mass matrix in FE preconditioning. As in (2.16), this factor reduces
to unity in the expression of the eigenvalues corresponding to FD preconditioning. One
can draw similar conclusions to the diffusion problem, except for the complex nature
of the eigenvalues. Introducing ph 0 and ph r into the eigenvalues of the FD case
gives the bounds of the spectrum:

72

(3.15) 1 < Re(agD) < -- 0 < Im(aFD) < 9"---
4

In the FE case, the upper bounds are reduced by a factor of 3 because of the presence
of the mass matrix. Figure 4 displays the result (3.14) for both FD and FE precondi-
tionings and for two different values of 9": 0.2 and 2. Provided the value of 9" is less
than the stability limit, the spectrum of A for FE preconditioning lies inside the unit
circle. Reducing the value of the cell Reynolds number brings the eigenvalues closer to
the real axis. Figure 5 exhibits the spectrum (3.13) for FE preconditioning and for 9’
exceeding the stability limit: 5 and 10. Without upwinding in this case, the spectrum
lies outside the unit circle and blows up linearly with the value of 9". This is to be ex-
pected on the grounds that we approach a true hyperbolic problem (3.1). Introducing
upwinding brings the spectrum inside the unit circle. For increasing values of 9’ one
gets back the results displayed on Fig. 2, since in the limit where " goes to infinity,
(3.13) reduces to (3.7).

4. Stokes equations. Let us write the Stokes equations in stress formulation:

(4.1) diva_. + pf O,

(4.2) divv O.

The symbol a_ denotes the stress tensor, p is the density, f the body force term and
v__ is the velocity field. Equation (4.1) is the momentum equation and (4.2) enforces
the continuity constraint. The two-dimensional Stokes problem may be reduced to a
one-dimensional problem if the solution of (4.1), (4.2) is sought as a Fourier mode:

(4.3)

PRECONDITIONED COLLOCATION SCHEMES 605

3.0

2.0

l.O-

0.0

-.0 -.0 0.0 .0 .0 .0

FIG. 4. Eigenspectrum of an advection-diffusion problem. The curves outside the unit circle
are concerned with FD preconditioning, while the inside curves are related to FE preconditioning.
Both top curves are obtained for the cell Reynolds number 7 2. The bottom curves are gotten for
/= 0.2

3.0

2.0

.o

-.0 -f.O 0.0 1.0 2.0 3.0

FIG. 5. Eigenspectrum of an advection-diffusion problem preconditioned by Q1 elements for
5(0) and 10"r. Without upwinding (e 0), the spectrum lies outside the unit circle. Upwinding
1) brings the spectrum inside the unit circle.

Introducing (4.3) in (4.1), (4.2), we get:

(4.4)
Ou+ 2#x2 + ik# iku + x + pf O’

IZx ikU + x ikp- 2#k2v + Pfu O’

+ikv 0, 0 <_ x <_ 2r.
Ox

606 MICHEL O. DEVILLE AND ERNEST H. MUND

The velocity and pressure fields are assumed to be 2r-periodic. This one-dimensional
problem is discretized in the x direction using Fourier series of type (2.2) for each
variable. The discrete collocation equations are preconditioned by finite elements such
as the Q2-Q1 and Q1-P0 elements. The FE equations come from Galerkin projection.
Introducing and , the trial functions for the FE approximations of the velocity
and pressure fields, respectively, such that

M N

(4.7) _() a,, () v,
/=1 1=1

the discrete FE equations are obtained by use of the divergence theorem as a tool for
the integration by parts with the notation f, f, fy g:

(4.8) E [2#Aj, + #k2Bjt] ut ik#E Cjtv, E Djtpt E Bjtft, O<_j<_M,

(4.9)
O<_j<_M,

E E o, o <_ <_ N.

In (4.8)-(4.10), the various matrices are defined by the relationships:

(4.11)
0__.. O.._..[dx,A Ox Ox
oDj - odx,

Cj, j-x dX,

4.1. Q2-Q1 elements. For this element, M 2N. Carrying through the alge-
bra involved by the quadratures (4.11) and assembling by direct stiffness the contri-
butions of the two elements connected to node j, we obtain

(4.12)

2# (u-i 8u_/2 + 14u 8uj+/2 + u+)
#k2h+
30

(-u_ + 2u_/2 + 8u + 2uj+i/2 u+)
ik# (Vj-1 4Vj-1/2 -}- 4Vj+l/2 Vj+I)
6

1
g(p_ -p+) (-/_ + /_/ + s/ + /’+/

(4.13)

PRECONDITIONED COLLOCATION SCHEMES 607

(4.14)

ik#y(Uj-1 + 4Uj-1/2 4Uj+l/2 "q- Uj+I)

#k2h (-vj-1 + 2v_/2 + 8v + 2vj+1/2 V+l)
15

ikh
+ (v- 8v_/2 + 14v 8v+/2 + v+) --p-,(-gj-1 + 2g-1/2 + 8g + 2g+1/2 g+l),

(4.15)
2ik# 8#
3

(uj u+l) + --(-v / 2vj+l/2 vj+l) 2#k2h15 (vj + Svj+l/2 / vj+l)

ikh

(4.16)
1 2ik
-(-uj-1 4u-1/2 + 4uj+/2 / uj+) / "--(vj-1/2 + vj + vj+/2) 0.

Equations (4.12), (4.14), and (4.16) correspond to momentum and incompressibility
relations, while (4.13) and (4.15) are the momentum equations associated to mid-node

xj+i/2. Similar expressions hold for mid-node xj-i/2 with appropriate shifts for the
indices.

Now, static condensation represents a formidable task and is greatly helped by
the symbolic manipulation program. Elimination of u+/-/2, v+/-/2 leads to a matrix
system of order three.

The full Fourier solution gives the collocation matrix Lc:

--2#/2 k2#
Le -#kl

-il

-lkl -il)-#l2 2#k2 -ik
-ik 0

where is the wavenumber in the x direction.
The analytical computation of ’hLc is performed as far as the symbolic

program can handle tractable expressions. Then numerical evaluation of the eigen-
spectrum is done. Because of the divergence-free constraint, a zero eigenvalue is
systematically obtained. In Figs. 6 and 7, the eigenspectrum of StIIhLc is plotted
for two cases k = 1 and k 10, respectively. In these two figures, the lower curve
shows the same behaviour as the eigenspectrum of the elliptic problem solved by Q2
elements. For -N/2, a(1) is equal to 7r2/12. For the other curve, a(0) 1 and
a(-N/2) is close to 2.08. Therefore, the optimal a value is given by

Oopt 2/(2.08 -- 7r2/12) 0.69,

a value close to - obtained by Demaret and Deville [3] for a two-dimensional Chebyshev
collocation discretization of the Stokes problem preconditioned by Q2-Q1 elements.

4.2. Q1-PO element. The quadratures (4.11) provide less complicated discrete
equations in this case:

(4.18)

608 MICHEL O. DEVILLE AND EPNEST H. MUND

2.5

2.0

1.5

1.0

0.5

2.0?9

0.822

i,,|,1-.1.1.1. .i.v,w.l.].
0 40 80 120

FIG. 6. Eigenspectrum o] the Stokes problem preconditioned by Q2-Q1 element. Here k 1.

2.0-

1.5

1.0

lc = lO

2.066

0.825

FIG, 7. Eigenspectrum o,f the Stokes problem preconditioned by Q2-Q1 element. Here k 10.

(4.20) ikh
(vj_ + 2vj + O."--Uj--1 "1" Uj-F1 q- y VjH-1 =

Obviously, this element generates second-order differences for partial derivatives. When
the mass matrix is involved, the standard weighted mean between three adjacent nodes
appears in the expressions. No static condensation is needed in this case. Fourier an-
alyzing (4.18)-(4.20), the stiffness and mass matrices are now

+ +
Sh = #k sin hl

2i sin hl

#k sin hl 2i sin(
2tk2h(2 -I- cosh/) ikhcos()4hsin2() + 3

ikh(1 + cos hl) 0

PRECONDITIONED COLLOCATION SCHEMES 609

0.8

k

0.6

0.4
0 40 80 120

P

FIG. 8. Eigenspectrum of the Stokes problem preconditioned by Q1-P0 element. Here k 1.

0.8

lc=10

0.6

0.490

0.4
0 40 80 120

P

FIe:. 9. Eigenspectrum o.f the Stokes problem preconditioned by Q1-P0 element. Here k 10.

(4.21) Mh diag (2 + cos hl),-

In Figs. 8 and 9, the eigenspectrums of SIMhLc are displayed for k 1 and 10,
respectively. In these two figures, the top curve is that of the elliptic model precon-
ditioned by the Q1 element. The bottom curve starts from 1 for 0, decreases
till a minimum value close to 0.49 and then increases to reach a(-N/2) 0.5. The
optimum value is

4
ao,t 2/(1 + 0.5)= .

5. Conclusions. In this paper, we have Fourier analyzed the eigenspectrum of
the iteration operator for finite element preconditioning of Fourier collocation applied
to one-dimensional problems. For elliptic models, this theoretical analysis confirms
previous numerical findings, especially the beneficial presence of the mass matrix which
reduces the bounds of the eigenspectrum. For first-order problems, linear elements
without and with upwinding are considered. With quadratic elements, a staggered

610 MICHEL O. DEVILLE AND ERNEST H. MUND

scheme is produced. Its eigenspectrum is bounded and ranges between 1 and r/4.
Finally, a Stokes problem is reduced to a one-dimensional approach. Two types of
elements are examined. The Q2-Q1 element leads to an optimum value of the relax-
ation parameter close to the value obtained by numerical analysis of preconditioned
Chebyshev collocation. For Q1-P0 element, the method can be overrelaxed.

REFERENCES

[1] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI, T. A. ZANG, Spectral Methods in Fluid Dy-
namics, Springer-Verlag, New York, 1988.

[2] P. G. CIARLET, The Finite Element Method, North-Holland, Amsterdam, 1979.
[3] P. DEMARET AND M. 0. DEVILLE, Chebyshev pseudospectral solution o] the Stokes equations

using finite element preconditioning, J. Comp. Phys., 83 (1989), pp. 463-484.
[4] -------, Chebyshev collocation solutions of the Navier-Stokes equations using multidomain

decomposition and finite element preconditioning, J. Comp. Phys., 95 (1991), pp. 359-386.
[5] M. DEVILLE AND E. MUND, Chebyshev pseudospectral solution o. second-order elliptic equations

using finite element preconditioning, J. Comp. Phys., 60 (1985), pp. 517-533.
[6] Finite element preconditioning]or pseudospectral solutions o] elliptic problems, SIAM

J. Sci. Statist. Comput., 11 (1990), pp. 311-342.
[7] P. HALDENWANG, G. LABROSSE, S. ABBOUDI, AND M. O. DEVILLE, Chebyshev 3-D spectral

and 2-D pseudospectral solvers]or the Helmholtz equation, J. Comp. Phys., 55 (1984),
pp. 115-128.

[8] J. C. HEINRICH AND O. C. ZIENKIEWICZ, The finite element method and upwinding techniques
in the numerical solution of convection dominated flow problems, in Finite Element Methods
for Convection Dominated Flows, T. J. R. Hughes, ed., ASME, New York, 1979, pp. 105-136.

[9] F. THOMASSET, Implementation of Finite Element Methods]or Navier-Stokes Equations,
Springer-Verlag, New York, 1981.

[10] S. WOLFRAM, SMP, A Symbolic Manipulation Program: Re]erence Manual, Inference Corpo-
ration, Los Angeles, CA, 1983.

SIAM J. SCl. STAT. COMPUT.
Vol. 13, No. 2, pp. 611-630, March 1992

() 1992 Society for Industrial and Applied Mathematics
011

SONIC FLUX FORMULAE*
P. L. ROEt

Abstract. The numerical solution of hyperbolic partial differential equations is studied, with
special reference given to behaviour near a sonic point. A thorough treatment of the scalar case
generalises to yield a satisfactory modification of upwind schemes for systems of equations.

Key words, initial-value problems, sonic points, upwind differencing

AMS(MOS) subject classifications. 65M05, 76N15

1. Introduction. This paper deals with the calculation of numerical solutions to
hyperbolic differential equations. Initially, it concentrates on the scalar conservation
law

(1.1) ut + f O,

where f(u) is some nonlinear function. The particular aspect of interest is the be-
haviour of the solution near sonic points u

___ , f() 0). It is well known that
details of the numerical flux calculation under these conditions are very critical. If
a wrong choice is made, the algorithm may not converge (under mesh refinement,
or as time increases) to the correct (entropy-satisfying) weak solution. "Sonic flux
formulae" that do guarantee such convergence are developed in [11], [5]. Even when
convergence does take place, it may be very slow, and the choice of flux formula has
a pronounced effect [8], [9].

Also, even though the local errors may be small, they tend to accumulate into
some kind of local pathology (variously named "glitches" or "doglegs") as noted in
[14], for example. It will be explained in 2 that such glitches are to be expected from
an/first-order upwind method in which only the sonic flux (the flux at the interface
across which the characteristic speed changes sign) is modified. This is because the
various design criteria that might be used to obtain a sonic flux formula cannot all be
satisfied simultaneously. In 3, a more accurate treatment is presented that involves
modifying the sonic flux and both its neighbours. Section 4 reports some numerical
experiments. Section 5 demonstrates that the analysis is actually simpler for second-
order schemes, and 6 contains the generalisation to systems of equations. The one-
dimensional Euler equations are investigated in 7, and 8 gives the numerical results.
Section 9 comments briefly on the behaviour of schemes designed using the MUSCL
approach.

The emphasis throughout is on the accuracy of the approximation. Nevertheless,
convergence to the correct entropy solution follows, at least for convex problems,
because we are able to show that sonic gradients always decay [3]. The fact that they
decay at the correct rate may be expected to accelerate convergence also. We do not,
at this stage, attempt to relate this work to the more empirical "entropy fixes" that
are found necessary in many practical calculations, both to smooth the solution and
to enable the application of Newton-like iterations in seeking a steady state. For these
purposes, the entropy modification due to Harten [4] has proved popular.

Received by the editors September 5, 1989; accepted for publication (in revised form) January
21, 1991.

College of Aeronautics, Cranfield Institute of Technology, Cranfield, Bedford MK43 0AL, United
Kingdom. Present address, Department of Aerospace Engineering, University of Michigan, Ann
Arbor, Michigan 48109-2140.

611

612 P.L. ROE

2. The origin of glitches. Consider (1.1) rewritten as

(2.1) u + a(u)u O,

where a(u) if(u). To solve (1.1) or (2.1) to first order on a mesh (jAx, nAt), the
generic conservative method is

(2.2) u+ A [+1/2 n+1/2]=u t-+1/2 _1/2

where A AtlAx. For an upwind scheme away from shock or sonic points, the
interface flux is defined by

n+1/2 f(u) if aj, aj+ > 0,
(2.3) #+1/2 f(u#+) if a, a#+ < 0.

If

we have a shock point, and if

> o >_

< o <

we have a sonic point. In these two cases, various upwind schemes offer various
Fn+(1/2)prescriptions for calculating the flux j+(1/2) We are concerned here with the sonic

case, illustrated diagrammatically in Fig. 1. Henceforward, subscripts (.)L and (.)R
will denote quantities in two consecutive cells for which aL

_
0

_
hR. The fluxes

across the three interfaces involved in updating UL,U will be labelled FL, Fs, FR.
Conventional upwind practice will always take

FL= f(UL),(e.4)
Fl= f(ul)

and the question will simply be the choice of Fs. To make this choice, we can attempt
to enforce either of two properties characteristic of sonic points.

For any sonic point such that u() fi, we have from (2.1) that ut() 0. Thus
x remains a sonic point for all time (or at least until the arrival of a shockwave).
To implement this first sonic point property as a design criterion, we may note that
both a and u are, to first order, proportional to the distance from the (fixed) sonic
point. Hence

(2.5) u+1 Uu, a___ai
or

Fs-F a
so that

1
FS - [f(UL)-}- f(u/i:)]- aR --aL [f(u/) f(UL)].

aR + aL

SONIC FLUX FORMULAE 613

FIG. 1. Sketch used to define notation near a sonic point.

If we approximate

1 f(ul:t)- f(tL)(2.6) " (aR + aL)
tR UL

we arrive at

1 1
FS [f(?ZL) -[- f(?ZR)] (al aL)(?ZR L).

Comparing this with the standard "viscosity form" for a flux formula

(2.8) +1/2 1 q un

we see that to enforce the first sonic point property, we should choose

1
qs - Aa.The second property comes from differentiating (2.1) with respect to x:

(2.9) ut + au + au O.

Let s ux (2). Then

(2.10) st "" au82 0,

where au fu(u) is evaluated at u ft. Thus we know the rate at which the solution
gradient decays near sonic points. Indeed, we can integrate (2.10) to obtain

1 1
(’) (t) (0) t.

Discretising in time, we have the exact result

(2.12) s+ s’ -At as’s+.
To implement a design based on the second sonic property, we note that

(2.13) (u.a --UL)n+l (UR --?JtL)n -- [F_a + FL 2Fs]

614 P.L. ROE

The left-hand side (LHS) can be approximated (see (2.12)) as

which leads to

1 1
FS " [f(L) -[" f(’R)] (aR aL)(’tI,R UL).

Therefore we now have

qs Aa,

exactly twice the previous value.
The formulae (2.7), (2.14) are due to this author [13] and Goodman and Leveque

[3], respectively. Specialised to Burgers’ equation f(u) 1/2u2 they yield

and

1 (u + u)Fs ULU

To ask which of these two formulae is correct is to miss the point; both are wrong!
The reason can be traced back to the use of the basic upwind formulae (2.4) for FL
and FR. This results in the solution inside the pair of cells concerned being updated
according to

(/’L "[- UR)n+l (UL "[- UR)n f(UL)
At Ax

The LHS is an approximation to twice ut; the right-hand side (RHS) is an approxima-
tion to -fx. Displacing the fluxes from the cell centres to the cell interfaces creates
only a first-order error if done consistently. Here the displacements are in opposite
directions, which means that locally we are solving

1
(2.15) ut -t- -f(u)x O.

Alternatively, we can say that although the flux still has only a first-order error in its
absolute value, there is a zero-order relative error. It is because of this inconsistency
that we cannot enforce both of the properties that ought to hold, so that a glitch of
some kind is inevitable. This simple trap built into first-order upwinding seems so far
to have gone unobserved.

Before giving the correct treatment, this may be a convenient place to insert the
observation that according to (2.13) the sonic gradient u. -UL will always diminish
in magnitude, provided

f(ZtR) "q- f(UL) 2FS
UR L

Now for a convex (concave) flux function, uR is greater than (less than) UL, SO that Fs
must be less than (greater than) the average of f(uL), f(un). For such flux functions,

SONIC FLUX FORMULAE 615

this is enough to guarantee convergence to the entropy-satisfying weak solution [3].
This may be compared with Osher’s [11] definition of an E-scheme as one for which
whenever uR is greater than (less than) UL, is less than (greater than) the minimum
(maximum) value of f in the interval u E [UL, uR]. This condition ensures, for any
flux function, that any value of u that should appear in the solution will eventually do
so. Taking Fs actually to be the minimum (maximum) value is, as Osher observes,
equivalent to Godunov’s technique of obtaining interface fluxes from the exact solution
to the Riemann problem [UL, un]. It is possible that there exist entropy-satisfying
schemes that are not E-schemes, since Osher proved sufficiency, but not necessity,
of his condition. The present technique does not, however, yield such a scheme for
nonconvex flux functions. Basically, this is because it is designed around sonic points;
it successfully breaks up stationary rarefaction shocks, but can be fooled by ones that
move.

3. A consistent sonic point treatment. A scheme will be devised that both
satisfies a consistent conservation equation, and also yields the correct decay rate.
Both conditions are met to second order. The conservation equation will be

(3.1) UL + UR --,k f(UR) d" aRUR f(UL) "aLUL2

which is obtained by integrating around the control volume ABCD in Fig. 2, and ap-
proximating the flux values by Taylor expansions. The notation 5UL U+1 --u has
been used and variables without superscripts (like ua) are at time level n. The decay
equation will be (see (2.12))

(3.2) 5u tUL -,k(an aL) [UR d-" 5UR UL UL]

This can be written as

(3.3) (Su 5UL)(1 + Au) --(u uL)Au,

where the difference of Courant numbers is

(3.4) Au ,k(aR aL).

Now (3.1) can be rearranged, using Af for f(u)- f(u), as

1
)(6uR 6UL)(aR + aL)

1
,,k(6UL + 6uR)(aR aL)(3.5) 6UL + 6Un --2Af

Combining (3.3) and (3.5) leads to

(u + u) 1 +u - 2I- (+)(-
+

Using ghe approximagion (2.6), he RHS of ghis expression simplifies, and a facgor

(1 + u) cancels, leaving

+ + +

Combining his with (.a) leads o he simple results

(a.7) 1 + u

616 P.L. ROE

(3.8) 6u_
l+Av

Note that by specifying consistent conservation and decay equations we have achieved
as a free bonus the condition (2.5) requiring sonic points not to move. However, when
stationarity was the only criterion the changes obtained differed from those above by
a factor (1 + Av)/2.

+1 ?+1
C:’ | ’B

D A,

FIG. 2. The control volume used to define equations (3.1), (3.2).

Next, the interface fluxes that bring about these changes will be found. We must
have

(3.9) A-z 6UL
aL(UR UL) FS FLI+Av

(3.10) -1 6uR
aR(uR- UL) FR- Fs.I+Av

Clearly there is no unique solution to these equations, because the sme constant
could be added to each flux, but a particular solution having more symmetry than
the lterntives is

() k(5)()
(3.) z I+Av

[/(,L) +/()] (L)(L)
(3.12) Fs I+Av

/(,) (5, ,)(, ,)(3.13) FL I+Av
In this case, the semidiscrete fluxes (Av 0) cn be obtained by he sort of geometri-
cal rgument typically used to construcg second-order schemes. Assume that a and u
both vary linearly over the interval [j- 1/2, j +], where the sonic interface is at j + 1/2.
Then the avernge vlue of a in the interval [j + 1,j +] is (5aa-a)/4. Extrapolating
from j + 1 to j + - using df a du now gives (3.11) and similar arguments give

(3.13). The same technique applied to the intervals [j,j + 1/2] and [j + 1/2,j + 1] gives
two alternative formulae for F,

3aL + aRF =/(UL) + 8
(L),

Fs f(Ul) 3aI + aL
8

(UR--UL).

SONIC FLUX FORMULAE 617

Approximate equality of these expressions follows from (2.6), and taking the average
gives (3.12). Note that this formula, even without the factor (1 4- A)-1, is different
from both (2.7) and (2.14).

4. Numerical experiments. The test problem chosen in this section is the
inviscid Burgers’ equation

with initial data (see Fig. 3)

u---l, O <_ x <_ 2.9,

u 1
(x 4.1)2

2.9 < x < 4.1,
0.72

u 1, 4.1 _< x <_ 7.

0

FIG. 3. Data at 0 for the test problem using Burgers’ equation.

It was thought that a nonuniform gradient might make a more demanding task than
the usual ramp test. The numbers were juggled to produce a sonic point roughly
halfway between mesh points; this appears to be the hardest case. The problem
above has an analytical solution, the nontrivial part of which is

4xt 1 + (8t2 8xt 4- 1)1/2 -(1 + t) < x < t,u
4t2

where x has been scaled to place the initial data on [-1, 1].
Solutions were obtained at t=2.25, by taking 45 timesteps with At 0.05. Figures

4(a)-(d) show results from various first-order methods. Figure 4(a) uses the simple
version of the author’s flux formula,

1 1 f(UR) f(L) (R(4.1) Fs -[f(uL) 4- f(uR)] - UR --UL

618 P.L. ROE

(a)

(b)

2 3 4 5 6 7

(c)

(d)

FIG. 4. Results at 2.25 for the Burgers’ equation test problem from four first-order schemes.
(a) The flux/ormula (4.1), used everywhere, gives these results. (b) At the sonic interface, (4.1) is
replaced by the sonic flux f 0. (c) At the sonic interface, (4.1) is replaced by (2.7). (d) At the
sonic interface, (4.1) is replaced by (2.14).

SONIC FLUX FORMULAE 619

and clearly shows an entropy-violating shockwave. This will not decay if the solution
is continued to later time. Figure 4(b) shows the results from Godunov’s method (for
Burgers’ equation this means taking Fs 0). The central gradient does decay, but far
too slowly. Figure 4(c) shows the result of keeping the sonic point stationary, (2.7).
The solution no longer appears discontinuous, but still suffers a marked inflection.
In fact it is easy to show that, at the sonic point, Godunov’s flux causes the slope
to decay too slowly by a factor of four, and (2.7) by a factor of two. The flux
(2.14), due to Goodman and Leveque [3], produces the results in Fig. 4(d). The two
symbols straddling the sonic point are now almost exact because the true decay rate
is guaranteed, but on either side there are noticeable errors. These are due to using
the locally inconsistent upwind values of FL and FR, which provide poor boundary
conditions for the solution away from the sonic point. However, this is the best of the
first-order methods.

Some second-order results are shown in Figs. 5 (a)-(c). The solution has been
noticeably improved, compared to the first-order solutions, in its outer parts (it seems
that this problem is sufficiently smooth that no overshoots are created in the solution),
but there is still a rather irregular passage through the sonic point. The code was then
amended so that the fluxes Fs, Fs+/-I were overwritten with the formulae (3.11)-(3.13).
This produced the results shown in Fig. 5(b). The sonic region is now very smooth
and accurate. Finally, in Fig. 5(c), we see the results of modifying the Lax-Wendroff
scheme with the Superbee flux limiter [13]. The antidiffusive effects of the limiter
produce a further marked improvement in the outer regions, and close examination
of the computer printout reveals that there is even a consequent slight improvement
near the sonic point.

5. Simplified second-order schemes. Although the flux formulae (3.11)-
(3.13) give excellent results, they are rather complex, especially for systems of equa-
tions, so a simplified strategy was sought. Recall that for first-order schemes a major
source of error was the fluxes on either side of the sonic flux; when these were made
more accurate the discrepancies of 2 disappeared.

If we assume that in a second-order scheme these neighbouring fluxes are suffi-
ciently accurate anyway, then only the sonic flux has to be chosen. It now does make
sense to ask which of the two sonic properties should be enforced, because choosing
either of them can be shown to imply the other with second-order accuracy. However,
there are numerical reasons to prefer one over the other, and other reasons too, as
will emerge.

To keep the sonic point stationary, we should impose

where FL, F_ are assumed given by some regular second-order scheme. Then

(5.1) Fs FLaR + FRaL
aR - aL

This is an ill-formed expression, since near a sonic point both the numerator and
denominator will be small.

620 P.L. ROE

0 2 3 4. 5 6 7

(a)

0

(b)

2 3 . 5 6 7

(c)
FIG. 5. Results at 2.25 for the Burgers’ equation test problem from three second-order

schemes. (a) Results from the unmodified Lax-Wendroff scheme. (b) For FL,Fs, FR the Lax-
Wendroff flux is overwritten with (3.11)-(3.13). (c) As (b), but the Superbee limiter is added to the

Lax-Wendro scheme.

To ensure the correct decay rate, we should return to (3.12) to obtain

1[AaAu 1(5.2) Fs FL W FR- 1+ A

which will not cause any numerical problems.

SONIC FLUX FORMULAE 621

As an experimental confirmation, the flux limited solution was rerun, using (5.2)
to overwrite the sonic flux Fs only. To graphical accuracy the results were identical
with those in Fig. 5(c). In fact, the numbers were even a little better. However, using
(5.1) instead produced the results in Fig. 6 with a small but noticeable reduction of
slope near the sonic point. In other runs, with different timesteps, the slope obtained
from (5.1) was too large. This might be anticipated, since no control is being exerted
over the slope, and it is open to accidental causes of any kind.

FIG. 6. Results at 2.25 for Burgers’ equation test problem from a simplified second-order
scheme.

Experiments were also made on the celebrated test case due to Harten, Hyman,
and Lax [6]. Here the flux function is

f(u) u- 3/’(- 1)2,
which is illustrated in Fig. 7. The solution with Riemann data u 1, x < 0; u 0, x >
0 has the entropy-satisfying solution denoted by the tangent OI, which represents
a single jump moving to the right with unit speed. Harten, Hyman, and Lax [6]
demonstrated that the Lax-Wendroff scheme admits entropy-violating solutions. The
oscillations created by the Lax-Wendroff scheme send u outside the range [0, 1] into
regions where ft(u) is negative. A stable numerical solution forms, represented by
the path OABI. Here, OA is a weak, entropy-satisfying, right-moving shock; BI is a
strong, entropy-satisfying, left-moving shock; and AB is a strong, entropy-violating,
stationary shock. Overwriting the sonic flux values with (5.1) did nothing to cure
the problem, but using (5.2) had a dramatic effect, producing the solution OPI.
This time, OP is a right-moving, entropy-violating shock that nevertheless closely
approximates the true solution, whereas PI is a weak, right-moving, entropy-satisfying
shock. Although not completely successful, this was a big step in the right direction.
But, clearly, at least one more chapter of this story remains to be written.

6. Extension to systems. We consider now the solution of a one-dimensional
system of conservation laws written in the form

(6.1) u / f(u)x O,

622 P.L. ROE

1.0

FI(. 7. Diagram to illustrate solution to the Harten, Hyman, and Lax [6] test problem.

or, more conveniently here, in matrix form

(6.2) ut + A(u)ux 0.

The question now is what statements can be made analogous to the two properties
of sonic points given in the scalar case. In fact, we can make no general statements
about sonic points remaining stationary. For a system of equations, sonic points in
general move, unless they occur within simple waves. Thus, all we have to work
with is the decay rate, but since this proved the more reliable criterion in the scalar
case, this is not too distressing. A result corresponding to (2.10) can be found by
differentiating (6.2) with respect to x, and premultiplying with , where (u) is a left
eigenvector of A(u). The result is. [ux + Au + Au,] 0.

Let ,k be the eigenvalue associated with g. Since gA AA, we can write, at a sonic
point where ,k vanishes,

t. [u + Au] 0,

and we have a prediction for the scalar quantity . ux. This quantity is only in some
loose sense a measure of the rate at which the wave of this particular family is decaying.
For that we would need something like (t. Ux)t, with a careful normalisation of g.
However, it is (6.4) that is the computationally useful result, although there seems to

SONIC FLUX FORMULAE 623

be no simple rule that transforms it from one set of unknowns to another. Therefore,
we evaluate (6.4) for a particular case, that of the Euler equations in conservation
form, w (p, m, E)T, for which the matrix A(u) is

0 1 0

(6.) 1/2(-) -(- 3) (-)
+ :u + 3-=-u22 u

of which the led right eigenvectors are contained in the rows of L nd the columns
of , respectively, where

1
(6.6) L 2c2 (- 1)2 2(- 1)u -2(- 1)

2
2 u -uc -(-l)u+c -1

(s.) R
1 1 1

u-c u u+c
C2 1/2u2 u2 21/2u2 uc + + uc +

Note that A, L, R can be written entirely in terms of the fluid velocity u m/p and
the sound speed c given by c2 y(-y- 1)[E/p- 1/2m2/p2] L and R are given here in
a normalised form such that LR RL I. From the above we can evaluate

(6.8) I o
Axux (3 ")pu2_,+ (3-)

By taking the inner product of this with each left eigenvector of A in turn, we find
the astonishingly simple results,

Ux(6.9) e.u ep[(3 --) 4],

(6.10) t.u,t ,
pc
x(6.11) e.ut 2pc[(3-’)’)u +4c],

for sonic points associated with waves of the families (u c), u, (u + c), respectively.
For the special case of a simple wave, these results take interesting special forms.

Inside a simple wave of the (u-c) family we have

2 1
ux -cx ---px.- 1 pc

Under these circumstances, (6.7) can be written

1(1)(.2) e.u= (-).

Strikingly, the brackets here do represent wavestrength and the gradient of wavespeed,
directly nalogous to the AuAa term in the scMar ce. For a simple (u + c)-wave we
have

(6.13) e. ut 2pc u +p (ux + cx),

624 P.L. ROE

and for a simple u-wave, since ux 0, we have

(6.14) l.uxt 0.

Actually, for a simple wave of any family, we can write, obtaining brevity at the
expense of physical interpretation,

’7 + 1 czu(6.15) l.ut
’7-1 pc

However, the fact that for nonsimple waves the equations (6.9)-(6.11) are not of
the form AuAa does seem to indicate that the sonic flux problem cannot be dealt
with field by field. Despite this, we find experimentally that a field-by-field treatment
is very successful.

7. Implementation for systems. Implementing these ideas in a code is
straightforward. In the course of each timestep any sonic interface can be flagged,
and the neighbouring cells corrected at the end without destroying the flow of any
vectorisation. Let UL be the change brought about in the left cell by whatever pre-
ferred method is being used, and uR the change in the right cell. Let *UL, *uR be
changes that will bring about the proper decay. Then

(7.1) . [*UR *UL] . Uxt/x/t.

Since the neighbouring fluxes are not going to be altered (in a second-order scheme),
we have

Combining these gives

(7.4)

1
[6u UL

_1 - UL2

These conditions can be met, and conservation retained, if certain conserved quantities
are transferred from the left cell to the right cell. It is natural to suppose that these
should be proportional to r, the right eigenvector corresponding to the sonic field,
evaluated at the sonic interface. If they are taken to be cr, then by orthogonality of
the left and right eigenvectors, and the normalisation used in (6.6), (6.7),

1 1
(.) . u=nnt . [u UL],

where the first term is obtained from the ppropriate equation of (6.9)-(6.11), or one
of its simplifications.

8. Experiments with the Euler equations. As a first test for the Euler equa-
tions, the shock tube problem PL 100, pR 1.0; PL 100,p 1.0; UL U 0
was chosen. Figure 8(a) shows the solution to this problem on a mesh of 100 points
using the author’s upwind scheme [12] with no special treatment of the sonic point;
80 timesteps have been taken with AtlAx 0.20. Apart from the usual defects of a
first-order method, there is a very noticeable expansion shock. Figure 8(b) shows a

SONIC FLUX FORMULAE 625

X181
10,

8 2 3 5 6 8 9 18

(a)

X101
18

0 2 3 5 7 8 S 10

(b)

FIG. 8. Results for a shock tube problem with no special treatment of the sonic point. (a) The
basic first-order scheme. (b) The second-order scheme with Superbee limiter.

second-order solution featuring the Superbee limiter. All the discontinuities are very
much better resolved, including, unfortunately, the expansion shock. Clearly, this is
an excellent solution to the wrong problem.

In Fig. 9(a) the first-order algorithm has been supplemented with the correction
(7.5) evaluating the spreading rate to first order from (6.12). A very small disturbance
can be observed near the sonic point, but this is by now the least of the errors. To
have removed this completely we should have, as in the scalar case, modified the
neighbouring fluxes as well. Figure 9(b) shows the second-order results, again with

626 P.L. IOE

(a)

Xle

5_

0
0 :2 :3 5 6 7 8 9 18

(b)

FIG. 9. As Fig. 8 but with the sonic ce//s modified according to (7.3)-(7.4). (a) The first-order
scheme. (b) The second-order scheme with Superbee limiter.

the spreading rate evaluated to the first order. The results are nearly as good as in
the scalar case. For this test, no discernible change to the graphical results followed
from using the more complicated evaluation of the spreading rate (6.9)-(6.11), or the
simplified version (6.15). Indeed, since the flow is actually a simple wave, there should
be no difference.

To investigate a more complex situation, the penetration of two rarefactions was
considered. This is a classical problem solved by Riemann. A very full account of it
is given by yon Mises [10] and the main results are quoted in [2, pp. 191-196]. Unfor-

SONIC FLUX FORMULAE 627

tunately, the solution is inverse giving x and t in terms of u and c. Instead, accurate
results were found from a numerical Characteristics solution for data
(8.1) u O, c 1.2, Ixl < 1,

(8.2) u 1.5sgn(x), c 0.9, 1 <_ Ixl _< 5.

The pattern of characteristics in Fig. 10 was produced. In this figure, the limiting
characteristics of each expansion intersect at t 12.31, which compares well with the
exact value of 295/24 12.29. The two lines marked by small symbols are the loci
of the sonic points lul c. Initially these are fixed at x =i:l, but move outward
as the waves penetrate. Figures ll(a), (b) show the distribution of a Mach number
at t 3.0. In the exact solution, the gradients are different (but not quite piecewise
constant) in the central interaction region, and in the simple wave regions outside. In
the unmodified second-order solution (Fig. 11 (a)), the sonic points have remained in
their original positions, and all parts of the solution are badly in error. Figure ll(b)
shows that the modification (7.5) produces good results.

2O

10

0 x 5
FIG. 10. Wave diagram for two interpenetrating rarefactions.

It had been intended to try and use the double expansion test as a way of dis-
criminating between the various formulae (6.9)-(6.15). Since only (6.9)-(6.11) are
derived without assuming simple waves, it was anticipated that they would do much
better on this test than their simplified rivals. Surprisingly, very little difference was
observed, and the following explanation(s) are advanced. The errors committed at
a sonic point are usually very small. They become significant only by accumulation.
However, in a compound wave the sonic points move and the errors do not accumu-
late at one point. Following this line of reasoning, the sonic modification was turned
off entirely for t > 1.2 (when the sonic points first begin to move), and little change
was seen. Thus moving sonic points seem able to take care of themselves, and it
only seems necessary to modify the sonic behaviour for simple, and hence stationary,
waves. Another possibility is that a completely correct treatment of the interaction
would require modification of waves belonging to the nonstationary families. This
would presumably be a second-order effect, but would need to be included before the

628 P.L. ROE

X101

(a)

2_

X101

FIG. 11. Two numerical solutions at 3. (a) No special treatment of the sonic points. (b)
Sonic points treated according to (7.3)-(7.4).

benefit of other second-order terms could be felt. In fact, an attempt was made to
work out a second-order estimate for l.ux along the lines adopted for the scalar
problem in 3. However, the resulting formulae were very complicated, and resulted
in no improvement. The conclusion is, therefore, that the very simple estimate (6.15)
is satisfactory for practical application, and leads to excellent results.

9. Remarks on MUSCL-type schemes. It has often been noted that schemes
using the MUSCL formulation [7], its higher order extensions [1], and to a lesser extent
higher order schemes generally, have fewer difficulties near sonic points. Compare, for
example, [15, Fig. 7a], which shows a near-discontinuous rarefaction wave in a solution
generated using Godunov’s method, with [15, Fig. 7el where a MUSCL-type scheme
generates a satisfyingly smooth solution to the same problem. This is because, in a
region of fairly continuous expansion, the second-order fluxes at the interfaces either
side of the sonic interface will avoid the errors discussed in connection with first-order
upwind schemes, leading to equation (2.15).

If the data are not smooth, and limiters are called into play, the reconstructed
data may be only first-order accurate, and the problem will recur. Recovery from
this situation will eventually take place (provided the Riemann problems are solved

SONIC FLUX FORMULAE 629

using an entropy-satisfying scheme) in the sense that the solution will begin to decay,
and may even come to decay at the correct rate. However the scheme cannot "know"
at later times that its data derives from earlier errors, so some local distortion will
persist. Whenever this happens, the present technique of enforcing the correct decay
rate at all times should cure the problem.

10. Concluding remarks. The proper treatment of sonic regions in the context
of upwind differencing has been the source of much confusion. This seems to be
because all existing theory (which is limited to scalar problems) is based on the
assumption that each interface flux away from the sonic interface will be computed
by simple first-order upwinding. It is pointed out here that this necessarily creates
errors at those interfaces next to the sonic interface, and that tinkering with the
sonic interface alone cannot cure all the problems. For a first-order method to meet
all of the natural design criteria, the adjacent fluxes must also be modified. For
second-order schemes there is a choice between "fixing" the stationary characteristic,
or forcing the proper decay of the stationary wave. The second choice is numerically
better posed, gave better results, and is also the only one that can be generalised to
systems of equations. The algebra for the one-dimensional Euler equations leads to
fairly simple conditions that are straightforward to implement to first order. Although
there is some indication that a field-by-field treatment is not valid to second order,
the first-order implementation gives excellent practical results.

Acknowledgment. The shock tube data used for the first Euler test case were
suggested by Dr. E.F. Toro, of the College of Aeronautics, Cranfield. For this, and
for interesting discussions, I am most grateful.

REFERENCES

[1] P. COLELLA AND P. R. WOODWARD, The piecewise parabolic method (PPM) for gas dynamical
simulations, J. Comput. Phys., 54 (1984), pp. 174-201.

[2] R. COURANT AND K. O. FRIEDRICHS, Supersonic Flow and Shock Waves, Interscience, New
York, 1948; reprinted by Springer-Verlag, Berlin, New York, 1976.

[3] J. B. GOODMAN AND R. J. LEVEQUE, A geometric approach to high-resolution TVD schemes,
SIAM J. Numer. Anal., 25 (1984), pp. 268-284.

[4] A. HARTEN, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49
(1983), pp. 357-393.

[5] A. HARTEN AND J. M. HYMAN, Self-adjusting grid methods for one-dimensional hyperbolic
conservation laws, J. Comput. Phys., 50 (1985), pp. 235-269.

[6] A. HARTEN, J. M. HYMAN, AND P. D. LAX, On finite difference approximation and entropy
conditions for shocks, Comm. Pure Appl. Math., 29 (1976), pp. 297-322.

[7] B. VAN LEER, Toward the ultimate conservative differencing scheme, V, a second-order sequel
to Godunov’s method, J. Comput. Phys., 32 (1979), pp. 101-136.

[8] , On the relationship between the upwind dierencing schemes of Godunov, Engquist-
Osher, and Roe, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 1-20.

[9] B. VAN LEER, W.-T. LEE, AND g. G. POWELL, Sonic-point capturing, AIAA paper 89-1945-
CP, AIAA 9th CFD Conference, Buffalo, NY, 1989.

[10] R. VON MISES, Mathematical Theory of Compressible Fluid Flow, Academic Press, New York,
1958.

[11] S. OSHER, Riemann solvers, the entropy condition, and difference approximations, SIAM J.
Numer. Anal., 25 (1984), pp. 217-235.

[12] P. L. ROE, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Com-
put. Phys., 43 (1981), pp. 357-372.

[13] Some contributions to the modelling of discontinuous flows, in Lectures in Applied

630 P.L. ROE

Mathematics, 22, Part 2, B. E.Engquist, S. Osher, and R. J. Somerville, eds., American
Mathematical Society, Providence, RI, 1985, pp. 163-194.

[14] P. K. SWEBY, High-resolution schemes using flux limiters for hyperbolic conservation laws,
SIAM J. Numer. Anal., 21 (1984), pp. 995-1011.

[15] P. R. WOODWARD AND P. COLELLA, The numerical simulation of two-dimensional flow with
strong shocks, J. Comput. Phys., 54 (1984), pp. 115-173.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 631-644, March 1992

() 1992 Society for Industrial and Applied Mathematics
012

BI-CGSTAB: A FAST AND SMOOTHLY CONVERGING VARIANT
OF BI-CG FOR THE SOLUTION OF NONSYMMETRIC LINEAR

SYSTEMS*

H. A. VAN DER VORSTt

Abstract. Recently the Conjugate Gradients-Squared (CG-S) method has been proposed as an
attractive variant of the Bi-Conjugate Gradients (Bi-CG) method. However, it has been observed
that CG-S may lead to a rather irregular convergence behaviour, so that in some cases rounding
errors can even result in severe cancellation effects in the solution. In this paper, another variant of
Bi-CG is proposed which does not seem to suffer from these negative effects. Numerical experiments
indicate also that the new variant, named Bi-CGSTAB, is often much more efficient than CG-S.

Key words. Bi-CG, CG-S, nonsymmetric linear systems, iterative solver, preconditioning

AMS(MOS) subject classification. 65F10

1. Introduction. In recent years the Conjugate Gradients-Squared (CG-S)
method [8] has been recognized as an attractive variant of the Bi-Conjugate Gra-
dient (Bi-CG) iterative method for the solution of certain classes of nonsymmetric
linear systems. Recent studies indicate that the method is often competitive with
other established methods, such as GMRES [7]. For such comparative studies see,
e.g., [1], [2], [6].

In many situations, however, one is faced with a quite irregular convergence be-
haviour of CG-S, in particular in situations when starting the iteration close to the
solution. This is a common situation in, e.g., the final stages of some nonlinear solvers
and in time dependent problems. The then often occurring irregularities in the iter-
ation process may even lead to severe cancellation, spoiling the solution delivered by
the process.

This motivated our search for a more smoothly converging variant of Bi-CG,
without giving up the attractive speed of convergence of CG-S. It appeared that an
early predecessor of CG-S, named IDR [10], could be reformulated to a method that
shows the desired properties (at least for a large number of test cases).

In this paper we give some relevant background for the CG-S method in 2, which
provides a suitable framework for the presentation of the new variant Bi-CGSTAB in

3. The various ways in which preconditioning can be incorporated in the algorithm
are discussed in 4. In 5 we show, by suitable examples, that Bi-CGSTAB may be
very attractive in comparison with CG-S in many situations.

2. Conjugate gradients-squared (CG-S). The residual vectors ri, generated
by the CG method, satisfy a 3-term recurrence relation. This 3-term recurrence
relation is not used explicitly in CG, but it is fundamental for the efficiency of the
method. When A is not symmetric we lose this property for the ri’s. Moreover, when
A is not positive definite, then IIA does not define a norm, so that it does not make
sense to minimize II x- xi IIA.

In the Bi-CG method [3], the approximations are constructed in such a way that
the residual rj is orthogonal with respect to another row of vectors 0,1,"" ,j-1,

Received by the editors May 21, 1990; accepted for publication (in revised form) February 18,
1991.

Mathematical Institute, University of Utrecht, Budapestlaan 6, NL-3584 CD Utrecht, the
Netherlands (vorstmath.ruu.nl).

631

632 H.A. VAN DER VORST

and, vice versa, j is orthogonal with respect to r0, rl,..., rj-1, This can be accom-
plished by two 3-term recurrence relations for the rows {rj} and {j}. The Bi-CG
method also terminates within n steps at most (when A is an n by n matrix), but
there is no minimization property as in CG for the intermediate steps.

Sonneveld [8] made the observation that, in the case of convergence, both the
rows {rj} and {} converge towards zero, but that only the convergence of the
{rj } is exploited. He proposes the following modification to Bi-CG by which all the
convergence effort is concentrated in the ri vectors. For the Bi-CG vectors it is well
known that they can be written as r P(A)ro and P(AT)o, and because of
the bi-orthogonality relation we have that

(rj,) (P(A)ro, P(AT)o)
(P(A)P(A)ro, G0)= 0 for i < j.

The iteration parameters for Bi-CG are computed from innerproducts like the
above. Sonneveld observed that we can also construct the vectors j P}(A)ro,
using only the latter form of the innerproduct for recovering the Bi-CG parameters
(which implicitly define the polynomial Pj). By doing so, it can be avoided that the
vectors j have to be formed, nor is there any multiplication with the matrix AT.

The resulting algorithm can be represented by the following scheme.

UNPRECONDITIONED CG-S ALGORITHM.
X0 is an initial guess; ro b- Axo;
0 is an arbitrary vector, such that (r0, 0) - 0,

e.g., P0 r0;

P0 1; p0 -q0 -0;
for i 1, 2, 3,...,

p (0, r_);
P/P-I;

U ri-1 + qi-;
pi u + f(qi-1 +/Pi-1);
v Ap;

Pl(o, v);
qi u ov;
=u+q;
X "-Xi_ "at. OlW;
if xi is accurate enough then quit;
ri ri-1 sAw;

end

One iteration step of CG-S involves about as many arithmetical operations as one
step of Bi-CG.

The last line of the Unpreconditioned CG-S Algorithm could be replaced by the
computation of the true residual vector ri b- Axi. However, in many of the
experiments, especially those with the typical jumping convergence behaviour of CG-
S, it has been seen that this has a negative effect on the iteration process, i.e., it may
take many more iteration steps for this true residual process to get at an xi of similar
accuracy as in the CG-S algorithm in its form described above. In some cases the
true residual process did even not converge whereas CG-S did.

An example of such a situation is discussed in 5.4. A possible explanation might
be that locally large variations in a current update direction overshadow variations in

BI-CGSTAB." A FAST VARIANT OF BI-CG 633

other almost converged directions, so that the true residual vector does not necessarily
satisfy the underlying orthogonality relations for the updated vectors P(A)ro. This
aspect needs further research.

If the Bi-CG polynomial P(A) is viewed as a reductor working on r0, then this
reductor is now applied twice in the new method and this explains the name conjugate
gradients-squared.

The weak point in this way of reasoning is that the reduction operator P(A) in
Bi-CG is very dependent on the starting initial residual r0, and that it is not likely
to be a reduction operator for any other vector, not even for the particular vector
P(A)ro itself. Indeed, it is not very difficult to construct examples for which P(A)ro
is small in norm and for which P2(A)ro is even much bigger in norm then r0 is.

Such a phenomenon may happen in the following situation. Suppose that r0
has small coordinates in some eigenvector directions of the matrix A. Then P(A)
may take very large values in the corresponding eigenvalues, in particular when these
eigenvalues are more or less isolated from the others, without leading to a significant
contribution of that eigenvector direction to the norm of r in Bi-CG. However, the
value of P2i(,k) may be so large that the contribution of the corresponding eigenvector
direction even dominates in the residual r of CG-S.

These situations occur quite often, and even during one convergence history we
may observe many local peaks in the convergence curve for CG-S (see, e.g., the ex-
amples in 5). These peaks do not seem to delay the convergence of CG-S. However,
in practical situations they may have quite adverse effects, since they may be so large
that the local corresponding corrections to the current iterate result in cancellation.
As a result, the final solution may have little significance, which can be checked by
computing the real residual (instead of the updated residual as is done usually in
these processes). This is a very serious problem with CG-S and in our examples in 5
we will encounter significant losses in accuracy.

For a more detailed discussion on the convergence behaviour of CG-S, see [9].
3. A more smoothly converging variant of CG-S. We have mentioned that

the residuals r in CG-S satisfy the relation r P(A)2ro, in which P(A)ro just
defines the residual rb-CG, in the Bi-CG method:

rb-CG,{ P(A)ro.

By construction we have that (P(A)ro, Pj(AT)o) --0 for j < i, which expresses the
fact that P(A)ro is perpendicular to the subspace K(AT; /o), spanned by the vectors

o, ATo, (AT)i-Io.

This implies that, in principle, we can also recover the Bi-CG iteration parame-
ters by requiring that, e.g., r is perpendicular to j(AT)o, or, equivalently, that
([j(A)P(A)ro,o) 0, for another suitable set of polynomials /hi of degree j. In
Bi-CG one takes/5 p, namely, Pj(AT)o This is exploited in CG-S, as we
have indicated before, since recursion relations for the vectors P}(A)ro can be derived
from those for Py(A)ro.

Of course, we can construct other iteration methods, by which x are generated
so that r P(A)P(A)ro with other ith degree polynomials, like, e.g., Chebychev
polynomials, which might be more suitable. Unfortunately, the optimal parameters for
the Chebychev polynomials are in general not easily obtainable and also the recurrence

634 H.A. VAN PER VORST

relations for the resulting method are more complicated than for CG-S. Another
possibility is to take for Pj a polynomial of the form

(1) Qi(x) (1 OLX)(1 w2x)... (1 wix),

and to select suitable constants wj. This expression leads to an almost trivial recur-
rence relation for the Qi.

An obvious possibility to select coj in the jth iteration step is to minimize rj, with
respect to oj, for residuals that can be written as r Q(A)Pj(A)ro. This leads
to a method which is mathematically equivalent with the IDR method described
in [10]. IDR, however, in the form as it is described in [10] may also suffer from
severe cancellation and can therefore lead to unreliable results. These effects can be
even much worse than in CG-8. In fact, the CG-S method has been derived as an
improvement to 1DR and the 1DR method was not given further attention.

However, it is possible to rewrite the scheme, in which the residuals Q(A)P(A)ro
are generated, to an apparently rather stable and more efficient one. Because of its
similarity to CG-S, its favourable stability properties, and its relation with Bi-CG,
we have named the method Bi-CGSTAB.

We will now derive the (unpreconditioned) Bi-CGSTAB Algorithm. This will be
done in a similar way as followed in [8] for the derivation of CG-S.

The polynomial Pi and related polynomials are implicitly defined by the Bi-CG
scheme.

UNPRECONDITIONED BI-CG ALGORITHM.
x0 is an initial guess; ro b- Axo;
0 is an arbitrary vector, such that

(0, r0) 0, e.g., 0 r0;

P0 1;
i50 P0 0;
for 1,2,3,...

Pi ri- q- iPi-

vi Api;

xi xi_ + iP
if xi is accurate enough then quit;
ri ri-- OiVi

i i- oeiATi;
end

From this scheme it is straightforward to show that ri Pi(A)ro and pi+l

Ti(A)ro, in which Pi(A) and Ti(A) are ith degree polynomials in A. The Si-CO
Algorithm then defines the relations between these polynomials:

Ti(A)ro (Pi(A) + fli+lTi- (A))ro,
and

Pi(A)ro (Pi-I(A) iATi-l(A))ro.

In the Bi-CGSTAB Algorithm we wish to have recurrence relations for

ri Q(A)P(A)ro.

BI-CGSTAB: A FAST VARIANT OF BI-CG 635

With Qi as in (1) and the Bi-CG relation for the factor Pi and T, it then follows that

Q,(A)P(A)ro (1 w,A)Q,_I (A)(P_I (A) a,AT_l (A))ro

{Q_(A)P_(A) aAQ_(A)T_(A)}ro

-wA{(Q_I(A)P_I (A) aAQ_(A)T_ (A))}ro.

Clearly, we also need a relation for the product Q(A)Ti(A)ro. This can also be
obtained from the Bi-CG relations:

Q(A)T(A)ro Q(A)(P(A) + i+iT_(A))ro

Qi(A)Pi(A)ro + i+1 (1 wA)Qi_I (A)Ti_ (A)ro

Qi(A)Pi(A)ro + i+Qi_ (A)Ti_i(A)ro

-+wAQ_(A)T_ (A)ro.

Finally we have to recover the Bi-CG constants pi, fli, and ai by innerproducts
in terms of the new vectors that we now have generated. For example, fli can be
computed as follows. First we compute

+ (/o, Q(A)P(A)ro) (Q(AT)o, P(A)ro).

By construction, Pi(A)ro is orthogonal with respect to all vectors U_(AT)po, where
Ui_l is an arbitrary polynomial of degree i- 1 at most. This means that we have to
consider only the highest order term of Qi(AT) when computing fhi+. This term is
given by (-1)iWlW2 .wi(AT). We actually wish to compute

pi+ (P,(AT)o, Pi(A)ro),

and since the highest order term of P(AT) is given by (-1)aa2 a(AT), it follows
that

The other constants can be derived similarly.
Note that in our discussion we have focused on the recurrence relations for the

vectors ri and pi, while in fact our main goal is to determine xi. As in all CG-type
methods, xi itself is not required for continuing the iteration, but it can easily be
determined as a "sideproduct" by realizing that an update of the form ri ri_-/Ay
corresponds to an update xi xi_ + ,y for the current approximated solution.

By writing r for Q(A)Pi(A)ro and p for Q_(A)T_(A)ro, we obtain the fol-
lowing scheme for Bi-CGSTAB (we trust that, with the foregoing observations, the
reader will now be able to verify the relations in Bi-CGSTAB). In this scheme we have
computed the wi so that ri Qi(A)Pi(A)ro is minimized in 2-norm as a function
of w.

UNPRECONDITIONED BI-CGSTAB ALGORITHM.
X0 is an initial guess; ro b- Axo;
0 is an arbitrary vector, such that

(0, r0) 0, e.g., 0- r0;

p0 c w0 1;

636 H.A. VAN DER VORST

vo PO O;
for i 1,2,3,...

p, (e0,r_); (p/p,_i)(a/w_x);
pi ri_ + (pi_ -wi_vi_i);
v Ap;

8 ri- 1 ovi;

t As;
(t,

if xi is accurate enough then quit;
ri s wit;

end

In order to restrict on memory traffic, we have carried out both updates to the
current solution x in one single step, while the updates to the residual r had to be
done separately (s ri-i -avi and ri s- wit). So s represents the residual after a
"Bi-CG step" and one might terminate the iteration as soon as Ilsll is small enough,
but in that case, before stopping the algorithm, the current solution has to be updated
appropriately as xi xi-i + pi in order to be compatible with the current residual
s (and the computation of t, wi, as well as the second update wis should be skipped).

From the orthogonality property (Pi(A)ro, Qj(AT)o) 0, for j < i, it follows
that Bi-CGSTAB is also a finite method, i.e., in exact arithmetic it will terminate
after m _< n iteration steps. In this case we get s 0 at iteration step m and wm is
then not defined. This represents a lucky breakdown of the algorithm and the process
should be terminated as indicated in the previous paragraph.

In the above form Bi-CGSTAB requires, for the solution of an N by N system
Ax b, evaluation of two matrix vector products with A, 12N flops for vector updates,
and four innerproducts. This has to be compared with (unpreconditioned) CG-S
which requires also two matrix vector products with A, and 13N flops, but only two
innerproducts. In practical situations, however, the two additional innerproducts lead
to only a small increase in computational work per iteration step and this is readily
undone by almost any reduction in the number of iteration steps (especially on vector
computers on which innerproducts are usually fast operations).

Except for memory locations for x, b, r, and A, we need for Bi-CGSTAB memory
space for four additional N-vectors 0, P, v, and t (note that r may be overwritten by
s). This is the same as for CG-S.

In 5 we will see, for some examples, the more smooth convergence properties
of Bi-CGSTAB in comparison with CG-S. We will also see that, at least for our
experiments, the new method is often more efficient than CG-S, in terms of the
amount of computational work necessary to achieve a specified accuracy in the final
result.

We have not discussed convergence problems that one can encounter with Bi-CG,
and, hence, with CG-S and Bi-CGSTAB. These problems stem basically from the fact
that for general matrices the bilinear form

Ix, y] =_ (p(AT)x, P(A)y),

which is used to form the bi-orthogonality, does not define an innerproduct. In par-
ticular, it may occur that, by an unfavourable choice for 0, an iteration parameter
p or (0, v) is zero (or very small), without convergence having taken place. In an

BI-CGSTAB: A FAST VARIANT OF BI-CG 637

actual code, one should test for such situations and take appropriate measures, e.g.,
restart with a different 0 or switch to another method (for example, GMRES [7]).

Moreover, one should keep in mind that Bi-CGSTAB, in the form as presented,
is one out of many possible variants, which are all equivalent in exact arithmetic but
which may have different behaviour in finite precision arithmetic. One such variant,
which is less straightforward than the presented one, is obtained by the following
changes to the scheme:

include pl (0, r0) in the initialization part of the scheme;
skip the computation of p in the first line of the iteration part;
add the computation of p+l -w(0, t) immediately after the computation
of w.

We have seen, in some of our experiments, a markedly better convergence behaviour
for this variant, but further research is necessary in order to determine the most
satisfying variant.

4. Preconditioning. If we want to use preconditioning with a suitable precon-
ditioning matrix K, i.e., K A, then we write K KiK2 and we may apply any of
the previously discussed iteration schemes to the explicitly preconditioned system

(2)

with .2. KI-IAK2-1 1,,x K2- and D Kl-lb. For example, for K1 I
we have preconditioning from the right (or postconditioning), for K2 I we have
preconditioning from the left, and for K1 L, K2 U, we have the well-known
preconditioning from both sides.

Now we write the CG-S scheme (2) for (2), and denote all the occurring vectors
by e.g., i5i. With the change of variables:

i = Kl-lpi,(li == Kl-lqi,)i = Kl-lvi,

i = Kl-lri, 5i = Kl-lui,ci = K2xi,

0 = K1Tr-O,

this leads to the following scheme for preconditioned CG-S.

PRECONDITIONED CG-S ALGORITHM.
x0 is an initial guess; ro b- Axo;
fo is an arbitrary vector, such that (to, fo) # 0,

e.g., r0 r0;

P0 1;p0 q0 0;
for i 1,2,3,...

P (0, r_);
P/Pi-I;
r_ + #q-i;
+ #(q- + #p-);

Solve y from Ky p;
v- Ay;

qi u v;
Solve z from Kz u + qi

X Xi_ +

638 H.A. VAN DER VORST

if xi is accurate enough then quit;
r r-i aAz;

end

Note that this scheme delivers the variables xi and ri corresponding to the original
system Ax b, i.e., ri b- Axe.

A remarkable observation is that K1 and K2 play no explicit role in the scheme,
and that any of the forms of preconditioning (i.e., any of the choices for K and K2)
correspond only with a different choice for 0 in the original, explicitly preconditioned
scheme. Hence, if one of the forms of explicit preconditioning in the original scheme
might lead to an advantage, then the same advantage can be obtained by the above
scheme through an appropriate choice of 0. Or, in still other words, instead of
studying the effect of the different forms of applying the preconditioner, one may as
well study the effect of the choice for 0.

When we rewrite the Bi-CGSTAB scheme for equation (2), similarly as previously
for CG-S, then with the change of variables:

0 = K1T-ro
we obtain the following scheme for preconditioned Bi-CGSTAB.

PRECONDITIONED BI-CGSTAB ALGORITHM.
x0 is an initial guess; ro b- Axo;
r-0 is an arbitrary vector, such that

(0, r0) 0, e.g., 0 r0;

P0 c w0 1;
v0 P0 0;
for i 1,2,3,...

Pi (0, ’ri-:l.); (plp-)(olwi-1);
pi ri_ + (Pi-1 -Wi-lVi-1);
Solve y from Ky pi;

vi Ay;
p/(o, v);

8 ri- 1 ovi;
Solve z from Kz s;
t= Az;
wi (g-t,g-ls)/(g-lt, g-t);
xi xi_ + cy + wiz;
if xi is accurate enough then quit;
r s wit;

end

This scheme too delivers the variables xi and ri corresponding to the original
system Ax b.

For preconditioned CG-S we have seen that any of the forms of preconditioning
can be regarded as a suitable choice for 0. However, for Bi-CGSTAB there is an
explicit difference between the different forms, which cannot be attributed to a suitable
choice for 0, because of the expression for wi. This expression does not seem to make

BI-CGSTAB: A FAST VARIANT OF BI-CG 639

the preconditioned scheme very attractive, but we might as well compute another
value for

(3) (t, t).

When computing wi as in (3), we are minimizing the current residual for the original
system rather than the preconditioned one. In this case we have in fact the same
effect as by explicit postconditioning in the original scheme (though for a different
0), and hence we lose potential (near-)symmetry of the preconditioned operator. In
such a case we might prefer to apply the Unpreconditioned Bi-CGSTAB Algorithm,
as in 3, to the explicitly preconditioned system KIAKI"2 Kib. However, this
has the obvious disadvantage that we have to construct a (near-)symmetric splitting
of the preconditioner K.

We will refer to the scheme with expression (3) for the wi as Bi-CGSTAB-P.
Hence, if one compares Bi-CGSTAB-P with preconditioned CG-S then one can

view this as a comparison between the two explicitly postconditioned schemes in 2
and 3 (each with a different 0).

5. Numerical results. In our experiments we consider four different, but rep-
resentative situations. These experiments have been carried out in double precision
floating point arithmetic (about 15 decimal places) on a CONVEX C-240 computer.
In order to avoid all confusion about the definition of 0 (see 4), all experiments have
been carried out with CG-S and Bi-CGSTAB applied to the explicitly preconditioned
system L-AU-IYc L-b. However, based upon our experiments so far, our con-
clusions would be about the same when we compare the preconditioned CG-S scheme
with Bi-CGSTAB-P (4).

In all cases the iteration was started with x0 0.

5.1. Example 1. The first situation is one in which Bi-CG converges quite
smoothly and in which it was, apparently, a good idea to square the Bi-CG poly-
nomial. This happens sometimes in the early phases of the iteration process or in
situations where the eigenvalue distribution is quite uniform.

As an example we show in Fig. 1 the convergence behaviour for the discretized
Poisson equation in two dimensions over a 150 150 grid (leading to a symmetric
positive definite system), preconditioned by Modified Incomplete Choleski decompo-
sition [4]. In this case CG-S converged about twice as fast as Bi-CG, as we might
expect from heuristic arguments.

We see that in this case, though Bi-CGSTAB converges more smoothly, it does
not improve the iteration process with respect to efficiency. In similar experiments
Bi-CGSTAB requires roughly the same number of iteration steps as CG-S, sometimes
slightly more and sometimes slightly less.

5.2. Example 2. Our second example is a preconditioned symmetric positive
definite system for which Bi-CG (=Conjugate Gradients in this case) loses orthogo-
nality among the residuals in a very early phase. For a discussion on this effect and
its consequences, see [9]. In such a case one would expect some strong effects when
squaring the Bi-CG polynomial, as is done in CG-S.

The linear system comes from a 5-point finite difference discretization of the
partial differential equation

-(Du) -(Duy), 1

640 H.A. VAN DER VORST

-6
0 10

Bi-CGSTAB

If: CG-S

,., II

20 30 40 50

number of iterations

FIG. 1. CG-S and Bi-CGSTAB for an ideal CG-S situation.

over the unit square, with Dirichlet boundary conditions along y 0 and Neumann
conditions along the other parts of the boundary. Meshsizes have been chosen so that
the resulting linear system has 150 150 22,500 unknowns.

The function D is defined as

D=1000 for 0.1<x,y<0.9, andD=l elsewhere.

Modified Incomplete Choleski Decomposition [4] was used as preconditioner.
In Fig. 2 we see the loss of orthogonality reflected in the convergence behaviour

of Bi-CG by small irregularities and by the fact that superlinear convergence does not
take place. CG-S converges faster eventually, but we see that the local effects in this
method are much more violent.

Bi-CGSTAB seems to have about the same "asymptotical" speed of convergence
as CG-S (if we discard the peaks in the CG-S curve), but its convergence behaviour
is definitely smoother. In situations like these, we often see that the updated residual
in Bi-CGSTAB has more significance than the one in CG-S. See also the discussion
of example 4 (5.4) for this effect.

5.3. Example 3. In our third example the nonsymmetric linear system comes
from discretization of the partial differential equation

-uz Uyy + ((au)x + au)/2 1

over the unit square, with a 20exp(3.5(x2 + y2)). Along the boundaries we have
Dirichlet conditions (this equation was taken from [11]). The equation was discretized
over a rectangular grid, with central differences for the first order terms, with stepsize
1/201 in each direction, leading to a system with 40,000 unknowns. The linear system
was preconditioned by a standard incomplete LU factorization [5].

In Fig. 3 we have displayed the norms of the iterated vectors ri for both CG-S
and Bi-CGSTAB, and again we note the much smoother convergence behaviour of

BI-CGSTAB: A FAST VARIANT OF BI-CG 641

40 60 80 100 120 140

number of iterations

160

Ftc. 2. Less smooth convergence behaviour of Bi-CG and CG-S.

Bi-CGSTAB. Also note that some residuals in CG-S may be quite large as compared
with the starting residual. Since the updates to the corresponding iterate vectors xi
must have been large too, we may expect cancellation effects in the iterated vector.
Indeed, after 200 CG-S iterations, the explicitly computed residual (using the delivered
iteration vector x) was larger (in norm) than the updated residual vector r by three
orders of magnitude. This implies that the approximated solution had an error which
was about 1000 times as large as we might have thought. For Bi-CGSTAB both
residuals were virtually equal to each other.

Finally note that in this case Bi-CGSTAB, apart from being more stable, also
converges faster than CG-S. This was true for most of our test cases. We have also
tested Bi-CG for this problem, but this method showed hardly any progress within
450 iteration steps.

5.4. Example 4. The fourth example is typical for a situation in which Bi-
CGSTAB is much more efficient than CG-S. The nonsymmetric linear system comes
from discretization of the partial differential equation

-(Au) -(Au)u + B(x, y)u F

over the unit square, with B(x, y) 2 exp(2(x2 +y2)). Along the boundaries we have
Dirichlet conditions: u 1, for y 0, x 0 and x 1, and u 0 for y 1.

The function A is defined as shown in Fig. 4; F 0 everywhere, except for the
small subsquare in the centre where F 100.

The equation was discretized over a rectangular grid, with central differences
for the first order term, with stepsize 1/128 in each direction, leading to a system
with 1272 unknowns. The linear system was preconditioned by an incomplete LU
factorization [5].

Figure 5 shows the norms of the iteration vectors ri and we observe similar effects
as in example 3. At the 151st iteration Bi-CGSTAB was terminated with IIrll2
10-s; at that point the true residual lib- Axll2 is virtually the same.

642 H.A. VAN DER VORST

4

0

-2

-4

-6

0 20

A Bi-CGSTAB

II: CG-S

10 10 80 100 120 140 160 180

number of iterations

FIG. 3. CG-S and Bi-CGSTAB for a nonsymmetric problem (example 3).

FIG. 4. The coeJj%ients for example 4.

BI-CGSTAB: A FAST VARIANT OF BI-CG 643

-4 - I: BisCGSTAB

0 50 100 150 200

number of iterations

250

FIG. 5. CG-S and Bi-CGSTAB for a nonsymmetric problem (example 4).

It takes CG-S 382 iteration steps to obtain IIrl12 10-s, but at that point the
true residual lib- Axill2 is only about 10-4. This means that in this case we have to
iterate even further with CG-S, possibly after restarting the process, in order to get
a result similar to that with Bi-CGSTAB.

For CG-S we have also checked what happens if we replace the updated vector r
in the process by r b- Ax (see 2). It then turns out that both CG-S processes
produce about the same residual vectors up to the 70th iteration step. But from
then on the updated r process and the true residual process produce r vectors that
differ more and more. After a while the true residual process delivers even much less
accurate x vectors than Bi-CGSTAB. For example, at the 382nd iteration step the
norm of the true residual b- Ax in the updated r process is, as has been mentioned
before, about 10-4, whereas lib- Axll2 in the true residual process is about 102 for
i 382.

For this problem Bi-CG required 282 iteration steps to get the residual in norm
below 10-s. This example represents one of those rare examples in which CG-S does
much worse than Bi-CG.

6. Conclusions. From many experiments we have learned that Bi-CGSTAB
(and Bi-CGSTAB-P) is an attractive alternative for CG-S. Its convergence behaviour
is much smoother so that it often produces much more accurate residual vectors (and,
hence, more accurate solutions), and in most cases it converges considerably faster
than CG-S.

The method has recently been tested for problems coming from semi-conductor
device simulation and oil reservoir simulation and also in these circumstances our
earlier findings have been confirmed (for many of these problems CG-S was the method
of choice so far).

Therefore, we conclude that Bi-CGSTAB (with preconditioning, of course) is a

very competitive method for solving relevant classes of nonsymmetric linear systems.

644 H.A. VAN DER VORST

Acknowledgements. Peter Sonneveld (TU-Delft) suggested that I reconsider
his old method IDR again, which turned out to be the key for Bi-CGSTAB, and I
learned a lot from discussions with him.

I wish to thank Wolfgang Fichtner (ETH-Ziirich), Koos Meijerink (Shell-aijswijk),
Marjan Driessen (Philips-Eindhoven), and Shun Doi (NEC-Kawasaki) for testing Bi-
CGSTAB extensively on industrial problems and for reporting their results to me.

The referees have helped me to improve the presentation of this paper.
I further wish to express my thanks to Philips-Eindhoven for kindly permitting

me access to their IBM 3090 system. Most of the numerical experiments, leading to
understanding CG-S and to learning about the advantages of Bi-CGSTAB, have been
carried out on that computer.

REFERENCES

[1] R. E. BANK, W. M. COUGHRAN, M. A. DRISCOLL, W. FICHTNER, AND P. K. SMITH,
Iterative methods in semiconductor device simulation, Comput. Phys. Comm., 53 (1989),
pp. 201-212.

[2] G. BRUSSINO AND V. SONNAD, A comparison of direct and preconditioned iterative techniques
for sparse unsymmetric systems of linear equations, Internat. J. Numer. Methods Engrg.,
28 (1989), pp. 801-815.

[3] R. FLETCHER, Conjugate gradient methods for indefinite systems, Lecture Notes in Math., 506
(1976), pp. 73-89.

[4] I. GUSTAFSSON, A class of 1st order factorization methods, BIT, 18 (1978), pp. 142-156.
[5] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear systems

of which the coeJficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp.
148-162.

[6] G. RADICATI DI BROZOLO AND Y. ROBERT, Parallel conjugate gradient-like algorithms for
solving sparse non-symmetric systems on a vector multiprocessor, Parallel Comput., 11
(S), .-.

[7] Y. SAAD AND M. S. SCHULTZ, GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[8] P. SONNEVELD, CGS: a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Statist. Comput., 10 (1989), pp. 36-52.

[9] H. A. VAN DER VORST, The convergence behaviour of preconditioned CG and CG-S in the
presence of rounding errors, Lecture Notes in Math., 1457 (1990), pp. 126-136.

[10] P. WESSELING AND P. SONNEVELD, Numerical experiments with a multiple grid and a pre-
conditioned Lanczos type method, in Approximation Methods for Navier-Stokes Problems,
Lecture Notes in Mathematics, R. Rautmann, ed., Springer-Verlag, Berlin, 1980.

[11] O. WIDLUND, A Lanczos method for a class of nonsymmetric systems of linear equations,
SIAM J. Numer. Anal., 15 (1978), pp. 801-812.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 2, pp. 645-653, March 1992

() 1992 Society for Industrial and Applied Mathematics
013

TIMELY COMMUNICATION

Under the "timely communications" policy for the SIAM Journal on Scientific and Statistical
Computing, papers that have significant timely content and do not exceed five pages automatically
will be considered for a separate section of the journal with an accelerated reviewing process. It will
be possible for the note to appear approximately six months after the date of acceptance.

A FAST REORDERING ALGORITHM
FOR PARALLEL SPARSE TRIANGULAR SOLUTION*

ALEX POTHENt AND FERNANDO L. ALVARADO$

Abstract. A space-efficient partitioned representation of the inverse of a unit lower triangular
matrix L may be used for efficiently solving sparse triangular systems on massively parallel computers.
The number of steps required in the parallel triangular solution is equal to the number of subsets
of elementary triangular matrices in the partitioned representation of the inverse. Alvarado and
Schreiber have recently described two partitioning algorithms that compute the minimum number of
subsets in the partition over all permutations of L which preserve the lower triangular structure of
the matrix. Their algorithms require space linear and time nonlinear in the number of nonzeros in L.
This paper describes a partitioning algorithm that requires only O(n) time and space for computing
an optimal partition, when L is restricted to be a Cholesky factor. (Here n is the order of L.) The
savings result from the observation that instead of working with the structure of L, it is sufficient to
work with its transitive reduction, the elimination tree of L. Experimentally the new partitioning
algorithm requires negligible time in comparison to the previous partitioning algorithms and to the
Multiple-Minimum-Degree ordering algorithm.

Key words, directed acyclic graph, elimination tree, massively parallel computers, reordering
algorithm, sparse Cholesky factorization, sparse triangular systems, transitive reduction

AMS(MOS) subject classifications. 65F50, 65F25, 68R10

1. The problem. A unit lower triangular matrix L of order n can be expressed
n--1as a product of elementary lower triangular matrices L 1-Ii=l Li, where Li I /

mie_iT, m has its first components equal to zero, and e__ is the ith coordinate vector.
Assume that L is sparse. Consider a representation of L in which the elementary
lower triangular matrices are grouped together to form m unit lower triangular factors
L= I-["i=1 Pi, where each factor Pi has the property that p(1 can be represented in the

]-[ei+ --Isame space as P{. We say that P is invertible in place. Here each P{ l lk=ei Lk,
with e 1 < e2 < < em < em+1 =- n. This leads to a partitioned representation
of the inverse of L of the form L-I l-[i=m P- that can be stored in just the
space required for L. This partitioned inverse representation is advantageous when
a triangular system Ly b must be solved repeatedly with different right-hand-
side vectors b on a massively parallel computer such as the Connection Machine; on
such a machine, the solution y can be computed as y l-I{=m P- b in m steps.
This representation has been considered by Alvarado et al. in the Power Engineering
literature [4], [8], and by Alvarado and Schreiber [3]. It has been observed that a

Received by the editors April 8, 1991; accepted for publication (in revised form) August 6, 1991.
Department of Computer Science, Whitmore Laboratory, Pennsylvania State University, Uni-

versity Park, Pennsylvania 16802 (pothen@cs.psu.edu, na.pothen@na-net.ornl.gov). A part of this
work was done while the author was visiting the Departments of Computer Science and Mathematics
at the University of Wisconsin, Madison. The research of this author was supported by National
Science Foundation grant CCR-9024954, by U. S. Department of Energy grant DE-FG02-91ER25095,
and by U.S. Air Force Office of Scientific Research grant AFOSR-88-0161.

Electrical and Computer Engineering Department, 1425 Johnson Dr., University of Wisconsin,
Madison, Wisconsin 53706 (alvarado@ece.wisc.edu). The research of this author was supported by
National Science Foundation grants ECS-8822654 and ECS-8907391.

645

646 TIMELY COMMUNICATION

reduction in the number of factors m is advantageous, and that this number can be
reduced by permuting L into a new lower triangular matrix Lg, and determining the
partitioned representation of L1.

Henceforth, without loss of generality, we will assume that L is irreducible. A1-
varado and Schreiber [3] considered the following problem:

--1(P1) Given a unit lower triangular matrix L 1-Ii=l Li, find a permutation LN
mHLIIT and a representation Lr 1-Ii=l Pi, where

1-[ei+l--1 with el 1 < e2 (’"em em+l n,(1) each Pi 11k=e Lk,
(2) each Pi is invertible in place, and
(3) m is minimum over all permutations H such that Ln is lower triangular.

They designed two algorithms to solve (P1), which they called RP1 and RP2 in their
paper. Both algorithms require time nonlinear in the number of nonzeros in L, and
space proportional to the number of nonzeros in L.

In this paper, we consider the restriction of (P1) to unit lower triangular matri-
ces, which arise in the LDLT factorization of symmetric, positive definite matrices.
(Henceforth we call this the Cholesky factorization.) Several applications of this prob-
lem in Power Engineering are described in [8]. We describe an O(n)-time algorithm
to compute the minimum number of factors in the partitioned inverse representation
of L. The algorithm requires only the elimination tree and the number of nonzeros
in each column of L as input, and not the nonzero structure of L. Thus the space
requirement of the proposed algorithm is O(n). Further, since the elimination tree
and the nonzero counts of the columns of L may be computed directly from the orig-
inal matrix A, the space requirement of the overall algorithm to compute the factors
in the partitioned inverse representation from A is O(n + T(A)), where T(A) is the
number of nonzeros in the strict lower triangle of A.

In (P1), the action of the permutation II on L is to reorder the elementary ma-
trices whose product is L; however, these elementary matrices cannot be arbitrarily
reordered, since we require the resulting matrix Ln to be lower triangular. From the
equation Li I +m e_.iT, it can be verified that the elementary matrices Li and
can be permuted if and only if li+l,i 0. These precedence constraints on the order
in which the elementary matrices may appear is captured in a graph model of the
problem.

2. A graph model. Let G(L) (V, E) denote the directed graph with vertex
set V equal to the set of columns of L, and an edge (j, i) E E (with > j) if and
only if li,j 0. The edge (j, i) is directed from the lower-numbered vertex j to the
higher-numbered vertex i. Hence G(L) is a directed acyclic graph (bAG). Since we
have assumed that L is irreducible, G(L) is weakly connected, i.e., there is a path
joining every pair of vertices in G(L) when G(L) is viewed as an undirected graph. If
there is a directed path from a vertex j to a vertex in G(L), we will say that j is a
predecessor of i, and that is a successor of j. In particular, if (j, i) E E, then j is a
predecessor of and is a successor of j.

Given a subset P of the columns of L, the concept of the subgraph corresponding
to the nonzeros in P will be useful in the remainder of this paper. Accordingly, we
define the subgraph of G(L) induced by a set of vertices P as the graph that contains
all edges directed from vertices in P to all vertices in G(L), and all the vertices that
are the endpoints of such edges.

A topological ordering of G(L) is an ordering of its vertices in which predecessors
are numbered lower than successors; i.e., for every edge (j, i) E, > j. By construc-
tion, the original vertex numbering of G(L) is a topological ordering. A permutation

TIMELY COMMUNICATION 647

FIG. 1. A directed acyclic graph G(L) corresponding to a Cholesky factor L.

H that leaves LN lower triangular corresponds to a topological reordering of the ver-
tices of G(L). A topologically ordered bAG corresponding to a Cholesky factor L is
shown in Fig. 1.

In what follows, we identify a subset of columns P with the factor formed by
multiplying, in order of increasing column number, the elementary matrices corre-
sponding to columns in P. The condition that the nonzero structure of a factor P
should be the same as the structure of its inverse corresponds in the graph model to
the requirement that the subgraph induced by P should be transitively closed [3], [9].
(A bAG G is transitively closed if for every pair of vertices j and such that there is
a directed path in G from j to i, the edge (j, i) is present in G.)

A graph model of (P1) is provided in the following problem:
(P2) Find an ordered partition P1 " P2 """ - Pm of the vertices {1, 2,..., n- 1}

of a topological ordering of G(L) such that
(1) for every v E {1, 2,..., n 1}, if v E P then all predecessors of v belong

to P, .., Pi,
(2) the subgraph induced by each Pi is transitively closed, and
(3) m is minimum subject to the two conditions above.

The permutation II in (P1) can be obtained by renumbering the vertices in the ordered

648 TIMELY COMMUNICATION

partition P1 to Pm in increasing order. The first condition follows from the fact that
the factors are formed by grouping the elementary matrices of Lri in order from lowest-
numbered to highest-numbered. The other conditions follow from the discussion in
the preceding paragraphs. The graph model (P2) is not explicitly stated in Alvarado
and Schreiber [3], although it is implicit in the description of their algorithm RP1.

3. Cholesky factorization. Now we consider the restriction of (P1) to Cholesky
factors. Then the graph G(L), viewed as an undirected graph, is a chordal graph. The
gist of this section is that the chordality of G(L) simplifies the problem a great deal,
and enables the design of an (9(n) algorithm for computing the partition, whereas
previous algorithms [3] required time nonlinear in the number of edges of G(L). The
savings result from the fact that it suffices to consider the transitive reduction of
G(L), the elimination tree of L, instead of all the edges in G(L).

The elimination tree of L is a directed tree T (V, ET), whose vertices are the
columns of L, with a directed edge (j, i) E ET if and only if the lowest-numbered row
index of a subdiagonal nonzero in the jth column of L is i. (The edge is directed from
j to i.) The vertex is the parent of j, and j is a child of i.

We define the higher adjacency set hadj (j) to be the set of all vertices k adjacent
to j in G(L) such that k is numbered higher than j. If (j,i) is an edge in the
elimination tree, the lowest-numbered vertex in hadj(j) is i. The reader can verify
that the elimination tree of the graph G(L) in Fig. 1 is obtained by omitting the edges
(4, 6), (5, 11), (7, 10), and (8, 10) from the graph.

A comprehensive survey of the role of elimination trees in sparse Cholesky fac-
torization has been provided by Liu [13]. We will assume some knowledge of the
properties of elimination trees, and in particular, the following result will be useful.

LEMMA 3.1. If v is the parent of a vertex u in the elimination tree T, then
hadj(u) c_ {v} U hadj(v). 0

Our partitioning algorithm will require as input the elimination tree with vertices
numbered in a topological ordering. It also requires the subdiagonal nonzero counts
of each column of L, stored in an array hd(v). The algorithm uses a variable level to
partition the vertices; level(v) implies that v belongs to the set Pl.

The idea of the algorithm is as follows. It examines the vertices of the elimination
tree in increasing order. If a vertex v is a leaf of the tree, then it is included in the first
level, which constitutes the vertices in P1. Otherwise, it divides the children of v into
two sets: C is the subset of the children u such that the subgraph of G(L) induced
by u and v is transitively closed, and C2 denotes the subset of the remaining children.
Let l denote the maximum level of a child in C and 12 denote the maximum level
of a child in C2. Set li 0 if Ci . If C1 is empty, or if l _< 12, then v cannot be
included in the same level as any of its children, and hence begins a new level (/2 + 1).
Otherwise, 11 > 12, and v can be included together with some child u E C such that
level(u) l.

We now describe the details of an implementation. The vertices Of the elimination
tree are numbered in a topological ordering from 1 to n. The descendant relationships
in the elimination tree are represented by two arrays of length n, child and sibling.
child(v) represents the first child of v, and sibling(v) represents the right sibling of v,
where the children of each vertex are ordered arbitrarily. If child(v) 0, then v has no
child and is a leaf of the elimination tree; if sibling(v) O, then v has no right sibling.
The array hd(.), also of length n, contains the higher degree of a vertex v (equal to
[hadj(v)[). Our partitioning algorithm, Algorithm RPtree, is shown in Fig. 2. The
reader can verify that P { 1, 3, 4, 7, 8, 9}, P2 {2, 5, 6, 10}, and P3 { 11 } for the

TIMELY COMMUNICATION 649

for v :-- 1 to n --if child(v) 0 then {v is a leaf}
level(v) :-- 1;

else {v is not a leaf}
u := child(v); 11 := 0; l. := 0;
while u 0 do

if hd(u) 1 + hd(v) then
11 := max{/, level(u)};

else {hd(u) < 1 + hd(v)}
19. := max{/, level(u)};

fi
u :- sibling(u);

od
if l <_ 12 then {v begins a new level}

level(v) := 12 + 1;
else {l > 12, v can be included in level

level(v) := 11;
fi

rof

FIG. 2. Algorithm RPtree.

graph in Fig. 1.
The complexity of the algorithm is easily analyzed. For a given vertex v, we

examine all of its children, and the operations associated with examining a child u
can be performed in constant time. If we charge the cost of examining a child u of
v to u, then each vertex in the elimination tree is charged at most once, since each
child has a unique parent. Thus the time complexity of the algorithm is (9(n). The
space complexity is also (9(n), since the elimination tree, the higher degrees, and the
level information are all stored using arrays of length n.

4. Correctness of the algorithm. We now prove that Algorithm RPtree cor-
rectly solves (P1).

THEOIEM 4.1. Algorithm RPtree correctly solves (P1) when L is the unit lower
triangular matrix in the LDLT factorization of a symmetric, positive definite matrix.

Proof. We consider problem (P2), the graph model of (P1), and the DAG G(L),
which viewed as an undirected graph is chordal. We will show that the ordered
partition obtained by the algorithm satisfies the three conditions in (P2).

First we show that a vertex v E P only if all predecessors of v belong to P, ...,
P. Since the elimination tree T is the transitive reduction of G(L), any predecessor of
v in the latter graph is a predecessor of v in T as well. Thus it suffices to consider the
descendants of v in the elimination tree. Further, since the vertices in the elimination
tree are topologically ordered, and the algorithm assigns level values to the vertices
in increasing order, it suffices to consider the children of v in T. Finally, since the
algorithm assigns level values to a vertex v such that

level(v) >_ max{level(u):u is a child of v},

the result is true.

650 TIMELY COMMUNICATION

Second, we show that the subgraph induced by the vertices in a level is transitively
closed. In the preceding paragraph, it was seen that level values are nondecreasing
along any path from a leaf to the root on the elimination tree. Hence it follows that
the vertices included in a level by Algorithm RPtree can be expressed as the union
(not necessarily disjoint) of certain paths in the elimination tree, where vertices on
a path are constrained to have level values equal to 1. Let uo, ul, ..., Up be such a
path, which is maximal with respect to the property of having the same level value;
then since the algorithm includes all these vertices in a single level,

hd(uo) 1 + hd(ul) 2 + hd(u2) p+ hd(up).

It follows from Lemma 3.1 that

hadj(uo) {u} U hadj(u) {u,..., Up} U hadj(up).

Hence the subgraph induced by the vertices in this path is transitively closed. Since
the set of vertices in a level is the union of such paths, the result now follows.

It remains to show that rn is the minimum number of ordered sets in the partition
of G(L) subject to the above conditions. We prove the result by induction on (n- 1),
the number of vertices to be partitioned. The base case when this number is one is
trivial. Assume inductively that Algorithm RPtree optimally partitions all chordal
graphs with at most n- 1 vertices (hence there are at most n- 2 vertices to be
partitioned).

Consider the partition P - P2 - "(Pm with m levels obtained by the
algorithm on a chordal graph G(L) with n vertices. Let T denote the elimination tree
of G(L) with vertices in a topological ordering. As shown in the proof of the second
condition, P1 consists of the union of vertices on certain paths on the elimination tree
T, each path beginning from a leaf and ending at a vertex w such that level(w) is
one, and parent(w) has level greater than one. (Thus these paths are maximal with
respect to the condition that their level values are equal to one.) Let u0 < ul... < Up
be such a path, and denote by Up+ the parent of Up in T.

The fact that the algorithm did not include Up+ in P1 together with Up could
be due to one of two reasons. If Up+ has some child x with level(x) > level(up) 1,
then the inclusion of Up+l in P would destroy the first condition of problem (P2).
Otherwise, all the children of Up+ belong to P1. Now the algorithm would not include
Up+ in P1 only if some child x satisfied hd(x) < 1 + hd(up+). If this were the case,
there is some vertex w E hadj(Up+l) \ hadj(x). Thus the inclusion of Up+ into P
would destroy the property that the subgraph induced by P1 is transitively closed.
Thus P1 contains the maximum number of vertices possible from the vertices in G(L).

Now consider the set of vertices Q which consists of those vertices of G(L) not
included in P1. Then the induced subgraph G(Q) has fewer than n- 1 vertices, and
by the inductive hypothesis, is partitioned optimally by Algorithm RPtree into m- 1
ordered sets. Let TQ denote the elimination tree of the subgraph G(Q) obtained by
removing vertices in P1 from the elimination tree T of G(L). From the preceding
paragraph, since vertices in P1 cannot be included in a level which contains the leaf
vertices of TQ, it follows that any partition of G(L) requires at least (m 1) + 1 m
levels. This completes the proof. El

5. Experimental results. We implemented Algorithm RPtree and compared
its performance with the RP1 and RP2 algorithms of Alvarado and Schreiber on
eleven problems from the Boeing-Harwell collection [6]. All the algorithms were

TIMELY COMMUNICATION 651

implemented in C, within Alvarado’s Sparse Matrix Manipulation System [1]. Each
problem was initially ordered using the Multiple-Minimum-Degree ordering of Liu [12],
and the structure of the resulting lower triangular factor L was computed. We call
this the primary ordering step. Then Algorithms RP1, RP2, or RPtree were used in a
secondary ordering step to reorder the structure of L to obtain the minimum number
of partitions over reorderings that preserve the DAG G(L). All three algorithms lead
to the same number of levels in the partition since they solve the same problem.

The experiments were performed on a Sun SPARCstation IPC with 24 Mbytes
of main memory and a 100 Mbyte swap space running SunOS 4.1 version of the Unix
operating system. The unoptimized standard system compiler was used to compile
the code. Recall that T(A) is the number of nonzeros in the strict lower triangle of
A; -(L) is similarly defined. We scale these numbers by a thousand for convenience.
In Table 1, we report the scaled values of T(A) and T(L), the CPU times taken by
the primary and secondary ordering algorithms (in seconds), and the height of the
elimination tree obtained from the primary ordering. (The fill and the etree height
reported here are somewhat different from previously published values for the MMD
ordering because of our use of SMMS. In SMMS, the problem datum is first converted
to an element list from the Boeing-Harwell format before it is stored using sparse
matrix data structures. This changes the initial matrix ordering which is input to the
MMD algorithm, with the consequent change in the fill and etree height.)

Table 1 also reports the number of factors in the partitioned inverse of L. The
number in the column "levels(new)" corresponds to the number of factors in the
solution of the problem (P1), i.e., in the partition of the permuted matrix Lri. The
number in the column "levels(orig)" indicates the number of factors obtained when
the unpermuted Cholesky factor L is partitioned. In the graph model (P2), this
corresponds to replacing the first condition with the stricter condition:

For every v E {1,...,n- 1}, if v E Pi, then all vertices numbered
lower than v belong to P1, ", Pi.

TABLE 1
Comparison of execution times on a Sun SPARCstation IPC for three secondary reordering

schemes with the MMD primary ordering. The parameters (A) and r(L) have been scaled by a
thousand for convenience.

Problem
]sPw0
BCSSTK13
BCSSTM13
"BICIHLE

CAN1072
DWT2680
LSHP3466
i/ASAis24
NASA4704
39x39 9pt
79x79 9pt

Original data
n T(A)

5,300 8.27
2,003 40.9
2,003 9.97
2,132 6.37
1,072 5.69
2,680 11.2
3,466 10.2
1,824 18.7
4,704 50.0
1,521 10.9
6,241 45.9

MMD Etree CPU time
Time T(L) Height ’RP1 RP2
1.72 23.2 128 1:07 1.26
4.74 264
1.12 42.6
0.73 53.8
0.72 19.4
1.82 49.9
1.03 ’"81.2
1.42 72.2
3.92 275
0.50 31.6
2.’17’190

(see)
RPtree

0.10
654 "6i’.1 ’2.1 0.05’
261 5.08 2.63 ’0’.03
224 3.15 2.58 0.05
’151 0.’78 0.92 0.02
371 2.43 2.45 0.05
341 ’4.48 4.14 0’.07
259 6:01 3.88 0.03
553’ 33.8 16:1 0:12
’i85 1.35 1.50’ 0.02
429 12.7 1’1.4 0:12

.Levels
Orig New

70 "32
53 24"
25 16
24 15
21 16
50 36
37 25
3’4 16
i 17
19 15
3’0 23

Alvarado and Schreiber [2] have shown that when the partitioned inverse is em-
ployed on a massively parallel computer such as the CM-2, the number of levels in
the partitioned inverse representation determines the complexity of parallel triangu-
lar solution. On the other hand, the complexity of a conventional triangular solution
algorithm is governed by the height of the elimination tree. Table 1 shows both these

652 TIMELY COMMUNICATION

quantities, and it is seen that the number of levels in the partitioned inverse is many
times smaller (by a factor of sixteen on the average) than the elimination tree height.
Hence the use of the partitioned inverse leads to much faster parallel triangular system
solution on massively parallel computers.

An interesting feature in these results is that the number of levels seems to be
only weakly dependent on the problem, the order of A, or the number of nonzeros in
A or L. This number is between ten and forty and is significantly smaller than the
order of the matrix A for most of these problems. If this observation holds true for
larger instances of a wide collection of problems, then it will have a significant impact
on the application of the ideas in this paper to parallel computing. For the k k
model grid problem ordered by the optimal nested dissection ordering, the height of
the elimination tree is 3k / (1), while the number of levels is 2 log2 k / (9(1).

Algorithm RPtree has (.0(n) time complexity while RP1 and RP2 are both non-
linear in the number of nonzeros in L. This is confirmed by the experiments: on the
average problem in this test set, RPtree is more than a hundred times faster than RP1
or RP2, and the advantage increases with increasing problem size. From a practical
perspective, the time needed by Algorithm RPtree is quite small when compared to
the cost of computing the initial MMD ordering. This is not true of either the RP1
or the RP2 algorithm. An equally important advantage of Algorithm RPtree is that
it requires only O(n) additional space, whereas both aP1 and RP2 require O(T(L))
additional space.

We have also experimented with a variant of the Minimum-Length-Minimum-
Degree (MLMD) ordering [5] as the primary ordering, but we do not report detailed
results because Timely Communications are by definition brief. The MLMD ordering
incurs a great deal more fill in L than the MMD algorithm, and its current, fairly
straightforward implementation is quite slow compared to the MMD algorithm. We
believe an implementation comparable in sophistication to the MMD algorithm should
not be significantly slower than MMD, and may also reduce the number of fills. In
spite of the larger number of fills, the MLMD ordering is more effective in almost
all cases than MMD in reducing the number of levels in the partition of both L and
L. In some cases, the initial number of levels obtained when MLMD is used as the
primary ordering is lower than the final number of levels obtained with MMD after
the secondary reordering.

When the MLMD ordering is used, Algorithm RPtree has an even greater time
advantage over the RP1 and RP2 algorithms, since the former works with the elimi-
nation tree, while the latter algorithms require the structure of the Cholesky factor.
For instance, on BCSSTK13, RP2 takes 461 seconds, while RPtree requires only 0.07
seconds.

6. Extensions. There are two directions in which the results in this paper may
be extended.

Given the factorization A LDLT of a symmetric, positive definite matrix,
consider the filled matrix F L / LT and the corresponding chordal undirected
graph Gu(F). In problem (P3) we ask for the minimum number of factors m in
the partitioned inverse representation of L over all vertex orderings that preserve the
structure of the filled graph Gu(F) (rather than the DAG G(L) and the corresponding
elimination tree of L as (P2) does). A solution to this problem would reduce the
number of factors in the partitioned inverse over the number required in (P2). Such
an ordering would have to be applied to the original matrix A, before the computation
of the factorization. This problem turns out to be much harder than (P2), and

TIMELY COMMUNICATION 653

many subtle issues are involved in the solution of this problem. It can be solved by
a generalization of the Jess and Kees ordering [11]. (However, the Jess and Kees
ordering by itself will not work.) An efficient algorithm to solve (P3) that makes
use of the clique tree data structure will be reported in [14]. It is heartening that
the above ordering is also appropriate for efficiently computing the factorization in
parallel on massively parallel machines.

The ideas in this paper can also be applied to the general unsymmetric problem
to obtain a more efficient partitioning algorithm than RP2. It turns out that the
transitive reduction of the directed graph G(L) could be used instead of G(L) at
several places in the RP2 algorithm. It is necessary to implement this idea to see the
net computational savings the use of transitive reduction may bring in this context.
Other applications of transitive reduction in unsymmetric sparse factorizations have
been recently considered by Eisenstat, Gilbert, and Liu [7], [10].

REFERENCES

[1] F. L. ALVAI=tADO, Manipulation and visualization of sparse matrices, ORSA J. Comput., 2
(1990), pp. 180-207.

[2] F. L. ALVARADO AND R. SCHREIBER, Fast parallel solution of sparse triangular systems, 13th
IMACS World Congress on Computation and Applied Mathematics, Dublin, July 1991.

[3] , Optimal parallel solution of sparse triangular systems, SIAM J. Sci. Statist. Comput.,
13 (1992), to appear.

[4] F. L. ALVARADO, D. C. Yu, AND a. BETANCOURT, Partitioned sparse A-1 methods, IEEE
Trans. Power Systems, 5 (1990), pp. 452-459.

[5] R. BETANCOURT, An efficient heuristic ordering algorithm]or partial matrix re]actorization,
IEEE Trans. Power Systems, 3 (1988), pp. 1181-1187.

[6] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM Trans. Math.
Software, 15 (1989), pp. 1-14.

[7] S. C. EISENSTAT AND J. W.-H. LIU, Exploiting structural symmetry in unsymmetric sparse
symbolic]actorizations, Tech. Report 90-12, Computer Science, York University, North
York, Ontario, Canada, 1990.

[8] M. K. ENNS, W. F. TINNEY, AND F. L. ALVAIADO, Sparse matrix inverse factors, IEEE
Trans. Power Systems, 5 (1990), pp. 466-472.

[9] J. a. GILBERT, Predicting structure in sparse matrix computations, Tech. Report 86-750,
Computer Science, Cornell University, Ithaca, NY, 1986.

[10] J. R. GILBERT AND J. W-H. LIU, Elimination structures for unsymmetric sparse LU]actors,
Tech. Report 90-11 Computer Science, York University, North York, Ontario, Canada,
1990.

[11] J. G. LEWIS, B. W. PEYTON, AND A.. POTHEN, A fast algorithm for reordering sparse matrices
]or parallel]actorization, SIAM J. Sci. Statist. Comput., 6 (1989), pp. 1146-1173.

[12] J. W.-H. LIu, Modification of the minimum-degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141-153.

[13] ., The role of elimination trees in sparse factorization, SIAM J. Matrix. Anal. Appl., 11
(1990), pp. 134-172.

[14] A. POTHEN AND X. YUAN, A clique tree algorithm for optimally reordering sparse Cholesky
]actors for parallel triangular solution, work in preparation, 1991.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 655-665, May 1992

(C) 1992 Society for Industrial and Applied Mathematics
001

COMPUTATION OF CONSTANTS IN THE STRENGTHENED CAUCHY
INEQUALITY FOR ELLIPTIC BILINEAR FORMS WITH ANISOTROPY*

PANAYOT S. VASSILEVSKIt AND MAYA H. ETOVA$

Abstract. Numerical results are presented that give dependence of the constants in the strengthened
Cauchy inequality, which is a basic tool for constructing two-level and multilevel preconditioning matrices
on the anisotropy of second-order elliptic bilinear forms for a number of finite element piecewise polynomial
spaces over triangular and rectangular elements.

Key words, strengthened Cauchy inequality, second-order elliptic problems, anisotropy, finite elements

AMS(MOS) subject classifications. 65N20, 65N30

1. Introduction. Consider the following elliptic bilinear form:

a(u,)-- f(u)T(e)()6

where e > 0 and 6 0 are parameters, e > 62, and 12 is, say, a two-dimensional polygon.
By Tu we denote (Ou/ox, u/Oy).

We consider two nested piecewise polynomial finite element spaces

V.
Let the corresponding triangulations of fl be ? and z, with r obtained from by

uniform refinement; that is, the elements of - are obtained by dividing the elements
of z into a fixed number of congruent parts. We denote the nodes in and " by N
and N, respectively. We have by construction that]Q c N.

It is well known (cf. Bank and Dupont [5]; Axelsson and Gustafsson [2]; Axelsson
1]; Braess [6], [7]; and Maitre and Musy [9]) that the following strengthened Cauchy
(or Cauchy-Bunyakowskii-Schwarz) inequ,ality is valid: There exists a constant 3’
(0, 1) independent of the mesh parameter h of ?, such that

(1.1)
a(b,)-< 3’(a(,))1/2(a(, ())1/2 for all 4 ,

and b V, b(x) 0,

As shown in Maitre and Musy [9] (see also Axelsson 1 or Eijkhout and Vassilevski
[8]), this inequality can be verified element by element by first deriving inequalities
of the form

a(6, 4)--< y(az?(6, b))/2(az?(4, 4))/ for all 4 /,
and 4cV, &(x)=0, xcNfqE,

* Received by the editors September 17, 1990; accepted for publication January 16, 1991. This research
was supported in part by the Bulgarian Committee for Science, under grant 55-26-03-87, and by National
Science Foundation grant INT-8914472.

t Department of Mathematics, University of Wyoming, P.O. Box 3036, University Station, Laramie,
Wyoming 82071-3036 (PANAYOT@CORRAL.UWYO.EDU). This work was performed at the University
of Wyoming, while the author was on leave from the Center of Computer Science and Technology, Bulgarian
Academy of Sciences, "Acad. G. Bontchev" Street, Block 25A, 1113 Sofia, Bulgaria.

$ Institute of Mathematics, Bulgarian Academy of Sciences, "Acad. G. Bontchev" Street, Block 8, 1113
Sofia, Bulgaria.

655

656 P. S. VASSILEVSKI AND M. H. ETOVA

for each element/ . Here

Then y is defined as

y max

It is clear then that y is independent of the grid parameter h and on possible jumps
of the coefficients, in the case of more general elliptic form

a(u, 4)) f (7U) T (al,(X) a2(x))(Vt)dx,
a2,(x) a2(x)]

if they are continuous or, say, constants within each element from the initial triangula-
tion 4. In this case, when we have piecewise constant coefficients, the constant y can
be shown to be independent of the number of refinement levels, since by construction
we have that y depends on the form of the element E but not on its size. In other
word, if we keep the elements at every discretization level geometrically similar to a
fixed set of elements and the piecewise polynomials are of fixed degree throughout
the refinement, it is clear that y will remain bounded away from unity uniformly with
respect to the number of discretization levels used (cf. Maitre and Musy [9], Eijkhout
and Vassilevski [8]).

The purpose of this communication is to supply some computational information
about the dependence of y on possible anisotropy and mixed derivatives in the
considered second-order elliptic bilinear form. Such information is useful since the
above-defined constant y is needed explicitly for the construction of the recently
proposed algebraic multilevel iterative methods in Axelsson and Vassilevski [3], [4].
For the case of coefficient matrix

that is, for diffusion problems, it has been demonstrated in [9] that for arbitrary initial
triangles and piecewise linear polynomials the above constant
and tends to if some of the triangles degenerate. For the algebraic multilevel methods
proposed in [3], [4], there is an impoant inequality upon which the optimality of the
methods are valid" p > 1/1 , where is the degree of a properly scaled and shifted
Chebyshev polynomial involved in the construction of the multilevel preconditioning
matrices. For details, see [3], [4]. We see that for the above-mentioned example of
diffusion problems, this inequality is satisfied with 2. We cannot choose , the
degree of the Chebyshev polynomials, very large since this causes the computational
labor per iteration, that is, solving a system of equations defined by the multilevel
preconditioning matrix becomes too costly. For two-dimensional problems, we consider
uniform refinement, that is, when we partition the elements at a given discretization
level into four congruent ones we have the restriction < 4 in order to ensure that the
arithmetic operations needed for solving a system with the multilevel preconditioning
matrix are proportional to the number of unknowns on the finest discretization level.
In other words, we have to satisfy the following inequalities"

4> v> 1/1-- y2,

y-CONSTANTS FOR ELLIPTIC PROBLEMS WITH ANISOTROPY 657

or since u can be 2 or 3, the inequalities"

(1.3)
for v 2,

for u=3,

(2) ’/2 0.8660" ",

,)/(3) 2x//3 0.9428 .
The remainder of the paper is organized as follows. In the next section we briefly

describe the algorithm for the computation of local 3,-constants. In 3 the computed
constants 3, for linear and quadratic piecewise polynomials on triangular elements and
for bilinear, quadratic, and cubic serendipity piecewise polynomials on square elements
are shown. Finally some conclusions are drawn.

A main observation from the presented numerical results is that increasing the
degree of the piecewise polynomials used can cause severe deterioration of 3’ constants
in certain cases of anisotropy, especially in the presence of mixed derivatives in the
considered elliptic bilinear form. However, in most of the cases we have constants 3,

that satisfy the required inequality at least for u 3.

2. Computation of y-constants. Consider the local bilinear form (1.2). In Figs.
l(a) and l(b) a refined triangular element with linear and quadratic piecewise poly-
nomials, respectively, are shown.

(a) (b)

FIG. 1. A refined triangular element. (a) Piecewise linear polynomials. (b) Piecewise quadratic polynomials.

The nodes (degrees of freedom) are denoted by / and N1, where)Q are the
nodes from the coarser,triangulation and N1 the nodes added after the refinement. In
Figs. l(a) and (b) the N nodes are denoted by "[]," whereas the N1 nodes are denoted
by "o." Similarly, in Figs. 2(a)-(c) refined rectangular elements with piecewise bilinear
polynomials (Fig. 2(a)), piecewise quadratic serendipity polynomials (Fig. 2(b)), and
piecewise cubic serendipity polynomials (Fig..2(c)) are shown. Here the splitting of
the nodes (degrees of freedom) into two sets N (the nodes from the coarser grid) and

NI (those added in the refinement nodes) is also denoted by "[]" and "o," respectively.
Below we list the nodal basis functions for a reference element E: a triangle with

baricentric coordinate functions A, A2, and A3, and the square (-1, 1) (-1, 1).
Consider first the triangular element/ with vertices A1--(0, 0), A2 (1, 0), and

A3 (X’, Y), and angles a and/3. We have

X cot c / (cot a + cot/3), Y= 1/(cot c +cot/3).

Linear polynomials"

)i A 1, 1, 2, 3,

658 P. S. VASSILEVSKI AND M. H. ETOVA

(a)

(b)

I’l

(c)

FIG. 2. (a) Refined rectangular element with piecewise bilinearpolynomials. (b) Refined rectangular element
with piecewise quadratic serendipity polynomials. c) Refined rectangular element with piecewise cubic serendipity
polynomials.

where

hi ai q- bix -k- ciy)/ (2S).

S is the area of/, that is, S=sin a sin fl/(2 sin (a +/3)). If we denote the coordinates
of the vertices Ai by (xi, Yi), the coefficients of the baricentric functions ,i are given by

ai xjyk XkYj, bi yj Yk, C Xl,: Xj,

y-CONSTANTS FOR ELLIPTIC PROBLEMS WITH ANISOTROPY 659

where the triple (i, j, k) is the corresponding transposition of (1, 2, 3). In our case we
obtain

al=l/(a+b),

a2 O,

a3 0,
with a cot c, b cot/3.

Quadratic polynomials are

b,=-l/(a+b), c,=-b/(a+b),

b2 1/(a + b), c2 -a/(a + b),
b O, C 1,

4 X(2)t- 1),

t2 4.2,

4, ,(2,-),
4 4.2,.3,
q5 3(23-- 1),

6=413
Consider now the rectangular element E (-1, 1)x (-1, 1).
Bilinear polynomials" , =J(1 -x)(1 -y),

6:=(l+x)(1-y),
6=J(l+x)(l+y),
6=k(1-x)(l+y).

Quadratic serendipity polynomials", -(1 x)(1 y)(1 + x + y),

: (1 x)(1 -y),
3=(1 +x)(1-y)(x-y- 1),

6 (1 + x)(1 +y)(x +y- 1),
6 (1 X2)(1 +y),
7 =-(1-x)(1 +y)(x-y+ 1),
6=(1-x)(1-y).

Cubic serendipity polynomials"

(1 x)(1 y)(-10 + 9x2 + 9y2),
(1 x:)(1 y)(1 3x),

6 (1 x)(1 + 3x)(1 y),
&4=(1 + x)(1- y)(-lO+ 9x2 + 9y),

(1 + x)(1 y:)(1 3y),

&6 (1 + x)(1 -y2)(1 +3y),

7 (1 +x)(1 +y)(-lO+9x:+9y),
6 (1 -,x:)(1 + 3x)(1 + y),

9 (1 X2)(1 3X)(1 +
1o =(1-x)(1 +y)(-lO+9x2+9y2),
& (1 x)(1 + 3y)(1 y2),
2 (1 x)(1 3y)(1 y2).

660 P. S. VASSILEVSKI AND M. H. ETOVA

GRAPH 1. Triangular elements: a =/3 7r/4; piecewise linear polynomials.

I. O0

0.98

0.96

0.94

0 40 0.80 1.20 1.60 2.00 2.40 2.80 3.20

GRAPH 2. Triangular elements" ce =/3 /4; piecewise quadratic polynomials.

y-CONSTANTS FOR ELLIPTIC PROBLEMS WITH ANISOTROPY 661

0.76

0.70

0.6B

0.60.

GRAPH 3. Rectangular elements: piecewise bilinear polynomials.

The bilinear form ag(.,.) generates the assembled stiffness matrix A obtained
by assembling.the corresponding element stiffness matrices for all four finer elements
contained in E (see Figs. l(a), (b) and Figs. 2(a)-(c)). Using the partitioning of the
nodes into N and N1 as described above, the assembled stiffness matrix admits the
following two-level block form"

;1,2)A= A;1,1 A }N1
A;2, A;2,2 }]Q

that is, first are ordered the nodes from N and then the nodes from . We will need
the element Schur complement

S/ A/;2,2- A.;2,1(A;1,1)-IA;1,2
We also consider the coarse grid element stiffness matrix A.

It has been demonstrated (e.g., in [8]) that the local y-constant, y, and the
minimal eigenvalue, A/,min of the generalized eigenvalue problem

(2.1) A::q S:q,

are related as follows:

Note that , and S have the same nullspace {C(1, 1,
constant vectors.

,1)r}, that is, the

662 P. S. VASSILEVSKI AND M. H. ETOVA

0.97

0.96

0.96

0.9c5

0.94

0.94

0.92

0.93

0

GRAPH 4. Rectangular elements" piecewise quadratic serendipity polynomials.

For the actual computation of A/,min we use matrices obtained from A and S
by deleting, say, the last row and the last column of both matrices. This is readily seen
(cf. [8]) since (2.1) implies for e= (1,..., 1)T

(2.2) A:A(q- qioe) S(q- qoe),

where qio is the ioth component of q for arbitrary io.
Now by leaving out the ioth equation of (2.2) we obtain

(2.3) AAq’ S:q’,

where by we denote the matrices and vectors obtained by deleting the ioth column
and the ioth row ofthe matrices and by deleting the ioth component ofthe corresponding
vectors.

Now A: and S are nonsingular, hence positive definite (and symmetric) and
any algorithm for computing the minimal eigenvalue of (2.3) can be applied. We have
chosenthe simple bisection algorithm.

3. Numerical results. The numerical results are collected in Graphs 1-5. The
results are listed for e--1, 0.1, 0.01, and 0.001 for the cases of triangular elements"
linear and quadratic piecewise polynomials, Graphs 1 and 2, respectively. Results are
also listed for rectangular elements" piecewise bilinear, piecewise quadratic serendipity,
and piecewise cubic serendipity polynomials on Graphs 3, 4, and 5, respectively. Recall
that /(2) and /(3) are defined by (1.3).

y-CONSTANTS FOR ELLIPTIC PROBLEMS WITH ANISOTROPY 663

0.98

0.97

0.96

0.94

0.92

0.92

0.91
0.00

GRAPH 5. Rectangular elements: piecewise cubic serendipity polynomials.

For all the graphs we have used the following notation"

I-l e=l,

A e =0.1,
e =0.01,

x e =0.001,
x-axis: loglo 1/6,

y-axis: 3’.

The actual computed values of the 3,-constants are shown in Tables 1-5,
corresponding to Graphs 1-5.

4. Conclusion. It is clearly demonstrated by our numerical test that for problems
without mixed derivatives (6 --0) all the computed 3,-constants are less than the critical
value 3’

(2) (see (1.3)) in the case of piecewise linear or bilinear polynomials. This is
also the case for the same piecewise polynomials in the presence of mixed derivatives
for all tested values such that 82 is not very close to e, that is, when the bilinear
form is clear of indefiniteness. However, increasing and the degree of the piecewise
polynomials lead to deterioration in 3’ and in some specific cases (piecewise cubic
serendipity polynomials, Graph 5 or Table 5) 3’ becomes larger than the critical 3, (3).
Note that the most stable results are obtained for piecewise bilinear polynomials
(Table 3). We have in this case that all the computed values of 3’ are less than 3, (2).

664 P. S. VASSILEVSKI AND M. H. ETOVA

TABLE

e=l

e =0.1

e 0.01

e 0.001

0.9 0.1 0.01 0.001
0.942 0.725 0.709 0.707

0.3 0.1 0.01 0.001
0.969 0.758 0.710 0.707

0.09 0.01 0.001
0.933 0.713 0.707

0.03 0.01 0.001
0.958 0.741 0.707

TABLE 2

e=l

e =0.1

e 0.01

e 0.001

0.1 0.01 0.001
0.888 0.875 0.874

0.3 0.1 0.01 0.001
0.994 0.935 0.916 0.915

0.09 0.01 0.001
0.990 0.934 0.932

0.03 0.01 0.001
0.994 0.943 0.935

TABLE 3

e=l

e -0.1

e 0.01

e 0.001

0.9
0.779

0.3
0.831

0.1 0.01 0.001
0.619 0.613 0.612

0.1 0.01 0.001
0.826 0.825 0.825

0.09 0.01 0.001
0.862 0.861 0.861

0.03 0.01 0.001
0.865 0.865 0.865

TABLE 4

e=l

e =0.1

e =0.01

e 0.001

0.9
0.963

0.3
0.965

0.1
0.919

0.1
0.947

0.09
0.958

0.03
0.967

0.01
0.919

0.01
0.946

0.01
0.956

0.01
0.957

0.001
0.919

0.001
0.946

0.001
0.956

0.001
0.957

/-CONSTANTS FOR ELLIPTIC PROBLEMS WITH ANISOTROPY 665

TABLE 5

e 6 0.9 0.1 0.01 0.001
y 0.980 0.911 0.911 0.911

e 0.1 6 0.3 0.1 0.01 0.001
y 0.983 0.943 0.941 0.941

e 0.01 0.09 0.01 0.001
y 0.967 0.958 0.958

e 0.001 6 0.03 0.01 0.001
y 0.977 0.961 0.961

We can draw the conclusion that for problems with anisotropy, mixed derivatives,
and piecewise polynomials of high degree, the straightforward application of the
algebraic multi-level iterative (AMLI) methods from Axelsson and Vassilevski [3], [4]
can be troublesome. A remedy has been suggested in Vassilevski [10] by allowing the
polynomials involved in the construction of the AMLI preconditioning matrices to
have degrees that vary with the discretization levels, that is, to have u ’k, k=
1, 2,"" ", l, where is the number of discretization levels used. It was demonstrated
in [10] that at most of the levels one can use polynomials of first degree, which leads
to a hybrid V-cycle multilevel iteration. This latter approach does not impose such
strong restriction on the degree , ’k of the Chebyshev polynomials involved in the
construction of the AMLI preconditioning matrices, and it preserves their asymptotic
optimality (when l, the number of discretization levels used, is sufficiently large). For
details, see [10].

REFERENCES

[1] O. AXELSSON, On multigrid methods of two-level type, in Multigrid Methods, Proceedings, K/51n-Porz,
1981, W. Hackbusch and U. Trottenberg, eds., Lecture Notes in Mathematics 960, Springer-Verlag,
Berlin, New York, 1982, pp. 352-367.

[2] O. AXELSSON AND I. GUSTAFSSON, Preconditioning and two-level multigrid methods ofarbitrary degree
of approximation, Math. Comp., 40 (1983), pp. 219-242.

[3] O. AXELSSON AND P. S. VASSILEVSKI, Algebraic multilevelpreconditioning methods, I, Numer. Math.,
56 (1989), pp. 157-177.

[4] ,Algebraic multilevelpreconditioning methods, II, SIAM J. Numer. Anal., 27 (1990), pp. 1569-1590.
[5] R. BANK AND T. DUPONT, Analysis of a two-level scheme for solving finite element equations, Report

CNA-159, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, 1980.
[6] D. BRAESS, The contraction number of a multigrid method for solving the Poisson equation, Numer.

Math., 37 (1981), pp. 387-404.
[7] , The convergence rate ofa multigrid method with Gauss-Seidel relaxationfor the Poisson equation,

in Multigrid Methods, Proceedings, K61n-Porz, 1981, W. Hackbusch and U. Trottenberg, eds.,
Lecture Notes in Mathematics 960, Springer-Verlag, Berlin, New York, 1982, pp. 368-387.

[8] V. EIJKHOUT AND P. S. VASSILEVSKI, The role of the strengthened C.-B.-S. inequality in multilevel
methods, SIAM Rev., 33 (1991), pp. 405-419.

[9] J.-F. MAITRE AND F. MUSY, The contraction number ofa class oftwo-level methods; an exact evaluation

for somefinite element subspaces and modelproblems, in Multigrid Methods, Proceedings, K61n-Porz,
1981, W. Hackbusch and U. Trottenberg, eds., Lecture Notes in Mathematics 960, Springer-Verlag,
Berlin, New York, 1982, pp. 535-544.

10] P. S. VASSILEVSKI, Hybrid V-cycle algebraic multilevelpreconditioners, Report 9, Center of Informatics
and Computer Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria, 1990; Math. Comp.,
to appear.

SIAM J. Sct. STAT. COMPUT.
Vol. 13, No. 3, pp. 666-675, May 1992

(C) 1992 Society for Industrial and Applied Mathematics

OO2

APPROXIMATION OF THE INVARIANT MANIFOLD IN THE
JOSEPHSON EQUATION*

M. VAN VELDHUIZEN?

Abstract. This paper considers the application of the algorithm described in [M. van Veldhuizen, Math.
Comp., 51 (1988), pp. 677-697] to approximate the average slope of solutions of the Josephson equation.
The potential for parallelism of this algorithm has been a motivation for its study. In this work this potential
is realized by presenting results obtained on a multiprocessor environment.

Key words, invariant curve, parallel computation

AMS(MOS) subject classifications, primary 65L99; secondary 65H10, 34C40

1. Introduction. Recently there has been some interest in numerical algorithms
for the approximation of an invariant curve (cf. Chan [2]; Kevrekidis et al. [9];
Kaas-Peterson [6]-[8]; van Veldhuizen [16], [18]; Dieci, Lorenz, and Russell I-4] and
the references therein). In this paper we concentrate on collocation-type methods for
the Josephson equation

(1.1) /3 +(1 + 3/cos b), +sin 4) p(t),

where /3>0 and 3’ are parameters, and p(t) is periodic of period T=27r/to. This
equation is sometimes used as a model for the Kamper-Soulen resistively shunted
Josephson thermometer (cf. [14], [15]). The quantity of interest is the average slope
of the solution (,)=lim (ch(t)/t), t->. It can be measured, since it is proportional
to the voltage over the junction. A straightforward computation of this quantity leads
to a sequential algorithm. In this paper we describe a parallel algorithm based on the
invariant curve of the Josephson equation and its properties.

It is convenient to rewrite this second-order differential equation as a system of
two first-order differential equations

(1.2a) /3 4) Y sin

(1.2b) -sin 4) + P (t).

Define the Poincar6 map P as the period map taking x (b(0), q,(0)) into Px defined
as the solution of (1.2a,b) at T 2r/to with initial vector x at 0. Since (1.2a,b)
are essentially defined on the cylinder obtained by identifying each point (4,, q’) with
its 2 7r translates (4, + 2 7rj, 4’ + 2 7rj), so is the Poincar6 map P. The following characteriz-
ation is due to Levi [10].

THEOREM 1.1. For all T-periodicfunctions p(t) and allparameters and y satisfying

(1.3) 0-----y_--<1, O</3<1/4(1-y)2,

the Poincard map P possesses a globally attracting invariant circle F given by b =f(4,),
where f(ch) tends to ch + 3/sin b for --> O. Also, f is strictly increasing.

Observe that f is invertible. Thus, the invariant manifold may also be written as

b =f-(). This simplifying observation is used in the algorithm described below.

Received by the editors November 28, 1990; accepted for publication (in revised form) December 20,
1990.

t Department of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081, 1081HV

Amsterdam, the Netherlands.

666

INVARIANT MANIFOLD APPROXIMATION 667

The Poincar6 map P induces a circle map Pr on the invariant circle F. It is easily
seen that ()= top, where p is the rotation number of the circle map induced by P on
F. In particular, () exists. See Levi [10]. For the definition of the rotation number p
of a circle map, see Guckenheimer and Holmes [5] or Coddington and Levinson [3].

The restrictions (1.3) are discussed in Levi [10]. In particular, the constraint
fl < 1/4 for y 0 has a physical interpretation.

Computationally we have two ways of approximating the average slope (). First,
we may approximate the limit by the quotient oh(t) for large t. For a slightly more
sophisticated way of doing this, see van Veldhuizen and Fowler [15]. These processes
are purely sequential in nature. Second, we might approximate the invariant manifold
F and the circle map Pr induced on it by P (see Algorithm 1.2 below), followed by
the numerical approximation of the rotation number; see [17]. We shall see that the
computation of the approximate invariant manifold can be done in parallel. Hence,
the larger part of the work involving the integration of the differential equations 1.2a,b)
can be done in parallel. This is advantageous on a multiprocessor machine (cf. 3).

We shall now describe a numerical algorithm for the approximation of F and the
circle map Pr. This algorithm is very much in the spirit of Kevrekidis et al. [9], and
has been investigated in [18].

ALGORITHM 1.2. Let A be a partitioning of the circle [0, 2r), consisting of the N
points

(1.4) 0= 00< 01 <’’" < 0N-1 <2r.

Approximate F by a polygon FA described by & gA(0), where gA is a piecewise linear
(with respect to A) continuous function. Determine ga, i.e., determine the ga($i), by
the equations, i=0, 1,..., N-l,

(1.5) (g(Oi),

where Fa is the polygon on the cylinder with vertices P(gA(O), 0)" The circle map Pr
is approximated by the piecewise linear continuous function induced by 0 --> 0i, the
q-coordinate of P(gA(d/i), Oi), i= O, 1,’’’, N-1.

The set of equations is solved by successive substitution, as in [18]. In order to
clarify the programming ofthis algorithm, let us describe the iterative process separately.
For all i, let &l k) denote the actual approximation to ga(0). First, one integrates the

(k)ordinary differential equations (1.2a,b) with initial vector (4 $) from =0 to
2r/to, 0, 1," ., N-1. Or, in a formal notation,

P: ((hl k), 0,)-)(4I k),
After the integration step comes the interpolation step. For all separately determine

,,(k)the index (depending on i) such that 0i It [@k), v,t+lJ on the circle [0, 2r). Then
chl k+l) is obtained by linear interpolation on the segment It in the point 0i. The process
stops if the norm of the difference between two successive vectors of iterates is smaller
than a prescribed tolerance.

Observe the parallel nature of this algorithm; the images under the PoincarO map
P can be computed in parallel. This computation can be done by a high quality
numerical code for the integration of ordinary differential equations.

2. Summary of results. In this section we summarize the results obtained by Levi
[10] for the Josephson equation. In addition, we summarize the results from the
convergence analysis in [18]. We omit the details, since no essentially new arguments
are used in deriving the results.

668 M. VAN VELDHUIZEN

A remarkable feature of the global existence result by Levi [10] (cf. Theorem 1.1
above) is the explicit estimate for the domain in parameter space for which the result
holds true. In fact, by carefully redoing Levi’s proof, one can extend this domain in
parameter space somewhat. Instead of restricting fl and 3’ by (1.3), it suffices to restrict
/3 and y to the union of the regions I, II, and III in Fig. 1, a somewhat larger domain.
Nevertheless, even this larger domain still belongs to the strip 0-< y < 1. On the other
hand, numerical evidence suggests that the properties of the Josephson equation do
not dramatically change at y-- 1, although the character of the solution followed in
time may do so (internal layers for 3’ > 1). An existence result for y > 1 in an open
neighborhood of the line/3 3’ in parameter space follows from the following simple
observation.

PROPOSITION 2.1. If fl y, then for all T-periodic functions p(t) and all values of
fl > O, the Poincard map P possesses an invariant circle F given by

(2.1) O-==f]e’/p(s) ds.

Thus F is a straight line parallel to the line 4).
Proof. If fl), one easily obtains from (1.2a,b) the differential equation

(2.2) fl(q)-)= 4 +/3p(t).

If tp(0)-b(0)=/, then so is ,(T)-b(T). This proves the assertion. Vi

FIG. 1. Regions in parameter space where Theorem 1.1 is valid (I + II + III), and where convergence results
for Algorithm 1.2 are available (II + III).

INVARIANT MANIFOLD APPROXIMATION 669

If/3 3’ we may compute the restriction of P to F, the circle map corresponding
to the invariant manifold. Let A denote the unique periodic solution of (2.2), which
satisfies (2.1) in the points jT, j N. Let b solve

(2.3) /3 A-/3 sin b.
Then r" b(0)- b(T) describes the circle map r on F.

One might ask for the existence of an invariant manifold in the neighborhood of
the line/3 y in the (/3, y)-plane. Typical perturbation results for invariant manifolds
require that the action on the manifold is small in relation to the attraction to the
manifold. See Sacker 12] for typical results and nice counterexamples. In the language
of Sacker [12] (we use his symbols on the left of the equality sign), one has

/3=1, _A=fl.

An invariant manifold exists in an open neighborhood of the point (/3,/3) in the
(/3,),)-plane if/3 < _A (cf. Sacker [12]). This condition is satisfied for all/3 > 1. Hence,
the invariant manifold exists in an open neighborhood of the line l % > 1.

The convergence of Algorithm 1.2 follows from the results in 18], at least if some
conditions are fulfilled. Actually, the convergence theory in [18] contains two related
criteria. We give the interpretation adapted to Algorithm 1.2.

The first criterion given in 18] is based on the following idea. The Poincar6 map
P cannot be a contraction, but its restriction to lines parallel to the b-axis might be
a contraction. The first criterion of [18] is based on this possibility in combination
with the linear interpolation process of Algorithm 1.2. For the Josephson equation, it
is possible to estimate the region in parameter space for which this criterion assures
convergence of the algorithm" just adapt the proofs in 18] to this differential equation.
Of course, the estimates give part of the region. The region of convergence in parameter
space obtained in this way is shown as region III in Fig. 1. Observe that this criterion
requires no assumption about the mesh.

The second criterion given in [18] requires that the Poincar6 map reduces the
horizontal distance to the invariant curve. Here, the horizontal distance of x (4,
to F is defined by 1f-1(4,)-4,1 (cf. Theorem 1.1). If the Poincar6 map reduces the
horizontal distance to F, then Algorithm 1.2 converges for a sufficiently fine mesh in
a sufficiently narrow tube along the invariant curve. In regions III and II in Fig. 1,
convergence can be proved in view of this criterion. Again, this region is obtained by
carefully redoing the estimates given in the convergence proofs in [18].

These criteria, when satisfied, result in convergence by a contraction principle. In
actual computations, the iterative process for solving the nonlinear equations is based
on this contracting map. Hence, if the contraction factor is sufficiently small, say < 1/2,
the algorithm is stable with respect to small perturbations. This is important, since
small perturbations are to be expected. Rounding errors cause small perturbations,
but we also have the errors caused by numerical integration ofthe initial value problems.
In actual computations the contraction factor is easily estimated, and often as small
as o. For large values of w the contraction factor tends to unity. This is easily avoided
by using an mth iterate of the Poincar6 map instead of the Poincar6 map itself.

3. Numerical experiments. In this section we mention a few numerical results
obtained by Algorithm 1.2. We compare the results with earlier ones. Also, we shortly
discuss the parallel nature of Algorithm 1.2, and we give some examples.

In actual computations, Algorithm 1.2 performs much better than suggested by
the theory of [18]. For instance, the algorithm converges rapidly in the union of the
regions I, II, and III in Fig. 1, not only in the regions II and III. Also, the algorithm

670 M. VAN VELDHUIZEN

converges for y > 1, and small/3 > 0. In addition, one may even interchange the role
of q and b in Algorithm 1.2, and this new algorithm behaves very much like Algorithm
1.2. Results for y as large as 3.0 have been obtained, for both algorithms.

The algorithm uses linear interpolation, a rather crude type of interpolation.
However, higher-order interpolation may cause problems. From the explicit description
in 1, it is obvious that the ordering of the 0-coordinate of the images plays an
important part. With linear interpolation no problems have been observed, due to the
shape-preserving properties of linear interpolation and the existence of a global
P-invariant foliation of the plane (cf. Levi [11]). With piecewise quadratic or cubic
interpolation the images may get out of order, making the computation worthless. For
the moment, linear interpolation seems a reasonable choice.

As mentioned in 1, one is interested in the numerical values of ()= top, where
p is the rotation number of the circle map, i.e., the restriction of P to F. In 15] results
have been reported in which () is approximated directly. This requires the integration
of the differential equations (1.2a,b) over large intervals, say 2000T or even larger.
This is a sequential process, and there is a real danger of accumulation of integration
errors.

Some idea about the loss of accuracy is obtained by considering an artificial
example. By Proposition 2.1 we may construct an example in which the invariant curve
F is known. Choose fl=y=0.1, and choose ck(t)=tot+Asin(l)t), f an integer
multiple of to---1. Consequently, the function A(t)=fl(t+sinth) (cf. (2.3)) is
periodic. Since A is the periodic solution of (2.2), we obtain p(t) from (2.2). Hence
p(t) is to-periodic. However, in a numerical experiment designed to estimate the
accumulation of truncation errors, the problem behaves rather like a 12-periodic
function. Therefore, we use T 27r/f. In using this smaller value, we can be sure not
to exaggerate. Typically, f 100 to. Even with T 27r/f, there is a significant loss in
accuracy after integration over 2000 periods. Using the multistep code from Shampine
and Gordon [13] with initial values on F the errors in b are of the order 103 TOL,
where TOL is the tolerance used, TOL < 1.0E-06 (equal absolute and relative error
tolerance). The deviation from the stable manifold F is much smaller, say in the order
of 10 TOL. This is what one would expect. The relation between the error in the solution

4 and the average slope () is a complicated one. For tolerances as small as 1.0E-08,
the effect of the accumulation of errors really shows in the obtained approximation.
However, for a tolerance like 1.0E- 11 the accumulation of errors is hardly noticeable.
In one typical example, the error in the approximation for () increases by 4E- 12 in
every 500 periods, with integration by the Shampine-Gordon code and tolerances
1.0E-11. In this particular example we had y 1.5,/3 --0.05, to 38.0. Clearly, direct
approximation of p is possible, but only with limited accuracy due to accumulation
of errors, unless very small tolerances are being used. For instance, the results reported
in [15, Fig. 2] have an error of up to 0.1 percent. A better accuracy, if possible, would
increase the computing time considerably.

As an alternative, one might compute an approximation to the circle map by
Algorithm 1.2, and compute the rotation number of this approximate circle map. In
this way, one also integrates the differential equations (1.2a,b), many times over short
intervals typically of length T and there is hardly any serious accumulation of rounding
errors and local errors. Afterwards, one approximates p by means of [17, Algorithm
3.2], an algorithm for the numerical approximation of the rotation number. In the
invariant manifold approach, there are two main error sources" the approximation
error in the approximate invariant manifold and the truncation error in the approximate
rotation number. This latter error is hard to assess theoretically (cf. the discussion in

INVARIANT MANIFOLD APPROXIMATION 671

17]). Practical experience indicates the reliability ofthe algorithm used, with truncation
errors less than 1.0E-07. It is much harder to estimate the error in the approximate
invariant manifold. Typically, with N 100, i.e., a step size of 2r/N, the invariant
manifold approach results in approximations with an error of about 1.0E-05 in the
rotation number (comparison with results for N=800). In resonance regions the
method performs even better, sometimes giving the exact result with N 50. In many
instances the invariant manifold approach is highly competitive with direct integration
over extremely long intervals.

As an example, consider Fig. 2. We have shown the rotation number computed
from the approximate circle map obtained by Algorithm 1.2, with N 100, p(t)=
11 +0.9 to cos (tot), =0.01, y =3/2. Results are shown for to 37.853 (0.01) 40.653.
The results show the familiar devil’s staircase picture. In the upper part of Fig. 2 we
show the difference between the results from Algorithm 1.2 and direct integration (data
from [15]). The maximal error is 3.6E-04 on a rotation number p---2/7. The upper
graph shows larger errors at the borders of the steps. Actually, a step in the devil’s
staircase is just a resonance region, and the difference between the two results tends
to be larger at the borders of these regions. These places correspond to places where

37.8 38.8 39.8 40.8 41.8 42.8

FIG. 2. The rotation number of the circle map of the Josephson equation as computed with Algorithm 1.2
and [17, Algorithm 3.2]. The upper part shows the difference between these values and the values obtained in
[15]. For the parameter values, see text.

672 M. VAN VELDHUIZEN

p has a square root behavior. One might also say that the different methods result in
slightly different resonance regions. Relatively large errors at the borders of the
resonance regions are then to be expected. For this specific example the computation
based on Algorithm 1.2 is approximately twice as fast as a comparable (in tolerances)
direct computation. In order to get comparable timings, all computations have been
done on one mainframe computer (CDC Cyber 990), with recomputation of the results
reported in [15].

A further speed-up is to be expected if one exploits the parallel nature of Algorithm
1.2. To that end we have implemented this algorithm on the department’s shared
memory machine, best described as a set of 16 boards, each of them with 4Mbyte local
memory, an M68030 CPU and an M68882 FPU, and mutually connected by a VME-bus.
The programming language implemented on this system is Orca (cf. Bal and Tanenbaum
[1]). Orca is based on Modula-2, with a fork statement for the creation of new
asynchronous processes, and a guard mechanism for synchronizing these processes.
Both the hardware and the software are still in an experimental stage, mainly used for
research in distributed systems.

The parallelism in Algorithm 1.2 comes from the parallel computation of the
images under the Poincar6 map P. So let us consider this computation in some detail.
In one mode, whether in parallel or not, one computes many evaluations of P simul-
taneously by integrating one big system of differential equations. In this way one
distributes the overhead of the code over many evaluations. This works well if the step
sizes in the integration do not vary that much. This is typically the case for 0 < 3’ < 1.
However, if y is significantly larger than 1, the solution contains small areas with
internal layers along the t-axis. These areas require small steps in the integration
routine. The position of the internal layer strongly depends on the initial condition.
Thus, if one would combine the computation ofmany images under P in one integration,
one would be forced at some point in time to use small internal layer steps for all
equations together, while only a few equations require them. Hence, combination of
differential equations into one larger set may not be economical for large values of y.
For 3’ 1.5 both processes require about the same amount of time.

We have implemented Algorithm 1.2 in many ways on the multiprocessor. In the
first implementation, all processors, the master and the slave processors, did their share
in the computation of images under the Poincar6 map. This turned out to be inefficient,
resulting in a lot of idle time and bad load balancing. Therefore, we changed the
strategy. The master now distributes the tasks and performs the interpolation required
for the computation of new iterates. The slave processors do the actual integration
and report to the master. For small p, p 1, 2, 3, one wastes some time on the master.
For larger values of p, this process is by far superior to a process in which the master
does some integration as well. Of course, in all implementations one should carefully
minimize the number of bus accesses. Also, one should minimize the amount of data
shared between master and slave. This is partly due to the hardware, partly to the
software overhead caused by Orca.

Many implementations with a master processor have been tried. Two implementa-
tions of Algorithm 1.2 capture the whole range of possibilities. In the implementation
A-l, the master assigns the computation of just one image of P to an idle processor,
until all evaluations have been done. The master then does the interpolation, and goes
on with the next step. Actually, part of the interpolation is done in parallel. If there
are p slaves, the master does the interpolation for the first p assignments. Then, while
the slaves are at work, the master does the next p interpolations, and so on. At the
other end of the spectrum, in implementation A-2, we compute as many images as are

INVARIANT MANIFOLD APPROXIMATION 673

feasible together on a slave processor. Suppose one wants to compute N evaluations
of the Poincar6 map P on p+ 1 processors, p slaves, and 1 master. Divide the N
evaluations in p sets of N div p and (N div p)+ 1 equations. Integrate these equations
together, each of them on one slave processor. Of course, the equations are collected
in such a way that the variation in the initial values is as small as possible. This implies
that the initial value problems are as similar as possible. Thus, if internal layers are
present, there is as much overlap of these layers on the t-axis as possible.

In Table 1 we give results for the problem with equidistant mesh, and

(3.1) N=128, /3=0.25, 3/=0.7, to=19.0, ce=5, K=0.

The total number of processors, p slaves plus 1 master, is mentioned under NCPU. A
Runge-Kutta code with variable step size is used as integrator, tolerance 1.0E-07.
The invariant curve algorithm uses 12 iteration steps. The efficiency "eft" in Table 1
is defined as follows. On one processor the best time obtained is 293 seconds (same
compiler, identical CPU plus FPU). The efficiency is defined by

time one processor
(3.2) eft

NCPU time

expressed as a percentage. Note that implementation A-2 is very much superior to
implementation A-1 (both implementations of Algorithm 1.2, and mathematically
equivalent).

In a second example we choose

(3.3) N=128, /3 =0.02, y=2.5, to=19.0, a=2, K=5.

Now we have a large value of 3’ and a small/3. Algorithm 1.2 converges in six steps,
starting from the straight line b q as an initial guess. Again we look at the parallel
implementations, implementation A-1 and implementation A-2. Since 3’ is quite large,
we expect implementation A-1 to outperform implementation A-2. The results confirm
this for a small number of processors. Indeed, with a few processors implementation

TABLE
Results for (3.1).

Implementation A-1 Implementation A-2

NCPU Time in seconds eft Time in seconds eli

2 440.0 33% 282.0 52%
3 220.0 44% 149.5 65%
4 148.0 49% 101.0 73%
5 111.3 53% 78.2 75%
6 89.8 54% 62.6 78%
7 75.8 55% 53.2 78%
8 65.6 56% 46.9 78%
9 55.9 58% 42.4 77%
10 52.4 56% 38.0 77%
11 45.6 58% 35.1 76%
12 42.5 57% 31.9 77%
13 39.3 57% 30.0 75%
14 35.8 58% 28.6 73%
15 34.9 56% 27.0 72%
16 34.6 53% 25.0 73%

674 M. VAN VELDHUIZEN

A-2 lumps many equations together into one rather large differential equation; this is
inefficient for large 3’ as outlined above. However, the number of differential equations
lumped together decreases if the number of processors increases. Hence, in implementa-
tion A-2 the bad effects of large y diminish for larger p. In order to show this effect
as clearly as possible, we have added a few additional columns in Table 2. Under the
heading "size" we give the maximal number of equations lumped together. The minimal
number equals the maximal number if p divides 128, else the minimal number equals
the maximal number minus 1. Under the heading "time/eq" we give the time per
equation, i.e., the time divided by the maximal number of lumped equations. These
results of Table 2 strongly indicate the extra cost of lumping together too many
equations. The table also shows that implementation A-2 outperforms implementation
A-1 for many slave processors. Because of the internal layers we solve this problem
with a tolerance of 1.0E-10.

TABLE 2
Results for (3.3).

Implementation A-1 Implementation A-2

NCPU Time in seconds Time in seconds Size Time/eq

2 810.0 1376.5 128 10.7
3 406.0 641.3 64 10.0
4 272.7 359.0 43 8.3
5 205.8 242.2 32 7.6
6 164.8 187.5 26 7.2
7 138.5 147.7 22 6.7
8 118.9 122.3 19 6.4
9 105.0 102.6 16 6.4
10 94.7 90.5 15 6.0
11 83.9 83.1 13 6.4
12 76.6 74.1 12 6.2
13 69.8 67.5 11 6.1
14 64.8 61.5 10 6.2
15 62.4 55.1 10 5.5
16 57.6 54.7 9 6.1

The results in Table 2 for 14 and 15 processors reflect the programming of the
master. The maximum size of a job is ten equations in each case. By a job we mean
the task assigned to a slave processor, which consists of the integration of a number
of differential equations lumped together. With 14 processors, there are 11 jobs
consisting of ten equations, and two jobs consisting of nine equations. The master
assigns the larger jobs first, then the smaller ones. In the case of 15 processors two
jobs of ten equations and 12 jobs of nine equations result. The maximum job consists
of ten differential equations, as in the previous case. But the total time spent is more
reminiscent of jobs of nine equations, as with 16 processors. The explanation seems
to be the overlap caused by distributing the larger jobs first.

4. Conclusion. The results of 3 show the reliability of Algorithm 1.2. The
algorithm performs well, even far outside the domain in parameter space in which
convergence can be proved. Second, Algorithm 1.2 may serve as the basis for the
approximation of rotation numbers. As such, the approach via Algorithm 1.2 is at least

INVARIANT MANIFOLD APPROXIMATION 675

competitive with a direct approach. In addition, Algorithm 1.2 can be implemented
efficiently on parallel architectures.

Acknowledgments. I am indebted to M. F. Kaashoek, H. E. Bal and C. J. H. Jacobs
for implementing the floating point hardware, and for help with Amoeba, Orca, and
the use of C functions in Orca.

REFERENCES

[1] H. E. BAL AND A. S. TANENBAUM, Distributed programming with shared data, Proc. IEEE CS 1988
International Conference on Computer Languages, Miami, FL, Oct. 1988, pp. 82-91.

[2] T. N. CHAN, Numerical bifurcation analysis of simple dynamical systems, Ph.D. thesis (unpublished),
Department of Computer Science, Concordia University, Montreal, Canada, 1983.

[3] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill,
New York, 1955.

[4] L. DIECI, J. LORENZ, AND R. D. RUSSELL, Numerical calculation ofinvariant tori, SIAM J. Sci. Statist.
Comput., 12 (1991), pp. 607-647.

[5] J. GUCKENHEIMER AND PH. HOLMES, Nonlinear Oscillations, Dynamical Systems and Bifurcations
of Vector Fields, Springer-Verlag, New York, 1983.

[6] CHR. KAAS-PETERSEN, Computation ofquasi-periodic solutions offorced dissipative systems, J. Comput.
Phys., 58 (1985), pp. 395-408.

[7] ., Computation of quasi-periodic solutions offorced dissipative systems II, J. Comput. Phys., 64
(1986), pp. 433-442.

[8] ., Computation, continuation and bifurcation of torus solutions, Phys. D, 25 (1987), pp. 288-306.
[9] I. G. KEVREKIDIS, R. ARIS, L. D. SCHMIDT, AND S. PELIKAN, Numerical computations of invariant

circles of maps, Phys. D, 16 (1985), pp. 243-251.
[10] M. LEVI, Nonchaotic behavior in the Josephson junction, Phys. Rev. A, (1988), pp. 927-931.
11] , Invariant curves and invariantfoliations in forced oscillations, preprint, Boston University, 1988.
12] R. J. SACKER, A perturbation theorem for invariant manifolds and H61der continuity, J. Math. Mech.,

18 (1969), pp. 705-762.
[13] L. SHAMPINE AND M. K. GORDON, Computer Solution of Ordinary Differential Equations, W. H.

Freeman, San Francisco, 1975.
[14] R. J. SOULEN, JR. AND R. P. GIFFARD, Josephson-effect absolute noise thermometer: Resolution of

unmodeled errors, Appl. Phys. Lett., (1978), pp. 770-772.
[15] M. VAN VELDHUIZEN AND H. A. FOWLER, Subharmonicfrequency locking in the resistive Josephson

thermometer, Phys. Rev. B, (1985), pp. 5805-5810.
[16] M. VAN VELDHUIZEN, A new algorithm for the numerical approximation of an invariant curve, SIAM

J. Sci. Statist. Comput., 8 (1987), pp. 951-962.
[17] , On the numerical approximation of the rotation number, J. Comput. Appl. Math., 21 (1988),

pp. 203-212.
[18] , Convergence results for invariant curve algorithms, Math. Comp., 51 (1988), pp. 677-697.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 676-686, May 1992

(C) 1992 Society for Industrial and Applied Mathematics
003

A GENERALIZED PRIME FACTOR FFT ALGORITHM FOR
ANY N = 2’3’5" *

CLIVE TEMPERTON?

Abstract. Prime factor fast Fourier transform (FFT) algorithms have two important advantages: they
can be simultaneously self-sorting and in-place, and they have a lower operation count than conventional
FFT algorithms. The major disadvantage of the prime factor FFT has been that it was only applicable to a
limited set of values of the transform length N. This paper presents a generalized prime factor FFT, which
is applicable for any N 2P3q5 r, while maintaining both the self-sorting in-place capability and the lower
operation count. Timing experiments on the Cray Y-MP demonstrate the advantages of the new algorithm.

Key words, fast Fourier transform (FFT), prime factor algorithm (PFA), self-sorting FFT, in-place FFT

AMS(MOS) subject classification. 65T05

1. Introduction. Fast Fourier transform (FFT) algorithms can be defined whenever
the transform length N can be factorized as N N1N2’’’ N,, where the factors Ni
are integers. Though there are many variants of these algorithms, they fall into two
basic categories: those based on the prime factor algorithm (PFA) of Good [5], which
are only applicable if the factors Ni are mutually prime, and those descended from
the algorithm of Cooley and Tukey [3], for which there is no such restriction (indeed
the most familiar case is N 2 for all i).

The prime factor algorithms have two important advantages. For a given value of
N, the operation count is lower than that for the corresponding Cooley-Tukey
algorithm. Moreover, the PFA can be made both self-sorting (input and output both
naturally ordered) and in-place (requiring no work space) [2], 10], 14]. Their principal
disadvantage is that in order to achieve this, a program to implement the PFA requires
an explicit section of code (a "discrete Fourier transform (DFT) module") which
performs a self-sorting in-place transform of length Ni for each of the factors. (The
DFT module is the radix-Ni generalization of the familiar radix-2 "butterfly.") In most
implementations of the PFA, the factors Ni are thus assumed to be members of the
set {2, 3, 4, 5, 7, 8, 9, 16}. Coupled with the requirement that the factors be mutually
prime, this severely limits the set of practicable transform lengths N.

Johnson and Burrus [7] demonstrated that the radix-2 Cooley-Tukey algorithm
could also be made self-sorting and in-place, and in [18] the principle was extended
to radix-3, radix-4, and radix-5 transforms, and finally to the mixed-radix case. However,
as hinted in [18] the operation count for the resulting algorithm can be improved if
N contains a mixture of factors.

In this paper we combine ideas from the PFA and from the self-sorting in-place
form of the Cooley-Tukey algorithm, to derive a new generalized prime factor FFT
algorithm with the following nice properties:

(1) It works for any transform length of the form N 2P3q5r;
(2) It is always self-sorting and in-place (the only work space required is for an

optional list of precomputed twiddle factors);

Received by the editors April 30, 1990; accepted for publication (in revised form) March 19, 1991.
Much of this work was done at Recherche en Pr6vision Num6rique, Atmospheric Environment Service,
Canada.

" European Centre for Medium Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX,
United Kingdom.

676

A GENERALIZED PRIME FACTOR FFT 677

(3) For values of N suitable for the PFA, the new algorithm reduces to the PFA
and has the same operation count;

(4) For N 2p, 3 q, or 5 r, the new algorithm reduces to that described in [18], and
has the same operation count;

(5) If N contains a mixture of factors but is unsuitable for the PFA, the new
algorithm has a lower operation count than for the Cooley-Tukey algorithm.

Section 2 of this paper reviews the essentials of the prime factor algorithm. In 3
we show how the PFA can be generalized to yield the new algorithm, removing the
restriction on the transform lengths. Section 4 describes the implementation on a Cray
Y-MP, and includes timing results to illustrate the properties of the new algorithm. In

5, we describe a refinement of the algorithm which gives an even lower operation
count for suitable values of N. Finally, 6 includes a brief summary and discussion.

2. Prime factor algorithms. A thorough derivation of the family of prime factor
FFT algorithms has been given by Burrus [1], [2]. Briefly, the DFT of length N is
defined by

N--1

(2 1) x(n) z(k)wN, O<=n<=N-1,

where x(n) and z(k) are complex, and we use the notation

(2.2) toN exp (+2i’rr/ N).

Either sign may be taken in the definition (2.2).
We illustrate the derivation of the PFA by means of an example. Suppose that

N N1N2, where N1 and N2 are mutually prime. In this case [8, p. 250] we can find
integers p, q, r, s (0 < p < N, 0 < q < N2, 0 < r < N2, 0 < s < N) such that

(2.3) pN2 rN1 + 1, qN1 sN+ 1.

We use this "Chinese Remainder Theorem" (CRT) to define a mapping between
the integers n, k (0 <- n _-< N- 1, 0-< k_-< N- 1) and the corresponding integer pairs
(hi, n2) and (kl, k) where 0-<nl<N, 0=<n2<N2, 0=<k<N1, 0_-<k2<N2. As
described in [14], we have a choice of two such mappings, the CRT map itself and
the "Ruritanian" map [6]. In [14] the CRT map was chosen; this time we choose the
Ruritanian map, for reasons which will become clear later.

Thus, the mapping is defined by

(2.4) nl (pn) mod N1, //2 (qn) mod N2;

(2.5) k, (pk) mod N,, k2 (qk) mod N2,

where p, q are defined in (2.3).
The inverse map is given by

(2.6) n (N2n + Nn2) mod N;

(2.7) k= N2k + Nk2) mod N.

An example for N 40 (N1 8, Nz 5) is shown in Table 1. The integer solutions
of (2.3) are p 5, q 2, r 3, s 3. In fact, it is easy to construct the mapping in the
form of a table without having to find these solutions. The entries in the first column
increase from 0 in steps of NNI(N2), while those in the first row increase from 0
in steps of N/N2(=N). The remaining columns (or rows) can then be filled in by
using the same increment as in the first column (or row), and taking the results modulo
N. We will use this technique later for indexing in the transform algorithm.

678 CLIVE TEMPERTON

TABLE
The Ruritanian map for N 8, N2 5.

yl

0 2 3 4

0 8 16 24 32
5 13 21 29 37

10 18 26 34 2
15 23 31 39 7
20 28 36 4 12
25 33 9 17
30 38 6 14 22
35 3 11 19 27

As shown in [14], if we substitute (2.6) and (2.7) into (2.1), we obtain

N2--1[N,--1
N2kl nl 0.) Nl k2n2(2.8) x(n, n) Y Z z(k,, k2)a N, N2

k2-0 k =0

If it were not for the appearance of N and N multiplying the exponents, (2.8) would
be exactly in the form of a two-dimensional DFT of dimension Nix N, and the
transform could be computed simply by performing N DFTs of length N in one
dimension, followed by N2 DFTs of length N in the other (or vice versa, without
changing the results). There are no "twiddle factors" between the two stages (hence
the lower operation count than for the Cooley-Tukey algorithm). The output of each
of the short one-dimensional transforms can overwrite the corresponding input, and
the whole computation can thus be done in place. (Here we assume that N and N2
are "small" so that explicit DFT modules can be coded for these transform lengths.)

As further shown in [14], the appearance of N2 and N in the exponents simply
rotates the transforms (applying a rotation r to a transform of length N means that
instead of appearing in the original order 0, 1, 2,. ., Ni- 1, the same results appear
in the order 0, r, 2r,..., (N- 1)r, where these indices are to be interpreted modulo
N). Moreover, these rotations can be incorporated by modifying certain constants
which appear in the definitions of the short DFT algorithms of length N and N.
Detailed algorithms for rotated "small-n" DFTs are given in [14], [16].

The generalization to the case N NIN N, where all the factors are mutually
prime, is straightforward; the one-dimensional transform of length N is equivalent to
a k-dimensional transform in which the DFTs in each dimension are rotated as
appropriate.

For future reference, it will be helpful to express these results in matrix form. We
jk (rowsdefine WN to be the DFT matrix of order N; thus element (j, k) of WN is CO

and columns of W are indexed from 0 to N-l), and (2.1) can be rewritten as

.x WN.z. Further, we define W% to be the matrix WN with all its elements raised to
the power r. Then (2.8) corresponds to the factorization

(2.9) WN R-l(**-[N,]vvN2 X WtNN,2])R
where denotes the Kronecker (tensor) product and R is the permutation matrix
which maps the integers 0 n =< N-1 to the corresponding integer pairs (nl, n2) via
the Ruritanian map (2.4). In general, if N= N1N2’’’ Nk, where all the Ni’s are
mutually prime, then the factorization is

(2.10) WN R-’(’’z[N/N]v,, N x x UZ[N/N]x,, N: w[NN,/N’])R

A GENERALIZED PRIME FACTOR FFT 679

where R now maps the array x(n) to the corresponding k-dimensional array
x(nl, n2,’", nk) via the appropriate Ruritanian mapping. Notice that, to compute
the transform, it is not necessary to reorder the input (or output) physically; the
required mapping can be implemented implicitly via the indexing logic.

3. The generalized PFA. Using the results of the previous section, we can derive
self-sorting in-place PFAs for certain values of N. For example, if N 60 3.4.5, (2.10)
becomes

(3.1) W6o--R-l(W[512] X W[415] x Wae)R.

Since the rotation [r] in uztr
Si can be taken modulo Ni, (3.1) simplifies to

(3.2) W6o R-l(W[52] X W[43] X W=])g.

Algorithms are available for each of the short transforms W, W4, W3, including the
rotations [14], [16], and these short transforms can be self-sorting and in-place.

Suppose now that N 129600 34 4 x 5. If we arrange the factors in the form
of a palindrome, for example

N=3x3x4x5x4x5x4x3x3,

then we can use the results of [18, 5] to obtain a self-sorting in-place algorithm for
a transform of this length. However, the operation count would be the same as that
for the corresponding mixed-radix Cooley-Tukey algorithm.

Alternatively, by (2.10) we have

II/’[5184] II]’[2025] X II/’[1600]]D(3.3) W129600 R-l(25 x 64 81]a,,

which, on reducing the rotations modulo N, becomes

(3.4) W129600 R-l(’’,[9] I’I/’[41]
I/t’ 25 X 64 X W[8]I])R.

In previous work on the PFA, it appeared that a self-sorting in-place implementa-
tion of (3.4) was not possible, since there was no way to perform self-sorting in-place
transforms of lengths 25, 64, and 81. This is no longer true, thanks to the Johnson-Burrus
self-sorting in-place radix-2 algorithm [7] and its generalization to other radices [18].
We need one final ingredient, so that the necessary rotations can be incorporated.

The required lemma was given in [14], in connection with deriving a rotated DFT
module for N 9. It can be stated as follows: if we have a radix-p algorithm for a
transform of length N pro, then we can apply a rotation r by the following:

(1) Applying the rotation r (modulo p) to each radix-p module (e.g., by changing
the multiplier constants); and

(2) raising all the twiddle factors to the power r.
For example, 1’1/’[9]’’z5 in (3.4) can be implemented by rotating each radix-5 module

by r’--4 (=9 modulo 5), and by raising all the twiddle factors to the power 9 (note
that if the twiddle factors are stored in a precomputed list, this simply reorders them).

Thus, the generalized self-sorting in-place prime factor FFT algorithm (GPFA)
for any N--2P3q5 is constructed as follows:

(1) Use the Ruritanian mapping to convert to a three-dimensional transform of
size 2p 3 q 5r;

(2) Do the component one-dimensional transforms of length 2p, 3 q, and 5 using
the generalized Johnson-Burrus scheme [18] with rotations incorporated as described
above.

680 CLIVE "tEMPERa’ON

If the factors 2p, 3 q, and 5 are all "small," then the above algorithm is equivalent
to the original PFA. If N 2p, 3 q, or 5 (i.e., only one of p, q, r is nonzero), then the
transform remains one-dimensional and the above algorithm is equivalent to that in
[18], with the same operation count as the Cooley-Tukey algorithm. In other cases,
we have a new self-sorting in-place algorithm which takes advantage of the splitting
of N into its mutually prime factors to reduce the operation count.

3.1. Operation counts. In [13], it was shown how to compute the operation counts
for the mixed-radix Cooley-Tukey FFT algorithm. Here we adapt the formulae given
in [13] to the case N 2P3q5 r, where the factors of 2 are treated in pairs (i.e., using a
radix-4 algorithm). As in [13], the formulae assume that redundant multiplications are
avoided when the twiddle factor is 1, but that there is no special treatment of other
"simple" twiddle factors. The number of real additions is then given by

(3.5) sd(N) 2N(1.375p + 2.67q + 4r-1) + 2,

while the number of real multiplications is

(3.6) J//(N) 2N(0.75p + 2q + 2.8r 2) + 4.

In the case of the GPFA, we sum the operation counts from the transforms in each
of the three dimensions: if N N1N2N3, where N1--2p, N:---3 q, N3--5 r, then the
numbers of real additions and multiplications are given, respectively, by

(3.7) s(N)= 2 (N/Ni)sg(Ni),
i=1

(3.8) ()= 2 (/)a(),
i=1

where s/(N) and (Ni) are obtained from (3.5) and (3.6).
Examples for N-= 3600 32. 42. 52 are given in Table 2. In comparison with the

Cooley-Tukey algorithm, the GPFA saves 10 percent of the additions and 33 percent
of the multiplications. Thus, besides being both self-sorting and in-place, the GPFA
has a significantly lower operation count than the conventional FFT when N contains
a mixture of factors. Further examples of operation counts will be given in 4. (The
GPFA+ algorithm is described in 5.)

As an additional bonus, there is a useful saving in the storage required for tables
of precalculated twiddle factors. Since a separate table is now used for the transforms
in each of the three dimensions, the storage required becomes 2p nt- 3 q + 5 rather than
2p 3 q X 5 r. For example, in the case N 216000 33 43 5 the twiddle factor storage
requirement falls from 216000 to 216.

3.2. Indexing. To illustrate the indexing logic, we present a section of Fortran
code which implements the first half of the radix-2 part of the algorithm for general

TABLE 2
Real operation counts for N 3600.

Cooley-Tukey 128402 76324
GPFA 115538 50596
GPFA+ 110250 40020

A GENERALIZED PRIME FACTOR FFT 681

N 2P3q5 r. Set NI 2p, IP p. We first compute the required rotation and set up the
table of twiddle factors:

COMPLEX TRIGS(NI)
DEL 4.0*ASIN(1.0)/FLOAT(NI)
IROT= MOD((N/NI),NI)
KK 0
DO 10K=I, NI
ANGLE FLOAT(KK)*DEL
TRIGS(K) CMPLX(COS(ANGLE),SIN(ANGLE))
KK KK+ IROT
IF (KK.GT.NI) KK KK- NI

10 CONTINUE

The first (p+ 1)/2 radix-2 passes are then performed by the following code:

COMPLEX X(N), W, Z
NH N/2
INC N/NI
DO 50 L= 1, (IP+ 1)/2
LA 2**(L- 1)
JA =0
JB NH/LA
KK= 1
DO 40 K=0, JB-1, INC
W= TRIGS(KK)
DO 30 J--K+ 1, N, N/LA
IA=JA+J
IB=JB+J
DO 20I=1, INC
Z W*(X(IA) X(IB))
X(IA) X(IA) + X(IB)
X(IB) =Z
IA IA+ NI
IF (IA.GT.N) IA IA- N
IB IB + NI
IF (IB.GT.N) IB IB- N

20 CONTINUE
30 CONTINUE

KK KK+ LA
40 CONTINUE
50 CONTINUE

The details of the indexing may be understood by comparing this code with Table 1
(N 40, NI 8). The three outer loops are very similar to the three loops of the code
presented in [18], which performed the first half of a self-sorting in-place radix-2
algorithm. In the present case these loops set up base addresses in the first column of
Table 1. The advantage of the Ruritanian map is that the entries in the first column
(or row) increase monotonically in steps of N/NI; there is no need to compute these
addresses modulo N. The innermost loop (DO 20) then steps across the table, perform-
ing one "butterfly" from each of the N/NI transforms of length NI. Only in this
innermost loop is it necessary to update the addresses modulo N.

682 CLIVE TEMPERTON

The code for the second half of the radix-2 part of the algorithm for general
N 2P3q5 may be obtained by similarly adapting the corresponding code given in
[18], again inserting a new innermost loop which "traverses" the table. Notice that
the indexing for the radix-2 part of the algorithm depends only on N! and NNI; it
is immaterial whether the Ruritanian map is one-, two- or three-dimensional. The same
is true of the corresponding radix-3 and radix-5 parts.

4. Implementation on Cray Y-MP. The three Cray Assembly Language (CAL)
routines described in [18], which implemented multiple self-sorting in-place complex
FFTs for N-= 2p, 3 q and 5 r, have been generalized to implement the GPFA. The input
parameter list for the modified version of each of the three routines now includes both
N 2P3q5 and the appropriate NI 2p, 3 q, or 5 r. The sequences of floating-point
vector instructions are essentially unchanged, but the addressing and loop control now
have to "navigate" the Ruritanian map as described in 3.2, and are more complicated.
However, this extra complexity has no impact on the vectorization, since the innermost
loops (within the individual vector instructions) still step across the M simultaneous
transforms being performed, with constant stride. For general N 2P3q5, each of the
three routines is now called in turn to implement the complete transform algorithm.

For the timing experiments presented below, 64 transforms were performed simul-
taneously. The experiments were run using a single processor of a Cray Y-MP with
clock cycle 6.4 nsec. The new algorithm was compared with three other FFT routines,
all CAL-coded and vectorized in the same way. In Tables 3-5, CFFT refers to the "old

TABLE 3
Timing comparisons for self-sorting transforms of length N.

Real operations (+/*)
per transform

N CFFT GPFA

Time per transform (ls) Efficiency
of GPFA

CFFT PFA GPFA (%)

120=23.3.5 2382/1276 2028/508 19.1 14.1 14.2 97.1
144 24. 32 2834/1444 2594/964 22.5 18.0 18.0 98.0
180=22.3z.5 3992/2272 3472/1232 31.1 24.0 24.0 98.2
240 24. 3.5 5362/2788 4686/1436 41.5 32.3 32.3 98.5
360 23. 32. 5 9062/5260 7844/2644 71.5 54.1 53.9 98.9
720=24.32.5 19922/11236 17578/6584 153.6 120.6 120.2 99.4

TABLE 4
Timing comparisons for self-sorting transforms of length N.

N

Time per transform (txs) Efficiency
Real operations (+/*) of GPFA

per transform CFFT SSIP GPFA (%)

125 53 2752/1604 22.2 18.9 18.9 98.8
243 35 5996/3892 47.3 41.4 41.1 99.2
256 28 5122/2052 39.9 35.1 35.3 98.7
625 54 18752/11504 150.1 127.9 127.9 99.7
729 36 21872/14584 171.3 150.4 149.2 99.7
1024 2t 26114/11268 201.7 178.4 178.9 99.3
2187 37 77276/52492 602.3 530.6 526.6 99.8
3125 55 118752/75004 952.9 809.1 809.1 99.8
4096 212 126978/57348 978.5 866.4 868.4 99.4

A GENERALIZED PRIME FACTOR FFT 683

TABLE 5
Timing comparisons for self-sorting transforms of length N.

Real operations (+/*)
per transform

N CFFT GPFA

Time per transform (s) Efficiency
of GPFA

CFFT GPFA (%)

216=23.33
300 22. 3.5
400 24. 5
600 23. 3" 5
900 22. 32. 52
1200 24 3" 5
1500 22 3’ 53
1800 23 32. 52
2400 25 3’ 52
3000 23 3’ 53
3200 27 52
3600 24 32. 5

4862/2812 4444/1868 39.2 30.6 98.7
7452/4264 6624/2608 58.3 45.5 99.0
10002/5284 9282/3844 78.0 63.6 99.3
16702/9724 14748/5516 132.3 100.9 99.4
27152/16384 24272/10624 211.1 165.7 99.6
36402/20644 32646/13132 282.6 222.9 99.6
49252/29704 45024/21248 386.8 307.1 99.7
59702/36364 53044/22148 470.5 362.0 99.7
80002/46084 71742/29564 629.1 491.6 99.2

107502/65404 97548/43996 825.5 665.6 99.7
107202/58244 100306/42852 842.2 684.0 99.7
128402/76324 115538/50596 994.8 787.7 99.7

routine" used as a standard of comparison in [18]; this was originally coded for the
Cray-1 and implements the self-sorting form ofthe Cooley-Tukey algorithm by alternat-
ing between the original data array and a work array of the same size. PFA refers to
the implementation of the prime factor algorithm described in 15]. SSIP refers to the
self-sorting in-place routines presented in [18], and GPFA is the new algorithm.
Operation counts given in the tables were computed via (3.5)-(3.8), with appropriate
modifications when p is odd (as in [18], the Ni 2p part of the computation is done
using a radix-4 algorithm with an extra radix-2 or radix-8 section called once ifp is odd).

Table 3 presents timing comparisons for values of N suitable for the PFA.
Operation counts for the PFA routine are in principle the same as those for GPFA.
In practice they are slightly smaller in some cases, since the special DFT modules used
in PFA for Ni 9 and Ni-- 16 include some economies which are not available to the
general-purpose radix-3 and radix-4 DFT modules in GPFA. As shown in Table 3, the
times for GPFA are almost exactly the same as those for PFA, and represent savings
of 20-25 percent over CFFT. The last column of Table 3 gives a measure ofthe efficiency
of GPFA, defined as in [18] as

Minimum possible time

Measured time
100 percent.

The minimum possible time is computed on the basis of the number of real additions
in the algorithm, and the efficiency is equivalent to the percentage of CPU time during
which the floating-point addition unit is active. As demonstrated in Table 3, optimum
use of the hardware is very nearly achieved. In particular, the rather complicated
indexing is successfully hidden behind the floating-point arithmetic.

Table 4 presents timings for values of N suitable for the self-sorting in-place
routines described in [18], i.e., of the form 2p, 3 q, or 5 r. The operation counts for the
three routines are the same. The times for GPFA are almost exactly the same as those
for SSIP (despite the more complicated indexing, which is redundant in this case as
the Ruritanian map is now one-dimensional), representing savings of 10-15 percent
over CFFT.

684 CLIVE TEMPERTON

Table 5 presents timings for values of N which contain a mixture of factors but
are unsuitable for the PFA because at least one of the mutually prime factors is too
large. The times for GPFA represent savings of 18-24 percent over CFFT, demonstrating
that the two major advantages of the prime factor algorithm (self-sorting in-place
capability and reduced operation count) have been extended to general values of
N--2P3q5 ".

The results presented in this section show that in GPFA we have a self-sorting
in-place FFT algorithm which works for any N 2P3q5 r. If the transform length N is
suitable for the PFA, then GPFA is essentially equivalent to it and runs just as fast.
If N 2p, 3 q, or 5 r, then GPFA is equivalent to the self-sorting in-place algorithms in
[18], and runs just as fast. If .N contains a mixture of factors but the PFA is not
applicable, then GPFA has a lower operation count than the conventional FFT, and
runs faster.

5. A further refinement. For suitable values of the transform length N, a refinement
is possible which leads to a further reduction in the operation count. We illustrate the
procedure by way of an example, for N 3600 32. 42. 52. From (2.10), we have

(5 1) W3600 R-l(25 x W16 x W[94])R.
The heart of the algorithm is a three-dimensional transform; the Ruritanian mapping
and the rotations are not germane to the present discussion, and the same procedure
could be used with any multidimensional transform.

In 3, (5.1) was implemented by performing transforms of length 9 along the first
dimension, then transforms of length 16 along the second dimension, and finally
transforms of length 25 along the third dimension. The transform of length 9 is a
two-stage procedure using a radix-3 algorithm; it can be written

(5.2) W[94]-’- U9(D9T9).

The first stage (D9 Z9) consists of three radix-3 "butterflies" (T9) followed by multiplica-
tion by a diagonal matrix (D9) of twiddle factors. The second stage (U9) consists of
another three radix-3 butterflies (since we are using a self-sorting in-place algorithm
here, the butterflies in U9 are coupled and some results are interchanged [18], but
again this does not affect the argument). Similarly, we can write the transforms of
length 16 and 25 as two-stage procedures using radix-4 and radix-5 algorithms, respec-
tively:

(5.3) W16-- U16(D16T16),

(5.4) II/’[9]’’25 U25(D25T25),

where O16 and D25 are diagonal matrices of twiddle factors.
Substituting (5.2)-(5.4) into (5.1),

(5.5) W3600 R-l((U25025T25) x (U16D16T16) x U919T9))R.

Using the algebra of Kronecker (tensor) products, (5.5) becomes

(5.6) W3600-- R-l((U25 x U16 x U9)(D25 x O16 x 09) T25 x T16 x T9))R.

The interpretation of (5.6) is as follows. We can perform the first stage (T9) of
the radix-3 algorithm along the first dimension, without the twiddle factors, and follow
it immediately by the first stage (T16) of the radix-4 algorithm along the second
dimension, and the first stage (T25) of the radix-5 algorithm along the third dimension.
Next, we apply the "delayed" twiddle factors, contained in the matrix (D_ D16 D9).

A GENERALIZED PRIME FACTOR FFT 685

Finally, we perform the second stages U9, U16, U25) ofthe radix-3, radix-4, and radix-5
algorithms along the three dimensions in turn. The important point about this reordering
of the calculation is that (D25 D16 D9) is a single diagonal matrix (of order N) of
twiddle factors; thus, the twiddle factors in the original algorithm (5.1) have been
nested together. Each of these combined twiddle factors can be found somewhere in
the precomputed list oflength N as used for the Cooley-Tukey algorithm (unfortunately
the reduction to a table of length 2p q-3 q + 5 is now lost). This nesting of the twiddle
factors is analogous to that proposed for two-dimensional transforms in [13].

The number of twiddle factors in (D25 D16 D9) that have the value 1 is given
by the product of the numbers of l’s in the three matrices D25, D16 D9, respectively.
Assuming we can still pick these out and avoid redundant twiddle factor multiplications,
the operation count for this refined algorithm (GPFA+), for N 3600, is given in
Table 2. Compared with GPFA, the new algorithm saves a further 5 percent of the
additions and 20 percent of the multiplications.

For N 2P3q5 r, nesting the twiddle factors in this fashion can be done whenever
at least two of p, q, r are greater than one (so the Ruritanian map is at least two-
dimensional, and the transforms in at least two of the dimensions consist of at least
two stages with intervening twiddle factors). The practical aspects of indexing the
refined algorithm in the general case have not yet been addressed.

6. Summary and discussion. In this paper we have developed a new FFT algorithm
which works for any transform length of the form N 2P3q5 r, and is always self-sorting
and in-place. It includes the prime factor algorithm [14] and the self-sorting in-place
version of the fixed-radix Cooley-Tukey algorithm 18] as special cases, and is always
at least as fast as previously available algorithms.

A refinement, applicable for certain values of N, has already been proposed in
5; it is natural to ask whether further refinements are possible. Promising directions

include replacing the radix-2 part ofthe procedure by the split-radix algorithm [4], 11],
and the radix-3 part by the algorithm of Suzuki, Sone, and Kido [12]; but in both
cases it remains to be shown whether these algorithms can be made self-sorting and
in-place, and generalized to include rotations. These refinements would reduce the
multiplication count to a greater extent than the addition count--which is unfortunate
from the viewpoint of implementation on Cray-like machines, where the multiplications
are effectively already free of charge.

Another topic worth pursuing is the analogous generalization to any N- 2P3q5

ofthe self-sorting in-place real/half-complex prime factor FFT 17] and the correspond-
ing fast sine and cosine transform algorithms [9].

Acknowledgments. The author wishes to thank Dr. Deborah Salmond of Cray
Research Inc. for her help in running the timing experiments on the Cray Y-MP.

REFERENCES

1] C. S. BURRUS, Index mappings for multidimensional formulation of the DFT and convolution, IEEE
Trans. Acoust. Speech Signal Process., 25 (1977), pp. 239-242.

[2] C. S. BURRUS AND P. W. ESCHENBACHER, An in-place, in-order prime factor FFT algorithm, IEEE
Trans. Acoust. Speech Signal Process., 29 (1981), pp. 806-817.

[3] J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine calculation of complex Fourier series,
Math. Comp., 19 (1965), pp. 297-301.

[4] P. DUHAMEL, Implementation of "split-radix" FFT algorithms for complex, real and real-symmetric
data, IEEE Trans. Acoust. Speech Signal Process., 34 (1986), pp. 285-295.

[5] I. J. GOOD, The interaction algorithm and practical Fourier analysis, J. Roy. Statist. Soc. Set. B., 20
(1958), pp. 361-372.

686 CLIVE TEMPERTON

[6] I. J. GOOD, The relationship between two Fast Fourier Transforms, IEEE Trans. Comput., 20 (1971),
pp. 310-317.

[7] H. W. JOHNSON AND C. S. BURRUS, An in-place in-order radix-2 FFT, IEEE ICASSP-84 (1984),
pp. 28A.2.1-28A.2.4.

[8] D. E. KNUTH, The Art of Computer Programming: Vol. 2, Seminumerical Algorithms, Addison-Wesley,
Reading, MA, 1969.

[9] J. S. OTTO, Symmetric prime factor Fast Fourier Transform algorithms, SIAM J. Sci. Statist. Comput.,
10 (1989), pp. 419-431.

10] J. H. ROTHWEILER, Implementation of the in-order primefactor transform for various sizes, IEEE Trans.
Acoust. Speech Signal Process., 30 (1982), pp. 105-107.

[11] H. V. SORENSEN, M. Z. HEIDEMAN, AND C. S. BURRUS, On computing the split-radix FFT, IEEE
Trans. Acoust. Speech Signal Process., 34 (1986), pp. 152-156.

[12] Y. SUZUKI, T. SONE, AND K. KIDO, A new FFT algorithm of radix 3, 6 and 12, IEEE Trans. Acoust.
Speech Signal Process., 34 (1986), pp. 380-383.

13] C. TEMPERTON, Self-sorting mixed-radix Fast Fourier Transforms, J. Comput. Phys., 52 (1983), pp. 1-23.
14] ,Implementation ofa self-sorting in-place primefactor FFT algorithm, J. Comput. Phys., 58 (1985),

pp. 283-299.
[15] , Implementation of a prime factor FFT algorithm on Cray-1, Parallel Computing, 6 (1988),

pp. 99-108.
[16] , A new set of minimum-add small-n rotated DFT modules, J. Comput. Phys., 75 (1988),

pp. 190-198.
17] .,A self-sorting in-place primefactor real half-complex FFT algorithm, J. Comput. Phys., 75 (1988),

pp. 199-216.
18] ., Self-sorting in-place Fast Fourier Transforms, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 808-

823.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 687-693, May 1992

(C) 1992 Society for Industrial and Applied Mathematics

O04

A METHOD OF SMOOTH BIVARIATE INTERPOLATION FOR DATA
GIVEN ON A GENERALIZED CURVILINEAR GRID*

DAVID W. ZINGG? AND MAURICE YARROWS

Abstract. A method of locally bicubic interpolation is presented for data given at the nodes of a

two-dimensional generalized curvilinear grid. The physical domain is transformed to a computational domain
in which the grid is uniform and rectangular by a generalized curvilinear coordinate transformation. The
metrics of the transformation are obtained by finite differences in the computational domain. Metric
derivatives are determined by repeated application of the chain rule for partial differentiation. Given the
metrics and the metric derivatives, the partial derivatives required to determine a locally bicubic interpolant
can be estimated at each data point using finite differences in the computational domain. A bilinear
transformation is used to analytically transform the individual quadrilateral cells in the physical domain
into unit squares, thus allowing the use of simple formulas for bicubic interpolation.

Key words, interpolation, generalized curvilinear coordinates

AMS(MOS) subject classification. 65D05

1. Introduction. When function values are known at rectangular grid points in a
plane, smooth bivariate interpolation can be efficiently performed using a method such
as that presented by Akima 1]. However, when function values are given at irregularly
distributed points in a plane, considerably more time-consuming methods are required.
For example, the method developed by Akima [2] involves the following procedures:
(1) triangulation, (2) determination of suitable nearest neighbors for each data point,
(3) determination of the triangle in which each output point lies, (4) estimation of
partial derivatives at each data point, and (5) calculation of the value of the interpolant
at each output point. When the data points are given at rectangular grid points, the
time-consuming procedures for triangulation and nearest-neighbor determination are
not required. Furthermore, the procedures for determining the rectangle in which the
output lies and for estimating partial derivatives are simplified.

In this paper, we develop a method of smooth bivariate interpolation for data
given at the nodes of a generalized curvilinear grid. This problem is intermediate in
complexity between the two problems above. Procedures for triangulation and nearest
neighbor determination are not required, since the grid connectivity is implied by the
data structure. In the present work, we assume that the cell in which a given output
point lies is known. Procedures are described for estimation of partial derivatives and
calculation of the value of the interpolant at the output points.

Generalized curvilinear grids are in common use in computational fluid dynamics.
The grids are usually numerically generated using algebraic or partial differential
equation techniques. Thompson, Warsi, and Mastin [7] give an excellent review of
numerical grid generation techniques. Curvilinear grids are structured in that the grid
nodes are aligned along curvilinear coordinate lines. Consequently, the grid can be
mapped to an equispaced rectangular grid by a generalized curvilinear coordinate
transformation. This facilitates the application of finite-difference methods for estimat-
ing partial derivatives. The physical coordinates are stored in two-dimensional arrays
such that the curvilinear coordinates at each node are given by the array indices. Hence
the grid connectivity is implied by the array indices.

* Received by the editors July 17, 1989; accepted for publication February 22, 1991.
? Institute of Aerospace Studies, University of Toronto, Downsview, Ontario M3H 5T6, Canada.
Sterling Software, NASA Ames Research Center, Moffett Field, California 94035.

687

688 D.W. ZINGG AND M. YARROW

There are numerous applications for interpolation on curvilinear grids, including
transferring data from one grid to another in embedded or overlapping grid schemes
and graphical output. While linear interpolants are sometimes used [4], a smooth
interpolant may be required for some applications. Yarrow and Mehta [8] found that
a cubic interpolant increases the accuracy of the coupling between overlapping grids.
They used an iterative method for interpolation on curvilinear grids. The method
presented here avoids iteration and associated difficulties with convergence. The bicubic
interpolant does not ensure monotonicity. Bilinear interpolation can be used in regions
where this is an important consideration.

2. Generalized curvilinear coordinate transformation. The generalized curvilinear
coordinate transformation maps a nonuniform, nonrectangular grid in the physical
domain to a uniform, rectangular grid in the computational domain [3], as shown in
Fig. 1. The physical coordinates (x, y) are mapped to the curvilinear coordinates (s, /)
by the following general transformation:

(1) -- (x, y), x/-- x/(x, y),

where we consider two space dimensions only. Note that the physical coordinates of
the grid nodes are normally determined by a numerical grid-generation procedure.
Consequently, no analytical mapping of the above form is defined. The mapping is
defined at the grid nodes by assigning curvilinear coordinate values to each grid node.
The mapping is chosen such that the resulting grid in the computational domain is
uniform, rectangular, and of unit length, i.e.,

(2) AsC:A/= 1.

Hence finite-difference representations of0 and 07 are easily formulated. Each physical
point is mapped to one point in the computational domain and vice versa except at
topological singularities or cuts, where one physical point may be mapped to many
computational points.

The chain rule for partial differentiation gives, in matrix form,

OUTER
BOUNDARY PHYSICAL DOMAIN

E

WAKE CUT

c ,/

RFACE

F

COMPUTATIONAL DOMAIN
F E

OUTFLOW
BOUNDARY

A=

B

FG.

INTERPOLATION ON A CURVILINEAR GRID 689

Therefore, given the values of the elements of the above matrix, which are known as
the metrics of the transformation, at each grid node, estimates of the partial derivatives
with respect to the physical coordinates can be obtained from the simple finite-difference
expressions for 0 and 0n. However, since the coordinate transformation is generally
not known analytically, the metrics of the transformation must be determined using
finite differences. Reversing the roles of the coordinate systems in (3), the chain rule
also gives

[O,]=[x y][O](4)
O Xrl yrl Oy

Therefore, we must have

x x xe y
(5) y y X y,

(6) =J Y"
X X

where

Equation (6) is the matrix form of the metric relations All of the terms involving 0
and 0, are evaluated as finite differences. In the interior of the domain, standard
three-point centered difference expressions are used. At boundaries, one-sided
expressions must be used.

3. Interpolation method. Our objective is to smoothly interpolate a functionf(x, y)
using values given at the nodes of a generalized curvilinear grid. The method proceeds
in three steps. First, the required partial derivative information in the physical domain
is determined using finite-difference approximations to the partial derivatives in the
computational domain. The individual cells are then analytically transformed into unit
squares by a bilinear transformation. Finally, a bicubic spline interpolant is determined
within each unit square.

For locally bicubic interpolation, we require f, fy, f, fy, fyy, as will be shown
below. Using finite differences in computational space, we can determine f, f,, f,
fen, f,,. Applying the chain rule to (3) yields

2 2axe, O+xO +xO+20+O,

2 2

Equations (3) and (7) may be assembled as

(8) O,y BOe,,
where

so,, q,, 0 0 0

y Ty 0 0 0

xy xy xy xTy "It" Txy TxTy[yy yy 2yy y

690 D.W. ZINGG AND M. YARROW

Similarly,

(9)

where

Oy
Oxy= ’gx,, and 0en= 0ee

Oxy O.,n

en Cxy,

Therefore, B C-1.

Ye 0

Yn 0

Yee x
Yen xexn

2

In block matrix form, B can be written as

(10) B=
B2

where

and

Similarly,

(11)

where

B3

0

0

2xeye
xeyn + yexn

2xnyn

B2-- xy
YY

&n, + nx,
2y’qy

C2 Xen

and

Now B C-1 gives

(12)

(13)

YY"I
Y J

T’] y

"qyy

T]x’y
2

’?y

Yen

2 y2 1xe 2xeye
C3 xexn xeYn + YeXn YeYn

2xnyn
2xn Yn

B C-1 (the metric relations),

B3-- C-1,

INTERPOLATION ON A CURVILINEAR GRID 691

and

(14) B2
Substituting (12) and (13) into equation (14) gives

(15) Be -B3C2B1.
Finally, employing the metric relations gives

(16)

1
x,y,yexx j3 [Y ,xee 2yZnyexe, + y,yZcx,, 2

+2x,y,yy, xyy,,],

1
_

[_yey2,xe + 2yy, -yx,, + xy2,yee

-2xey,yy, + xyy,,],

1 2 2y j3 [-y,x,xe + y, (y,xe + x,y)x, -y,yxx,, + x,y,ye

-x, (y,xe + x,ye)yen + x,yxey,,],

1
xy - [yy,x,x -ye(y,x + x,y)xe, + yxx,, xey,x,y

+x(y,x + x,y)y, -xyy,,],
1

x,yeyy j3 [y,xxee 2y,xxexe, + y,xx,
+2x x y , x,x y,,].

l 2 2yy -j [-yx,xee + 2yex,xx, -yxx,n + xx,ye
+

Therefore, all of the elements of matrix B can be expressed in terms of the elements
of matrix C. As a result, Oyf can be determined given Oe,f The elements of C and
O,f are approximated using three-point centered finite-difference formulas. At boun-
daries, one-sided formulas must be used.

Given f, , f. fy, y at the corners of a given cell, the problem remains to
interpolate f on an arbitrary quadrilateral. We now consider the new two-dimensional
space given by (p, q) shown in Fig. 2 below. The quadrilateral in physical space is

y

>x 4--p

FIG. 2. Two-dimensional space given by (p, q).

692 D.W. ZINGG AND M. YARROW

related to a unit square in (p, q) space by a bilinear mapping, as follows. (Without
loss of generality, we will assume the lower left-hand corner to be at (0, 0).)

(17a) x ap + bq + cpq,

(17b) y dp + eq +fpq.

Note that a different mapping is used for each quadrilateral, or cell, in the grid. This
contrasts with the generalized curvilinear coordinate transformation, in which a single
smooth numerically generated mapping is applied to the entire grid. Consequently,
analytical mappings can be utilized.

The coefficients of the bilinear mapping are given by

a x4 b X2 C X X4 X2
(18)

d --Y4, e=y2, f=Y3-Y4-Y2.
The required derivatives in (p, q) space are given (as in (8)) by

Op XpOx nt- ypOy,

(19) Oq XqO + yqOy,

Opq XpqO -- ypqOy 4r XpXqOx -" (Xpyq + Xqyp)Oxy 4r- ypyqOyy,

where

xp=a+cq, yp=d+fq, xq=b+cp, yq=e+fp, Xpq=C, ypq-
and we have used Xpp Xqq ypp yqq--O.

Given a location in physical space (Xo, Yo), we must find the corresponding (Po, qo).
From (17b), we have

(20) qo
e +fpo

Substituting this into (17a) as follows:

(21) Xo apo + b + cpo) +fPo]

gives the following quadratic for Po:

(22) p(ed af) + po(-Cyo + bd + xof ae) + (-yob + exo) O.

Solution of (22) gives two values of Po. The corresponding values of qo are determined
from (20). One location (Po, qo) will not lie within the unit square and hence can be
discarded.

Using f, f, fx, fxy, fy as calculated from (8), we can determine fp, f, and
from (19) at each corner of the unit square in (p, q) space. We then employ the standard
formula for bicubic interpolation within a unit square (see Appendix). The bicubic is
finally evaluated at (Po, qo), as calculated from (22) and (20), respectively.

4. Conclusions. A method has been presented for smooth bivariate interpolation
on a two-dimensional generalized curvilinear grid. Such grids are commonly used in
computational fluid dynamics. Applications of the interpolation method include
graphical output and problems in which data must be transferred from one grid to
another. The method avoids any iterative procedures. Consequently, no difficulties
with stability or convergence can occur in the application of the method.

INTERPOLATION ON A CURVILINEAR GRID 693

Appendix: Locally bicubic interpolation on a unit square. In this appendix, we give
a piecewise bicubic formulation for interpolation within a unit square. De Boor [5]
presents a technique for determining the required partial derivatives at the corners of
each cell in a rectangular grid such that C2 continuity is obtained for the domain. In
the formulation used here, the required partial derivatives at the corners of the unit
square are given by centered difference formulas, leading to C continuity, analogous
to the univariate cubic Bessel spline given by de Boor [6]. This formulation has the
advantage of producing a local interpolant.

The bicubic interpolant on a unit (p, q) square can be written as

(A-l) f(P, q)’ Z "Ymnpmq n, O<__p, q<__ 1,
m,

where

7.] AKA’,

and

1 0 0 0

1 0 0

-2 3 -1

1 -2 1

fv(O.O) f,(o.o) f(O. 1) f,(o.
f(1, O)f(1, O)f(1, 1)fq(1, 1)|
fp(1, O) fpq(1, O) fp(1, 1) fpq(1, 1)]

REFERENCES

1] H. AKIMA, A method of bivariate interpolation and smooth surface fitting based on local procedures,
Comm. ACM, 17 (1974), pp. 18-20.

[2] ., A method ofbivariate interpolation and smooth surfacefittingfor irregularly distributed data points,
ACM Trans. Math. Software, 4 (1978), pp. 148-159.

[3] D. A. ANDERSON, J. C. TANNEHILL, AND R. H. PLETCHER, Computational Fluid Mechanics and Heat
Transfer, Hemisphere, New York, 1984.

[4] J. A. BENEK, P. G. BUNING, AND J. L. STEGER, A 3-d chimera grid embedding technique, AIAA 7th
Computational Fluid Dynamics Conference, Cincinnati, OH, AIAA paper 85-1523, June 1985.

[5] C. DE BOOR, Bicubic spline interpolation, J. Math. Phys., Vol. XLI, 41 (1962), pp. 212-218.
[6] , A Practical Guide to Splines, Springer-Verlag, New York, 1978.
[7] J. F. THOMPSON, Z. U. A. WARSl, AND C. W. MASTIN, Numerical Grid Generation, North-Holland,

New York, 1985.
[8] M. YARROW AND U. B. MEHTA, Multiprocessing on supercomputers for computational aerodynamics,

NASA Technical Memorandum 102806, May 1990.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 694-722, May 1992

(C) 1992 Society for Industrial and Applied Mathematics

OO5

ITERATIVE SOLUTION OF LINEAR SYSTEMS ARISING FROM THE
BOUNDARY INTEGRAL METHOD*

KENDALL E. ATKINSON? AND IVAN G. GRAHAM

Abstract. In this paper the behavior of some standard two-grid iterative schemes for the solution of
linear systems arising from discretizations of second-kind boundary integral equations of potential theory
is studied. When the boundary of the domain has corners, these schemes converge slowly, and in some
cases even diverge. New iterative schemes are derived which always converge, and estimates for the accuracy
ofthe solution to which they converge are given. Extensive numerical experiments are reported and discussed.

Key words, boundary integral equation, linear systems, iteration methods

AMS(MOS) subject classifications, primary 65R20; secondary 65N99, 65F10, 45L10, 35J05

1. Introduction. When the interior Dirichlet problem for Laplace’s equation is
solved by the indirect approach using a double layer potential representation, a
second-kind integral equation results. If the boundary of the domain is smooth, this
integral equation has an operator with a smooth kernel. The classical Nystr/Sm method
(where the integral operator is approximated by a quadrature rule, and the resulting
approximate equation collocated at the quadrature points) may be used to solve this
equation. This Nystr6m method is fully discrete, and in fact can be shown to be
equivalent to either a collocation or Galerkin method, with the necessary integrals
done by an appropriate quadrature rule. Moreover, two-grid (or more generally
multigrid) schemes for the iterative solution of the resulting linear equations always
converge, providing the coarse grid is sufficiently fine.

When the boundary has corners, the situation is much less pleasant. However it
has recently been shown in Graham and Chandler (1988), henceforth referred to as
GC, that a (slightly modified) Nystr6m method (based on a composite quadrature
rule) may still be applied to solve the integral equation, and that optimal uniform
convergence is obtained when the mesh is graded near each corner.

This paper examines the performance of two-grid iterative schemes for the solution
of the linear systems arising from the Nystr6m method of GC. We show that unless
proper care is taken these iterative schemes may perform very poorly. Then we go on
to propose and study three improved iterative schemes. In the process we extend the
analysis of GC to a piecewise C boundary with any finite number of noncuspoidal
corners. To simplify notation and to make the paper easier to read, however, we will
limit our presentation here to the single-corner case.

In this section we introduce the integral equation, the Nystr6m method, and the
standard two-grid scheme. Let be a bounded simply connected planar domain, and
let F denote its boundary. Introduce the double layer potential

(1.1) Wu(x) f G’(x,)u(sc) dr(C), x6r.

Received by the editors January 16, 1990; accepted for publication February 28, 1991. This work was
supported in part by the University of New South Wales Australian Research Council program grant
"Numerical Analysis for Integrals, Integral Equations, and Boundary Value Problems" and by the University
of Queensland, Queensland, Australia. Most of this work was done while the authors were visiting the
University of Queensland in 1988.

? Department of Mathematics, University of Iowa, Iowa City, Iowa 52242.
School of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom.

694

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 695

In this formula,

G(x,) 1___ log
27r

O
G’(x,)

0n(:)
G(x, :), x , F,

with 0/0n() denoting the outward normal derivative at F. The function u is called
a density function.

We are interested in solving the integral equation

(1.2) u(x) 2 Wu(x) + X(x) u (x) -2g(x), x F.

In it, X(x) (-1, 1) and [1 +X(x)] is the exterior angle between the tangents to F at
y as y- x. (Thus X(x)=0 except at corners of F.) This integral equation arises in
solving Laplace’s equation, in several ways.

For example, if u satisfies (1.2), then the function Wu of (1.1) solves the interior
Dirichlet problem for Laplace’s equation, with the given Dirichlet data g(x). Alterna-
tively, (1.2) arises in solving the exterior Neumann problem: find U satisfying

U(x) 0, x fi,

(1.3)
0U(x)

h(x), xr,
On

U(x)= O(loglx[) as

Green’s representation formula

(1.4) U(x)= , [u()G’(x,)-h()G(x,)] dr(), XOe

gives a solution to (1.3), provided u(x) satisfies (1.2) with

g(x) j h()G(x,) dr().

Let F be parameterized by x(s), s [-1, 1], and for notational convenience extend
x(s) to a 2-periodic function on all of . Assume x C[-1, 1]{0}, but allow F to
have a single corner at 0 Xo x(0). We shall assume throughout that s is proportional
to the arc length along F, so that x’(s)l [Fl/2, where [F length of F. It is straightfor-
ward to extend the results to any parameterization xC([-1,1]{0}) satisfying
[x’(s)l > 0, s 6 [-1, 1]{0}.

For any integer n 1 and real number q 1, introduce the following graded mesh
for [- 1, 1 and F:

(1.5) s") si -s "), j O, 1, n,

x(’)=x(s’)), j=0, 1 2n.

Extend these points periodically with

s(,) (,) xj+2n sn) j+2n

Let

Io’

696 K.E. ATKINSON AND I. G. GRAHAM

be an interpolatory quadrature rule of order R, where r<=R<=2r, with weights {w}
and nodes

0TI < T2<"" "< Tr <- 1.

Throughout we assume the weights {w} are positive. This is the case with almost all
practical interpolatory rules.

The Nystr6m approximation W, to the operator W of (1.2) is obtained by applying
(1.6) to each of the subintervals of F with breakpoints (1.5), that is,

2n

(1.7) W,qS(x) 2 w0G’(x,
i=lj=l

where the quadrature points on F are

") s)) withx 0 =x(si =(1 ,oi-+

and the weights are

Rather than approximating W by W, directly in (1.2), we first rearrange (1.2) slightly.
As we shall see later, this rearrangement ensures a uniformly convergent approximate
solution. Let

(1.8) a(x) u(x) u(0), x F.

Substituting into (1.2) gives

(1.9) (l+x)t-2Wt+((l+x)-2W1)u(O)=-2g,

where 1 denotes the unit functions. Now it is well known (e.g., Jaswon and Symm
(1977)) that 2W1 =-(l-x) on F, so (1.9) reduces to

(1 + X)ff 2 Wa + 2u(0) -2g

or equivalently (since (0)= 0, and X(x)= 0 when x 0)

(1.10) a-2 Wa + 2u(O) -2g.

Our numerical method for (1.10) (or equivalently (1.2)) is to seek u, such that u,(O)
and a, := u, u, (0) satisfy

(1.11) ff, 2 W,,,, + 2u,(O) -2g.

Observe that tn(0)= 0, so even if 0 is a quadrature point, the sum Wntn contains no
term in G’(x, 0) and hence is continuous on F. Thus, collocation at the points {x)} t3 {0}

<"))}t3 {un(0)}. Once this isreduces (1.11) to a linear system for the unknowns {t,(x 0
solved, (1.11) gives a formula for tn(x) at any x F; this is the Nystr6m interpolation
formula. Having found t, and u,(0), the approximation u, to the exact solution u of
(1.2) is then recovered by u, t, + u,(0).

We analyze (1.11) in 2. To prove stability, we need the following slight
modification of the method. For some integer i* -> 0 define W not by (1.7), but rather
by

w.6 (x)
2n --i*

L O’)ijG (x, x (/in) (x (/in))
i=i*+1 j=l

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 697

Thus if i*= 0, Wn is unchanged. Then we shall show in 2 that there is an i*=> 0 and
a q > 1 such that (1.11) defines u, uniquely for n sufficiently large, and un converges
optimally, i.e.,

as n->.

The introduction of i* is an artifact of the stability proof of CG, and has no effect
on the practical direct solution of (1.11). In fact, (1.12) has been observed to hold
with i*= 0 in all practical computations. However, as we shall see in 3, i* turns out
to be useful in a different context: as a parameter for the acceleration ofthe convergence
of iterative schemes for solving (1.11).

To analyze (1.11) and to discuss its iterative solution, it is convenient to rearrange
(1.10) into a 22 system for the unknown (, u(0)), and to think of (1.11) as a
corresponding approximate system for (6, un(0)). To do this, evaluate (1.10) at 0, and
subtract the result from (1.10) to obtain the system (which is equivalent to (1.2))

u(0) -g(0)

where =g- g(0) and is the operator

u(0) [(w)(0)- u(0)

Carry out the same process on (1.11) to obtain

(1.14) (I-,)
u,(0) -2g(0)

where , is defined by replacing W by W, in .
System (1.14) is in an appropriate form for solution by two-grid (or more generally

multigrid) iterative solution procedures. In this paper we discuss some two-grid schemes
which are closely related to a method studied in Atkinson (1973). As a motivation, we
first describe this latter method.

We first write (1.13) and (1.14) (with n replaced by m) as

(1.15) (I-)v=z,

(1.16) (I--m)V,,=Z,

with V (, u(0)) , etc. In 2 we cast these equations in a Banach space , with norm
[[.[] designed so that]]v]] [[(tT, u(0))T[[[[u[[. Suppose that m is the discretization
level of the system we wish to solve iteratively. Assume that we can solve exactly an
equation of smaller level n, (1-,)v, =y, for any right-hand side y. Let v be an
initial guess for the solution v,, of (1.16). Calculate the residual or defect

d"=z-(1-m)V.
Then the error e,, v"- v satisfies

(I-")e"=d".

Write this as e" d,, + 6", with 6,, mdm. Then 6,, satisfies the equation

698 K.E. ATKINSON AND I. G. GRAHAM

Approximate this with the equation

which is solved directly for 6n. The improved approximation to V is then given by

Continuing iteratively, we obtain the following algorithm, which is easily recogniz-
able as a simple multigrid scheme (using only two grids).

ALGORITHM 1.

1.17a) Input: v<m)
(1.17b) Compute residual" d)= z-(I-,,,)v
(1.17c) Smoothing step: Find ,,d

(1.17d) Coarse-grid correction: 6)=(I-,,)-5md
(1.17e) Output: v+1)= v)+ d)+ 67).

This scheme can be put into the form of the two-grid algorithm of Hackbusch
(1985, p. 309). Some simple manipulations on (1.17a-e) lead to the well-known error
expression

(1.18)

Suppose F is smooth. Write the direct NystrBm approximation of (1.2) as

(1.19) (I-)u,, -2g,

and apply Algorithm 1 to solve (1.19). Then (1.18) can be used to show

(1.20) []Urn U/*>[I<-- Cm,nllU., u>lloo
with C,,,, < 1, for all rn > n, provided n is sufficiently large (Atkinson (1973)). However,
such estimates cannot be obtained for (1.17a-e) applied to (1.16). Indeed, in 3 we
give an example where the presence of a sharp corner diminishes the smoothing
property of the operator m to such an extent that (1.17a-e) diverge. This paper
describes some new two-grid methods for (1.16), which converge even in the presence
of corners. This convergence will not be so interesting unless it is achieved without
too much degradation in the accuracy of v,, and without substantial escalation of the
operation count of the iteration. Thus, we distinguish three properties which we would
like an "ideal" iterative scheme to possess:

(P1) Convergence in the presence of any corners.
(P2) Convergence to solutions v,, (t,, u(0)) r which satisfy the (optimal) order

of accuracy estimate (1.12).
(P3) Convergence achieved with an operation count comparable to that of the

basic scheme (1.17).
As we shall see in 3 and 4, there is a certain amount of "trade-off" between

these three properties.
There is a large literature on the multigrid (or multilevel) solution of equations

such as (1.2), particularly when F is smooth. For extensive surveys, see Hackbusch
(1985) and references therein, and also Mandel (1985). A fast Fourier method is given
in Reichel (1988). There are also several papers discussing the case of nonsmooth F,
but using methods different from those proposed in the present paper. In particular,
we mention Hebeker (1986), (1988) and Schippers (1982), (1985), (1987). We compare

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 699

these with our own work later in the paper, but we remark here that previously most
discretizations of (1.2) (when F has corners) were obtained by Galerkin or collocation
schemes. These latter schemes generally necessitate further (numerical) integration.
With an appropriate choice of quadrature rules, these can be shown to be equivalent
to Nystr6m schemes (see Atkinson and Bogomolony (1987)). Thus this present work
covers many common discretization strategies for (1.2), with the extra novelty here
being that the preliminary rearrangement (1.10) is being used to improve the accuracy
of the integration around the corner.

At this stage it seems important to justify why our main interest here is in two-grid
schemes rather than in the more general multigrid method. Recall that we are interested,
in the long run, in good approximations to the solution u of (1.2), or in quantities
derived from u by postprocessing (potentials in the interior, stress intensity factors,
etc.). It is not known a priori what value of m is needed in (1.16) to obtain these
quantities within a prescribed tolerance. So in practice the problem would first be
solved for a (moderate) value (or values) of m, the error would be estimated by some
a posteriori technique (extrapolation or something more sophisticated), and then m
would be increased if necessary.

The two-grid iteration (1.17a-e) fits in very nicely with this philosophy. A possible
implementation is to first solve (1.16) directly for some moderate sized m--n no,
say, and then apply (1.17a-e) recursively with m :- 2n each time. This yields solutions
on a sequence of increasing levels {Uno:j=0, 1,2,...}, with termination when a
prescribed accuracy is achieved.

The multigrid technique (e.g., Hackbusch (1985, 16.5)), on the other hand, would
solve (1.16) at level m by recursively applying the two-grid scheme on a nested sequence
of decreasing levels. This yields a more complicated code, but achieves a better rate
of convergence. Specifically it may be shown that when applied to (1.19), the multigrid
method yields a sequence u with property

(1.21)]lUm U(mJ+l)]]oo < c’llu. u)[l,
where, in contrast with (1.20), C’m- 0 as m- oo. Again this result does not apply for
the iterative solution of (1.16), but we would argue that, even in the case of smooth
F, the power of the full multigrid scheme may be unnecessary. To see this, consider
(1.17a-e) applied to (1.19) with u)= u,,/2, and suppose estimate (1.12) is sharp, i.e.,
for suitable constants C and C2,

C,(1/ mR) <= Ilu Uml] <-- C2(1/mR),
and

C12(1/m) <= Ilu- u/=ll C2(1/ mn).
Then

Ilu u Iloo CIC;12-RlIu u/ll
c,c2-’(llu um/2lloo-Ilu u I1),

so that

(1 + C,C2-’)llu u Iloo C1612-RllUm
But, for sufficiently large values of n, (1.20) implies

Ilu u)ll -< (c,) u uI1
=(Cm,.)Ilu--U/211
(C,.)(C’C22 + 1)llu- u I1.

700 K. E. ATKINSON AND I. G. GRAHAM

Clearly the iteration should be stopped when []u,,-u)[l is less significant than
u u I1, i.e., when

(C,,,) < (C-1C22R + 1)-1.

Suppose (as seems reasonable for smooth implementations) Gin,m2 =0.1, C2C-(1= 10
(conservatively large), and the trapezoidal rule (R--2) is used. Then (1.22) requires
only j 2. In this context, the significantly greater programming complexity needed
to achieve (1.21) seems unnecessary, and so we concentrate our attention in this paper
on two-grid methods.

Finally we remark that in (1.17d) it is implicitly assumed that Nystr6m interpolation
is used to transform back and forth between coarse and fine grids. This is not necessary;
prolongation and restriction operators may be used, and we shall discuss these in 4.
We remark that Hebeker (1986), (1988) has shown how a judicious choice of such
prolongations and restrictions can lead to an accelerated two-grid scheme, satisfying
(1.21) with C’m -’> 0 as m -* .

2. Theory of the Nystr6m method. The discussion here mirrors that of GC, where
the NystrAm solution of (1.2) when F is polygonal was analyzed. Here we have only
one corner, but extra work is necessary to deal with the curved boundary. Our exposition
could be extended in a straightforward (but tedious) manner to a piecewise C
boundary with a finite number of corners.

For the rest of the paper, D denotes differentiation, and C denotes a generic
constant. Let C(F) denote the space of continuous real-valued functions on F with
the uniform norm, and let Co(F) denote the subspace {v C(F): v(0)=0}, normed
again with I]" II. We also use I1" I1 to denote the norm of any bounded linear operator
on C(F).

The first step in the analysis is to introduce an operator Y{ which contains a simpler
form of the nonsmooth part of the operator 2W of (1.2). To this end, define the
function y: [- 1, 1 - 2 by

(-- cos (1- Xo) r, -- sin (1- Xo)rr), s [-1, 0],
(2.1) y(s)

(-, 0), s [0, 1].

Thus y(s) is a parameterization of the open "wedge" 15 consisting of two straight lines,
each of length IFI/2, meeting at an exterior angle (1 +Xo)Tr at 0. Then for v:F- ,
define Y{v :F - by

(2.2) ?TCv(x(s)) 2 f G’(y(s), y(o-))v(x(tr)) dr(x()), s 6 [-1, 1].

Since the relationship between x(s) and y(s) is bijective, Y[v:F-* R is a well-defined
function. The kernel G’(y(s), y(o-)) may be computed easily (e.g., see Atkinson and
deHoog (1984)):

(2.3) Y[v (x(s))
K v(x(tr))

do", s6[-1, 0],

K v(x(o’))
do-, se[O, 1],
o"

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 701

where

K(o.)
sin (Xo) [o"

7r 1 2r cos (XoTr) + 0-2

The properties of Y{ are well understood. In particular,

(2.4) limit YCv(x(s))= -Xov(O).
s0:

Using this limit to define Y{v(O), Y(is a bounded linear operator on C(F) to C(F), with

(2.5) Ilxll-IXol < 1.

By (2.4), Y{" is also bounded on Co(F) with a norm as in (2.5). It was shown by Atkinson
and de Hoog (1984) that :=2W-Y{ is compact on C(F).

We study systems (1.13), (1.14) in the Banach space Co(F) x, with the norm

Recall the definition of following (1.13). Using the decomposition 2 W 2(+ N and
(2.4), we have +, where

The operator is a finite rank-bounded peurbation of the compact operator

and thus is compact from N into N. The operator is a contraction, with norm
as in (2.5); thus

1

Combining these results, the Fredholm Alternative Theorem can be applied to (1.13).
Using the equivalence of (1.13) and (1.2), we can show that the only solution of the
homogeneous form of (1.13) is the zero solution. That then implies the existence and
boundedness of the inverse of (I-) from N onto N.

Now we discuss the stability and convergence of a (slightly modified) version of
method (1.11), obtaining the result (1.12) described in 1. Define

0 -,01(s,=
(s/l/ e[0,]/’

se[-,0],

(s,={-(//0 e[0,] J’ se[0,],

(2.7) Y{v(x(s)) K(s, o’)v(x(o’)) dtr,
-1

so that

702 K.E. ATKINSON AND I. G. GRAHAM

and introduce N(s, tr) as the kernel function of N, i.e.,

(2. v(x(sl _(s, v(x(d.
-1

To describe the modified Nystr6m method, choose fl [0, 1], and define the truncated
operator Y(by replacing the domain of integration [-1, 1] in (2.7) by [-1,/3] U [/3, 1].
Define N from analogously and use these to define 5, , and in an obvious
way. When/3 sl.) for some 0-< i* -<_ n (i.e., +/-fl are mesh points in [-1, 1]), we define
Yfi*,n, dlPi*,n to be the NystriSm approximations to fffs(i.,n), ’Js(i*,n)" (For typesetting

(n)purposes, we substitute s(i* n) for si..) Replacing Y{, by Y{si*,.), Nsi*,. or
Y{.,., .,. in an obvious way, we define operators 5s.,n), i*,.,
and i*,. on . The modified Nystr6m method then consists of choosing some *-> 0
and solving

(2.9) (I--i*,n) Un(O) --2g(0)

for n-->_ i*. When i*=0, (2.9) coincides with (1.14).
We shall analyze (2.9) by appealing to some of the results of GC, and adding

some perturbation arguments to cope with the curved boundary F. The following
lemma summarizes some required results which follow trivially from Theorems 3 and
4 of Graham and Chandler.

LEMMA 1. (i) For each e > 0 there exists i*, such that

(ii) If u satisfies the estimate

(2.10) sup {]s["-lDu(x(s))[s [-1, 1]\{0}} -< Ck,

with 1 > a > 0, for all k >- 0, for some constants Ck, then for each fixed i* >= 0, we have

(1)(2.11) II(Y-Y{.,.)II O -y as n,
provided q > R/a. (Recall that R is the order of the quadrature rule (1.6).)

A careful examination of GC shows that the proof of Lemma 1 depends on the
operator Y(only through the estimates

(2.12)]skD(Ygi.,.v)(x(s))l<=ag[Ivl[, s [-1, 1]\{0},

(2.13)]og+Dk(K(s, cr))l<=Bk S, o- [--1, 1]\{0},

for all k_-> 0, which are easy generalizations of Graham and Chandler’s Lemma 2(ii),
(iii).

We shall prove the following technical generalization of Lemma 1.
LEMMA 2. (i) For each e > 0 there exists i* such that

II(.,.)- i.,.)L.,,ll < for all m, n >= i*.

(ii) For each *> 0 fixed independently of n,

u(O)
0 as n ,

provided q> R(1 +[Xol), where u--+ u(0) is the exact solution of (1.2).
Proof In the Appendix we demonstrate that (2.12) holds with Y{’i.,. replaced by.,. and (2.13) holds with K replaced by N (where N is defined by (2.8)). Then, by

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 703

Lemma l(i), each of the quantities I1(,...)-x,...),.. II, I1(,*..)-N,...)X,..II, and
II(,.,)-i.,),.,ll may be made arbitrarily small, for all m, n i*, by an appro-
priate choice of i*. Writing

(s(i*,n)- i*,n)i*,m (s(i*,n)- i*,n)i*,m + (s(i*,n)- i*,n)i*,m

and using the above facts yields the proof of Lemma 2(i).
For Lemma 2(ii) we first observe that for the solution u of (1.2), the condition

(2.10) is true for all 0< a < (1 +]Xol) -. This is shown by Costabel and Stephan (1983),
who applied a peurbation argument to the usual regularity analysis of (1.2) for
polygonal boundaries. Hence (2.11) holds provided q> R(1 +lXo]). By the Appendix,
the result (2.11) (with if{ replaced by) also holds for the same range of q. Writing

u(0) u(0)

and using the above facts yields the proof of Lemma 2(ii).
The following theorem proves the optimal convergence estimate (1.12) provided

the mesh grading exponent q is sufficiently large.
THEOREM 3. ere exists i* fixed independently of n such that for all suciently

large n i*, I- i.,, has a uniformly bounded inverse on . In this case (2.9) defines, u, (0)) T uniquely in and

..u
provided q > R +]Xo]).

Proo Our first step is to show that

(2.14) [lw-wll0 as 0.
To prove this, let v C(F) with I[vll 1. In Atkinson and deHoog (1984), it is shown
that N (the kernel of W) is bounded on [-1, 1] x [-1, 1]. Thus

I(-)v(x(s))l IN(s,) dO as 0,

uniformly in s, v, which proves (2.14). It follows directly from (2.14) that

2.15) II-ll0 as 0.
We next show that

(2.16) , as 0, pointwise on

Clearly (2.16) is true provided {, {, pointwise on Co(F) as 0. Thus let v Co(F).
Then, using (2.5),

=< IXol sup {Iv(x())l" [-, Z33}- IXolV(x(0)) 0 as t -’ 0,

and (2.16) follows.

704 K.E. ATKINSON AND I. G. GRAHAM

Now observe that II ll--IIX l[
and is bounded as in (2.6), independently of/3. Our next step is to show

(2.17) II(I-)-’-(I-O)-’tll-0 as 0.
To obtain (2.17), simply write

(I-)--(1-)-=(I-)-(-)(1-)- + (I-)-().

Since is compact on , the first term goes to 0 in norm as 0, by (2.16). Also by
(2.15), the second term goes to 0 in norm, proving (2.17).

Now recall that I- and I- are inveible on , so that (2.17) ensures
I-(1-)- is inveible for sufficiently small , with uniformly bounded inverse.
The identity (i_)-1 =(i_(I_)-)-(i_)- then ensures the existence of
constants > 0, and C > 0 such that,

(2.a8) I1(I-)-*11 for all0
Now by Lemma 2(i), we can choose i* so that

for all n sufficiently large. This shows (Atkinson (1976, p. 15)) that

has a uniformly bounded inverse for all sufficiently large n i*. Then

Since I1,*,)11 I111, and (by (2.12) and (A.1) of the Appendix),

(2,9) II*,ll is bounded independently of i*, n,

it follows that for some i*0, (I-.,,)- exists and is uniformly bounded, for all
sufficiently large n i*. For such i* and n, (2.9) defines (ft,, u,(0)) uniquely, and
Lemma 2(ii) yields

u(o)

provided q > R(1 + IXol), as required.

.1. Neriel Eeret 1. The above results generalize to regions with any
number of corners. As an illustration, we solve the interior Dirichlet problem

(2.20) U=0 in, U=g onF=0,

where is the pie-shaped" region composed of a segment of the unit disk, as depicted
in Fig. 1. The exterior angles at corners P, P are always 3/2, while the exterior
angle at corner P3 is (1 +) with X < 0, variable. To try the method out on a realistic

sngularity, we solve (2.20) with the known solution U(x)= r cos (), where - <
0 N is the polar angle of x after it has been rotated through /2 anticlockwise about
the origin, and 1 / (1). This U is then harmonic in and has the worst singularity
which can be expected at the origin for a solution of (2.20) with smooth g. As described
in 1, (2.20) can be solved by solving (1.2) on F.

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 705

1.0

FIG. 1. Pie-shaped domain, X---0.9.

Let Q1, Q2, Q3 be the midpoints of P3PI, PP2, and P2P3, respectively, and let FI
for l--1,2, 3 denote the portion of F joining Q1 to QI+ (with Q4 Q). Then the
numerical method for (1.2) is to first rearrange it as

(l+x)u-2 Z W’-2 Z u(P)Wl*=-2g,
/=1 /=1

where /l denotes u U(Pl) restricted to Fi and 1 denotes the constant function 1 on Ft.
Discretize this by replacing W in the first sum on the left-hand side by Wn, and
collocate at the quadrature points and the corner points. This determines the numerical
solution at the collocation points. The solution Un to (2.20) is then recovered by the
approximate potential

U.(x)= E w.a’.(x)+ Z .(P,)W’(x).
/=1 /=1

For more detail see Graham and Chandler (1988), or Atkinson and Graham (1988).
In the experiments reported here, we have chosen in (1.6) the two-point Gauss-

Legendre rule (so that R =4). For each n there were n subintervals on each of P3Q1,
QIP, PzQ3, and Q3P3, and 2n subintervals on each of PQz and QzP. We have
graded the mesh near each of the corners P with a grading exponent q. Thus,
for example, the mesh points on each side of P3 are a distance (i/2n) q3

from P3 for i=0,..., n. In Fig. 2 we plot the error [U(x)-U,(x)l, for x=
r(cos (-xTr/4),sin(-xTr/4)), re(O, 1), with q=(q, q2, q3)= (3, 3, 4), X =-0.9, i*=0,
and various n. The error decreases like O(n -4) and becomes more evenly distributed
as n increases. Figure 3 shows the effect of varying the grading exponents q. Here we

706 K.E. ATKINSON AND I. G. GRAHAM

0.030

0.025

0.020

0.015

0.010

0.005

n 32

n-16

n=8

0.2 0.4 0.6 0.8 1.0

FIG. 2. X -0.9, q (3, 3, 4), i* 0.

0.0020

0.0015

0.0010

0.0005

0.0

q (6,6,8)

q (3,3,4)

q =(1,1,1)

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. X =-0.9, n--32, i*= 0.

plot the same error with g----0.9, n 32, and i*= 0, but for various q. Note that the
analogue of Theorem 3 for the three-cornered case would imply that el> (6, 6, 7.6) is
needed for optimal convergence of the boundary distribution u. However, U is
calculated from u by integration against a smooth function, so we might expect that
a smaller q would achieve optimal results for U. This is borne out in Fig. 3, where
q (3, 3, 4) is seen to be optimal. Finally note that in all these experiments, i* =0 is
sufficient for stability. Nevertheless, small i*> 0 does not affect the accuracy very

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 707

much. In Table 1 we show the value of the boundary distribution un at/?3 for n 32,
q (3, 3, 4), and various i*.

3. Basic iteration schemes. In this section we discuss the convergence of appropri-
ately modified versions of (1.17a-e).

Modification 1. The modification which is the simplest to analyze is obtained by
setting

(3.1) *(),m,

(3.2) , *(,),,

in (1.17a-e), where i* (n), i*(m) are chosen so that

fl := s(i*(n), n)= s(i*(m), m),

that is, the cutoff points of the coarse and fine meshes coincide and are independent
of m, n. This can easily be arranged, for example, by choosing m= kn, i*(n)= n/r,
i*(m) kn/r, where r is any divisor of n.

Then {m}, {,} given by (3.1) and (3.2) are collectively compact approximations
to . For sufficiently small fl, (1-)- satisfies (2.18) and the standard results of
Atkinson (1976) then show that (1.17a-e) converge linearly for all m > n, provided n
is sufficiently large. This algorithm clearly has properties (P1) and (P3) described in

1. However (P2) is lost. This is because the limit of v as j is the numerical
solution of (1.15), with replaced by, where fl > 0 is independent of m. (However,
the error induced by small may not be very significant.) To preserve (P2), we need
to do something more sophisticated.

Modification 2. To best describe the modification, assume

Then for any i*, in (1.17a-e), choose the fine-grid operator

(3.3) =*,m-
If we chose, as the coarse-grid operator, .,., then it is not possible to use (1.18)
to show that (1.17a-e) converge for all m n.

This is because the distance between the cutoff points of the coarse and fine
meshes Js(i*, n)- s(i*, m)l 0 as m , for fixed n. To overcome this problem, we
allow the coarse mesh to be augmented with the subintervals of the fine mesh contained
within the troublesome region

(3.4) [-s(i*,n),-s(i*,m)]U[s(i*,m),s(i*,n)],

that is, we choose as our coarse-grid operator in (1.17a-e)

(3.5) . .,.,
where ., is the quadrature approximation to (*,m) obtained by using the m level
mesh in the region (3.4) and the n level mesh in the region [-1, -s(i*, n)] U [s(i*, n), 1].

TABLE
Numerical values at corner P3.

i* 0 2 4

u,,(P3) 14.025602 14.025575 14.025243

708 K. E. ATKINSON AND I. G. GRAHAM

This means that the dimension of the n level system is now O(n+m/n) which is
increasing with m, so property (P3) is lost. However, (P2) is gained and (P1) remains,
as we shall see in the following result which uses (1.18) to estimate the convergence
of (1.17a-e).

THEOREM 4. Suppose C,Cm, n are given by (3.3), (3.5), and define
(3.6) Cm,n,i*

Then there exists i* fixed independently of n such that for all n sufficiently large and all
m kn, k >= 1 we have C,,,,,i. < 1.

Proof The details are technical but not difficult, so we shall only sketch the proof.
First we observe

(=Gi*,m ’s i*, -Jt")s i*, ’" i*, -JI- s i*,m "s i*, i*, "{- "i*,
The operator in the final term is really just 5f.(i.,,)- i*,,, restricted to functions which
are zero in [-1, 1]\[-s(i*, n), s(i*, n)]. Thus, by Lemma 2 (or a slight variation of
it), we can show that for each e > 0, there exists i* independent of n, such that for all
n-->_i* and m=kn, k>-l,

(3.7)

(3.8)

Now recall the identity

I ,n)- t: I .m -k- .)n

where =(I--,)+(m--n)n- By Theorem 3 and (3.8), -1 has a uniformly
bounded inverse for appropriate fixed i*, and for all n sufficiently large and m kn.
Under these conditions, is uniformly bounded; combined with (3.7), we
obtain the required result. U

Remark. Theorem 4 corrects an incorrect sentence in the last paragraph of 2 of
Atkinson and Graham (1988).

DiscussioN. A strict reading of Modification 2 will lead to a modification which
is unpleasantly complicated. To speed up the convergence, not only would it be
necessary to increase i*, but also one would be expected to add m level points to the
n level grid. It was observed in Atkinson and Graham (1988) that the following simpler
algorithm worked well in several cases where a direct application of Algorithm 1 did
not.

ALGORITHM 2.

(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3.9e)

Perform steps: (1.17a)-(1.17e)

Compute: e(,,{j+)= [[V(mj+)- v)ll
If e/1) <required tolerance: stop.

Compute: A+1)= e+)/e
If A/I)> 1" Increase i*, and go to (3.9a).

In the following experiment we study the performance of (3.9).
3.1. Numerical Experiment 2. We discretized (1.2) on the boundary F of the

pie-shaped region, exactly as described in Numerical Experiment 1. For a given i*,
we removed from W, contributions from i* subintervals on each side of each of the

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 709

three corners of F. We show in Table 2 how the convergence of (3.9a-e) is affected
by the choice of X, q, n, m, and i*. Remarkable points are the following: The iteration
works well unmodified (i.e., with i* 0) when all the angles are right angles, a frequently
occurring practical situation. As X - -1 the iteration slows down and diverges for
X=<-0.75, unless a modification is made. The modification i* needed to restore
convergence as X -0.9 increases to the extent that the coarse-grid operator on the
"wedge" portion of F must be almost removed entirely. There is strong evidence to
suggest that the convergence rate remains fixed for a given i* and rn 2n, for a range
of values of n.

If m were allowed to increase indefinitely compared to n, the distance between
the cutoff points s(i*, m) and s(i*, n) would grow and may pollute the estimate of
Cm,,,,i. given in Theorem 4. This could be alleviated by cautiously adding m level points
to the coarse grid. (This would mean that extra rows and columns would be added to
the coarse-grid matrix, a process which could be done efficiently using block elimination
techniques (e.g., Chan (1984)).) We see from Numerical Experiment 2 that if m 2n
(again a practically relevant choicemsee 1), then such cautious updating may not be
necessary.

In the next section we describe another technique for obtaining a two-grid
algorithm with arbitrarily fast convergence for (1.16). This technique also requires that
the dimension of the coarse level should be allowed to increase with m, but in a
different and more deliberate way than that suggested by Modification 2.

4. An alternative iteration scheme. Recall the system (1.13). We define an iteration
method for the first equation in (1.14), finding am; then the second equation in (1.14)
is used to calculate u,,(0). Begin by defining

(v)(x)= 2[(w)(x) (w)(0)]

G’(, , G’(o, ,](: r, x e r,
F

TABLE 2
Iteration results for (3.9).

n level m level

X q n m i* system system lim A(

-0.5 3 3 3 4 8 0 67 131 0.161
55 119 0.104

2 43 107 0.096

-0.75 3 3 3.5 4 8 0 67 131 1.817
55 119 0.467

2 43 107 0.335

-0.9 3 3 4 4 8 0 67 131 5.661
55 119 3.285

2 43 107 1.541
3 31 95 0.752
4 19 83 0.639

-0.9 3 3 4 8 16 0 131 259 5.661
2 107 235 1.487
4 83 211 0.675
6 59 187 0.641

710 K. E. ATKINSON AND I. G. GRAHAM

for all t Co(F). We iteratively solve

(4.1) lm Vmlm --2,,

which is the Nystr/Sm discretization of

(4.2) tT- Vt7 =-2g.

By a simple extension of the proof of Theorem 3, we have the existence and uniform
boundedness of (1- V)- on Co(F). This assumes that the quantity i* of Theorem 3
is chosen sufficiently large, which we assume throughout this section.

Consider applying the iteration method (1.17a-e) to (4.1), with the role of
replaced by V and v)= u. The resulting iteration will often converge, but at a
slow rate. The problem lies in the lack of smoothing by the operator V; the function
(V)(x) need be no smoother than (x) for x near 0. To deal with this, we break F
into two parts: F F F. The portion F will contain the corner 0, and the remaining
boundary F will be bounded away from 0. The discretization of the equation (4.2)
on F is solved exactly, and then the iteration method of (1.17a-e) is applied to the
corner-modified version of (4.1).

The idea of inverting directly that poaion of the operator in a small neighborhood
of the corner, in order to improve the performance of iteration methods, has been
used previously by other authors. It is used in Schippers (1985) to solve a discretization
based on Galerkin’s method with piecewise constant functions on a uniform grid.
Hebeker (1988) uses it to solve boundary integral equations from fluid mechanics for
discretizations based on the collocation method with bilinear trial functions. The idea
also existed in the work of Radon (1919) who used it in developing a theory for (1.2)
generalizing the work of Fredholm. Also, Bruhn and Wendland (1967) used it in the
analysis of numerical methods for (1.2).

Let 0 < 6 < 1, and restrict the values of m to those integers for which

for some 1Nj*(m)< m. Define F to be the portion of F joining (-) and (),
containing the corner ; let F be the closure of the remainder of F. For Co(F), let

Let = Co(F) C(F2). Define: by

(4.4) V(2) V(2,1) V(2,2) j v(2)

(4.5) v(i’J) v (J) (x) 2 I1 [G’(x, so)-G’(0, :)]v()(sc dF, xGI"

for i,j= 1,2, with v(C0(F) and v(C(F). It is straightforward to extend the
unique solvability of (4.2) on Co(F) to that of

(4.6) (I- U)u f, u, f .
(Note that Co(F) is isomorphic to a closed subspace of ;T of codimension two.) For
notational simplicity, we have let f =-2 in going from (4.2) to (4.6).

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 711

Extend the above reformulation to the discretized equation (4.1)"

(4.7) % /)(2) V(m2,1) V(m2,2)j v(2) v ,
(I-)u f, u, f .

The operators V(i’J), (i,j) (1, 1), are compact; their approximations {v’)}, (i,j)
(1, 1), are collectively compact and pointwise convergent. This follows from (a) the
continuity of the kernel function [G’(x,)-G’(0,)] for xF, F, (i,j) (1, 1),
and (b) the convergence for all continuous integrands of the integration scheme used
in (1.7).

The equation

[I- v(l’l)]u (1) =f(’), f(1) Co(F)

is defined on a "wedge boundary," and it has a theory completely analogous to that
of (I-if{)5= The use of a wedge boundary is investigated in Atkinson and deHoog
(1984); the arguments leading to Theorem 3 are easily extended to the wedge equation
with operator I- V(’). The above equation is uniquely solvable for all f() Co(F1).
For its discretization, we have that [I-V(’I)] -1 exists and is uniformly bounded on
Co(F1) for all suciently large m.

Apply these results to equations (4.6) and (4.7) to obtain the equivalent equations

I
(4.8) V(:,

I
(4.9) V(m,

I- V(:’) u(2)J f(:)

.r(2 2) (m2)J f(2)

Denote these symbolically by

(4.10) (I-)u =z,

(4.11) (I 5fro)urn =z.,,

respectively. (Note" This is not the same as that used in (1.13) of 1 nor in 2
and 3.) Using the uniform boundedness of [I- V(m’l)] -, together with Theorem 3 for
the original equation (4.1), we have that (I--m)- is uniformly bounded for all
sufficiently large m.

Apply the iteration method (1.17a-e) to (4.9). The steps for solving (4.1) are as
follows" (1) Calculate the matrix associated with I-, and its LU factorization, for
some n < m. (2) Calculate the matrix associated with I- V’) and its LU factorization;
modify the right-hand side to form z=[I V’)]-f. (3) Given an initial guess
u for the solution to (4.9), perform the following iteration:

d)- Zm (I--)U()

(4.12) 6)= (I .)-l,d(),

U(mJ+ 1)
U (mJ) + d) -+- ((nJ)

forj =0, 1, . The calculation ofd and ,d uses the LU factorization of I- V’)

obtained earlier.

712 K. E. ATKINSON AND I. G. GRAHAM

THEOREM 5. Assume the existence and uniform boundedness of [I_,]-1 for all
sufficiently large m, say, m >= N. Then the iteration method (4.12) will converge if n is
chosen sufficiently large, uniformly for m > n. Moreover,

(4.13) IlUm-/’)ll<-c.llum-u)ll, j_->0,

where A, is defined below in (4.15) and

c= Sup
mN

Proof As in (1.18), we have the identity

-<+’ M..,.[u,. u2>],Urn--U,. j>0,
(4.14)

To obtain convergence of {u)]j-> 0}, we show

(4.15) h.--Sup

as n -- o(3.

We begin by showing that the set {,} is collectively compact on the Banach
space . To prove this is relatively straightforward. First, the families of operators
{Va)lm >= 1} are collectively compact for (i,j) (1, 1). Second, the operators [I-
V’]-1 are uniformly bounded on Co(F), for all large m. If these results are combined
with the definition of , given in (4.9), then the desired collective compactness of
{m} follows.

Next we show that [m- 37,]V-- 0 as m, n-, for all v . From the definition
in (4.9),

orgrn . V(2,1 + V(2’1)

The uniform convergence of

(4.16) [- Va) + V?a]v

[I- V’ V(’2 I V’I)]- V?’2)3(2 2) (2 2)Vm, + V

(J) - 0 as n, m - c, j 1, 2,

is straightforward based on the convergence of the quadrature method in (1.7) for all
continuous integrands. For the remaining element, in the (1, 2) position of m-
write

(4.17)

{[I- V(ml’l)] -, V,2)_ [I_ V(nl,1)] -1 v(nl,2)}V (2)

([I-- v2’l)] -1 V2,2) [I v(l")] -1V(1,2)}V(2)
+ {[I- V(1,’)] -1V(’,2)_ [I_ v(nl,1)] -1 v(nl,2)}/) (2).

For either of these expressions, say the one depending on m, we further decompose
it as

(4.18)
[I- V(ml’l)]-l[V(ml’l)- v(l’l)][I v(l’l)] -1V(I’2)D(2)

+[I- V(ml,1)]-l(v2,2)- V(1,2)}v (2).

For the first term, note that V(’-)v() is in Co(F); consequently, the term [I-
V(I’)]-V(’)v() can be shown to satisfy the estimate (2.10) near the corner. Then
following Lemma l(ii), the first term in (4.18) converges to zero as n oo. The second
term converges to zero since V’2), converges pointwise to the smoothing compact
operator V(’2). Combining with (4.16), we have[,]v- 0 as m, n - c, for all v .

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 713

To show (4.15) follows by standard arguments from the theory of collectively
compact operator approximations. For example, see Atkinson (1976, p. 97). Combining
this with (4.14) shows (4.13). [3

We have actually implemented a variation on the above iteration, using the
framework of prolongation and restriction operators to define the passage between
functions defined on the coarse grid and on the fine grid. Collocate (4.7) at all nonzero
points xij. This yields the linear system

(4.19) (I- ,,)m , tim,1
with D D,, the number of nonzero quadrature points. The matrix equation is

Here

denotes the values off at the quadrature points. Similarly, ,, is the matrix based on
regarding ,, as an operator from R/ to o. Let l) denote the restriction to xij F1
of the function fl), and similarly for 2). Let D1) and D2) denote the respective orders
ofthe vectors l) and 2). If in (1.6) the points rb all lie in 0< r/< 1, then Dl) 2j*(m)r,
D(2) 2(m -j*(m))r, and D D(1) + D(2).

Define the prolongation operator P,,, :o,, o., by using piecewise polynomial
interpolation of degree 2r-1. For ve-, let P,,,v be the values at {x)} of the
piecewise polynomial interpolate of degree 2r-1, interpolating the given values in v
at the abscissae {x)}. Define the restriction operator R,,,’R-->,, similarly. For
ve, let Rm,v be the values at {x)} of the piecewise polynomial interpolate of
degree 2r-1, interpolating the given values in v at the abscissae {x)}. In the case

{x)}c {x)}, R,,,v is simply the restriction of v to those components corresponding
(n)to nodes x0

In analogy with (4.9), transform (4.20) to the equivalent equation

(4.21) I’(’l) I- I’’2) fi) 2)

which contains the exact solution of the discrete equation in a neighborhood of the
corner. Denote this equation by

(4.22) (I ,,)fi, =,,.
We define the iteration in analogy with (4.12), but we use the prolongation-

restriction operator framework to move between the coarse and fine grids, rather than
the Nystr6m interpolation used in (4.12). Define

) ,, (I ,,)),

^m(4.23) g?) P,(I-,)- R,mdj),

for j 0, 1,. . This requires the exact solution of the linear systems with coefficient
matrices I-, and I-’1), of orders D, and D<), respectively.

714 K. E. ATKINSON AND I. G. GRAHAM

For convergence, we use

tim fi(mJ+l) nrn [firn (mJ)], j-->0,

I,,m [I P,m(t ,)-lRrn,(t- m)],,.
Then by an argument similar to that of Theorem 5,

Sup [I// 0 as n - oe.

The matrix norm is the row norm, the operator norm induced by I1"11 on
4.1. Numerical Experiment 3. Let F be the curve

x(s) =sin (-) (cos s, sin s), O<-s < O,

with 0 < 0 < 7r given. Then F has an interior angle of 0 at the corner 0, and Xo 1 (0/7r).
(We refer to F as having a "teardrop" shape.) As earlier in Numerical Experiment 1,
consider solving the interior Dirichlet problem

AU(x) 0, xD,
(4.24)

U(x) r cos (/3s), xF=OD

with x (r cos s, r sin s) and /3 2/r. This is chosen to exhibit the behavior of the
method of GC and the iteration method for a fairly ill behaved problem.

As before, we use the double layer representation

U(x) f G’(x, :)u(:) dF, x D

with u found by solving (1.2). Having found urn u, we evaluate the resulting potential
Urn U in the equivalent form

(4.25) Urn(X) f G’(x, :)m() dF-urn(O).
dl

Because the region D is convex, we can show the potential Urn satisfies the error bound

(4.26)]U(x)- Urn (X)l u u IIx, x .D.

The quantity Ilu- urn[Iv can usually be estimated while solving for u,, for example,
by using Richardson’s error estimation formula.

To solve the integral equation (1.2), we use the two-point Gauss-Legendre formula
in (1.6), with r 2. Then the number of integration nodes {x)} is 4n, and we use these
nodes in defining the numerical integral operator W, in (1.7). We also take i*= 0 in
all cases, because empirically this has been completely satisfactory for all angles
considered. (There are integration formulas (1.7) for which there are angles 0 where
i* > 0 is necessary.)

To evaluate Urn(x), we must use an additional numerical integration. Let Urn.r(x)
denote the numerical evaluation of Urn (x) using an r-point Gauss-Legendre quadrature
formula on each [xj_l, xj] of F (or, more precisely, on each subinterval [s_, S/] of
[0, 1]) When r 2, we use the density 5rn(x) at the integration nodes {x!.rn) and these
were the values of obtained in solving (4.1). For r > 2, we obtain the needed new
integration node points by using Nystr6m interpolation, namely,

(4.27) ff (x) -2g(x) + Vff (x).

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 715

The total error in approximating U(x) is given by

U(x) -Um,r(X)l <--- U(x) U., (x) +lUre (x) -Um,r(X)l
(4.28)

-< u u, 11+[u(x) u,(x) I.
As r- oo, U,,r(x) - Um (X). But for x near to F, the integrand G’(x,) in (4.25) is very
peaked, and thus r will probably need to be quite large to make Uo,(x)- Uo,,,.(x)] less
significant than u Um [1.

Using the convergence theory from GC and that given earlier in Theorem 3, we
have that

provided

4
(4.29) q>--

u Um I1 O(m-4),

a Min {/3, 1/(1 + Xo)}.

As was noted earlier in Numerical Experiment 1, we obtain the order of convergence
O(m -4) with smaller values of q. We give results for several values of q. Rather than
study the speed of convergence of { u,, }, we use points chosen along the axis of symmetry
of D; in particular, take

x= Z x(0/2),
yj 0.001, 0.01, 0.1, 0.5, 0.75, 0.9, 0.99

for j 1,..., 7. zl is very close to the corner F at 0, and z7 is close to the part of F
furthest from 0.

Tables 3, 4, and 5 show the errors in Urn.2 for 0 7r/5, for increasing values of m.

(Recall that the number of equations being solved is 4m.) Condition (4.29) says that

TABLE 3
Error in U,,2(z)" q 2.

j Es El6 E32 E4/E8 E8/El6 El6/E32

9.27E 3 -4.71E 3 1.35E 3 1.2 -2.0 -3.5
2 2.20E 2 1.31 E- 2 2.46E 3 1.1 1.7 -5.3
3 -4.85E 3 -2.28E 3 -5.95E 5 -5.9 2.1 38.4
4 8.97E 3 4.44E 5 4.06E 7 -3.9 202 109
5 -9.62E 3 -2.42E 4 -7.03E 8 2.1 39.8 3440
6 -9.13E-3 -3.61E-5 -2.58E-8 -10.6 255 1400
7 5.39E 2 -1.68E 2 -5.51E 3 3.8 -3.2 3.1

TABLE 4
Error in U,,z(Z): q 4.

j E8 El6 E32 E4/E8 E8/El6 El6/E32

2.43E 3 1.94E 3 -3.18E- 4 -2.0 1.2 -6.1
2 1.36E 2 2.90E 3 -2.64E 4 -2.1 -4.7 11.0
3 -1.85E-3 -2.36E-3 -6.01E-5 -23.9 0.8 39.2
4 -2.92E 2 -2.27E 3 3.67E 5 -2.8 12.9 -61.9
5 -1.89E-2 -9.64E-4 8.46E-5 -6.5 19.6 -11.4
6 5.59E 2 -4.77E 3 7.52E- 5 3.4 -11.7 -63.5
7 1.94E 4.79E 2 1.71E 2 1.6 4.0 -2.8

716 K. E. ATKINSON AND I. G. GRAHAM

TABLE 5
Error in ,U-,o(Z): q= 2.

j E8 El6 E32 E4/E8 E8/El6 El6/E32

9.61E 4 -6.04 4 -6.47E 4 -30.7 1.6 0.9
2 -4.28E- 3 6.84E- 5 -5.15E- 5 -0.7 -62.7 -1.3
3 -4.62E- 4 -4.34E- 5 -3.44E- 6 9.0 10.7 12.6
4 -1.36E-4 -6.79E-6 -6.42E-7 17.9 20.0 10.6
5 -8.23E- 5 -4.01E- 6 -4.00E 7 10.4 20.5 10.0
6 -7.77E-5 -3.34E-6 -3.31E-7 60.0 23.2 10.1
7 -1.50E-5 -6.35E-6 -5.40E-7 -115 2.4 11.8

q > 7.2 will yield O(m-4) convergence in approximating U(x) with U,,,2(x). Empiri-
cally, much smaller values of q are sufficient. In the tables,

-= U(z) U,,,r(Z).
All of the numerical calculations of this section were carried out on a microcomputer
with an 80286/287 microprocessor and a standard sized memory of 640K bytes.

To show the effect of using a more accurate integration in evaluating the potential
Um of (4.25), we calculate Um,10(x) for q 2. The results are shown in Table 5. For
points zj away from the boundary F, the error U,(zj)- U,.lo(Z)l is less than U(z)-
Um(z)l; thus the ratios in Table 5 are indicative of the rate of convergence of U,,(z)
to U(zj). Empirically, this rate is about O(m-33). More importantly, considerable
additional accuracy in the approximation of U(x) is obtained by simply using a more
accurate integration formula. Comparing Tables 3 and 5, we have obtained much more
accuracy at most points in D without needing to solve a larger linear system of
equations. The results in Table 5 also show that a larger grading parameter q is needed
to increase the accuracy of the approximate solution Um (x) for x near 0. In fact, q 4
gives much better results around 0, while slightly increasing the error around z7 at the
portion of F opposite the corner 0.

We study the iteration method (4.23) for solving the linear system (4.19) arising
in solving (4.24). Results have been obtained for a variety of values of q, (n, m), 0, and
Dirichlet data g. The results given here illustrate that for fixed cutoff parameter 5, the
iteration method converges geometrically and

Limit ..,. 0.

In Tables 6 and 7, we give the empirical rate of convergence

(4.30) A,. Limit
Ilfl) (j--1

II-’--Z)ll
if it exists. For cases where this limit was not evident after tim was obtained to machine
precision (about 16 decimal digits), we give the geometric mean of the last several
ratios in (4.30), indicating such entries in the table by *. For the corner portion F1 of
F, we give j*(m); also given is 26/O, the fraction of the parameterization interval [0, 0]
that is associated with F1. The order of the linear systems associated with n, m,j*(m)
are, respectively, 4n, 4m, and 4j*(m).

As shown in Tables 6 and 7, the rate of convergence can be improved by increasing
n while keeping 6 fixed (e.g., in Table 7, see (n, rn, j*(m))=(8, 32, 4) and (16, 32, 4)
for q 3). The results in both tables illustrate that the size of 6 can be quite small

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 717

TABLE 6
Rates of convergence A...,: 0 r/2.

q n rn j*(m) 26/0 An,.,

2 4 8 2 ! 16 0.0080
16 4 / 16 0.0289
32 8 1/16 0.0406
64 16 1/16 0.0042*
128 32 1/16 0.0040*

2 8 16 4 /64 0.0079
32 8 1/64 0.0276
64 16 1/64 0.0396
128 32 1/64 0.0039*

2 8 16 2 1/16 0.0145
32 4 1/16 0.0161
64 8 1/16 0.0010"
128 16 1/16 0.0010"

3 8 16 2 1/512 0.014"
32 4 1/512 0.026*
64 8 1/512 0.031
128 16 1/512 0.011"

3 16 32 2 1/4096 0.016
64 4 /4096 0.026
128 8 1/4096 0.031

* Geometric mean of the last several ratios in (4.30).

TABLE 7
Rates of convergence An,.,: 0 7r/5.

q n tn j*(m) 26/0 A,,,,

2 4 8 2 1/16 0.219
16 4 1/16 0.161
32 8 1/16 0.091"
64 16 1/16 0.092*
128 32 1/16 0.093*

2 8 16 2 1/64 0.199
32 4 1/64 0.171
64 8 1/64 0.091
128 16 1/64 0.112

2 16 32 2 1/256 0.195
64 4 1/256 0.174
128 8 1/256 0.091"

3 8 16 2 1/512 0.460
32 4 1/512 0.329
64 8 /512 0.340
128 16 1/512 0.091

3 16 32 4 1/512 0.068
64 8 1/512 0.061"
128 16 1/512 0.049

* Geometric mean of the last several ratios in (4.30).

718 K.E. ATKINSON AND I. G. GRAHAM

while still obtaining an acceptable rate of convergence An, This is important from a
practical view, to keep down the order 4j*(m) of the "corner matrix" I- Q,I, since
linear systems with this matrix must be solved exactly, twice in every iteration of (4.23).
The rates for 0--7r/5 are worse than for 0 7r/2, but are still generally acceptable.

4.2. Storage considerations. In carrying out the iteration (4.23), many evaluations
of the kernel of the double layer integral operator W are needed. For example, with
m 128, the linear system (4.1) being solved is of order 512. Thus there are 5122 kernel
evaluations needed to define the matrix of coefficients. These kernel evaluations should
be calculated during only the first loop in (4.23) and then re-used in subsequent loops.
With many machines, there is insufficient main memory to store these coefficients, and
thus they must be stored on disk.

To avoid having a complicated algorithm to remember the origin of the various
quantities that are loop independent, we have created two simple Fortran subroutines
STORE and LOAD to use in storing these quantities onto a disk and then retrieving
them. A buffer is set up in STORE. In the main iteration program, each time in loop
1 that a quantity is calculated that is loop independent, we call STORE to save it. In
subsequent loops, we use LOAD to retrieve these quantities in the same order that
they were stored, again using a buffer. In the subroutine STORE, as soon as the buffer
fills, it is dumped in "free format" to a disk and the buffer is initialized to being empty
again. The main program need not have knowledge of the size of the buffer nor of
when the subroutines STORE and LOAD are using the disk. We have found that the
cost in time of the first loop is from 10 to 20 times that of subsequent loops, and the
savings after the first loop are due entirely to the storing of the quantities that are loop
independent.

Appendix. We sketch proofs of the inequalities (2.12) and (2.13), with Y replaced
by V. Recall that the double layer integral operator 2 W can be decomposed as

2W= Y{+N,

where Y{ is the double layer operator on an open wedge and N is a compact remainder.
The operator is defined in (2.2) and in the following. Let K(s, o-) and N(s, o-)
denote the kernel functions of Y{ and V, respectively. We must show that for k-> 0,

(m.1) Is D(,..,v)(x(s))l <-_A’[[vll, s[-1,

(A.2) Io+’D(N(s, o’))l<=B’, s, o’ [-1, 1]\{0},

for some constants A,, B,.
We first note that if -1-<s, o-<0 (or 0<s, o-=< 1), then the function K(s, r)=O

and the function N(s, r) are the standard double layer potential functions one obtains
for a smooth boundary. Thus the above inequalities are satisfied easily. From here on,
we are interested in the case -1 <- s < 0 < o- =< (and the analogous case -1
1). We assume -2 W is defined on an open curved wedge F of the type pictured in
Fig. 4. For simplicity, we assume F has a C parameterization on both arms of the
wedge, with the origin 0 the sole point at which the tangent does not exist. (For the
case of F a closed contour, the operator -2W can be decomposed as two operators,
as in 4, with one operator the double layer integral operator on an open wedge and
the second operator a smoothing compact integral operator.) Let F be as pictured in
Fig. 4, with one arm tangent to the positive x-axis, the vertex of F at the origin, and
the second arm making an angle of 0=(1-x)Tr with the positive x-axis. We let F’
denote the wedge with linear arms, tangent to F; the lengths of the arms of F’ are to

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 719

F

F’

FIG. 4. Corner region with tangent wedge.

be the same as the corresponding arms of F. We are interested in the double layer
integral operator defined on F with the kernel function

1 Q-P
(A.3) V(P, Q)---nQ. IQ-PI
In line with the earlier restriction 1 =< s < 0 < o--< 1, the points P and Q are to be on
different arms of the wedge F, as pictured in Fig. 4.

To obtain N(s, r), we need the parametric representation of F in terms of arc
length. The lower and upper arms of the tangent wedge F’ are given by

Q’ (o-, 0), o<_-tr<-l,

P’= s cos O, s sin O), 0=<s_<-l.

Here o- and s denote arc length along F’, measured from (0, 0); for convenience, we
let tr and s both vary over [0, 1]. For the parameterization of F, the use of arc length
cr and s leads to

(A.4)
Q--(or + o’3c(cr), r2b(cr)), 0<=r<= 1,

P= (s cos 0+s2a(s), s sin 0+s2d(s)), 0_<_s__<l

with a, b, c, d C[0, 1]. The arc length parameterization also imposes other con-
sistency restrictions on these functions, for example,

6c(0) + 4b(0)2-- 0.

But such conditions are not needed in our derivations. The normal to F at Q is given
by

no (2orb + o’2b ’, -1 -3t2c- c’).

We can now give an explicit formula for the function V(s, tr)=- V(P, Q) of (A.3). The
formula is algebraically complicated, and for that reason we consider here only the
right angle case 0 7r/2. The techniques used and results obtained will generalize to
the case of a general angle 0, 0 < 0 < 2

With 0 r/2, the kernel function V of (A.3) becomes

1 (2bo+o’2b’)(o+o’3c-sZa)-(1 +3co’2+o3c’)(o’2b-s-s2d)
(A.5) V(s, tr)=--]2 _o.2 2[o-k-o’3c--sZa +[s+s2d b]

720 K.E. ATKINSON AND I. G. GRAHAM

Note that from the definition (A.3), the denominator of (A.5) is zero if and only if
P Q 0, or equivalently, s 0.- 0. Also, from (2.3),

K(s, 0.)-
1 S

37" 8
2 -[- 0.2.

Subtracting N V-K, we obtain

(A.6) N(s, 0.)

The denominator

(s,) .(s,)
(s, 0.)]P’- O’]21P- Q["

fl(S, 0.)-" {[o’-b 0.3 c-- s2a]2-b[s + sZd 0-2b]2}{se + 0.}

is a "polynomial" in s, 0. of degree 4 exactly, and it is zero if and only if P Q 0.
The numerator a(s, 0.) is a "polynomial" in s, 0. and all of its terms are of degree _->4.

Both of these polynomials have coefficients that contain the C functions
a, b, c, d, c’, d’, but their presence will not affect the validity of the following arguments,
since we will be assuming s and 0. are sufficiently close to zero. Then, for example,

/3 s2 + o’2] 2.

Because the numerator and denominator are C functions for O< s, 0.<_-1, and
because the denominator is zero only when s 0. O, we can check the boundedness
of N(s, o-) and its derivatives by considering only a neighborhood in (s, 0.) about
(0, 0). For example, N(s, 0.) is easily shown to be bounded for (s, 0.) near (0, O) by
using Taylor’s theorem and the inequalities

S
2

0
-2 SO" 1

1 0.2 2 0.2(A.7) se+o"= s2+ s + 2

We first show (A.2). Introduce

N(k)(s, o’)= 0.DN(k-’)(s, or),

N()(s, 0.)= 0.N(s, 0.).

The proof of (A.2) is equivalent to showing

(A.8) [N(k)(s,o’)[Ck, 0< s, o--< 1, k->_0.

The proof for k 0 was described in the preceding paragraph; we can write

N(O)(s 0.)=
oa(s, 0.)=_ y(s, cr__)
t(s, *) /(s,)"

All terms in the numerator 3’ have degree ->5. For k 1,

0.) 0.D,(T/

This fraction has the same form as previously, but now the denominator is /2 rather
than/3. All terms in the numerator have degree one greater (or more) than that of the
denominator. As a consequence, we can again easily show N(l)(s, 0.) is uniformly
bounded for (s, o-) near (0, 0). This form of argument can be continued inductively to
show (A.8) for all k.

ITERATIVE SOLUTION OF BOUNDARY INTEGRAL METHOD 721

For showing (A.1), we first refer the reader to the corresponding proof of (2.12)
in (GC, Lemma 2(ii)). Using that proof to show (A.1), it is sufficient to show

(A.9) [skDkN(s,cr)l<Ck,s 0<S, or<l= k >0.=

Equivalently, show

(A.10) IN(s,,)ld, 0<s,, k0,

where

No(s, tr)= N(s, tr), Nk(S, IT) SDsNk_I(S o’), k >-- 1.

The proof of (A.10) when k 0 has been given previously. The cases k => 1 are essentially
the same as for (A.8). The only major difference is that all terms in the numerator will
have degree greater than or equal to the degree of the .denominator, but this is still
sufficient for the proof of boundedness. This completes the proof.

Acknowledgments. We wish to thank everyone at the Department of Mathematics,
University of Queensland, Queensland, Australia, for their hospitality during our visit,
especially Graeme Chandler.

REFERENCES

K. E. ATKINSON (1973), Iterative variants of the Nystr6m method for the numerical solution of integral
equations, Numer. Math., 22, pp. 17-31.

(1976), A Survey of Numerical Methods for the Solution ofFredholm Integral Equations of the Second
Kind, Society for Industrial and Applied Mathematics, Philadelphia, PA.

K. E. ATKINSON AND A. BOGOMOLONY (1987), The discrete Galerkin methodfor integral equations, Math.
Comp., 48, pp. 596-616.

K. E. ATKINSON AND F. R. DEHOOG (1984), The numerical solution of Laplace’s equation on a wedge,
IMA J. Numer. Anal., 4, pp. 19-41.

K. E. ATKINSON AN[) I. G. GRAHAM (1988), An iterative variant of the Nystr6m method for boundary
integral equations on nonsmooth boundaries, in The Mathematics of Finite Elements and Applications,
J. R. Whiteman, ed., Academic Press, London, pp. 297-304.

G. BRUHN AND W. WENDLAND (1967), Ober die niiherungsweise L6sung yon linearen Funktionalgleichungen,
in Funktionalanalysis, Approximations-theorie, Numerische Mathematik, L. Collatz, G. Meinardus,
and H. Unger, eds., Birkhauser-Verlag, Basel, pp. 136-164.

T. F. CHAN (1984), Deflation techniques and block elimination algorithmsfor solving bordered singular systems,
SIAM J. Sci. Statist. Comput., 5, pp. 121-134.

M. COSTABEL AND E. STEPHAN (1983), Curvature terms in the asymptotic expansions for solutions of
boundary integral equations on curved polygons, J. Integral Equations, 5, pp. 353-371.

I. G. GRAHAM AND G. A. CHANDLER (1988), High order methods for linear functionals of solutions of
second kind integral equations, SIAM J. Numer. Anal., 25, pp. 1118-1137.

F.-K. HEBEKER (1986), Efficient boundary element methodsfor three-dimensional exterior viscousflows, Numer.
Meth. Partial Differential Equations, 2, pp. 273-297.

(1988), On the numerical treatment of viscous flows against bodies with corners and edges by boundary
element and multigrid methods, Numer. Math., 52, pp. 81-99.

W. HACKBUSCH (1985), Multigrid Methods and Applications, Springer-Verlag, Berlin.
M. JASWON AND G. SYMM (1977), Integral Equation Methods in Potential Theory and Elastostatics, Academic

Press, New York.
J. MANDEL (1985), On multilevel iterative methods for integral equations of the second kind, Numer. Math.,

46, pp. 147-157.
J. RADON (1919), (Jber die Randwertaufgaben beim logarithmischen Potential, Sitzungsberichte der Akademie

der Wissenschafter Wien, 128 Abt. IIa, pp. 1123-1167.
L. REICHEL (1988), Fast solution methods for Fredholm integral equations of the second kind, Report 88/20,

IBM Bergen Scientific Centre, Bergen, Norway.

722 K.E. ATKINSON AND I. G. GRAHAM

H. SCHI’r’ERS (1982), Application of multigrid methods for integral equations to two problems from fluid
dynamics, J. Comput. Phys., 48, pp. 441-461.

(1985), Multigrid methods for boundary integral equations, Numer. Math., 46, pp. 351-363.
(1987), Multigrid methods in boundary element calculations, in Boundary Elements IX: Vol. 1-

Mathematical and Computational Aspects, C. Brebbia, W. Wendland, and G. Kuhn, eds., Springer-
Verlag, Berlin, New York, pp. 475-492.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 723-726, May 1992

(C) 1992 Society for Industrial and Applied Mathematics

006

MODIFICATION OF THE HOUSEHOLDER METHOD BASED ON THE
COMPACT WY REPRESENTATION*

CHIARA PUGLISI

Abstract. This paper presents a modification of the block Householder method based on the compact
WY representation JR. Schreiber and C. Van Loan, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 52-57]. It
is modified in order to introduce more matrix-matrix operations.

Key words. Householder method, compact WY representation, matrix-matrix multiplication, Level 3
BLAS

AMS(MOS) subject classification. 65F

1. Introduction. The Householder method for factorizing an m n matrix A,
n-< m, consists of building n Householder matrices Hi (I- (2/u/rui)uiuf) so that if

(1.1) Q=HnHn-1’’ "H1,

and QA R, then R is upper triangular. The Householder matrices are orthogonal and
so it follows that Q is orthogonal. We are interested in "Householder methods" using
as many matrix-matrix operations as possible in order to increase the efficiency of the
algorithm on vector and parallel machines (see [2]). Some block techniques have been
studied by Schreiber and Van Loan [3], all of them using a block representation of
the matrix Q. We study one of them, the so-called compact WY representation (also
used in the new LAPACK [1]) and modify it to introduce more matrix-matrix oper-
ations. We describe the WY representation in 2 and our modified version in 3. We
show the results of some numerical experiments in 4.

2. The compact WY representation. A generic Householder matrix Hi---
(I--(2/uTiui)uiuTi) can also be written as

(2.1) Hi l-wiw,

where

(2.2) Ilwill2- /.
In the compact WY representation Q is written as

(2.3) Q I-YTY

where Y is a rectangular m x n matrix, and each of its columns is a Householder vector
wi, and T is a lower unit triangular matrix. For the proof, we refer to Schreiber and
Van Loan [3] noticing that they proved (2.3) for Qr using Householder matrices of
the type I-2vivf(llvill2-- 1).

The algorithm for computing T is the following"

(2.4) T1 =1 Ti [Ti_l 0]zi 1

where zi wrYi-ITi_I

Received by the editors July 30, 1990; accepted for publication (in revised form) February 8, 1991.
Centre Europ6en de Recherche et de Formation Avanc6e en Calcul Scientifique (CERFACS), 42

Avenue Gustave-Coriolis, 31057 Toulouse Cedex, France (puglisi @ cerfacs, fr).

723

724 CHIARA PUGLISI

Suppose n rN; then, using the compactWY representation, we have the following
block algorithm (these are the basic steps of the algorithm of the new LAPACK).

ALGORITHM 1.
for k=l, N

for s= 1, r
1. i-(k-1)r+s
2. compute wi
3. ifs=l thenYi=wi

else Yi [Yi-lwi]
endif

4. A(i: m; i+ 1" kr)=(I-wiwf)A(i: m; i+ 1" kr)
endfor
if k < N then

5. compute Tk
6. j=kr+l; A((k-1)r+l" re;j" n)=(l-YkrTkYr)A((k-1)r+l" m;j" n)

endif
endfor

A(a: b; c: d) means the block of A with rows from a to b and columns from c
to d.

Step 5 of the algorithm involves a for-loop over i, i= (k-1)r+ 1, kr, and each
iteration in the loop involves two matrix-vector operations:

xf wrY,_, (DGEMV),

g --x/TTi_I (DTRMV).

Step 6 involves three matrix-matrix operations"

B Y[rA (DGEMM),

B=TkB (DTRMM),

A A- VkrB (DGEMM).

We now modify the algorithm in order to substitute the for-loop with the matrix-
vector operations in step 5 with a matrix-matrix operation.

3. The new algorithm. As we mentioned before, the Q matrix in (1.1) is orthogonal,
that is,

Q- QT.

In the case of Q in compact WY representation, this means that

(3.1) Q--1 (i_ yTyT) T i_ yTT-y.

Another way to compute the inverse of (2.3) is to use the Woodbury-Morrison formula,
which can be expressed as the following: Given

A=B+UVT,

MODIFICATION OF COMPACT WY 725

where A, B are invertible tn m matrices, and U, V are m x p matrices, p < m, we can
compute its inverse by

(3.2) A- B- B-U(Ip +VrB-U)-VVB-1.

Substituting in (3.2) B I, U -Y, and V TYr, we obtain

(3.3) (I YTYr)- I + Y(Ip TYvY)-TY.
Comparing (3.1) and (3.3) gives us

I + Y(Ip TYTy)-ITyr I YTTY.
Postmultiplying by Y and premultiplying by yT- gives us

YY(Ip TYY)-ITYY -YTYTYrY.
Because YrY is invertible,

so that

(Ip TYry)-IT -Tr,
(Ip TYTY) -TT-r

Ip T(YY-T-),
T-1 +T-r yT"y,

.r
(3.4) T-I(i, i)_w.wi T-l(i,j)=wfw:, i>j.

2

Note also that w/rwi/2 1, i= 1,..., n, from (2.2).
Using (3.4), steps 5 and 6 of Algorithm 1 can be modified as follows.

T-I__ y"krYkr
for i= 1, r

TI(i, i)= 1
endfor

(DSYRK)

B YA, (DGEMM)
B (TI)-IB, (DTRSM)
A=A-YkrB (DGEMM)

Essentially, both algorithms compute the matrix T, but in the first one we invert the
matrix T explicitly and then perform a matrix-matrix multiplication; in the second
one we solve several triangular systems withT as the coefficient matrix. For factorizing
an m n matrix with blocks of size r, the modified LAPACK algorithm does (n r)
(2m-n+(n2/3)+2r-) operations more than the LAPACK algorithm.

4. Numerical results. We show in Table 1 the time to factorize three matrices with
the same algorithm as in LAPACK and the modified LAPACK algorithm with different
block sizes. All the experiments have been done on an Alliant FX/80.

As may be noticed, the modified LAPACK algorithm is better than the "LAPACK"
algorithm, but not very much so. This reflects the poor performance of the subroutine
DSYRK on the target machine.

726 CHIARA PUGLISI

TABLE
Execution time of the two algorithms with different block sizes. A; 1024 512,

B: 512 x 512, C: 1024 1024.

Size of Modified
the blocks LAPACK LAPACK

16 Matrix A 12.67 11.88
Matrix B 6.09 5.48
Matrix C 31.49 29.20

32 Matrix A 11.32 9.98
Matrix B 5.12 4.62
Matrix C 28.04 26.34

64 Matrix A 11.64 10.80
Matrix B 5.02 4.66
Matrix C 27.16 25.45

128 Matrix A 15.99 15.13
Matrix B 5.92 5.34
Matrix C 34.25 32.81

Finally, it can be shown that from the stability point of view, the new algorithm
is as stable as the old one. The propagation of the error in the two algorithms is
different because in the old one we compute Tk inverting in place T{ and we
successively update by multiplying by Tk, whereas in the new one T{ is stored and
we update by solving lower triangular systems, but the final errors are of the same order.

Acknowledgments. I would like to thank Mario Arioli and Iain Duff for supporting
me in writing this communication.

REFERENCES

J. DEMMEL, J. J. DONGARRA, J. Du CROZ, A. GREENBAUM, S. HAMMARLING, AND D. SORENSEN,
Prospectus for the development of a linear algebra library for high-performance computers, Tech.
Memorandum No. 97, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, September 1987.

[2] J. J. DONGARRA, J. Du CROZ, I. S. DUFF, AND S. HAMMARLING, A set of level 3 basic linear algebra
subprograms, ACM Trans. Math. Software, 16 (1988), pp. 1-17.

[3] R. SCHREIBER AND C. VAN LOAN, A storage-efficient WY representation for products of Householder
transformations, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 52-57.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 727-741, May 1992

() 1992 Society for Industrial and Applied Mathematics
OO7

SOME APPLICATIONS OF
THE RANK REVEALING QR FACTORIZATION*

TONY F. CHAN? AND PER CHRISTIAN HANSEN$

Abstract. The rank revealing QR factorization of a rectangular matrix can sometimes be
used as a reliable and efficient computational alternative to the singular value decomposition for
problems that involve rank determination. This is illustrated by showing how the rank revealing QR
factorization can be used to compute solutions to rank deficient least squares problems, to perform
subset selection, to compute matrix approximations of given rank, and to solve total least squares
problems.

Key words, rank revealing QR factorization, numerical rank, rank deficient problems, subset
selection, matrix approximation, total least squares

AMS(MOS) subject classifications. 65F25, 65F20

1. Introduction. One of the more intricate problems in numerical linear algebra
is to find the numerical rank of a matrix. This computational problem is the heart of
many numerical methods, such as subset selection, total least squares, regularization,
and matrix approximation. The singular value decomposition (SVD) is undoubtedly
the most reliable method for computing the numerical rank. A big disadvantage
of the SVD is, however, the high computational complexity of the standard SVD
algorithm, as compared to a QR factorization, for example, [12, p. 248]. The same
is true for SVD algorithms based on Jacobi iteration. SVD algorithms for sparse or
structured matrices based on Lanczos iteration are faster, but they have problems
with computation of the smallest singular values and, therefore, are not reliable for
numerical rank determination.

A number of alternative, less computationally demanding, methods have been
proposed. Most of these are based on a QR factorization with column pivoting [4],
[18], [19], but the numerical rank computed by these methods is not entirely reliable
(see [12, 5.5.7] and [1, 7]), and none of these methods are suited for sparse matrices
because of the column pivoting. Similar QR-based methods specially designed for
sparse matrices [16], [21], based solely on detecting small elements on the diagonal
of the triangular matrix, are not reliable either. Another alternative method, the
partial SVD (PSVD) [25], is as reliable as the SVD. However, a complete reduction
to bidiagonal form is required, so its complexity is still higher than that of a QR
factorization, and it is not well suited to general sparse matrices.

The most promising alternative to the SVD is the rank revealing QR factoriza-
tion (RRQR factorization) defined by Chan [6], [7] (we note that similar ideas were
proposed independently by Foster [10]). An important existence proof of RRQR fac-
torizations is given in [17]. The RRQR factorization will reveal the numerical rank
of any matrix, because it is guaranteed to capture all the small singular values of
the matrix by producing reasonably tight upper and lower bounds for these singular

Received by the editors May 14, 1990; accepted for publication April 10, 1991. This research
was supported by NATO Collaborative Research grant 5-2-05/RG900098.

Department of Mathematics, University of California, 405 Hilgard Ave., Los Angeles, California
90024 (chan@math.ucla.edu). The work of this author was supported by Army Research Office
contract DAAL03-88-K-0085, by Department of Energy contract DE-FG-03-87-ER-25037, and by
National Science Foundation contract NSF-DMS87-14612.

UNI.C (Danish Computing Center for Research and Education), Building 305, Technical Uni-
versity of Denmark, DK-2800 Lyngby, Denmark (unipch@wuli.uni-c.dk).

727

728 T.F. CHAN AND P. C. HANSEN

values. In addition, the RRQR algorithm produces a set of linearly independent vec-
tors that span a good approximation to the numerical null-space of the matrix. This
information is sufficient to solve many problems in numerical linear algebra.

The computational complexity of the RRQR algorithm is only slightly larger than
that of the standard QR algorithm, as long as the nullity is small compared to the
dimensions of the matrix. A Fortran implementation of the algorithm is now available
from ACM TOMS [22]. Moreover, the RRQR factorization of a sparse matrix can
be computed efficiently without destroying the sparsity pattern of the matrix, and
Bischof and Hansen [1] have demonstrated how to implement the RRQR factorization
algorithm with a minimum of column interchanges. Thus, we feel that the time is
ripe for using the RRQR factorization in numerical linear algebra.

Chan and Hansen [8] showed how truncated SVD solutions can be computed effi-
ciently by means of the RRQR factorization, and Hansen, Sekhii, and Shibahashi [15]
use RRQR factorizations to regularize discrete ill-posed problems. Comon and Golub
[9] use RRQR factorizations in conjunction with Lanczos block-bidiagonalization.
Bischof and Shroff [2] have shown how to use the null-space information from an
RRQR factorization in conjunction with the "signal subspace" approach to parame-
ter estimation in signal processing. In this paper, we illustrate several other important
applications of the RRQR factorization in numerical linear algebra.

Stewart [24] has recently proposed a related factorization, namely, a rank revealing
complete orthogonal decomposition, which is particularly suited to "subspace track-
ing" in signal processing. This factorization is computationally more expensive than
the RRQR factorization, but updating of the null-space from Stewart’s factorization
is cheaper than updating the null-space from an RRQR factorization.

Our paper is organized as follows. In 2, we summarize the most important
properties of the RRQR factorization. Then, we show how the RRQR factorization
can be used in rank deficient least squares problems (3), in subset selection problems
(4), and in matrix approximations (5). Finally, we demonstrate in 6 how the
RRQR factorization can be used to solve total least squares problems with full rank
as well as rank deficient coefficient matrices.

We shall use two-norms almost entirely, so we use the abbreviation I1" for I1" 112.
The range (column space) of a matrix is denoted by 7(.). Throughout this paper,
in addition to our new results, we include a few results already published in other
manuscripts. We feel that the present constellation of this material will provide new
insight into the applications and practical use of the RRQR factorization.

2. RRQR factorizations. Throughout the paper, we assume that the matrix
A has been properly scaled, for example, such that the uncertainties in its elements
are roughly of the same size [23]. The numerical rank, or e-rank, of A with respect to
the tolerance e is defined by

(1) k-k(A,e)= min rank(B).

In other words, the e-rank of A is equal to the number of columns in A that are
guaranteed to be linearly independent for any perturbation of A with norm less than
or equal to the tolerance e. As a guide to choosing this tolerance, it is customary to
let e reflect the uncertainties in A [23]. See also [11] and [12, 2.5.4] for more details.

The most reliable way of computing the e-rank of A is via its SVD. Assume for

SOME APPLICATIONS OF RRQR 729

simplicity that A E ,xn with m >_ n. Then the SVD of A is

n

(2) A UEVT E ui ai v
i--1

where U- In1,..., Un] and V- [vl,..., Vn] are matrices with orthonormal columns,
and F diag(a,..., an) is an m n diagonal matrix whose diagonal entries, the
singular values of A, are ordered such that a _> a2 >_ >_ an >_ 0. From the
orthonormality of the columns of U and V it follows that IIAvll a, i 1,..., n.
It is straightforward to show that if k is the number of singular values strictly greater
than e, i.e., ak > e _> ak+, then k is the e-rank of A as defined in (1). For every
singular value ai < e, the corresponding right singular vector vi is a numerical null-
vector of A in the sense that IIA v -< e. It is therefore natural to define the numerical
null-space of A as the space spanned by the vectors vk+ through vn"

(3) Ark(A) =- span{vk+l,’’’, Vn}.

We can now define a rank revealing QR factorization of A as a special QR fac-
torization AH QR, which is guaranteed to reveal the e-rank k of A in displaying
elements in the lower portion of R with magnitude of the order ak+l or less. An
RRQR factorization thus has the form

R12)(4) AII QR Q
0 R22

where H is a permutation matrix, Q has orthonormal columns, R is a k k matrix
with condition number approximately equal to al/ak, IIR2211 is of the order ak+, and
k is the e-rank of A. Such an RRQR factorization of A is not unique, and different
RRQR algorithms may produce different factorizations. The key idea in all RRQR
algorithms is, however, the same: first compute any QR factorization of A and then
construct H and Q by building up R22 one row at a time, starting from the bottom.
Assume that a trailing (n- i) (n- i) submatrix with small norm has already been
generated. In the next step, the RRQR algorithm then proceeds as follows:

1. Compute the smallest singular value 5i and the corresponding right null-vector
w(i) E i of the leading i i submatrix R(i) of R, such that

(5) IIw(i)ll 1, R()w() 5 _<

The inequality 5i _< ai follows immediately from the interlacing inequality for
singular values [12, Cor. 8.3.3].

2. Find the permutation that permutes the largest element in absolute value of
w(i) to the bottom.

3. Apply this permutation to the columns of R(i) and compute a new QR fac-
torization of this matrix.

4. The (i, /)-element of R(i) is now guaranteed to be of the order 5i.
This process continues until 5i > e and then the e-rank k of A, given by (1), is equal
to i. The vectors w(i) are padded with zeros and gathered in a matrix

730 T.F. CHAN AND P. C. HANSEN

in such a way that W2 E (n-k)x(n-k) is upper triangular. The resulting column
permutation matrix H seeks to make W2, produced by the RRQR algorithm, as well
conditioned as possible (a priori upper bounds for IIW2-111, which depend on the
particular RRQR algorithm, can be found in [1], [8], [10]). It is very important that
the submatrix W2 be well conditioned, for then we are guaranteed to obtain tight
bounds for the singular values of A due to the following theorem.

THEOREM 2.1. Let R(2 and W(2) denote the lower right (n- i + 1) x (n- i + 1)
submatrices of R22 and W2, respectively. Also, let i denote the smallest singular
value of the leading principal i x submatrices of R. Then for i k + 1,--., n:

(6)
o-

v/n i + 1 II(W2(i))-111

Proof. See [7, Cor. 4.1].
Theorem 2.1 shows that the quantities 6i and I[R(2[I provide easily computed

lower and upper bounds for the singular values hi. Moreover, the outermost bounds
in (6) show that if I[(W2())-[I is not large, then 5 and IIR(2I[are guaranteed to be
tight bounds for hi. Therefore, the e-rank of A will always be revealed from inspection
of the upper and lower bounds for a produced by the RRQR algorithm. In addition,
Theorem 2.1 guarantees that IIR2I] is indeed of the order ak+.

The matrix W produced during the RRQR algorithm is such an integral part of
the RRQR that one may almost consider it a part of the factorization, the reason
being that 7(IIW) is a good approximation to the numerical null-space Aft(A). In
fact, as shown in [8, Thm. 4.1], the larger the gap between ak and ak+, the smaller
the subspace angle between 7(HW) and Ark(A), i.e., the better 7(HW) approximates
the numerical null-space. If a more accurate basis for Ark(A) is required, the columns
of W can always be improved by a few inverse iterations, as shown in [8].

3. Rank deficient least squares problems. In this section we consider algo-
rithms for solving the linear least squares problem

(7) min I[Ax- b{[, A e mxn,
where the matrix A is very ill conditioned. The usual least squares solution, formally
given by x HR-1QTb, is then of no use because it is extremely sensitive to pertur-
bations of b and it is usually dominated by highly oscillating contributions from the
errors in the right-hand side b. A standard approach to computing a least squares so-
lution that is less sensitive to perturbations is to transform (7) into a nearby problem
that is better conditioned. In practice, this process usually corresponds to damping
or filtering the contributions to the least squares solution corresponding to the small-
est singular values of A [13], [14]. One such approach is the truncated SVD (TSVD)
method, in which one completely filters out all the small singular values below the
e-rank k. The TSVD solution XTSVD is thus defined as

k uTb(8) XTSVD =--
i--1 i

The TSVD solution can always be computed from the complete SVD of A, but this
is computationally expensive because a great deal of the information provided by
the SVD is not used. In fact, only the e-rank and information about the numerical

SOME APPLICATIONS OF RRQR 731

TABLE 1
Dominating terms of the computational effort.

excl. RRQR factorization incl. RRQR factorization

XTSVD (2q(n- k) + 1)n2 (2m- n + (+ 2q)(n k) + 1)n2

2
XTQR (2(n- k) - 1)n2 (2m- n - (n- k) + 1)n2

XB n2 (2m- n + (n- k) + 1)n2

null-space is required. Therefore, the TSVD solution can be computed efficiently by
means of the RRQR factorization of A, as shown in [8].

Instead of using the RRQR to compute xTSVD, one may define a least squares
solution in terms of the RRQR factorization itself. Here, we shall analyze and compare
this approach to the TSVD method. Let the RRQR factorization of A be given by (4).
The standard approach [12, 5.5] is to neglect the submatrix R22 (which is guaranteed
to have a norm of the order (k+l due to Theorem 2.1) and to then solve this modified
problem. In analogy with the TSVD solution, it is natural to define the truncated
QR (TQR) solution XTQR as the minimum two-norm least squares solution to the
modified problem. To compute XTQR, which involves the pseudoinverse of

it is convenient to use a right orthogonal transformation P to annihilate R12 by means
of Rll, i.e., (R, R2)P- (/1,0). Then the TQR solution is given by

(9) XTQ,=_ n p (t O)QTb0 0

Alternatively, one can compute the basic solution XB, defined as the solution to an-
other modified least squares problem where both submatrices R12 and R22 are ne-
glected. The basic solution is given by

(10) xB=H/ R-0 00 IQTb"
We list in column one of Table 1 the dominating terms of the computational ef-

fort required to compute the three solutions xTSVD XTQR, and XB, assuming that
the RRQR factorization of A has been computed and that QTb is computed simul-
taneously with the factorization. The computational effort is measured in flops (a
ilop is either one addition or one multiplication). The quantity q is the number of
inverse iterations used to compute accurate singular subspaces, and usually q is less
than 4. The computational effort to compute the RRQR factorization itself depends
on the column permutations needed during the computations, but it never exceeds

2 7 (n- k))n2 flops (provided that the Linpack condition estimator is used(2rn- n +
in each step). This leads to the total amount of computational effort given in column
two. We note that more recent condition estimators, such as Incremental Condition
Estimation and related algorithms, may be much more efficient in this context; see

[1] for details.
In comparison, we can compute the complexity required by a similar technique

for computing XTSVD based on the PSVD algorithm [25] with accumulation of QTb

732 T.F. CHAN AND P. C. HANSEN

(PSVD is not suited to computation of XTQR or xB). The R-bidiagonalization of
A UBBV requires 2(m / n)n2 flops. Computation of the n- k smallest singular
values and the corresponding left and right singular vectors, using on average two
"chases" per singular value, requires 24(n- k)n2 flops. Backsubstitution with B and
orthogonalization with respect to the left and right null spaces requires O(n) flops.
Coordinate transformation with VB requires 2n2 flops. Thus the total is (2m + 2n +
24(n-k) + 2)n2 flops. Therefore, the RRQR algorithm is always less computationally
demanding than the PSVD-based algorithm.

For our numerical comparison, it is convenient to define the residual vectors cor-
responding to the three solutions:

(11) ri Axi b, TSVD, TQR, B.

Then we have the following results.
THEOREM 3.1. The TSVD and TQR solutions are related by

(12)

and the TQR and basic solutions are related by

(13) IIXTQR XB II <--
The three residual vectors satisfy

(14) IIrTSVD--rTQRII -- IIR2211 (IIxTSVDII + IIrTSVDII

and

(15)

Proof. The TQR solution XTQR is identical to a truncated SVD solution to the
problem

min Q(Rll R12)iiTx_bll__minlI(A_Q(O 0)liT)x0 0 0 R22

Thus, we can consider XTQR a perturbation of xTSVD with the perturbed matrix
given by

i Q (RO R21IITo
(which has rank k) and with the perturbation matrix given by

0 R22

Note in particular that I]EI].- [[R2211, that II. +ll- II/ - ll IIR-II, and that the
(k + 1)th singular value of A is zero. In [13, 3] Hansen derived general perturbation

SOME APPLICATIONS OF l:tRQl:t 733

bounds for TSVD problems. For this special case, these bounds become somewhat
simpler:

[[xTSVD XTQR[I[q-]] ([[E]]][XTSVD]I -[- sin0k][rTSVD[[) -[- sin0k
[IrTSVD rTQR[I

_
[[E[[I[XTSVDI[-[- sin0k

where sin0k _< [[E[[/ak. Inserting this bound into the above expressions, and using
the fact that a-1 <_ -1][R-I[, we obtain (12) and (14). The difference between
XTQR and Xs satisfies

0 0 0 0

Here, we can consider

a perturbation of

0 R2)0 0

Rll O)0 0

and a standard result for perturbed pseudoinverses [3, Thm. 5.3], II(A / E)+ A+II <_
+ IIA+II II(A + E)+I] IIEII then yields (13) Finally, to prove (15) we have2

0
rs rTQn A (XTQn XB) Q R22P2/_1

0
0) QTb’

where P21 is the bottom left (n-k) k submatrix of the orthogonal matrix P. Taking
norms and using []/-1]1 <_ [IR-III, we obtain (15).

Due to Theorem 2.1 we are guaranteed that [IR221] _< ak+X/- k IIW2-11[when
R is computed via a RRQR factorization. Hence, as long as ak+l is small, Theorem
3.1 guarantees that TSVD and TQR will produce approximately the same solutions,
as well as residuals. These two methods are therefore in many circumstances equally
well suited for solving rank deficient least squares problems with well-determined
rank (unless, of course, the exact TSVD solution is required), and XTQR is cheaper
to compute than xTSVD.

The RRQR also leads to a basic solution Xs with approximately the same residual
vector as both rTQR and rTSVD, because Rll is guaranteed to be well conditioned.
The basic solution itself, on the other hand, may be very different from both XTSVD
and XTQR. This is so because the basic solution Xs has a (possibly large) component
in the numerical null-space of A.

To illustrate the different properties of all the above-mentioned solutions, we
have carried out a series of experiments using Pro-Matlab [20]. The dimensions were
m n 100, the ratio al/ak (where k is the e-rank) was 103 for all the matrices,
and the right-hand side b was generated such that the TSVD residual vector satisfies
I]rTSVD[[IO-311AXTsVD[I. Typical numerical results are shown in Table 2 for
three different values of the e-rank k and three different ratios ak/ak+l. These results
clearly illustrate how the similarity of XTSVD and XTQR, as well as the similarity of
all the residual vectors, depends on the size of the gap between ak and ak+l, but not
on the e-rank k. Table 2 also illustrates that the solutions XTQR and XB generally are
very different.

734 T.F. CHAN AND P. C. HANSEN

TABLE 2
Typical numerical results for rank deficient least squares problems with m n 100,
k 103

lC

lC

Legend for each entry below

liXTSYD XTQRII IIrTSVD rTQRll/llbl[
I,I.,..XT, XBII II’TCZ ’Bll/llbll

k=50

4.51. I0-I0 1.55.10-10

3.53 1.22 10-7

4.34.10-7 1.34.10-7

3.53 1.04.10-4

1.90.10-3 3.80.10-5

3.52 9.52.10-3

k=75

6.76.10-1 2.19.10-1

1.70 9.59 10-8

7.31.10-7 2.26.10-7

1.70 9.35.10-5

2.00.10-3 5.73- 10-5

1.70 9.10.10-3

k=90

2.14.10-1 8.04.10-11

1.51 5.05 10-8

1.93.10-7 7.20- 10-8

1.51 3.11.10-5

2.29.10-5 7.03.10-6

1.51 2.62.10-3

4. Subset selection problems. Subset selection is the problem of determining
the most linearly independent columns of the matrix A. To be precise, if k is the
e-rank of A, then the aim is to find a column permutation H such that the submatrix
consisting of the first k columns of AII are as well conditioned as possible. The RRQR
factorization of A obviously produces such a permutation H. The basic solution Xs
discussed in the previous section is in fact the least squares solution derived from
this strategy by forcing to zero those elements of XB that correspond to the linearly
dependent columns of A. Such a solution may in some applications be preferred to
the TSVD and TQR solutions. Subset selection is also interesting in its own right.

It is therefore interesting to compare the RRQR-based subset selection algorithm
with the standard SVD-based algorithm proposed by Golub, Klema, and Stewart
[11], [12, 12.2]. Their algorithm constructs a permutation matrix IIsvD such that
the bottom right (n- k) (n- k) submatrix V22 of IIvDV is well conditioned, and
then the first n- k columns of A HsvD are guaranteed to form a well-conditioned
matrix. In other words, these columns form a linearly independent set of the columns
of A.

The RRQR factorization also produces a permutation II such that the first n- k
columns of A H are linearly independent, but this H is constructed on the basis of
information in the matrix W. The difference between these two methods therefore
basically lies in the way that H is computed. In general, we cannot guarantee that
the two algorithms give identical permutations, and this makes a comparison of the
two solutions difficult. On the other hand, it is more appropriate for subset selection
problems to compare the subspaces spanned by the first n- k columns of A IIsvD
and AII.

THEOREM 4.1. Let T(Uk) denote the subspace span{u1,..., uk}, and let BSVD
and BRRQR denote the submatrices consisting of the first n k columns of A IIsyD
and A H, respectively. Then

(16) sin O((Uk), T(BsvD)) <_ o+1111110-1,

(i7) sin O((Uk), T(BRRQR)) <_

Proof. Our proof follows that given by Golub and Van Loan for [12, Thm. 12.2.2].
In their proof, they derive the upper bound sinO((Uk), T(BvD))

_
aa+l/ak(BSYD),

where k(BSVD) denotes the smallest singular value of BSVD. They also show in [12,

SOME APPLICATIONS OF RRQR 735

TABLE 3
Typical numerical results for the RRQR subset selection algorithm. Each entry in the table

shows the subspace angles sinO(n(Uk), 7(BRRQR)) and sin O(7(BsyD), n(BRQn)). The dimen-
sions are m n 100.

106
103
10

k 50 k 75 k 90

1.03.10-6 1.26.10-6 1.58.10-6 1.74.10-6 1.30.10-6 1.51.10-6

9.70.10-4 1.18.10-3 1.54.10-3 1.66.10-3 1.30.10-3 1.51.10-3

9.38.10-2 1.14.10-1 1.50.10-3 1.62.10-1 1.30.10-7 1.50.10-1

Thm. 12.2.1] that ak(BsvD) >_ ak I1 11, which yields (16). Similarly, since

we obtain that

sin0(T(Uk) n(BRRQR)) < ffk+l rk+l
(k(BRRQR) ak(Rll)’

which is (17). r
The submatrix Rll in the RRQR factorization of A is guaranteed to be well

conditioned and [IR-11[I is of the order a-l. Theorem 4.1 therefore ensures that the
sine of both subspace angles is of the same order as ak+l/ak. Moreover, if this ratio
is small, then Theorem 4.1 ensures that both T(Bsvn) and T(BRRQR) will be close
to the subspace T(Uk), and the subspace angle between 7(BsvD) and T(BIIQR) is
therefore also bound to be small. Hence, if ak+l/ak is small, then SVD and RRQR
yield approximately the same subspaces. We illustrate this in Table 3, where we
show typical values of sin O(n(Uk), T(BRRQR)) and sin O(T(BsvD), 7(BRRQR)). We
see that both subspace angles are indeed of the same order as the ratio Crk+l/ak.
The conclusion is that although the SVD and RRQR subset selection algorithms do
not necessarily produce the same column permutations and thus the same subset of
columns of A, the subspaces spanned by these two sets of columns are still almost
identical whenever (Tk_t_l/ak is small.

5. Matrix approximation. It is well known that the best rank-k approxima-
tion Ak to the matrix A, in any unitarily invariant norm, is the matrix obtained by
truncating the SVD expansion in (2) after the first k terms. That is, the matrix Ak
given by

k

i--1

solves the problem minrank(X)=k I{A- XII (this is the Eckart-Young-Mirsky Theorem
.+an)/[12, Tam. 2.5.2]). In particular, IId-dkll ak+l and IId--AkllF (ak+1/..

As we shall demonstrate in the following theorem, neglection of the submatrix R22 in
a RRQR factorization also yields a good rank-k approximation, provided that W: is
well conditioned.

THEOREM 5.1. Let

Rll R12 / 1-ITBe Q
0 0

736 T.F. CHAN AND P. C. HANSEN

TABLE 4
Typical numerical results for RRQR matrix approximations. Each entry shows IIA- Bkll and

Bkll for matrices with m n 100, al 1, and crk+ IIA- AklI 10-7.

k-50
O’k+l
106 3.05. 10-7 2.90. 10-7

103 2.39. 10-7 2.17. 10-7

i0 4.20.10-7 4.08.10-7

k= 7
2.55.10L7 2.48.10-7

k 90

2.63.10-7 2.51.10-7

2.51.10-7 2.31.10-7 5.68.10-7 5.60.10-7

5.02.10-7 4.92.10-7 6.98.10-7 6.91- 10-7

denote the matrix obtained from the RRQR factorization (4) by neglecting the subma-
trix R22. Then

(19)

(20)

where Ak denotes the truncated SVD matrix (18).
Proof. Obviously, I]A- Bkll IIR221] and]IA- SkllF IIR221]F, and (19) then

follows from Theorem 2.1. To get an upper bound for IIR2211F, we use the fact that
IIR2211F <_ IIR22 W211F IIWIlIF <_ IIAH WIIF IIWI]IF. Since each column vector wi
of W satisfies

QR I w()o)
(cf. (5)), we obtain]IAHW]I2F <_ ak+2 +... + an.2 This yields (20). H

Theorem 5.1 states that matrix approximations derived from RRQR factorizations
are almost as good as those derived from truncated SVD approximations. More-
over, it is trivial from Theorem 5.1 that the difference between Ak and Bk satisfies
I[A-BII <_ (1 +v/n- k IIwl[I)ak+l. The interesting fact about the RRQR matrix
approximations is that the bounds in (19) and (20) do not depend on the gap between
ak and a}+. The algorithm can therefore be applied to any matrix independently
of its singular value spectrum and with potential application to digital image com-
pression. We illustrate this in Table 4, which shows typical values of IIA- Bk and

IIAk- Bk[I for random matrices with m n 100, al 1, ak+l IIA-A}[I 10-7
and different values of the e-rank k and the ratio ak/ak+. The table confirms that
[[A- B}[[and [[Ak Bk[] are both of the order ak+, as proved in the above theorem,
and are independent of ak/a}+.

6. Total least squares problems. Another aspect of matrix approximation
arises in connection with total least squares (TLS) problems [12, 12.3]. The key
problem here is to find three matrices E, R, and X such that II(E, R)I is small and
such that (A + E)X B / R, with A E ,n and B mp (the ordinary least
squares problem corresponds to setting E 0). Total least squares problems typically
arise in applications where both the coefficient matrix A and the right-hand side B are
contaminated with errors, in which case one can think of E and R as being residual
matrices.

The classical approach to TLS is based on the SVD and is described in [12, 12.3].
Let

SOME APPLICATIONS OF RRQR 737

be the matrix of right singular vectors in the SVD of the compound matrix (A, B),
partitioned such that Vll E nr, where r is the e-rank of A. If A has full rank
(r n), then the solution that minimizes the Frobenius norm of the compound
residual matrix II(E,R)IIF is given by XSVD -VI2V [12, Thm. 12.3.1]. When A
is rank deficient (r < n), the solution of the minimum Frobenius norm that minimizes
II(E, R)IIF is given by [27]

(21) XsyD -V12V2+2
Here, V2+2 is the pseudoinverse of the p x (n- r q-p) submatrix V22, and V2+2 is identical
to V when r n. As long as p << n, V2+2 can easily be computed stably, e.g., by a
QR factorization of V22o Note that there is no guarantee that V22 is well conditioned.
Also note that the numerical rank of the compound matrix (A, B) is not used in total
least squares, only the e-rank of A is required. We return to this aspect at the end of
this section.

From (21) it is obvious that the complete SVD of (A, B) is not needed for com-
puting XSVD. Instead, only the right singular vectors corresponding to the smallest
n- r + p singular values are required. It is possible to modify the classical SVD
algorithm by taking this into account. This is done in the PSVD algorithm [25], [26],
developed for TLS problems, which requires (2m q- 2n -b 14p q- 2)(n + p)2 _+_ O(n)
flops to compute XSVD if the bidiagonalization part is preceded by a standard QR
factorization, as described in [5].

Here we derive algorithms for TLS based on the RRQR factorization of (A, B).
The key idea is to use the RRQR algorithm to compute approximate null-vectors
corresponding to the n-r+p smallest singular values of (A, B) (assume for the moment
that r is known). We can then use the same approach as that used in [8] to compute
TSVD solutions, namely, to use inverse subspace iterations to refine the numerical
null-vectors in W. This approach yields the right singular vectors required to compute
XSVD by (21), and the accuracy of the solution depends primarily on the number
of subspace iterations. Except for a single backsubstitution, which is not required to
compute XSVD, the dominating computational effort remains the same as that for
computing XSVD; cf. 3. Hence, this approach requires (2m n + (2q + 3))(n q- p)2
flops (where q is the number of inverse iterations required to refine the null vectors),
and it is actually less demanding than the PSVD approach, mainly because a reduction
to bidiagonal form is avoided.

We shall now analyze an even simpler approach to TLS, based directly on the
matrix W without performing any inverse iterations. Whenever the singular values
err and a+ are well separated, it is shown in [8, Thm. 4.1] that the range of HW is
a good approximation to Aft(A, B), in the sense that the subspace angle 0 between
7(H W) and Aft(A, B) is small. Thus, it is natural to obtain an approximation to the
last n r + p null vectors of (A, B) simply by orthonormalization of the columns of
H W, e.g., by means of the modified Gram-Schmidt process, to obtain

and then define the alternative TLS solution by XRRQR --’r12r2-
case, by

or, in the general

(23) X.aRc21t 2 2+2

738 T.F. CHAN AND P. C. HANSEN

As is the case in the SVD approach, we cannot guarantee that V22 is well conditioned.
The question is then whether a small subspace angle ensures that XRRQR is close
to XSVD. In Theorem 6.3 below we give a positive answer to this question for the
full rank case (r n), but first we need the following two lemmas.

LEMMA 6.1. If

is orthogonal, then the norm of the Schur complement of V22 satisfies

(24)

Proof. For simplicity, we assume Vll E !Iqq, V22 E PP withq > p. Then the
CS decomposition [12, Thm. 2.6.1] of V is given by

(11
00)(0 0)Vl v 0 u 0 -s c 0

where C2 + S2 Ip. It is straightforward to show that VI
IIC-111 and, by inserting the CS decomposition, that

Vii V12 V2- 1V21 1 (Zq--p
\ 0

from which (24) immediately follows, rl

LEMMA 6.2. if Q, V, and f7 are orthogonal matrices such that

(25) I)= (1 f/2)=VQ=(V1 V2)(Qll Q12)Q21 Q:

then the subspace angle 0 between the subspaces 7(V2) and T(I)2) satisfies

(26) sin0 IIQ1211, cos0 IIQ21I1-1.

Proof. We have sin0 IIv1T211 IIv1T(v1Q12 + V2Q22)II- IIQx211. The relation
for cos 0 follows from the CS decomposition of Q.

THEOREM 6.3. Let XSVD and XRRQR be given by (21) and (23), respectively,
and assume that A has full rank. If denotes the subspace angle between Aft(A, B)
and 7(H W), and if tan 0 < v2lI]-l, then

(27) IIXsyD Xl:uQl:tll <_ tan0 IIV1112 (1 + O(tan0)).
Proof. Using the notation from (25) with

V2- V22
and V2--" I22

we obtain 12 Vii Q12 + V12Q22 and 1)22 V21Q12 + V22Q22 (V21Q12Q2-21V2
__

--1 --1Ip) V22Q22. If we define A V21Q12Q22 V22 then V22 (Ip + A) V22Q22. From

SOME APPLICATIONS OF RRQR 739

TABLE 5
Mean and maximum values for an experiment with 100 matrices with dimensions m 150,

n--100, and p-- 5. The e-rank of A is r 90.

tan

Mean Maximum

1.92 10-7 1.92 10-6

1.20 1.30
4.07.10-7 3.95.10-6

5.06.10-s 5.27.10-7

Lemma 6.2 we have
[Ig2-l]l-1 such that I[AII < 1, we have

Thus, we obtain that

XRRQR --121
Inserting the expression for A and using the fact that XSVD -V2V, we then
obtain

XRRQR XSVD -(Vll g12v g21) Q12Q21v + v11Q12Q21v1 + 0(2).
Taking norms on both sides of the above equation and using Lemmas 6.1 and 6.2, we
then obtain (27).

Theorem 6.3 states that if A has full rank, if the subspace angle is small, and
if V22 is well conditioned, then the total least squares solution XRRQR defined by
(23) will be close to the ordinary total least squares solution XSVD given by (21).
Although we cannot ensure that the matrix V22 is well conditioned, it is our experience
that it is very unlikely to be ill conditioned.

Unfortunately, we were not able to prove a similar result for the rank deficient
case (r < n), the reason being the appearance of the pseudoinverse V, which severely
complicates the relations. On the other hand, our experiments with Matlab strongly
suggest that (27) holds in general: among 100 random matrices with dimensions
m 150, n 100, and p 5 and with A’s e-rank r 90, the ratio between
[XsvD XRRQR[and tan0]V]2 in (27) never exceeded 0.6. The results from this
test are summarized in Table 5, where we list the mean and maximum values of tan, tan0]]V]]2/]]XsvD]], and]XvD- XRRQR]]/]XsvD]]. This confirms the
fact that 22 is in all likelihood a well-conditioned matrix nd that the upper bound
in (27) is not large. The conclusion is that XRRQR is indeed a good TLS solution.

Besides being faster than both the traditional SVD algorithm and the PSVD
algorithm, our approach to TLS based on RRQR has one more important advantage"
if the e-rnk of A is unknown, then one can compute it during the RRQR factorization
of (A, B) with very little overhead. First compute an RRQR factorization of A,

0 0

revealing the e-rank r of A. Then append

R i)o)

740 T.F. CHAN AND P. C. HANSEN

with (Q(1))TB, to form

0 0 B3
[2 (Q(1))TB

and compute the RRQR factorization of the lower right 2 2 block submatrix of C:

Finally, apply the second set of permutations to (R)
(30)

/}2) to obtain

Then the resulting triangular factor of (A, B) is given by

0 0 R(a
During the second factorization (29), one can take advantage of the fact that the
first n- r columns are in all likelihood linear combinations within the tolerance e
of the remaining columns. Since R is guaranteed to be well conditioned, the QR
factorization resulting from (28)-(30) is close to being an RRQR factorization of
(A, B), and the desired RRQR factorization can then be achieved by a few "backward
passes" through R as described in [1, 5].

REFERENCES

[1] C. H. BISCHOF AND P. C. HANSEN, Structure-preserving and rank-revealing QR-factorizations,
Report MCS-P100-0989, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL, 1989; SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1332-1350.

[2] C. H. BISCHOF AND (. M. SHROFF, On updating signal subspaces, IEEE Trans. Signal Process.,
40 (1992), pp. 96-105.

[3] A. BJ(RCK, Least squares methods, in Handbook of Numerical Analysis, Vol. I: Finite Differ-
ence MethodsmSolution of Equations in Rn, P. G. Ciarlet and J. L. Lions, eds., Elsevier,
Amsterdam, 1990.

[4] P. A. BUSINGER AND G. H. (OLUB, Linear least squares solution by Householder transfor-
mation, Numer. Math., 7 (1965), pp. 269-276.

[5] W. F. CHAN, An improved algorithm for computing the singular value decomposition, ACM
Trans. Math. Software, 8 (1982), pp. 72-83.

[6] , Alternative to the SVD: Rank revealing QR-factorizations, in Advanced Algorithms and
Architectures for Signal Processing, J. M. Speiser, ed., SPIE Proceedings Vol. 696, 1986.

[7] , Rank revealing QR factorizations, Linear Algebra hppl., 88/89 (1987), pp. 67-82.
[8] T. F. CHAN AND P. C. HANSEN, Computing truncated SVD least squares solutions by rank

revealing QR factorizations, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 519-530.
[9] P. COMON AND G. n. GOLUB, Tracking a few extreme singular values and vectors in signal

processing, Proc. IEEE, 78 (1990), pp. 1327-1343.
[10] L. FOSTER, Rank and null space calculations using matrix decomposition without column in-

terchanges, Linear Algebra Appl., 74 (1986), pp. 47-71.
[11] G. H. GOLUB, V. KLEMA, AND G. W. STEWART, Rank degeneracy and least squares problems,

Report TR-456, Department of Computer Science, University of Maryland, College Park,
MD, 1976.

[12] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD, 1989.

SOME APPLICATIONS OF RRQR 741

[13] P. C. HANSEN, The truncated SVD as a method for regularization, BIT, 27 (1987), pp. 534-553.
[14] , Truncated SVD solutions to discrete ill-posed problems with ill-determined numerical

rank, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 503-518.
[15] P. C. HANSEN, T. SEKII, AND H. SHIBAHASHI, The modified truncated SVD method for regu-

larization in general form, SIAM J. Sci. Statist. Comput., 13 (1992), to appear.
[16] M. T. HEATH, Some extensions of an algorithm for sparse linear least squares problems, SIAM

J. Sci. Statist. Comput., 3 (1982), pp. 223-237.
[17] Y. P. HONG AND C.-W. PAN, Rank-revealing QR]actorizations and SVD, Math. Comput., to

appear.
[18] C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood

Cliffs, NJ, 1974.
[19] T. A. MANTEUFFEL, An interval analysis approach to rank determination in linear least

squares problems, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 335-348.
[20] C. B. MOLER, J. LITTLE, AND S. BANGERT, Pro-Matlab User’s Guide, The MathWorks,

Sherborn, MA, 1987.
[21] E. NG, A scheme for handling rank-deficiency in the solution of sparse linear least squares

problems, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1173-1183.
[22] L. REICHEL AND W. B. GRAGG, Algorithm 686: Fortran subroutines for updating the QR

decomposition, ACM Trans. Math. Software, 16 (1990), pp. 369-377.
[23] G. W. STEWART, Rank degeneracy, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 403-413.
[24] , An updating algorithm for subspace tracking, Report CS-TR 2494, Department of Com-

puter Science, University of Maryland, College Park, MD, 1990; IEEE Trans. Signal Pro-
cess., to appear.

[25] S. VAN HUFFEL, J. VANDEWALLE, AND A. HAEGEMANS, An ej:ficient and reliable algorithm for
computing the singular subspace of a matrix, associated with its smallest singular values,
J. Comput. Appl. Math., 19 (1987), pp. 313-330.

[26] S. VAN HUFFEL AND J. VANDEWALLE, The partial total least squares algorithm, J. Comput.
Appl. Math., 21 (1988), pp. 333-341.

[27] M. D. ZOLTOWSKI, Generalized minimum norm and constrained total least squares with ap-
plications to array signal processing, in Advanced Algorithms and Architectures for Signal
Processing III, F. T. Luk, ed., SPIE Vol. 975, 1988, pp. 78-85.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 742-764, May 1992

1992 Society for Industrial and Applied Mathematics
OO8

STABLE PARALLEL ALGORITHMS FOR TWO-POINT BOUNDARY
VALUE PROBLEMS*

STEPHEN J. WRIGHTt

Abstract. Some of the most widely used algorithms for two-point boundary value ordinary dif-
ferential equations, namely, finite-difference and collocation methods and standard multiple shooting,
proceed by setting up and solving a structured system of linear equations. It is well known that the
linear system can be set up efficiently in parallel; we show here that a structured orthogonal factor-
ization technique can be used to solve this system, and hence the overall problem, in an efficient,
parallel, and stable way.

Key words, parallel algorithms, two-point boundary value problems, error analysis, stability

AMS(MOS) subject classifications. 65F05, 65G05, 65L10, 65L20, 65W05

1. Introduction. Many numerical algorithms for solving the linear two-point
boundary value problem (BVP)

(1) y’ M(t)y + q(t), t e [a, b], y e Rn,
(2) Bay(a) + Bby(b) d

have been proposed and studied over the last 30 years. Many of these methods require
a structured linear algebraic system (for example, a block-tridiagonal or staircase
system) to be solved as a "core" operation, and considerable effort has been devoted to
minimizing the amount of computer time and storage required during the factorization
of the coefficient matrix of this system. Efficient factorization schemes, based on
structured Gaussian elimination, have been implemented and are widely available

(see 2 and Varah [19]; Diaz, Fairweather, and Keast [7]; Lentini and Pereyra [13];
and Keller [9]).

During the last 10 years, the question of stability of algorithms for (1), (2) has
received a great deal of attention (see, for example, Mattheij [15]). It has been rec-
ognized that in a well-conditioned problem (that is, one whose solution is not too
sensitive to perturbations in M, q, or the boundary conditions (2)), the fundamen-
tal solution space generally contains both exponentially increasing and exponentially
decreasing modes. The stability of a numerical method for (1), (2) depends on its
ability to at some point perform a "decoupling" of these modes. For the standard
multiple shooting and finite-difference algorithms, this decoupling is performed im-
plicitly, during the factorization of the structured linear system, through the use of a
pivoting strategy that prevents element growth in the factors. Unfortunately, parallel
and vectorizable algorithms that have been proposed for solving the linear system
invariably place some restriction on the choice of pivots. This can lead to undesirable
element growth in the factors, and such methods are in fact similar to compactifica-
tion algorithms for (1), (2), which are known to be unstable. In this paper, we use
instead a structured orthogonal factorization technique that is stable, has an identical
serial complexity to the best-known algorithms, and can be efficiently implemented

Received by the editors September 26, 1990; accepted for publication (in revised form) February
5, 1991. This research was supported by the Applied Mathematical Sciences subprogram of the Office
of Energy Research, United States Department of Energy, contract W-31-109-Eng-38. A grant of
computer time at the North Carolina Supercomputing Center is gratefully acknowledged.

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.

742

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 743

on a wide variety of parallel architectures A variant of the algorithm vectorizes effi-
ciently, in much the same way as cyclic reduction for block-tridiagonal linear systems.
No separability of the boundary conditions is needed. Although we focus on matrices
arising from multiple shooting and one-step differencing schemes, the technique can
be applied equally well to the more general staircase matrix structures that arise in
other numerical schemes, such as collocation.

We assume throughout that n is too small to allow efficient parallel or vector
implementation of order-n matrix and vector operations. Instead, parallelism is sought
by partitioning the domain [a, b] of the independent variable.

The remainder of the paper is organized as follows: in 2 we review the multiple
shooting and finite-difference algorithms, the structured linear systems that result
from them, and the efficient Gaussian elimination techniques used to solve them on
serial computers. In 3 we briefly review previous work on parallel and vectorizable
algorithms. The new algorithm is presented in 4, together with a stability result and
analysis of serial and parallel complexity. In 5 we describe parallel implementation
of a standard technique for estimating the condition number of the coefficient ma-
trix, which can be used for purposes of a posteriori error anMysis. Finally, in 6 we
describe the results of implementation of the scheme on shared-memory and vector
architectures.

2. Serial algorithms. The "standard" multiple shooting technique for (1), (2)
proceeds by defining a mesh

(3) a tl < t2 <... < tk+ b,

and finding a fundamental and particular solution on each interval of the mesh:

Y M(t)Y, Y(t) e Rnn, t e [ti, ti+l], Yi(ti) I,

Ypi M(t)ypi + q(t), Ypi(t) e Rn, t e [ti, ti+l], Ypi(ti) O.

Then, we try to find s E Rn, i 1,..., k + 1, such that

+ t E [t,ti+l], 1,..., k.

(Note in particular that s y(t), 1,...,k + 1.) By applying the boundary
conditions (2), and continuity at the meshpoints, we obtain the following liD.ear system
in sl, , 8k+l"

a

(4) Y2 (t3) -I

Yk(tk+l

Bb

--I

81 d
s2 -yp (t2
s3 -Yp2(t3)

sk+ --Ypk(tk+)

In the (quite common) case in which the boundary conditions are separated, this
system can be rearranged into a block-banded form. If p is the number of initial
conditions and q is the number of final conditions (p+ q n), we can assume without
loss of generality that the boundary data (2) can be partitioned as follows:

744 STEPHEN J. WRIGHT

If the rows p + 1,..., n of (4) are moved to the bottom, we obtain the form

Ba sl da
Y1 (t2) -I s2 -yp (t2

Y2 (t3) -I s3 -Yp2(t3).. ..
Y(t}+) -I s -yp}(t+)

b Sk+

One-step finite-difference methods proceed by again choosing a mesh of the form
(3) and seeking s,..., sk+ to approximate y(t),..., y(tk+). On the interval
(1) is approximated by the linear relationship

(6) si+ si isi + (isi+l + j,

where hi ti+ -ti. Two schemes with a local truncation error of O(h) are the
"box scheme" (fi-i (i 1/2M(ti+l/2), q(ti+/2)) and the trapezoidal rule
(fii 1/2M(ti), (i 1/2M(ti+l), j 1/2(q(ti) + q(ti+))). By including (2), we obtain
a linear system of the form

Ba Bb S d
A CI s2 f

(7) A2 C2 s3 f2

Ak Ck Sk+l fk
where Ai -I- hi’i, Ci I- hi’i, and fi hi. If the boundary conditions are
separated, we obtain

Ba Sl da
A C 82 fl

(8)
Ak C_k sk fk

Bb sk+ db

The accuracy of finite-difference schemes is often enhanced by the use of deferred
correction techniques (see, for example, Pereyra [18]).

As has been observed, the two algorithms are closely related, in the sense that
for a reasonable choice of the approximation (6), -C-IAi should be close to Y(ti+l).
Hence, the conditioning of the matrices in (4) and (7) is quite similar when the hi
are small. If we quantify the conditioning of the problem (1), (2) by a bound a on its
Green’s function (see Ascher, Mattheij, and Russell [3, 3.2]), it has been shown by
Osborne [16] (and also by Mattheij [14] and Lentini, Osborne, and Russell [12]) that
the inverse of As from (4) satisfies the bound

Hence if we define by

max IIY(t,+
i=l,...,k

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 745

and assume that Ba and Bb are scaled such that II[Ba, B]II 1, then from (4), (5),

(9) condo(As) _< 7ka.

For the finite-difference coefficient matrix AD in (7), a similar analysis applies if
we note that 7 2 + O(h) for small h maxi=l,...,k hi. We use this fact, together
with AD As + O(h), to derive the bound

(10) cond(AD) < (2 + O(h))ka.

The slightly different form of the bounds (9) and (10) is motivated by the fact that k is
typically larger in a finite-difference algorithm than in a multiple shooting algorithm.
Bounds for the coefficient matrices in (5) and (8) are, of course, identical to their
nonseparated counterparts.

As stated earlier, Gaussian elimination algorithms with various forms of pivoting
have been previously proposed for solving (4), (5), (7), and (8). The practical stability
of such algorithms for general matrices is well known, but it is also well known that the
worst-case behavior can be very bad, as a result of possible growth of elements in the
factors, which is exponential in the dimension (k+1)n of the system. It has been shown
(see, for example, Mattheij [15]) that the presence of an exponential dichotomy in (1),
(2) ensures that this worst-case behavior does not arise when elimination algorithms
are applied to the matrices in (4), (5), (7), and (8). In the partially separated cases
(5), (8), similar results can be proved, without referring to the dichotomy at all, by
using the results of Bohte [4]. Bohte shows that for banded linear systems, the bound
on element growth in partial pivoting algorithms is exponential only in the bandwidth.

In the simplest case of Gaussian elimination with row partial pivoting (with co-
efficient matrices and right-hand sides denoted by Asp and fSP in (5) and ADp and

fDP in (8)), possible fill-in of kpn elements can occur in the upper triangular fac-
tor. Element growth is, however, bounded by 22n-l, and so we obtain the following
theorem.

THEOREM 2.1. Let s (sT1, T T,Sk+) denote the true solution of the system
(8), and suppose that is the approximate solution obtained by Gaussian elimination
with row partial pivoting. Then, provided that

(i) h is chosen small enough that condo(ADp) <_ 4ka,
(ii) 8cau _< 1, where c (1.12)22nnak(k + 1)(k + 8) O(k3n322n) and u is the

unit roundoff error,
the following relative error bound applies:

Suppose that the fundamental and particular solutions that are used to construct
Asp and fSP in (5) are calculated to a tolerance of T, that is,

(12)

Let be the solution obtained by using Gaussian elimination with row partial pivoting.
Then provided that

(iii) Tkg/ <_ 5,
(iv) 6ClU7 <_ 1,

746 STEPHEN J. WRIGHT

we have

maxi=l,...,k+l Ilgi y(ti)ll <_ 4/a[kT + 3clu + C2UT],

where c2 12Cl kay,.
Proof. For the first part of the theorem, the proof follows from Theorem 2.7.2 in

Golub and Van Loan [8] and 4 of Bohte [4]. The latter assumes that

u <_ .009 and (k + 1)nu <_ 0.1,

which are clearly implied by assumption (ii), since > 1, k > 1, and n >_ 1. Bohte
then shows that solves the system

(ADP -- E) fDP,

where E satisfies the bound

ilEII _< Au(0.56)(4n- 1)n(k + 1)(kn + 7n + 3),

and A is a bound on the maximal element that arises during the elimination. By
simplifying this expression, and noting from the discussion above that

A <_ 22-ma.xl(ADp)y] <_ 22n-[[ADPIl,

we have that

I[EI[<_

in [8, Thm. 2.7.2].The result now follows by setting r
For the second part, note first that

[IAs,ll <_ (1 + "r)[IAspl[,,:,

and

Provided

(14) IIA (sP AsP)II _< 1,

we have from [8, Lemma 2.3.3] that

1-IIA-IIT 1 Tk

The inequality (14) is implied by (iii). Since k, , and are all at let 1, assumption
andso(iii) implies that

(15) condo(Asp) 2(1 + T)k 3k.
Now let $ be the exact solution of Asp fsP. Direct application of [8,

shows, again using (iii) thatThm. 2.7.2] with r

(16) maxi=l,...,k+l

II (t)ll

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 747

Application of Bohte’s results shows that the computed solution satisfies (Asp
E) fsP, where

C1

Assumption (iv) and (15)imply that

CAucond(fi,sp < 1
k -2’

and so

The result follows by combining (16) and (17) in an elementary way. D
A more economical scheme for solving (5) and (8), described by Varah [19] and

implemented by Diaz, Fairweather, and Keast [7], is the method of alternate row and
column elimination. For the first p stages of the process, we use column pivoting and
elimination (involving columns 1 through n); this produces no fill-in. For stages p+ 1
through n we use row pivoting and elimination for the same reason. Column and row
elimination alternate in this way until a factorization of the form

(18) ADp PLBUII

is produced, where P and H are permutation matrices, L and U are lower and upper
triangular matrices of multipliers, and B has the form

L
X
X

R X X
L
X R
X

X X
L

L

(L denotes a lower triangular p p block, R denotes an upper triangular (n-p) (n-p)
block, and X denotes a dense block.) It is easy to show that element growth in the B
factor is bounded by 2n-1 and, hence, that the scheme is very stable. We can prove
the following.

THEOREM 2.2. Let s (sTy, ..., Sk+T)T denote the true solution of the system
(8), and let be the approximate solution calculated by alternate row and column
elimination. Suppose further that

(i) h is chosen small enough that cond(ADp) <_ 4kn, and
(ii) 8c4nu _< 1,

where

C4 k(k + 2)n(5 + 6n)(1 + n22n-l) O(k2n42n).
Then

_< 16caau.

748 STEPHEN J. WRIGHT

Let be obtained by multiple shooting with alternate row and column elimination,
and suppose that (12) holds, with

(iii) Tk9/
(iv) 6caua/_< 1.

Then _
"),kg[kT "t- 3cau + CbUT],

maxi=,...,k+ Ily(t,)lloo

where c5 12c4k’.
Proof. The assumptions of Lemma A.1 are consequences of (ii) and (iv) above.

The first part of the result follows directly from Lemma A.2 and [8, Thm. 2.7.2]. The
second part is analogous to the second part of Theorem 2.1, with ca replacing cl and
c5 replacing c2.

3. Parallel elimination algorithms. Other parallel and vectorizable algo-
rithms, based on Gaussian elimination, have recently been proposed for (4), (5),
(7), and (8). In general, they suffer either from poor stability properties or from
limitations in the amount of parallelism that is possible.

Wright and Pereyra [21] describe variants of a block factorization algorithm ap-
plied to (7). In the most highly vectorized variant, a factorization of the form

.1 I W
A2 I W

Ak I Wk
Z Z2 Z + I

P A C
P A C

Pk Ak Ck
Pk+ Ba Bb

(where the Pi are permutation matrices) is produced. It is easy to show that for
sufficiently small, this factorization exists. It is equivalent to compactification [3,

p. 153] which, because of its similarity to single shooting, is known to be potentially
unstable. However, this instability can usually be recognized by the presence of large
elements in the Zi blocks. The strategy described in [21, 5] is to use this factorization
where possible, and discard it in favor of a more stable method if the IIZII are too
large. In many applications (such as the one described in [21]) the lack of stability is
not a problem.

Paprzycki and Gladwell [17] describe a partitioned elimination algorithm in which
(8) is torn into P submatrices, each of which has the same form as the original ADR,
and alternate row and column elimination is applied to each piece. This corresponds
to partitioning the interval [a, b] and solving a number of sub-BVPs, each of which has
p initial and q final conditions. Although the number of initial and final conditions
is correct, this alone is not enough to ensure well-conditioning of the sub-BVPs. In a
linear algebra sense, well-conditioning of the whole matrix ADp does not guarantee
well-conditioning of each of the P submatrices. Ascher and Mattheij [2] develop a
"theoretical multiple shooting" framework in which they show how boundary values

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 749

for the sub-BVPs should be chosen to ensure well-conditioning. Ascher and Chan [1]
suggest how to implement this in a parallel environment.

Another possibility, which leads to near-perfect speedup on two processors (but
cannot be generalized to a higher order of parallelism) is the "burn at both ends" or
"twisted" factorization. Here, some form of pivoted Gaussian elimination is applied
simultaneously from both ends of the matrix (either ADp or Asp). When the factor-
izations meet in the center, a small reduced system is formed and factored. This is
analogous to the approach of Lentini [11].

Finally, we mention the approach of Ascher and Chan [1], who form the normal
equations for (5) and (8), and factorize the resulting symmetric, positive definite,
block-tridiagonal system using cyclic reduction. In exact arithmetic, this scheme
produces a triangular factor that is identical to that given by the "cyclic reduction"
variant of the algorithm to be described in the next section. The difference lies in the
fact that by explicitly forming the normal equations, the condition number of a linear
system is squared, an effect that is avoided when the algorithm from 4 is used.

4. Structured orthogonal factori.ation. We now describe the structured QR
factorization algorithm, as applied to the system (7). It can of course be applied
equally well to the systems (8), (4), and (5), since it is indifferent to separability of
the boundary conditions.

The first step is to partition the system into, say, P pieces of approximately equal
size. We choose indices kl, k2,’", kp+l to satisfy

0-- kl (k2 < (kp+ k, kj+

_
kj W 2, j 1,..., P.

(P could, for instance, be the number of processors on the physical machine being used
to solve the problem.) Partition j then consists of rows (kj + 1)n + 1,..., (kj+ 4- 1)n
of (7). Each partition is now processed independently; in effect, the variables si for

kj 4- 1, j 0,..., P, are eliminated from the problem.
We describe this process in detail for the first partition, which, if augmented with

its right-hand side, has the form

A C1
A2

Ak2 Ck2

fl

We first find an orthogonal matrix Q E R2n2n such that

QI [o],
where R1 E R’n is upper triangular. If we form Q1 as a product of n Householder
transformations, the information needed to reconstruct Q could be stored in the
space formerly occupied by the "zeroed" elements of [CT, AT2]T, plus an additional n
locations. We also need to apply QT to the other columns of the matrix (19) and the
overall effect is

(20) [
A1

Ak. Ck:

fl

750 STEPHEN J. WRIGHT

al R1 E1

Ak.

gl

The next step is to find an orthogonal Q2 E R2n2n such that

A3 0]
and to apply Q2T to rows n + 1,..., 3n of the reduced system (20). This process is
repeated a total of k2 1 times, until finally we obtain a system equivalent to (19),
which has the form

G1 R1 E
G2 R2 E2

(21) ".. "..
Gk2-1
A

Ek2

gl

gk2

Formally, the reduction process for partition j can be specified as follows:

kj+ Ckj+l, k+ Ak+, + f+
for kj / 1,...,kj+l 1.

Find orthogonal Qi such that

(22) QT [A+ I [Rol,
where R Rnn is upper triangular;

Set

Ei T

end (for)

Clearly, if we knew the values of skj+ and 8kj+l+l, the values of 8kj+2,""" 8k+
could be recovered by the simple back-substitution:

for i ky+ 1, kj/l 2,..., ky + 1

(23) Solve Rs+ g Gsk Es+2.

In fact, these "separator" variables can be found by forming and solving a reduced
system by taking the last n rows of each (processed) partition, and the boundary

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 751

conditions. This reduced system has the form

(24)

Ba Bb 8k1+1 d

8k2T1]1
8k3-t-1

The form of (24) is obviously identical to the form of the original system (7), so this
immediately suggests that it may be possible to apply the whole process recursively,
that is, (24) could be partitioned into P2 <_ P/2 pieces, and the algorithm described
above could be applied to obtain a smaller reduced system. This process could be
repeated for, say, L levels, so at the innermost level a (PL + 1)n-dimensional system
would remain.

In a parallel implementation of the algorithm, the number of levels L to be used
and the number of processors to be used at each level depend on the number of
available processors on the physical machine, and, on a distributed-memory machine,
on the cost of interprocessor communication. The "extreme" cases are as follows:

A one-level version (P- 1, k2 k), in which (7)is reduced to the 2n 2n
system

(25) IBa Bb][Sl] [d]L
which is then solved by QR factorization. This is the "serial" version of the
algorithm.
A two-level version, in which P processors are used to do the reduction and
back-substitution (23), and the system (24) is solved by the one-level algo-
rithm just described. It is easy to see that, assuming that each partition
contains about kiP rows of blocks, the time required for the reduction phase
is proportional to (kiP- 1)n3. The time required to solve (24) on a single
processor is proportional to (P + 1)n3. The latter operation will not be a
bottleneck for the whole process, provided that k >> p2.
A "cyclic reduction" version, in which P is equal to the number of available
processors (assuming that P <_ k/2), and then P2 P/2, P3 P/4, ...,
PL 1. Here, clearly, L log2 P + 1. The total computation time required
will be proportional to (kiP- 1 + log2 P)n3, while the communication time
will be proportional to n2 log2 P. With regard to complexity, the algorithm is
optimal: when k P log2 P, the execution time is O(log2 P) on P processors,
while the serial time is O(P log2 P).

The cyclic reduction variant is also appropriate for implementation on a single
vector processor. In this environment, we could choose P k/2, P2 k/4, P3
k/8,..., and so L log2 k + 1. At level l, the reduction and back-substitution
processes can be coded so that most of the arithmetic involves vectors of length k/2I.
At low levels, a reversal of the loop nesting can be used to ensure that vector lengths
do not fall below n.

It is not difficult to see that the factorization and solution phases can be separated,
provided that the Householder vectors are stored (in the locations vacated by the
zeroed elements). This feature is useful when quasi linearization is used to solve a first-
order nonlinear BVP. The same coefficient matrix (and its factorization) can be used

752 STEPHEN J. WRIGHT

for a number of consecutive iterations to produce "chord method" approximations to
Newton steps.

It is important to note that the scheme proposed above is simply standard House-
holder QR factorization applied to an initial row- and column-permuted form of the
original matrix. Thus, we can apply the standard stability analysis for (k + 1)n-
dimensional matrices from Lawson and Hanson [10] to obtain error bounds for the
computed solutions. We have refined these bounds to take into account the structure
of the matrix. In addition, to allay any possible concerns about instability at the
level of the O(u2) terms, we have removed these terms using the style of analysis in
Wilkinson [20]. The relevant results are stated and proved in Appendix B. Here, we
summarize the analysis in the following lemma and theorem.

LEMMA 4.1. Let s (sT, 8, ..., 8k_t_lT)T denote the true solution of the system
(7), and suppose that is the approximate solution obtained by using the structured
QR factorization and back-substitution. Suppose that the orthogonal matrices used in
the factorization are all constructed from Householder reflectors, and that n, k, and
u satisfy

(26) (12n + 51)n(k + 1)u _< 0.1.

Then is the exact solution of a perturbed system

(27) (AD - 5AD) fD + 5fD,

where

(28) II’ADIIF <_ (1.106)(12n -+- 51)(k + 2)nulIADIIF,
IIfDIle _< (1.106)(12n -+- 51)(k -+- 1)nullfDIle.

Proof. See Appendix B.
THEOREM 4.2. Suppose that the conditions of Lemma 4.1 are satisfied.

provided that
(i) h is chosen small enough that cond(ADp) <_ 4kn,
(ii) 8c6nu _< 1, where c6 (1.106)k(k + 2)2n2(12n + 51),

the following relative error bound applies:

Then,_
16c6nu.

Suppose that the fundamental and particular solutions that are used to construct
As and fs in (4) are calculated to a tolerance of T, that is,

(30) IIA _< TIIAsII , Ills llfsIl ,

Let be the solution obtained by using a structured QR algorithm, where (26) holds.
Then, provided that

(iv) 6cun7 _< 1,
we have

maxi:l,...,k+l]ly(t)]l
<_ 47n[kT + 3c6u + CTUT],

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 753

where c7 12c6k’.
Proof. The proof is identical to that of Theorem 2.1, once we convert the Frobenius

norm bounds (28) and (29) into oc-norm bounds. This is done by noting that for an
N N matrix A,

1
N1/2

Hence

[[SAn[[o _< (1.106)(k / 2)2n2(12n + 51)u[[An[[o.

5. Condition estimation. For purposes of assessing the reliability of the com-
puted solution, it is useful to have an estimate of the conditioning of the discrete
system. Such an estimate can be obtained, simultaneously with the factorization
and solution process, by adapting the procedure described in Cline et al. [6] to our
situation.

We aim to compute an estimate of the quantity

where A is one of the coefficient matrices from (4), (7), (5), and (8), and R is the
upper triangular factor produced by the procedure just described. It is easy to show
that

v/(k + 1)n
<_ condoo(A) _< v/(k + 1)nk.

IIAIIo can of course be calculated directly, and so computation of the estimate of
IIR-111 is the major part of the task of finding k. Following [6], we do this by first
finding vectors z and v such that

RTv z,

where the components of z are all +/-1 and are chosen by a heuristic that attempts
to maximize I[vll. This is done during the factorization of A; as reduction of each
partition into a single row of blocks is performed, the heuristic can be applied to
finding the components of z and v corresponding to the rows and columns of the
original system that are eliminated. Next, the solution of

Rw--v

is found concurrently with the solution of the original linear system Rs QTf. We
then use the estimate

The operation count for calculation of k is approximately four times that of
doing a single backsolve with R, and the parallel complexity is the same as that of
the factorization and solution. Comparisons with the LINPACK condition number
estimator of condl (A) (which is based on an LU factorization of A but uses similar
heuristics) show that the two estimates are usually within a factor of 3 of each other.

754 STEPHEN J. WRIGHT

TABLE 1
Operation counts and storage requirements for four algorithms, assuming separated end con-

ditions, k number of meshpoints, n dimension of y, p number of left-hand end conditions,
R number of right-hand sides.

Algorithm Operation count Storage

LU (row pivoting)

Structured QR

Normal equations

DECOMP/SOLVE

kiln3 + 3pn2 % R(4n2 + 2pn)]

k[n3 + (15R + 30)n2]

kiln3 T 12Rn2]

kiln3 + (4R + 5p)n2 2up2]

kn(2n T p)

4kn2

4kn2

2kn2

TABLE 2
Operation counts and storage requirements for four algorithms, assuming nonseparated end

conditions, k- number of meshpoints, n-- dimension of y, R---- number of right-hand sides.

Algorithm Operation count

LU (row pivoting)

Structured QR

Normal equations

DEC0MP/SOLVE

Storage

kr23 3
[-5-n + 8Rn2] 4kn2

k[fin3 + (15R + 30)n2] 4kn2

k[fin3 + 12Rn2] 5kn2

kiln3 + 4Rn2] 3kn2

6. Computational results. Versions of the structured QR algorithm have been
implemented on the Alliant FX/8 vector multiprocessor at Argonne National Lab-
oratory and on the CRAY Y-MP at the North Carolina Supercomputing Center.
Performance comparisons were made with

a row partial pivoting code (two versions, for separated and nonseparated
boundary conditions), and
the DECOMP and SOLVE routines from the PASVA codes [13]. The DECOMP routine
uses alternate row and column pivoting (as does the algorithm described in
Varah [19] and in 2) but always eliminates by rows.

Approximate operation counts and storage requirements for these algorithms and
the normal equations method of Ascher and Chan [1] are given in Tables 1 and 2, for
separated and nonseparated boundary conditions, respectively. In tabulating storage
requirements, it has been assumed that intermediate information generated during the
factorization--namely, the multipliers and Householder vectors--is stored for possible
later use with a different right-hand side. In general, the structured QR algorithms
require the most operations. This result is not surprising, since it is well known
that orthogonal factorization of dense matrices requires about twice as much work as
Gaussian elimination. Moreover, in the case of separated end conditions, structured
QR generates fill-in that is avoided by the elimination-based methods, and this adds
further to the operation count. On the other hand, the operation counts and storage
requirements for structured QR are not affected if the end conditions are nonsepa-
rated rather than separated, while for the other methods, they increase substantially.
The method based on normal equations requires about the same amount of work as
structured QR; however, as we noted earlier, it is less stable. We add the caveat
that operation counts are notoriously bad predictors of run time for factorizations
of narrow-banded matrices. For small n, much of the CPU time is taken up with
nonnumerical operations. This is borne out by our results, which show that the QR
algorithm does not do as badly as predicted in serial mode.

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 755

TABLE 3
Box method, error in first component of computed solution for Problem 1 for four different

linear system solvers.

k 16 k 64 k 1024

k .17(+2) .51(+1) .21(+1)
ROWPP .21(-2) .10(-3)
DECOMP .22(-2) .10(-3)
S{R-1 .21(-2) .10(-3)
COMPACT .22(-2) .93(+27)

TABLE 4

.32(-6)

.32(-6)

.32(-6)
.16(4-72)

Multiple shooting, error in first component of computed solution for Problem 1 for four different
linear system solvers.

k- 16 k--32 k- 128

.85(+6) .17(+4) .13(+2)
ROWPP
DECOMP
st-1
COMPACT

.a(-a)

.a(-a)

.45(-3)
.51(+72)

.67(-6)

.67(-6)

.67(-6)
.2(+7e)

.64(-7)

.64(-7)

.64(-7)
.11(4-72)

The linear system solvers described above have been incorporated into both a
multiple shooting and finite-difference (box method) framework. The dverk code
from netlib was used to solve the initial value problems (IVPs) on each interval of
multiple shooting, with the global error tolerance parameter set to 10-l. A user-
specified number k of equally spaced intervals is used for both methods. For practical
codes, the choice of the number of intervals and their lengths (and efficient parallel
implementation of this) are important issues, but we focus here on the linear algebra,
which typically is the most computationally intensive part of a finite-difference-based
code. In accord with the theoretical results of 2 and 4, virtually no difference
was noted between the stability properties of structured QR and row-pivoted LU. As
evidence of this, we quote results for the following test problem.

PROBLEM 1 (Ascher and Chan [1]). a- 0, b 1, n-- 2,

-A cos 2wt w + sin 2wt]y’ (t) -w + sin 2wt cos 2wt Y(t) + f(t),

Ba 0 0 Bb 1 0

with/(t) and d chosen so that y(t) et(1, 1)T
A fundamental solution is

Y(t) -sinwt coswt 0 et

so clearly there exist one growing and one decaying mode. The problem was solved
using both multiple shooting and the box method for 200 and w 1. Four
different algorithms were used to solve the linear system, namely,

SOR-l--one-level structured QR;
ROWPP--LU factorization with row partial pivoting;
DECOMP--the DECOMP and SOLVE routines from PASVA; and
C0PACT--compactification, as implemented in the codes D4/$4 described in

756 STEPHEN J. WRIGHT

TABLE 5
Dimensions of the five test cases, and conditioning of the multiple shooting and finite-difference

matrices.

Problem n k

la 2 64 .41(+2)
lb 2 1024 .30(+2)
23 4 64 .37(+9)
2b 4 1024 .26(+2)
3 3 1024 .20(+1)

ms conditioning fd conditioning

.17(+2)

.a0(+)

.83(+3)

.(+)

.aa(+)

Tables 3 and 4 show the maximum error in the first component of the computed result.
Because of its failure to decouple the fundamental solution modes, compactification
performs poorly. The accuracy of box method solutions is limited by discretization
error, while the multiple shooting solutions are accurate up to the conditioning of the
discrete system and the tolerance imposed on the IVP solver. The DECOMP code gives
accurate results here because the end conditions are separated. When this is not the
case, as in Problem 3 below, DECOMP is known to be unstable.

To test the relative speed of the linear solvers, two further problems from the
literature were used in addition to Problem 1.

PROBLEM 2 (Brown and Lorenz [5]). a- -1, b- 1, n--4,

-ey" t y t z- + +z--err2cosrt +2rrtsinrt,
Z

tt
Z

z(-1) 1 z(1) e-=/C.

(We use e .001.)
PROBLEM 3 (Mattheij [15]). a 0, b-- r, n 3,

1-19cos2t 0 l+19sin2t]
y’(t) 0 19 0 J y(t)

-1+19sin2t 0 1+19cos2t

+e [-l+19(cos2t-sin2t)]_181 19(cos 2t + sin 2t)

yl(0) 1,
y3(0) + Y3() 1 + e,
y2(0) + y2() 1 + e.

The solution is y(t) et(1, 1, 1)T.
Problems 1 and 2 have separated end conditions, while two of the three end

conditions for Problem 3 are nonseparated. We report on five cases (two different
values of k were tried for Problems 1 and 2, and values of A 1 and w 50 were
used in Problem 1). Table 5 gives condition estimates for the multiple shooting and
finite-difference matrices.

Results from "scalar" implementations on one processor of the Alliant FX/8 are
shown in Table 6. We have tabulated the times required to solve the linear systems.
The -0g compiler option was used with each code, so the vector processing capabilities
of the Alliant were not used. In addition to the linear solvers already mentioned, we

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 757

TABLE 6
Alliant FX/8, one-processor timings for linear system solvers (times in seconds).

Problem ROWPP DECOMP

la .041 .081
lb .439 .660
2a .094 .181
2b 1.32 1.95
3 1.23 1.44

.071

.813

.220
3.22
1.72

SQR-CR

.098
1.04
.312
4.55
2.34

TABLE 7
CRAY Y-MP, one-processor timings for linear system solvers.

milliseconds).
Vectorized code (times in

Problem ROWPP DECOMP SQR-1 SQR-CR

la 2.19 3.05 8.63 1.45
lb 34.6 48.3 139. 10.9
2a 5.32 8.38 21.1 6.40
2b 84.4 133. 341. 51.6
3 136. 116. 232. 26.3

tested S{R-CR, which was the cyclic-reduction variant of structured QR. Note that the
S[R codes typically take two to three times as long as R014PP, though the penalty is
much smaller when the end conditions are not separated (as in Problem 3). In either
case, the overhead for using structured QR is not as great as the operation counts in
Tables 1 and 2 would suggest.

Timings for a vectorized implementation on one processor of a CRAY Y-MP are
shown in Table 7. In general, the SOR-CR code becomes very competitive, particularly
when n 2 or 3, k is large, and/or the end conditions are not separated. This
code performs extremely well on Problems lb and 3. When n 4 (Problem 2), the
small amount of vectorization that occurs in the other codes lessens the advantage of
SOR-CR, while in Problems la and 2a the value of k makes the overall computational
task too small to benefit from vectorization.

Table 8 gives results for an eight-processor parallel implementation on the Alliant
FX/8. The -0gc option was used during compilation. Here, SOR-2 refers to the
two-level version of structured QR, in which the original system is broken into eight
partitions of equal size, which are factorized concurrently. On the largest problem, the
parallel efficiency of structured QR (measured by comparing serial SLUR-1 to parallel
SOR-2) is 87 percent--quite acceptable, given that the solution of the reduced system
is an unavoidable bottleneck. The efficiency improves further for still larger problems.
Defining speedup as the ratio of the one-processor time for the best serial algorithm to
the eight-processor time for the best parallel algorithm, we see, from Table 9, that in
three of the five cases good parallel efficiency is attained. The remaining two problems
were too small for parallelism to have much effect.

Comparing Tables 6 and 8, it can be seen that KOWPP and DECOMP also speed up
a little when extra processors are available. This is because the Alliant is a shared-
memory machine. It is important to note that on the current generation of message-
passing machines, these algorithms will not benefit from multiprocessing unless n is
large enough that rows or columns within each block can profitably be distributed
around the processor array. This is unlikely to happen until n is at least 50 or 100.
On the other hand, efficient implementations of multilevel SQR on these machines will
be possible for much more typical problem sizes.

758 STEPHEN J. WRIGHT

TABLE 8
Alliant FX/8, eight-processor timings for linear system solvers (times in seconds).

Problem OWPP DECOMP SQR-2

la .029 .072 .031
lb .367 .697 .136
2a .053 .150 .067
2b .739 1.67 .463
3 .685 1.39 .262

TABLE 9
Alliant FX/8, Ratio of times for ROIdPP (one-processor) to times for SQR-2 (eight processors).

Problem Speedup

Xa
lb
2a
2b
3

1.3
3.2
1.4
2.9
4.7

To summarize, we conclude that the structured QR codes are useful in the fol-
lowing circumstances:

when the computational task of solving the linear equations is substantial
enough to benefit from vectorization or parallelism;
especially, when the end conditions are not separated;
on a vector processor, when the value of n is too small (say, only 2 or 3) to
allow efficient vectorized factorization of n n blocks;
on the current generation of distributed-memory multiprocessors, unless n is
very large and the number of processors is very small;
on a shared-memory multiprocessor, unless n is quite large (say, greater than
8) and there are fewer than four processors.

A. Appendix A. We start with a result which is similar to [8, Thm. 3.3.1].
LEMMA A.1. Suppose that alternate row and column elimination, without pivot-

ing,^is applied to an N N matrix A with bandwidth b to produce computed factors
L, B, U. Assume that N, bw, and the unit roundoff error u satisfy

(31)

Then

where

(33)
and

Nu < 0.i,

Nu(2 + 1.06bw + 2.12bwu) < 0.5.

LO A + H,

]H <_ c3(N- 1)u{]A] + ILll]l l}

C3 5 -{- 3b.

Proof. The result is trivially true for N 1. Suppose for induction that (31)
holds for matrices of size up to N- 1. Let

v A1

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 759

where a E R, A1 E R(N- 1) (N- 1), etc., and suppose that row elimination will be
used to eliminate v. We compute

1
(34) -v + f, Ill -<
(35) A wT

It follows immediately from (35) that

(a) Iil < (1 + eu)(A +]]).
An LBU factorization of 1 is then performed, yielding

L111 1 + H1,

with

(37) Igl

The calculated factors of A are therefore

[1 0] _[a T] = 1 0]L= o B 0

where is the computed solution of the system w. Defining w 1.06bw,
and noting that has lower bandwidth bw, it is easy to show that exactly solves

(+)
where

Hence

and so

(39)]] 5 (1 + u)]51]r].
Now

A wT + F,
T +1 A + F + H [w]T.

Combining this with (34),

[o(40) L A +
af F + Hi [w]T

Now, combining (35), (36), (37), and (39), we find that

[E + U [w O]T
IF[+ lUll

(41) [ca(N- 2)u(1 + 2u)+ 2u]lAl
+[(/- e)u(1 + eu)(1 + u) + eu(1 + u) + u]llielV[5[
+(i- e)ulllillOll.

760 STEPHEN J. WRIGHT

We now show that

(42) c3(N 2)u(1 + 2u)(1 + bwu) + 2u(1 + bwu) + bwu <_ c3(N 1)u.

This is equivalent to

c3(N 2)u(2u + wu + 2u2) + (2u +u+ 2wU2) < a3u

c311 (N 2)u(2 + w + 2wU)] > (2 + + 2u).

Since by assumption (32),

1 -(N- 2)u(2 + + 2wu) > 1/2,

inequality (42) will hold provided that

(43) c3 > 2(2 + w + 2wu).

From (31), and using b < N, it is clear that2u < 0.5, so (43) follows trivially.
Since the left-hand side of (42) is the largest of the three coefficients in (41), we

can combine (41) and (42) to obtain

(44) IF + H1 [w T@]T _< c3(N- 1)u{lAll + I l] lTl xl + Ixl[lllll).

Combining (40), (34), (38), and (44), we therefore find that

This proves the result for the case in which row elimination is used at stage N.
When column elimination is used instead, the proof is analogous. [3

LEMMA A.2. If the alternate row and column elimination is used to solve (5) or
(8), and the assumptions of Lemma A.1 hold, with N (k + 1)n and bw 2n, then
the computed solution is the exact solution of the perturbed system

(A + E) f,

where

IIEI[(k + 2) (5 + 6n)(1 + n22n-1)llAoPllu.

Proof. Note first that the pivoting does not alter the sparsity structure of A. We
can, therefore, view alternate row and column elimination as being applied to pTAIIT

(where P and H are permutation matrices) to produce a computed factorization

pTAIIT + H

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 761

It is easy to show that the procedure leading to results in the following sequence of
perturbed problems:

(+ 5L)b pTf
(+) ,
(+) ,

laL (1.06)nulLI,
laB 2(.06)nul],
lauI (.06)nulr)l,

(The bounds on]L[, IB[, 16uI are a consequence of the maximum number of nonzeros
in each row of L, B, U, respectively.) Hence

pTEHT H + (+ 5L)(J + 5S)(+ 5V)
[]E]I _< I]HII + [4(1.06)nu + 5(1.06)2n2u2 +

It follows from (31) that nu _< 0.1, so the coefficient of []],l[[I/}[]l[r[] can be
bounded above by 5nu. Since element growth in B is bounded by 2n-l, and since all
entries in], and U are bounded by 1, we have

I[/[1 _< 2’-II[pTAHT[[<_ 2n-ll[A[[, I[]_,[1 <_ n, [11[<_ n.

Combining these observations with the result of Lemma A.1, we obtain

{(5 + 6n)(k + 1)n + [(5 + 6n)n(k + 1) + 5n]n22n-}[lAllu
(k + 2)n(5 + 6n)(1 + n22n-1)[IAl[u

as required. [3

B. Appendix B. We start by stating two results on the rounding error due to
Householder reduction. These results are similar to those in Lawson and Hanson [10,
pp. 85-89] and Wilkinson [20, pp. 157-162]. They differ from Lawson and Hanson’s
results in that the O(u2) term is explicitly accounted for at every stage, and from
Wilkinson’s in that we do not assume double-precision accumulation of inner products.
Since the proofs are tedious and do not offer any new insight, they are omitted.

LEMMA B.1. Suppose that an m m2 matrix X is multiplied by an m m
Householder reflector Q. Then, provided that

(6ml + 18)u _< 0.1,

the computed result Y satisfies

Y (x + E),

where

IIEI[F <_ (7m + 42)ulIXIIF.

LEMMA B.2. If Q is a product of r Householder reflectors whose effect is to
introduce zeros into the subdiagonals in the first r columns of the m m2 matrix X,
then provided that

(7ml + 42)ru <_ 0.1,

762 STEPHEN J. WRIGHT

the computed result Y satisfies

where

Y (x + E),

IIEIIF (8m --4r + 5)rullXIIF.

For the purpose of this Appendix, it is simplest to view the structured fac-
torization process as the application of k- 1 orthogonal transformation matrices
Q1, Q2,’", Qk-1 to a row- and column-reordered version of AD (and the right-hand
side fD), followed by the application of another two matrices Qk and Q+ to effect
the final reduction of (25). (Qk and Qk+ reduce the first and last n columns of the
coefficient matrix in (25), respectively.) Each of the Qj, j 1,..., k- 1 are products
of n Householder reflectors, and each operates on only a small part of the matrix that
it multiplies: to be precise, a 2n 3n submatrix. Since we wish to reduce (7) to (25),
it follows that exactly k- 1 such transformations are needed.

Proof (Lemma 4.1). Let -D,i+l be the transformed version of AD after stages
of the structured factorization, and fiD, AD. Let XD,i be the submatrix that is

actually affected at stage by the matrix Q from (22), and let Q be the orthogonal
matrix that is obtained by embedding Q into a (k + l^)n-dimen^sional identity matrix.
For 1,..., k + 1, we have from Lemma B.2 that AD, and AD,i+I are related by

D,i/l i(fD,i-]-
where E consists of the 2n 3n "error" submatrix corresponding to the factorization
of XD,, padded out with zeros to dimension (k -4- 1)n. Hence

IIEIIF <_ (8(2n)- 4n + 51)nulIXD,IIF < (12n + 51)nulIAD,IIF.
Hence

IIiD,/IIF [1 + (12n + 51)nu]llfiD,l[F <_ [1 + (12n + 51)nu]llADIl.

The errors made in stages k and k + 1 are bounded in the same way, since the
submatrices affected at these stages are no larger than those affected at the earlier
stages. Under the assumption (12n / 51)n(k + 1)u < 0.1, we therefore obtain

I[/iD,i+[IF _< [1 + (1.06)(12n + 51)n(k + 1)U]IIADIIF <_ (1.106)]lABIlE,

for 1,.-.,k + 1. Hence

IIEIIF < (1.106)(12n + 51)nu]IADI]F.

The final (upper triangular) matrix i8 -’D,k+, which 8atisfie8

AD,k+2 k+l(D,k+l " Ek+l)
)+)(, + E)++E+

+?.

PARALLEL ALGORITHMS FOR TWO-POINT BVPs 763

Here ((k+l(k (1 is orthogonal, and ED satisfies the bound

k+l

I[EDIIF -- E IIEilIF (1.106)(12n + 51)n(k + 1)uI[ADIlF.
i--1

Similarly, application of (to the right-hand side fD, results in a computed vector
fD, which satisfies

+
where

115fDIl <_ (1.106)(12n + 51)n(k + 1)ullfDIl

(since IlVllF Ilvl12 when v is a vector). Finally, back-substitution is used on the
system with coefficient matrix tD,k+2 and right-hand side]D. The computed solution
satisfies

(45) (i.D,k+2 + Es)]D,

where, since 2D,k+2 has at most 3n nonzeros per row,

[]Esl]F

_
_< 3(1.06)nu[1 + (1.106)(12n + 51)n(k
<_ 3(1.06)(1.1106)nu[]AD[IF.

Substituting in (45),

[Q[AD + ED] + Es] Q[fD + 5fD]

(AD + ED + OTEz) (fD + 5fD).

Defining

SAD ED -TEs,
we have

_< [(1.106)(12n + 51)n(k + 1) + 3(1.06)(1.1106)n]
_< (1.106)(12n + 51)n(k + 2)ul]AD]]F

as required.

REFERENCES

[1] U. M. ASCHER AND P. S. Y. CHAN, On parallel methods for boundary value ODEs, Computing,
46 (1991), pp. 1-17.

[2] U. M. ASCHER AND R. M. M. MATTHEIJ, General framework, stability and error analysis for
numerical stiff boundary value problems, Numer. Math., 54 (1988), pp. 355-372.

[3] U. M. ASCHER, R. M. M. MATTHEIJ, AND R. D. RUSSELL, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ,
1988.

764 STEPHEN J. WRIGHT

[4] Z. BOHTE, Bounds for rounding errors in the Gaussian elimination for band systems, J. Inst.
Math. Appls., 16 (1975), pp. 133-142.

[5] D. L. BROWN AND J. LORENZ, A high order method for sti boundary value problems with
turning points, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 790-805.

[6] A. g. CLINE, C. B. MOLER, (. W. STEWART, AND J. n. WILKINSON, An estimate for the
condition number of a matrix, SIAM J. Numer. Anal., 16 (1979), pp. 368-375.

[7] J. C. DIAZ, A. FAIRWEATHER, AND P. KEAST, FORTRAN packages for solving certain almost
block diagonal linear systems by modified alternate row and column elimination, ACM
Trans. Math. Software, 9 (1983), pp. 358-375.

[8] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD, 1989.

[9] H. B. KELLER, Accurate difference methods for two-point boundary value problems, SIAM J.
Numer. Anal., 11 (1974), pp. 305-320.

[10] C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood
Cliffs, NJ, 1974.

[11] M. LENTINI, Parallel solution of special large block tridiagonal systems: TPBVP, manuscript,
1989.

[12] M. LENTINI, M. R. OSBORNE, AND R. D. RUSSELL, The close relationships between methods
for solving two-point boundary value problems, SIAM J. Numer. Anal., 22 (1985), pp. 280-
309.

[13] M. LENTINI AND V. PEREYRA, An adaptive finite difference solver for nonlinear two-point
boundary value problems with mild boundary layers, SIAM J. Numer. Anal., 14 (1977),
pp. 91-111.

[14] R. M. M. MATTHEIJ, The conditioning of linear boundary value problems, SIAM J. Numer.
Anal., 19 (1982), pp. 963-978.

[15] , Decoupling and stability of algorithms for boundary value problems, SIAM Rev., 27
(1985), pp. 1-44.

[16] M. R. OSBORNE, Aspects of the numerical solution of boundary value problems with sepa-
rated boundary conditions, manuscript, Computer Research Group, Australian National
University, Canberra, Australia, 1978.

[17] M. PAPPZYCKI AND I. (LADWELL, Solving almost block diagonal systems on parallel computers,
Parallel Comput., 17 (1991), pp. 133-153.

[18] V. PEREYRA, Iterated deferred corrections for nonlinear boundary value problems, Numer.
Math., 8 (1968), pp. 111-125.

[19] J. M. VARAH, Alternate row and column elimination .for solving certain linear systems, SIAM
J. Numer. Anal., 13 (1976), pp. 71-75.

[20] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, London, U.K.,
1965.

[21] S. J. WRIGHT AND V. PEREYRA, Adaptation of a two-point boundary value problem solver to a
vector-multiprocessor environment, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 425-449.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 765-770, May 1992

() 1992 Society for Industrial and Applied Mathematics
009

THREE-DIMENSIONAL DELAUNAY TRIANGULATIONS FOR
FINITE ELEMENT APPROXIMATIONS TO A SECOND-ORDER

DIFFUSION OPERATOR*

FRANK W. LETNIOWSKIt

Abstract. The second-order diffusion operator given by/:u V. (KVu) is studied in terms
of finite element numerical solutions. When a standard Galerkin finite element approximation of
the operator is arranged in a specific manner, a condition of positive connection values is imposed
that is necessary to produce an M-matrix in a linear system when boundary nodes are properly
handled. In two dimensions, the condition is achieved when a Delaunay triangulation is imposed.
However, it is shown that a three-dimensional Delaunay triangulation does not generally produce
a discretisation satisfying the condition. Further, it is generally not possible to produce a three-
dimensional triangulation that satisfies the positive interior connection condition.

Key words, finite element method, three-dimensional triangulation, Delaunay triangulation

AMS(MOS) subject classification. 65N30

1. Introduction. Three-dimensional triangulations have been studied frequently
in the context of finite element discretisations [1], [3], [12], [15]. A set of tetrahedra
are selected to cover a polyhedron that approximates a region. A common triangula-
tion approach is the three-dimensional Delaunay triangulation [8], [2], [14], where the
tetrahedra satisfy a sphere criterion.

This paper considers the effect of triangulation on the finite element approxi-
mation of the second-order diffusion operator. Example areas of application include
groundwater contamination problems, petroleum reservoir simulation, heat transfer,
semiconductor device modelling, and Navier-Stokes fluid flow.

For a dependent variable u, the action of the diffusion operator,/2, is defined by

(1) /:u V. (KVu),
where in general K is possibly nonconstant and a tensor. The assumption in this
paper is that K is symmetric positive definite with constant components.

2. Galerkin finite element discretisation. The operator 1; is approximated
using the Galerkin finite element method.

Let Ni be a C0 linear basis function for the ith node of the discretisation. In the
usual way, the unknown u is approximated as

Define

Consequently,

vi {j s.t. node j is adjacent to node i}.

(3)
jEv

Received by the editors October 22, 1990; accepted for publication (in revised form) February
5, 1991. This work was supported by the Natural Sciences and Engineering Research Council of
Canada through a postgraduate scholarship, and by the Information Technology Research Centre,
which is funded by the province of Ontario.

NOVA Corporation of Alberta, P.O. Box 2535, Station M, Calgary, Alberta, Canada T2P 2N6.

765

766 FRANK W. LETNIOWSKI

FIG. 1. Interior connection for triangular elements.

where

(4) (KVN). dV,

which will be called the connection value for the connection between nodes i and j.
We have assumed either Dirichlet or Neumann boundary conditions on OR.

Define the matrix A such that

Aij Fij, i j,

Aii=-When F are positive, the matrix A is an M-matrix when there is at least one
Dirichlet node. It is well known that with an M-matrix, the approximation to
satisfies a discrete maximum principle. An M-matrix is also desirable for iterative
sparse matrix methods [11].

Without loss of generality, we perform a linear transformation and set K to the
identity matrix for the remainder of this paper.

3. Two dimensions. In two dimensions, it is always possible to achieve positive
interior connection values under the above assumptions. A connection between two
nodes is called interior if the line segment joining the two nodes does not form part
of the boundary.

For triangular elements, an interior connection is shared by exactly two triangles
(see Fig. 1). The value of the connection Fi is [5]

[cot O + cot 0]

hence the requirement for positivity is

0+0 <_ .

3-D DELAUNAY TRIANGULATIONS FOR FINITE ELEMENTS 767

A triangulation that satisfies condition (7) is the Delaunay triangulation [5], [7],
[6], which satisfies the circle criterion: the circumcircle of each triangle in the trian-
gulation contains no nodes of the discretisation in its interior.

Any valid triangulation of a two-dimensional convex region may be transformed
into a Delaunay triangulation through a series of local transformationsJ7], [6]. This
series of transformations must converge in a finite number of steps. The local trans-
formation procedure is an edge swap, which is described in [9].

In summary, the following theorem holds.
THEOREM 3.1. In the transformed region, a Delaunay triangulation of a two-

dimensional convex region satisfies the positive interior connection value criterion.
A connection that is situated along the boundary of the region is the edge of only

one triangular element. In this case, if the connection value is negative, it may be
necessary to add boundary nodes [4] to ensure that (3) produces an M-matrix.

4. Three dimensions. It is natural to speculate that a three-dimensional De-
launay triangulation satisfies the criterion of positive interior connection values; how-
ever, the theorem and corollary in this section demonstrate that this is not true in
general.

It is well known that any polyhedron may be divided into a finite number of
tetrahedra. Such a discretisation is called a three-dimensional triangulation.

One possible triangulation for a set of nodes is the three-dimensional Delaunay
triangulation [8], which has been used for three-dimensional mesh generation [1],
[3], [12], [15]. The tetrahedra in the discretisation satisfy the sphere condition: the
circumsphere of the four vertices of any tetrahedron in the triangulation contains no
vertices in its interior. The local transformation that changes a local triangulation
into one satisfying the sphere condition is a face swap, which is described in [8].

THEOREM 4.1. In general, a three-dimensional triangulation satisfying the posi-
tive interior connection criterion may not be constructed using strictly local transfor-
mations.

Proof. Consider the local region defined by the six three-dimensional points:

(-e,-e,
(0,-e, 0.1),
(-e, 0, 0.1),
(0, 0.1, 0),

(-2,-2,1.5).

Consider Figs. 2, 3, and 4, which are the only possible triangulations of the above
six points from the transformations described in [8]. The triangulations in each figure
produce the following tetrahedra:

Fig. 2: ABDE, ABDF, ACDE, and ACDF;
Fig. 3: ABCF, BCDF, ABCE, and BCDE;
Fig. 4: ABDF, ACDF, ABCE, BCDE, and ABCD.

Table 1 gives the values for the interior connections, AD and BC, for each of the
figures. Each of the connection values is negative, which breaches the positive con-
nection criterion. Note also that any tetrahedron that might exist exterior to this
local region cannot have AD or BC as one of its edges; that is, all tetrahedra affecting
the connection AD or BC are included in the figures. D

COROLLARY 4.2. A three-dimensional Delaunay triangulation may not satisfy
the condition of positive interior connections.

768 FRANK W. LETNIOWSKI

F.
D

FIG. 2. Sample triangulation with AD connection.

D

FIG. 3. Sample triangulation with BC connection.

A

FIG. 4. Sample Delaunay triangulation.

D

TABLE 1
Interior connections for the triangulation example.

Fig. 2
Fig. 3
Fig. 4

Connection
AD -0.01458
BC -2.0027
AD -2.208
BC -1.4694

3-D DELAUNAY TRIANGULATIONS FOR FINITE ELEMENTS 769

TABLE 2
Circumcentres for the triangulation example.

Tetrahedron Circumcentre Sphere condition?
ABDE
ACDE
ABDF
ACDF
ABCD
ABCF
DBCF
ABCE
DBCE

(-1.035, -0.9464, 0.125)
(-0.942,-1.035, 0.125)
(-0.86,-0.9048, 1.0)
(-o.9o,-0.86, .o)

(-0.919,-0.919, 0.706)
(-0.86,-0.86,1.0)

(-0.908, -0.908, 0.931)
(--1.035,--1.035, 0.125)
(-0.965, -0.965, -0.273)

no
no
yes
yes
yes
no
no
yes
yes

Proof. Table 2 lists the nine tetrahedra in Figs. 2-4, gives the coordinates of
their circumcentres, and indicates whether or not the tetrahedra satisfy the sphere
condition. The table identifies Fig. 4 as the Delaunay triangulation; however, from
Table 1 it is seen that the interior connections AD and BC of this triangulation are
negative.

Note that from Table 1, the sizes of the negative connections AD and BC of Figs. 3
and 4 are on the order of 100 times larger than the connection AD given in Fig. 2. In
a specific example given in [10], it is determined that the size of negative connections
may be more important than the number of negative connections. Thus, the Delaunay
triangulation is not, in general, the best triangulation for a three-dimensional finite
element grid, in terms of the positive connection criterion.

5. Conclusions. In this paper, a condition of positive connection values was
imposed. This condition produces an M-matrix, and hence a discrete maximum
principle, for a linear diffusion problem when there is at least one Dirichlet node. In
two dimensions, this condition may be satisfied by selecting a Delaunay triangulation
when boundary nodes are handled properly. It is shown by counterexample that a
three-dimensional Delaunay triangulation does not, in general, satisfy the condition.

Moreover, this paper illustrates that, in three dimensions, a triangulation produc-
ing positive interior connections may not, in general, be obtained with strictly local
transformations. This suggests that, in three dimensions, it may be very difficult
to produce a triangulation that always gives an M-matrix, and hence a maximum
principle, for a linear diffusion problem with at least one Dirichlet node.

Acknowledgement. The author would like to thank Professor P. A. Forsyth for
discussions and guidance during the preparation of this document. ! would also like
to thank the referees for their helpful comments.

REFERENCES

[1] T. J. BAKER, Development and trends in three-dimensional mesh generation, Appl. Numer.
Math., 5 (1989), pp. 275-304.

[2] A. BOWYER, Computing Dirichlet tessellations, Comput. J., 24 (1981), pp. 162-166.
[3] J. C. CAVENDISH, D. A. FIELD, AND W. H. FREY, An approach to automatic three-

dimensional finite element mesh generation, Internat. J. Numer. Methods Engrg.,
21(1985), pp. 329-347.

[4] P. A. FORSYTH, A control volume finite element approach to NAPL groundwater contamina-
tion, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1029-1057.

770 FRANK W. LETNIOWSKI

[5] P. A. FORSYTH, A control volume finite element method for local mesh refinement in thermal
reservoir simulation, Paper SPE 18415, Tenth Society of Petroleum Engineers Symposium
on Reservoir Simulation, Houston, TX 1989.

[6] B. JOE, Finite element triangulation of complex regions using computational geometry,
Ph.D. thesis, Department of Computer Science, University of Waterloo, Waterloo, On-
tario, Canada, 1984.

[7] ., Delaunay triangular meshes in convex polygons, SIAM J. Sci. Statist. Comput., 7(1986),
pp. 514-539.

[8] Three-dimensional triangulations from local transformations, SIAM J. Sci. Statist.
Comput., 10(1989), pp. 718-741.

[9] C. L. LAWSON, Transforming triangulations, Discrete Math., 3(1972), pp. 365-372.
[10] F. W. LETNIOWSKI, Numerical methods for nonaqueous phase liquid groundwater contamina-

tion in three dimensions, Master’s thesis, Department of Applied Mathematics, University
of Waterloo, Waterloo, Ontario, Canada, 1989.

[11] , An overview of preconditioned iterative methods for sparse matrix equations, Res.
Report CS-89-26, University of Waterloo, Waterloo, Ontario, Canada, 1989.

[12] V. PH. NGUYEN, Automatic mesh generation with tetrahedron elements, Internat. J. Numer.
Methods Engrg., 18(1982), pp. 273-289.

[13] C. S. RAFFERTY, M. R. PINTO, AND R. W. DUTTON, Iterative methods in semiconductor
device simulation, IEEE Trans. Comput. Aided Design, CAD-4(1985), pp. 462-471.

[14] D. F. WATSON, Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes, Comput. J., 24(1981), pp. 167-172.

[15] M. A. YERPY AND M. S. SHEPHARD, Automatic three-dimensional mesh generation by the
modified-octree technique, Internat. J. Numer. Methods Engrg., 20(1984), pp. 1965-1990.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 771-793, May 1992

() 1992 Society for Industrial and Applied Mathematics
010

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER:
THEORETICAL ANALYSIS AND NUMERICAL RESULTS*

THOMAS F. COLEMANt AND PAUL E. PLASSMANN$

Abstract. The authors recently proposed a new parallel algorithm, based on the sequential
Levenberg-Marquardt method, for the nonlinear least-squares problem. The algorithm is suitable
for message-passing multiprocessor computers.

In this paper a parallel efficiency analysis is provided and computational results are reported. The
experiments were performed on an Intel iPSC/2 multiprocessor with 32 nodes: this paper presents
experimental results comparing the given parallel algorithm with sequential MINPACK code executed
on a single processor. These experimental results show that essentially full efficiency is obtained for
problems where the row size is sufficiently larger than the number of processors.

Key words, hypercube computer, Levenberg-Marquardt, nonlinear least squares, message-
passing multiprocessor, parallel algorithms, QR factorization, trust-region algorithms

AMS(MOS) subject classifications. 65H10, 65F05, 65K05, 65K10, 90C30

1. Introduction. Let F Rn - Rm, with m >_ n, be a continuously differen-
tiable function. The nonlinear least-squares problem is to find a local minimum of
the function

1 1
m

(1.1) (x) llF(x)ll2 fg(x),
i=1

where fi is the ith component of F. Recently, Coleman and Plassmann [CP89] pro-
posed a parallel implementation of the well-known Levenberg-Marquardt algorithm
[L44], [M63] for solving this problem when the Jacobian of F(x) is dense. In this
paper we present a theoretical analysis of our parallel method, as well as experimental
results obtained on an Intel iPSC/2 hypercube. The experimental results are obtained
on a hypercube multiprocessor; however, we feel that the algorithm is not limited to
this architecture. In fact, all that is required of the multiprocessor interconnection
topology is support of a ring embedding and means for efficient gather and broadcast
operations.

There are three main computational tasks that need to be addressed in a parallel
implementation of the Levenberg-Marquardt algorithm 2:

1. Evaluation or approximation of the Jacobian matrix J(x).

Received by the editors June 22, 1988; accepted for publication (in revised form) February 20,
1991.

Computer Science Department and Center for Applied Mathematics, Cornell University, Ithaca,
New York 14853. The research of this author was partially supported by the Applied Mathematical
Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of
Energy under grant DE-FG02-86ER25013.A000.

Center for Applied Mathematics, 305 Sage Hall, Cornell University, Ithaca, New York 14853.
Present address, Mathematics and Computer Science Division, Argonne National Laboratory, 9700
South Cass Avenue, Argonne, IL 60439. The research of this author was partially supported by
the Computational Mathematics Program of the National Science Foundation under grant DMS-
8706133 and by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell
University.

Plassmann [P90] considers the large sparse case.
2 For a more detailed description of the Levenberg-Marquardt algorithm, including step accep-

tance and convergence criteria, we refer the interested reader to the excellent article by Mor [M78].
771

772 T.F. COLEMAN AND P. E. PLASSMANN

(1.2)

2. The QR factorization of J(x),

where Q is an orthogonal matrix and R is upper-triangular, in order to solve
the least-squares problem

3. The computation of the Levenberg-Marquardt parameter A., and vector s.,
satisfying

(jTj + A.DTD)s, _jTF

(1.4)

such that IIDs.ll2 A, where D is a diagonal scaling matrix and A is a
positive scalar representing the "trust region" size. Computationally, this
means solving least-squares systems of the form

0
)1/2D

for different values of A.
We address these computational issues in the remainder of the paper. In 2 we

summarize the issues involved with respect to the parallel finite-difference approxi-
mation of the Jacobian matrix. In 3 we summarize the row-oriented parallel QR
factorization proposed in [CP89], provide a new complexity analysis, and present nu-
merical results. A theoretical analysis of the parallel algorithm for determining the
Levenberg-Marquardt parameter is given in 4, along with numerical results. Finally,
we present experimental results for the entire method and conclusions in 5.

2. Parallel approximation of the Jacobian. It is often the case that the
number of rows of the Jacobian is much larger than the number of columns. For the
QR factorization stage this suggests a row-oriented method, where the rows of the
Jacobian are distributed to processors. This data distribution achieves a better load
balancing than a column-oriented method, and results in an algorithm whose efficiency
depends on the ratio m/p rather than n/p, where p is the number of processors.
Experience has shown that computational costs involved in the QR factorization stage
often dominate the Jacobian approximation stage. Thus, we have chosen to pursue
a row-oriented QR factorization algorithm.3 We would like to take advantage of
this data distribution in approximating the Jacobian whenever possible. Let Ii, i
1,..., p, be a partition of the rows of J, where Ii is the set of row indices assigned to
processor i and let FI (x) {fj(x)[j e Ii} be the corresponding function blocks. We

3 If a column-oriented Jacobian approximation scheme is used, one must convert this column-
oriented data distribution into a row-oriented distribution for the QR factorization stage [JH88],
[MVV87], [SS85]. Of course, for sufficiently large n this problem can be avoided by using a column-
oriented QR factorization algorithm. We did not take such an approach because it is usually the
case that m > n. However, there exist good column-oriented QR factorization algorithms [B88],
[CG88], [M87], and in 4 we describe an efficient column-oriented algorithm for determining the
Levenberg-Marquardt parameter.

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 773

say that the function F is block separable if there exists a partition of the rows such
that the evaluation of each function block is computationally independent.

Suppose the function is block separable relative to the partition Ii, i 1,.-.,p
and let J(x) be the set of the rows of the Jacobian estimated at the point x. The
jth column of the Jacobian can be estimated in parallel by having each processor
compute its block of row components according to the formula

Fl, (X / Te.) Fl, (X)(.1)
7"

However, often the evaluation of F(x) is not completely separable; there may be some
amount of redundant computation due to common factors that must be computed
for each partition of the function F (x), i 1,..., p. If this redundant computation
is inexpensive relative to communication cost entailed by using a column-oriented
scheme, then we consider this computational overhead tolerable. All of the test prob-
lems considered in the experimental section fall into this category. Otherwise, if the
redundant computation required by such a partition of the rows is deemed too expen-
sive, a column-oriented approach to approximating J(x) must be adopted.

A subtle problem occurs when nip is small, the evaluation of F(x) is expensive
and not separable, and therefore the estimation of the Jacobian is computationally
expensive relative to the QR factorization. Suppose a step s() is to be considered at
the kth iteration of the algorithm; F(x() -t- s()) must be evaluated to determine if it
meets certain acceptance criteria. When this computation is relatively expensive and
not separable, and therefore must be done on one processor, then the remainder of the
processors will remain idle during this computation. This can result in detrimental
effects on the efficiency of the entire implementation. Byrd, Schnabel, and Shultz
[BSS88] and Coleman and Li [CL87] note that this problem can be alleviated some-
what by guessing, based on the previous iteration, whether the proposed point will be
accepted. If acceptance is assumed, the Jacobian at x() +s() can begin to be approx-
imated by idle processors. If we guess that the proposed iterate will not be accepted,
then idle processors could evaluate the function at some additional points that might
fare better with the acceptance criteria. These ideas were not implemented in our
code, but could easily be added. Nevertheless, for nip 1, the computation required
to estimate the Jacobian will always dominate these isolated function evaluations.

3. A parallel row-oriented Householder QR algorithm. In this section we
analyze and experiment with the parallel row-oriented Householder QR factorization
proposed in [CP89]. We show that this algorithm is more efficient than previous
hybrid (Householder/Givens) factorization algorithms. The eciency of the parallel
QR factorization used to solve (1.2) is of paramount importance because a completely
new approximation to the Jacobian is computed for each iteration. Consequently, a
full QR factorization is also required. For the test problems considered in this paper,
we find that the QR factorization is always a major (and sometimes the dominant)
computational cost. An additional advantage of this algorithm is that, unlike the
hybrid scheme, it produces the same Householder vectors that would be produced
by a standard sequential Householder QR algorithm. This property is advantageous
in situations where the same system must be solved for multiple right-hand sides.
Finally, we show that column pivoting can be introduced into the algorithm with
only a slight increase in the computation and communication complexity. In our
implementation column pivoting is important because the QR factorization can then
be used to estimate matrix rank.

774 T.F. COLEMAN AND ,P. E. PLASSMANN

Column-oriented methods have dominated the work on parallel QR algorithms;
however, two row-oriented algorithms have been considered previously [CP86], [PR87].
These two algorithms are very similar: to reduce each column of the matrix a reduction
involving only data local to each processor is performed, followed by a global reduction
requiring communication between the processors. The reduction of rows local to a
processor yields one row per processor with a nonzero in the column being reduced
to upper-triangular form. This approach has the advantage that all these reductions
and matrix updates will be local to the processors, and with the wrap mapping4

of rows the computational load will be well balanced. Following this local stage
is a global stage: a minimum-depth spanning tree is embedded in the hypercube,
rooted at the processor where the nonzero for the column under consideration should
reside. Rows are communicated up this tree and the leading nonzero is annihilated
by a Givens rotation with respect to the parent’s row. These rows are then updated
with this rotation and the result communicated back to the child. The hypercube
topology allows this global reduction process to take place in log(p) steps. Of these
two algorithms, the one presented by Pothen and Raghavan [PR87] seems to be the
most efficient, since Householder reductions, as opposed to Givens, are used in the
local stage.

Our algorithm is computationally more efficient than the hybrid approach: the full
Householder vector is calculated and the intermediate Givens reductions are avoided.
However, our challenge is to obtain the same communication complexity as the hybrid
approach. We meet this challenge by noticing that computation of the Householder
vector and the subsequent rank-one update to the matrix can be combined to halve
the number of messages that seem to be required at first glance.

To review the algorithm given in [CP89], consider the QR factorization of an m n
matrix A. At step j of the factorization, the first j- 1 rows of R and the Householder
vectors have been computed; we need only consider the (m- j + 1) (n- j + 1)
lower right submatrix of A, denoted by A(J), with columns a(kj), k j,... n. The

Householder transformation, P(J), to reduce the first column of A(J), a.), is

P()-- I-2v)v(.i)]
where v(j) uj uj ll2ej. To determine a(kj+l), k j + 1,..-,n, we need to

compute the corresponding rank-one update to A(j)

(3.2)
T V(j))V(j)

v(j)v(j)

a(k) ,(k)v(),
with a(kj) defined as shown. Let leader designate the processor that holds row j. Note
that v(j) agrees with a(J) except in the first component. Therefore, the portions of

.(J)T(J)T a(kj) local to each processor are just j k except on leader,the inner product v(j)
where a(Y) and v(j) differ in the first component. We can take advantage of this fact

4 The specific row-oriented distribution we consider is a wrapping of rows onto processors. Thus,
if the processors on the ring are numbered 0, 1, 2,...,p- 1, then row k of the Jacobian is assigned
to processor (k- 1)mod(p).

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 775

and combine the communication to compute v(j) with the communication required
for the rank-one update to the remainder of the matrix. An outline of the resulting
algorithm is given as Algorithm 3.1. For this description we use the notation [a.J)]i
to represent the subvector of a.j) with components given by the index set I. The

-(J)l12 and the constants (kj)0 vector is a work vector used in the computation of Iluj
k=j+l,...,n.

Index Set: Ii {set of row indices assigned to processor i}

Proc (i): {program for processor i}
For j 1,...,n do

If (i =leader) Delete {j} from I;
Compute dot products for k j,..., n

Ok [a.)]" [a(kJ)],,
Combine [0j,..., On] using gather-sum;
If (i leader) then

Compute first component of v(J) and the coefficients

Oj+l," and broadcast the result;
endif
Update columns, k j + 1,..., n

[a(kJ+ l)]i, [a(kJ)]ii O(kJ) [v(J)]ii
enddo

ALGORITHM 3.1. A parallel row-oriented Householder QR algorithm.

In Fig. 3.1 we exhibit the efficiencies of this algorithm compared to the hybrid
algorithm described by Pothen and Raghavan in [PR87] as a function of the number
of rows. (The data points in the figure are experimental results obtained on a 32
node iPSC/2 hypercube with 4.5 Mbytes of memory per node. All the experimental
results presented in this paper are from implementations done on this machine.) The
dotted lines in the figure are plots of a theoretical model of the efficiencies of the
algorithms that will be presented later in this section. For this plot the number of
columns is fixed at 100. The efficiencies shown were calculated by dividing the time
taken by an efficient sequential implementation of the algorithm run on one processor
by the product of the time taken by the parallel implementation and the number of
processors used. In this case our parallel implementations were compared with the
MINPACK QR factorization subroutine QRFAC executed on a single processor of
the hypercube, and the efficiencies shown were computed from the execution times
of these programs. In Table 3.1 we show some representative execution times for our
implementations of the hybrid algorithm (Hybrid) and Algorithm 3.1, as compared
to the sequential QR factorization program (Single processor).

There is a subtle point in solving (1.2): the orthogonal matrix Q does not need
to be saved if the right-hand side of the equation is updated along with the rows of
the Jacobian. To achieve this goal, the right-hand side is treated like an additional
column to the matrix J, and is distributed across the processors in the same wrap
mapping and updated along with the corresponding rows of the Jacobian.

Column pivoting can be added to Algorithm 3.1. The column norms of the

776 T.F. COLEMAN AND P. E. PLASSMANN

Efficiency

.8

.2

0
200 400 600 800 1000 1200

Number of Rows (m)

FIC. 3.1. E3Cficiencies of Algorithm 3.1 and Hybrid on the iPSC/2 (n 100,p 32).

matrix A are initialized at the beginning. They are updated after each stage of the
computation to obtain the column norms of A(j). For example, suppose at stage j the
column norms Ila(kj)112, k 1,..-, n, are known by leader. The column of maximum
norm, kmax, is determined by leader and the result is broadcast. Columns j and kmax
are then interchanged by all processors. After stage j of the algorithm the updated
norms can be obtained from the formula

(3.3) Ila(/l) ll= Ila() ll (1- ([a(/l)]))ila()

for k j+l,..., n. The results are then sent to the next leader (i.e., the next processor
on the ring) for stage j + 1 of the QR algorithm. Note that numerical cancellation is
a potential problem in computing these norm updates. However, circumstances that
would result in this problem can be monitored and the suspect column norm can be
recomputed. A standard way to monitor for numerical cancellation is to keep track
of the products of the multiplicative factors in (3.3) that have been obtained since
the last explicit calculation of the column norm. When this product is sufficiently
less than one, then there is the possibility of cancellation error, and the column norm
is recomputed. In our implementation the recomputation is done by broadcasting
a special notifier to the other processors instead of the column pivot. The required
column norms are then recomputed and the result gathered at leader. Our observation
has been that recomputation of the column norms is rarely required and therefore does
not significantly affect the efficiency of the algorithm.

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 777

TABLE 3.1
Execution times of Algorithm 3.1 and Hybrid on the iPSC/2 hypercube.

Execution times (sec) without pivoting
Single processor P Hybrid Algrithm 3.1

8 5.17 4.86
100 200 31.60 16 3.60 3.08

32 2.98 2.27

8 9.89 9.64
100 400 69.44 16 5.86 5.45

32 4.11 3.46

86 19.41 19.20
100 800 145.28 10.59 10.22

32 6.38 5.84

8 39.21 39.07
100 1600 299.86 16 20.47 20.15

32 11.25 10.76

8 35.02 34.12
200 400 246.85 16 20.44 19.01

32 14.10 11.77

8 73.01 72.18
200 800 543.14 16 39.09 37.82

32 23.01 21.12

8 113.11 109.32
400 400 775.93 16 66.47 61.04

32 46.81 37.97

Another potential concern for numerical stability might be the possibility of over-
flow from the way the Ok are computed in Algorithm 3.1. We note that these partial
sums can be scaled by the most recent approximation to the column norms avail-
able to all the processors. We did not find it necessary to include this scaling in our
implementation.

Figure 3.2 exhibits a graph comparing the efficiencies of Algorithm 3.1 with and
without pivoting. In Table 3.2 we include some representative times from these ex-
periments. The efficiencies are again computed by comparing the running times of
the parallel algorithms to running times of the MINPACK QR subroutine QRFAC on
a single processor. As before, these results were obtained on a 32 node iPSC/2 hyper-
cube with the number of columns fixed at 100. The data points are the experimental
results and the dotted curves are theoretical approximations to these efficiencies,
which we will now describe.

The efficiencies observed for the row-oriented Householder algorithm can be ex-
plained by a simple model for the communication overhead involved and consideration
of computational imbalances between the processors. The efficiency is computed by
the formula

(3.4) efficiency
seq

P tparallel

where tseq is the execution time of the sequential algorithm and tparallel is the execu-
tion time of the parallel algorithm on p processors. The parallel execution time can
be considered to consist of three parts" (1) the optimal time, tseq/p, (2) the com-
putational imbalance relative to the optimal distribution of work, tcomp, and (3) the
communication overhead demanded by the parallel algorithm, tcomm. Hence, we have

778 T.F. COLEMAN AND P. E. PLASSMANN

1 "’1

Efficiency

0 I, ,!

200 400 600 800 1000 1200

Number of Rows (m)

FIG. 3.2. Efficiencies of Algorithm 3.1 with and without column pivoting (n 100, p 32).

that

tseq(3.5) tparallel + tcomp + tcomm
P

and (3.4) can be rewritten as

(3.6) efficiency tcomm+tcomp1 + tseq P

The sequential execution time of the Householder QR algorithm measured in
old-style flops is

(3.7) tseq n2(m- n/3).

In the discussion that follows, we use (3.7) to define the length of time we consider to
be one flop. On the iPSC/2 this time was experimentally determined to be 19.15#sec.
However, this definition can be tricky since, for example, an add, multiply, or divide
can take varying lengths of time to execute depending on how the code is written.
Consequently, some of the coefficients in the following formulae had to be obtained
experimentally and are not simple multiples of the above-defined flop.

To approximate the computational imbalance we consider two dominant terms.
The first is due to the variation of the number of rows assigned to the processors,
and the second term is due to the idle time of processors during the computation
of the a’s in Algorithm 3.1. Work is not quite equally distributed to the proces-
sors with the row wrapping. On the average, half the processors are assigned an

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 779

TABLE 3.2
Execution times of Algorithm 3.1 with pivoting on the iPSC/2 hypercube.

Execution times (sec) with pivoting
m Single processor P Algrithm 3.1

100 200 32.36

100 400 70.60

100 800 147.10

100 1600 303.11

200 400 249.97

200 800 547.77

400 400 785.60

8
16
32

16
32

8
16
32

8
16
32

8
16
32

8
16
32

8
16
32

5.62
3.82
3.01

10.44
6.22
4.21

20.13
11.03
6.61

40.07
21.01
1i.56
36.88
21.65
14.36

75.15
40.57
23.77

119.11
70.66
47.52

extra row; hence, the remaining processors are idle during the portion of the House-
holder update corresponding to this extra row. The Householder update to a row of
length k requires 2k flops, resulting in a computational imbalance over the entire fac-

n 2k n2/2 flops. The total idle time of processors during thetorization of
accumulations of sums in the computation of an 0-vector of length k is approximately
(log(p)- 1)kTadd, where Tadd is the time required for an add. Summing this expres-
sion from k 1 to n yields (log(p)- 1)n2Tdd. Finally, the processor leader requires
some length of time, say, 1, to compute each element of the a-vector and time 32 per
element to update the column norms. These computations result in a total imbalance
of (/ +/2)n2/2. Combining these contributions yields an approximation for tcomp
in flops, of

tcomp (31 + 32 + (log(p) 1)Tadd + 1)n2/2.

In our implementation, the times 3 and 32 were determined to be 22.4#sec and
ll0.6#sec and Tadd was found to be ll.2#sec.

The communication overhead for Algorithm 3.1 includes the time required for the
naccumulation and broadcast of the a-vectors. This overhead is k=l 21og(p)T(k),

where T(k) is the time required to send a double precision vector of length k between
neighboring processors. An additional time of n 1og(p)T(1) + =1T(k) is required
to broadcast the pivot and transfer the column norms. Combining these two terms
yields an approximation to the communication overhead of

(3.9) tcomm (2 log(p) + 1)T(n) + n 1og(p)T(1),

nwhere we define T(n) to be -k= T(k).

780 T.F. COLEMAN AND P. E. PLASSMANN

For the iPSC/2 the function T(k) is, fortunately, empirically simple to describe;
the cost function is essentially linear over large ranges of vector lengths k. Exper-
imentally, we determined that a good approximation to this cost function is given
by

T(k) . T1 + lk, 1 <_ k <_ 12,
(3.10)

T(k) . T2 + "2k, 13 <_ k.

The startup times, T1 and T2, were determined to be 378#sec and 702#sec. The
incremental costs, -y1 and 72, are 1.19#sec/value and 2.87#sec/value. With these
coefficients, the term T(n) in (3.9) can be approximated, for n >_ 13, by

(3.11) T(n) 72n2/2 + T2n + 78(’y1 "Y2) + 12(T1 T2).

After substituting these coefficients into the equations for tcomp and tcomn, (3.6)
was plotted, along with the experimental results for Algorithm 3.1, in Figs. 3.1, 3.3,
and 3.4. To model the efficiency of the row-oriented Householder algorithm without
pivoting we need only eliminate the/2 term from the equation for tcomp and also the
communication overhead due to pivoting in the equation for tcomm. The resulting
modeling function is plotted in Figs. 3.1 and 3.2.

Efficiency

8 / /,:.x..x..x.->’x"

.6 ..xx

/
.4 ’:" p=4

[I=l p 16

o
200 400 600 800 1000 1200 1400 1600

Number of Rows (m)

FI(. 3.3. Efficiencies of Algorithm 3.1 with pivoting (m 100).

Finally, to model the hybrid algorithm we note that only tcomp must be modified
from the analysis of the efficiency of Algorithm 3.1. Instead of accumulating sums as
in Algorithm 3.1, the hybrid algorithm performs a nonlocal binary reduction of rows
by Givens rotations. The binary reduction of rows of length k by Givens rotations

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 781

Efficiency

.8

50 100 150 200

Number of Columns (n)

FIG. 3.4. Eficiencies of Algorithm 3.1 with pivoting (m 400).

entails a total idle time for the processors of approximately (log(p)- 1)kTGivens, where
TGivens is the time required to apply a Givens rotation to a 2-vector. For the iPSC/2,
TGivens was measured to be approximately 37.3#sec. Summing this value from k 1
to n yields total time 1/2(log(p)- 1)n2TGivens Including the term for the differing
number of rows assigned to processors we have that computational imbalance for the
hybrid algorithm measured in flops is

(3.12) .(hybrid)
vcomp ((log(p)- 1)TGivens -+- 1)n2/2.

Substituting this expression into (3.6) along with the expression for tcomm without
pivoting we obtain the efficiency modeling function plotted in Fig. 3.1.

4. A parallel implementation of the Levenberg-Marquardt algorithm.
To determine the Levenberg-Marquardt parameter, the matrix in (1.4) must be
reduced to upper-triangular form. This reduction is computationally intensive: n(n+
1)/2 Givens rotations and the corresponding row updates, or O(n3) flops. Note that
the work required in this reduction is independent of m, the number of rows. Algo-
rithm 4.1 details a parallel method to accomplish this reduction. In the algorithmic
description let S represent storage for an upper-triangular matrix that is initially set
equal to the matrix vfI in (1.4). Remember that the rows of R and S are wrapped
onto an embedded ring of processors, as described in 1.

Algorithm 4.1 proceeds in n stages, which have been indexed by j 0,..-, n 1
in the description. At stage j of Algorithm 4.1 the superdiagonal of S that is a
distance j from the main diagonal is eliminated by Givens rotations. After n stages,
the upper-triangular matrix S has been completely zeroed and the updated upper-
triangular matrix R is still wrapped onto the processors in the same manner as at

782 T.F. COLEMAN AND P. E. PLASSMANN

Index Set:
Functions:

Ii (set of row indices assigned to processor i}
next (returns number of next processor in the ring},
prey (returns number of previous processor in the ring}

Proe (i): {program for processor i}
For j 0,...,n- 1 do

TIf (j 0) receive rows Sk_j, k e Ij, from processor prey (i);
For k E I do

Compute Givens rotation to zero the bottom
of the vector (Rk,k, Sk--j,k)T;

TUpdate rows RkT and Sk_j with above Givens rotation;
If (k j + 1) Delete {k} from Ii;

enddo
TSend rows Sk_j, k Iy, to processor next (i);

enddo

ALGORITHM 4.1. A parallel row-oriented R-S reduction.

the start of the algorithm. As the leading nonzero of each row of S is eliminated and
the corresponding rows updated, the rows of S move around the embedded ring in
a systolic manner. Although the work at each stage is not completely balanced, the
processor doing the most work rotates around the ring. This imbalance is somewhat
offset by the required communication. Experimental results of the efficiency of this
algorithm as a function of the number of columns are presented as data points in
Fig. 4.1. Also plotted in the figure are the modeling functions for these efficiencies,
which we will develop below.

Similar to the analysis of the QR factorization algorithms, we can model the
observed efficiencies of Algorithm 4.1. First note that the total sequential work,
measured in flops, is given by the formula

tseq
k=l

2 a

since the application of each Givens rotation to a 2-vector requires four flops. As
before, we use the above equation to define the length of time we consider to be a
flop. On the iPSC/2, this time was determined to be 10.9#sec.

At each step of the outer loop in Algorithm 4.1 there is a processor assigned the
longest rows relative to other processors. Each of these rows differs from the average
row length by p/2 elements. Since each processor has approximately kip rows at step
n- k, we have that the computational imbalance is bounded by

(4.2)

t(rw) Ecomp ’ 4
k--1

, n2

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 783

Efficiency

.s::4’ ,’""::.....e............... ..x .x .x
/ /

...../’""........." .. "/ ? ,
/ / /a ...
i / /" ,...""

i-i / x/ +"4/[/,,__l/ El p--16

.2

0
50 100 150 200 250 300 350 400

Number of Columns (n)

FIG. 4.1. Efficiencies of Algorithm 4.1 on the iPSC/2.

To compute the communication overhead we define the function p(k) to be the
length of time for all the processors on an embedded ring to send synchronously a
double precision vector of length k to their neighbors. Experimentally, this function
is essentially linear; hence, we introduce the approximation

(4.3) p(k) ,. Po + Ck.
For the iPSC/2 we determined values of 1105#sec for p0 and 6.85#sec/value for .

At iteration n- k of Algorithm 4.1 the message length is approximately k2/(2p);
hence, we have that

(4.4)

t(rw) E/9comm

k=l

pon + p.
Using (3.6), we obtain the following modeling function for the efficiency of Algorithm
4.1:

(4.5) efficiency(rw)
1 + /4 + (p/n + pop

After substituting the necessary coefficients into (4.5), the resulting efficiency
functions were plotted in Fig. 4.1. Note that for large n the efficiencies do not asymp-
totically approach 1, but rather approach the constant 1/(1 + /4), which is indepen-
dent of the number of processors used.

784 T.F. COLEMAN AND P. E. PLASSMANN

Index Set: Ki {set of column indices assigned to processor i}

Proc (i): {program for processor i}
For j 0,...,n- 1 do

If (j 0) Receive Givens vector g from processor prey (i);
For k E Kj do

For min(j, p 1),..., 1 do
TUpdate rows RkT_ and Sk_ with Givens rotation gk_;

enddo
Compute Givens rotation to zero the bottom

of the vector (Rk,k, Sk-,k)T;
TUpdate rows R" and Sk_ with above Givens rotation;

Update gk in Givens vector;
If (k j + 1) Delete {k} from Ii;

enddo
Send Givens vector g to processor next (i);

enddo

ALGORITHM 4.2. A parallel column-oriented R-S reduction.

A column-oriented approach is also possible and is presented as Algorithm 4.2.
Experimental results for this algorithm are compared to those of Algorithm 4.1 in
Table 4.1 and also plotted in Fig. 4.2. For Algorithm 4.2 the columns, as opposed
to the rows, of R and S are wrapped onto the ring of processors. Rather than
communicating rows of S between neighboring processors, the Givens rotations are
stored in vectors g that rotate around the ring. Once the algorithm has been running
for more than p steps, i.e., j >_ p- 1, then the Givens vector g is completely filled with
updates that need to be applied once received. The order in which these rotations
are applied in the loop is important. Since they operate on the same row of S,
the rotations must be applied from the oldest to the most recent. Also, by row R"
we mean the nonzero components of row R that are local to processor i. These
components are given by the index set Ki.

Even though Algorithm 4.2 is a bit more complicated, the total number of mes-
sages that have to be sent is the same as in Algorithm 4.1. However, for large n/p,
the total number of values that have to communicated is actually less. For an aver-
age step j in Algorithm 4.2 we need only communicate the single Givens vector g of
length O(n) between neighboring processors. For the row-oriented version we need
to communicate O(n/p) rows of S of length O(n) between processors. In practice,
the rows of S are combined into one long message that results in the same number
of communication startups as appear in Algorithm 4.2. The message startup cost,
measured in equivalent flops, for the Intel iPSC hypercube is very expensive and is
normally the dominant factor in the communication cost of an algorithm. For large
n/p, however, the average message lengths are extremely different; hence, in compar-
ing Figs. 4.1 and 4.2, it is apparent that the column-oriented version is asymptotically
superior. By the same argument, for small n/p, the row-oriented version is superior.
This crossover in the observed efficiencies of the two algorithms can be explained by
also modeling the efficiency of Algorithm 4.2.

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 785

TABLE 4.1
Execution times of Algorithms 4.1 and 4.2 on the iPSC/2 hypercube.

Execution times (sec)
n Single processor p Algorithm 4.1

8
50 1.06 16

32

100 7.78 6
32

8
150 25.54 16

32

8
200 59.67 16

32

8
300 198.28 16

32

8
400 466.14 16

32

Algorithm4.2
0.22 0.21
0.15 0.15
0.09 0.12

1.26 1.20
0.74 0.72
0.48 0.49

3.90 3.59
2.11 2.01
1.25 1.25

8.97 8.07
4.63 4.37
2.67 2.59

29.43 25.95
14.66 13.68
7.95 7.56

67.91 60.27
34.24 31.28
17.79 16.71

The computational imbalance of Algorithm 4.2 is the same as that for the row-
oriented algorithm. Hence, we need only modify the expression for the communication
overhead in the efficiency model. Since at iteration n- k in the column-oriented
algorithm, each processor sends k Givens rotations to its ring neighbor, we have that

(4.6)

n

vcommt(Cl) E p(2k)
k-1

port + Cn2.

Combining this expression with the bound for the computational imbalance obtained
earlier we obtain an approximation to the efficiency of Algorithm 4.2:

(4.7) efficiency(c1)
1 + ((1 +)p/n + pop/n2)"

Comparing (4.5) and (4.7) we note that they are equal for n* 6p. Experimentally,
this crossover in the efficiencies of the two algorithms can be observed in Fig. 4.3. In
this figure the crossover appears to occur near n 150, close to the value of n* 192
predicted by the efficiency modeling functions.

Finally, we note that there are two possible ways to improve the asymptotic
performance of the row-oriented algorithm. The first would be to wrap blocks of
rows, say, b rows, onto the processors instead of single rows. This would decrease the
length of messages sent at each iteration by a factor of 1lb. Of course, this approach
would also increase the computational imbalance by a factor of b. Following the
analysis done above for the row-oriented algorithm we find that the optimum block
size is b* v/n/(6p). For this value of b, the asymptotic efficiency of the algorithm
is improved to 1/(1 + V/3p/(2n)). However, note that for the value of determined
above and for p- 32, n must be greater than 610 for the efficiency to improve when

786 T.F. COLEMAN AND P. E. PLASSMANN

Efficiency

0 [’’’
50 100

p=4
+ p=8
El p=16
x p=32

150 200 250 300 350 400

Number of Columns (n)

FiG. 4.2. EJficiencies of Algorithm 4.2 on the iPSC/2.

using block size b 2 instead of block size b 1. A second possible improvement
would be to decrease the length of the messages sent in the row-oriented method
by postponing the application of the Givens rotations. Unfortunately, both of these
algorithms are very complicated and were not implemented.

The reduction of the matrix in (1.4) to upper-triangular form is the major task in
a parallel algorithm for determining the Levenberg-Marquardt parameter A,, and we
have shown that there exist effective algorithms to perform this reduction. However,
efficient solution of triangular systems is also important in this context. In fact, for
each iteration involving a solution of (1.4) there are two associated triangular solutions
that are used to bracket the solution A, [M78]. Recently, much work has been done on
the parallel solution of triangular systems [C86], [LC88], [LC89], [HR88]. We used the
triangular solution algorithms developed by Li and Coleman in our implementations,
but it should be noted that the efficiencies of these algorithms are not nearly as good as
those of Algorithms 4.1 and 4.2. This difference is what accounts for the discrepancies
between the efficiencies shown in Fig. 4.1 and the efficiencies reported in the next
section for solving for the Levenberg-Marquardt parameter. This effect is apparent
since even though there is an O(n) difference between the amount of work required
for Algorithm 4.1 and the corresponding triangular solutions, their communication
costs are comparable. The importance of efficient parallel triangle system solvers has
also been observed in the parallel solution of systems of nonlinear equations [CL87].

5. Experimental results and conclusions. These algorithms were imple-
mented on a 32 node Intel iPSC/2 hypercube with 4.5 MBytes of memory per node
in Green Hills Fortran-386 and run under version R3.2 of the iPSC operating system.

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 787

Efficiency

.4

+ +

Algorithm 4.1
Algorithm 4.2

0 ,,I

50 100 150 200 250 300 350 400

Number of Columns (n)

FIG. 4.3. E]ficiencies of Algorithms 4.1 and 4.2 (p-- 32).

The efficiencies shown below were calculated by dividing the running time of MIN-
PACK [MGHS0] code on a single processor by the number of processors used times
the running times of the parallel algorithms. Therefore, a large number corresponds
to greater efficiency. The comparison is fair, as both programs generate the same se-
quence of iterates and consequently do the same number of Jacobian approximations,
QR factorizations, and Newton iterations in computing the Levenberg-Marquardt
parameter.

Problem Function form
number

1 F=Ax-e

2 F=Ax-e

TABLE 5.1
Description of test functions.

fi Aijkxjxk
i,k
-1

Characteristics J’F eval. J approx.

cost. cost

A E Rren, full rank, O(m) cheap
Ax easily evaluated, e
an m-vector of ones

A El:tmxn, lowrank, O(mn) expensive
dense

4 f (exp(xjT) Constrained, x < 0 for
--exp(ajTi)) C < 0 and T > 0

F eval.
separable?

no

yes

yes

yes

The test problems used to obtain the experimental results are described in

788 T.F. COLEMAN AND P. E. PLASSMANN

TABLE 5.2
Experimental results of parallel algorithms compared with MINPACK.

Efficiencies compared to MINPACK
time spent in routine)

Prob n m

1 100 250

1 100 500

1 100 1000

1 200 250

1 200 500

p Total QR L-M R-S Tri-s J-appr
8 .732 .757 .182 .202 .498

(100.0) (94.1) (0.8) (0.0) (0.7) (3.0)
16 .531 .585 .045 .047 .326

(100.0) (88.2) (2.4) (0.0) (2.1) (3.4)
32 ’322 .391 :023 .023 .191

(100.0) (80.0) (2.9) (0.0) (2.6) (3.5)
8 .849 .859 .189 .202 .624

(100.0) (96.8) (0.4) (0.0) (0.4) (2.3)
16 .709 .745 .045 .047 .451

(00.0) (9.2) (1.) (0.0) (1.4) (.7)
32 .518 .576 .023 .023 .291

(100.0) (88.1) (2.1) (0.0) (2.0) (3.0)
8 ’908 .915 .181 .202 .737

(100.0) (97.5) (0.2) (0.0) (0.2) (1.9)
16 .822 .850 .046 .047 .591

(100.0) (94.9) (0.8) (0.0) (0.8) (2.1)
32 ,694 .733 .023 .023 .423

(100.0) (93.0) (1.4) (0.0) (1.3) (2.5)
8 .739 .752 .355 .396 .408

(100.0) (95.9) (0.5) (0.0) (0.4) (2.8)
16 .561 .586 .068 .070 .247

(100.0) (93.5) (2.0) (0.0) (1.8) (3.5)
32 .361 .396 .041 .044 .137

(100.0) (89.0) (2.1) (0.0) (1.9) (4.0)
8 .851 .860 .354 .396 .518

(100.0) (97.6) (0.2) (0.0) (0.2) (1.7)
16 .733 .758 .068 .070 .342

(100.0) (95.2) (1.1) (0.0) (1.0) (2.3)
32 .562 .599 .042 .044 .204

(100.0) (92.5) (1.4) (0.0) (1.3) (2.9)

Table 5.1. Shown is the functional form of the test problems, and the computa-
tional complexity of evaluating each function is given in the column labeled "F eval.
cost." We also make a subjective determination as to whether estimation of the Jaco-
bian is cheap or expensive relative to its QR factorization. To be more specific about
the functions used for testing, problem 1 has an O(m) evaluation cost because of a

special form for the matrix A: Aij -2/m, j; Aii= 1- 2/m. The matrix A used
in problem 2 is of low rank: Aij ij + O(e) perturbations, where e is the machine
precision. For problem 3 the tensor A has a bandwidth of 2, allowing for function
evaluation with O(m) cost. The constants used for problem 4 were aj -j and
Ti i/m. In the final column of Table 5.1 we note whether we consider evaluation of
these functions to be separable.

Tables 5.2-5.5 summarize the experimental results obtained by comparing our
parallel algorithms with the MINPACK code running on a single processor for solving
the test problems described in Table 5.1. The efficiencies and the fraction of the
total parallel running time spent in each of six sections of the programs are detailed.
The six sections refer to: QR, the QR factorization of the Jacobian approximation;
L-M, computation of the Levenberg-Marquardt parameter; R-S, the R-S reduction

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 789

TABLE 5.3
Experimental results of parallel algorithms compared with MINPACK.

Efficiencies compared to MINPACK
(% time spent in routine)

Prob n m

2 100 250

2 100 500

2 100 1000

2 200 250

2 200 500

p Total QR L-M
8 .811 .722 .700

(100.01 (a0.) (a0.s)
16 .648 .520 .498

(100.0) (34.3) (34.6)
32 .457 .349 .310

(100.0) (36.0) (39.2)
8 .873 .833 .657

(100.0) (37.9) (11.3)
16 .780 .686 .477

(100.0) (41.1) (14.0)
32 .623 .531 .288

(100.0) (42.4) (18.5)
8 .930 .902 .616

(100.0) (41.5) (2.1)
16 .867 .797 .387

(100.0) (43.8) (3.1)
32 .795 .695 .284

(100.0) (46.0) (3.8)
8 .841 .711 .812

(100.0) (24.7) (39.7)
16 .739 .527 .725

(100.0) (29.3) (39.1)
32 .580 .339 .571

(100.0) (35.7) (38.9)
8 .900 .849 .816

(100.0) (31.6) (22.6)
16 .822 .739 .711

(100.0) (33.2) (23.7)
32 .701 .576 .550

(100.0) (36.4) (26.1)

R-S
.752
(27.7)
.638
(26.1)
.488
(24.1)
.740
(9.7)
.631
(0.2)
.481
(o.7)
.733
(.7)
.6e
(1.8)
.487
(.)
.85
(38.5)
.788
(35.4)
.688
(31.8)
.828
(21.9)
.780
(e.e)
.679
(20.8)

.203
(2.8)
.058
(7.9)
.023
(13.8)
.201
(1.1)
.058
(3.3)
.023
(6.5)
.202
(0.2)
.058
(0.7)
.Oe
(1.6)
.394
(1.1)
.111
(3A)
.044
(6.7)
.395
(0.6)
.111
(2.1)
.044
(a.5)

J-appr
.962
(37.1)
.986
(28.9)
.956
(21.0)
.972
(48.2)
.983
(42.6)
.956
(35.0)
.979
(54.5)
.998
(49.8)
.956
(47.7)
.963
(35.0)
.962
(30.8)
.961
(24.2)
.973
(45.2)
.957
(42.0)
.957
(35.8)

described in 5; Tri-s, the solution of triangular systems; and J-appr, the approx-
imation of the Jacobian by forward differences. We include in J-appr the function
evaluations necessary to estimate the Jacobian, but not the function evaluations done
to test the step acceptance criteria. These function evaluations are included in the
total time but not in one of the six sections. Their efficiency is comparable to that
of the Jacobian approximation but their fraction of the total running time is much
smaller.

These results were chosen to illustrate an average-case behavior of the parallel
algorithms in solving nonlinear least-squares problems. For a particular problem the
fraction of time spent in the different routines and the number of iterations required
for convergence can vary dramatically for various choices of a starting point, initial
trust region size, and termination tolerances. For the above problems the MINPACK
tolerances were set to v/, where is the machine precision. The initial trust region
size was given by 1001120112 where &0 is the starting point normalized by the 2-norms
of the columns of the initial Jacobian approximation. For problems 1, 2, and 3, an
n-vector of ones was used as the starting point, and for problem 4 the starting point
xj -(j + 0.1) was employed. For the problem sizes shown, problem 1 required
2 to 3 iterations (Jacobian approximations) for convergence; problem 2 used 10 to

790 T.F. COLEMAN AND P. E. PLASSMANN

TABLE 5.4
Experimental results of parallel algorithms compared with MINPACK.

Efficiencies compared to MINPACK
(% time spent in routine)

Prob n

3 100

m

250 16

32

3 100 500 16

32

3 100 1000 16

32

3 200 250 16

32

3 200 500 16

32

Total
.742

(100.0)
.545

(100.0)
.344

(100.0)
.847

(oo.o)
.710

(I00.0)
.518

(I00.0)
.911

(100.0)
.828

(100.0)
.686

(100.0)
.745

(oo.o)
.577

(00.0)
.383

(lOO.O)
.853

(00.0)
.738

(100.0)
.571

(00.0)

QR
.758
(94.9)
.586
(90.2)
.391
(S.)
.862
(93.9)
.747
(90.8)
.577
(85.9)
.920
(96.1)
.855
(94.0)
.738
(90.3)
.752
(86.6)
.586
(86.0)
.395
(84.7)
.862
(97.5)
.760
(95.6)
.601
(93.6)

L-M R-S Tri-s J-appr
.182 .202 .527
(0.8) (0.0) (0.7) (3.2)
.046 .047 .345
(2.5) (0.0) (2.2) (3.6)
.oea .oa .eo
(3.1) (0.0) (2.8) (3.8)
’627 .751 .198 .641
(3.2) (2.5) (0.6) (2.3)
.388 .641 .057 .467
(4.4) (2.5) (1.7) (2.7)
.216 .492 .023 .302
(5.7) (2.3) (3.0) (3.0)
.633 .754 .202 .744
(1.7) (1.3) (0.3) (1.9)
.389 .642 .058 .600
(2.5) (1.4) (0.9) (2.1)
.216 .491 .023 .433
(3.7) (1.5) (1.9) (2.5)
.784 .817 .396 .453
(9.9) (9.2) (0.6) (2.6)
.652 .789 .111 .279
(9.2) (7.3) (1.7) (3.3)
.459 .686 .044 .156
(8.7) (5.6) (2.8) (3.9)
.354 .396 .549
(0.3) (0.0) (0.2) (.8)
.068 .070 .367
(1.1) (0.0) (1.1) (2.3)
.042 .044 .222
(1.4) (0.0) (1.3) (3.0)

12 iterations. Problem 3 required 7 to 8 iterations to converge and more than 10
iterations were required for problem 4 to converge; the results shown in Table 5.5
were taken from the first 10 iterations.

From these results it is apparent that either the QR factorization or the Jacobian
approximation is the dominant computational cost for these problems. When the QR
factorization cost dominates, the implementation is more efficient as m, the number of
rows, increases. The cost of computing the Levenberg-Marquardt parameter can also
be significant; this computation could dominate the QR factorization for problems
that require a disproportionately large number of R-S reductions and for which the
ratio m/n is close to one. This effect would occur in problems where the Jacobian
is rank-deficient or the function is very nonlinear (which would require a small trust
region in order to ensure an accurate quadratic model of the function). But again,
for a fixed ratio m/n, the efficiency in solving for the Levenberg-Marquardt parame-
ter increases as m increases. As expected, the parallel triangular system solutions
are very inefficient when compared to the QR factorization and R-S reductions.
However, the time required for these solutions composes only a small fraction of

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 791

TABLE 5.5
Experimental results of parallel algorithms compared with MINPACK.

Efficiencies compared to MINPACK
(% time spent in routine)

Prob n m p Total QR L-M R-S Tri-s
8 .905 .745 .708 .759 .202

(100.0) (10.8) (18.0) (16.3) (1.4)
4 100 250 16 .814 .570 .517 .647 .058

(I00.0) (12.7) (22.1) (17.2) (4.5)
32 .677 .371 .330 .492 .023

(100.0) (16.2) (28.8) (18.8) (9.3)
8 .946 .814 .704 .756 .201

(100.0) (11.9) (9.5) (8.6) (0.8)
4 100 500 16 .885 .747 .514 .644 .058

(100.0) (12.2) (12.2) (9.5) (2.5)
32 .796 .558 .329 .490 .023

(100.0) (14.6) (17.1) (11.2) (5.6)
8 .973 .866 .703 .755 .202

(00.0) (2.5) (4.a) (4.0) (0.4)
4 100 000 6 .941 .850 .5 .644 .o58

(100.0) (12.3) (5.9) (4.5) (1.2)
32 .879 .703 .326 .491 .023

(100.0) (13.9) (8.6) (5.5) (2.8)
8 .902 .682 .819 .831 .395

(100.0) (8.1) (33.2) (32.3) (0.8)
4 200 250 16 .850 .525 .740 .797 .111

(100.0) (10.0) (34.6) (31.7) (2.7)
32 .743 .350 .586 .693 .044

(100.0) (13.0) (38.2) (31.9) (6.0)
8 .945 .805 .821 .833 .393

(100.0) (10.1) (17.8) (17.3) (0.4)
4 200 500 16 .904 .717 .739 .797 .111

(100.0) (10.9) (19.0) (17.3) (1.5)
32 .837 .572 .585 .694 .044

(100.0) (12.6) (22.2) (18.5) (3.5)

J-appr
.980
(9.e)
.970
(e.9)
.975
(e.)
.996
(76.4)
.971
(73.3)
.978
(65.5)
0.994
(80.8)
.987
(79.5)
.979
(74.9)
.980
(57.8)
.979
(54.5)
.978
(47.6)
.996
(71.0)
.979
(69.1)
.978
(64.0)

the total computation time of the parallel implementation, and therefore it does not
significantly decrease the overall efficiency. However, note that for fixed problem size
the fraction of total time spent solving triangular systems does increase significantly
as the number of processors is increased.

For functions whose evaluation is very expensive we observe that the computa-
tion required for the approximation of the Jacobian by forward differences can equal
or exceed the computation required for these other tasks. For the expensive test
functions we considered, the function evaluation was separable, and hence the row-
oriented Jacobian approximation algorithm yielded efficiencies comparable to the QR
factorization and Levenberg-Marquardt parameter solves. If the function evaluation
were expensive and not separable, one would have to resort to a column-oriented
Jacobian approximation algorithm, as described in 3. In this case the efficiency of
the implementation would depend on the number of columns being sufficiently large.
Another possibility would be to obtain an algebraic expression for the Jacobian and
to evaluate the Jacobian directly rather than using forward differences; the algebraic
evaluation of the Jacobian could be separable even when the function itself is not.

792 T.F. COLEMAN AND P. E. PLASSMANN

When the function evaluation is expensive and not separable, a column-oriented
implementation suggests itself. In this context, the improved efficiency of using a
pipelined, column-oriented QR factorization is tempting. However, complete pivoting
destroys the pipelining aspect of these column-oriented algorithms. A local pivoting
strategy is possible [B88], but the effect of a different pivoting strategy on the solution
of these nonlinear problems would have to be tested.

In summary, we have observed good efficiencies when solving moderate-sized non-
linear least-squares problems on the Intel hypercube. For the test problems considered
we noted that the efficiency of our parallel implementation improved as the ratio m/p
increased, where m is the number of rows of the Jacobian and p is the number of
processors. We also point out that it is possible to solve much larger problems than
those we have described above (which had to be run on one processor for comparison).
The efficiencies for such larger problems would be correspondingly better. A related
topic is the solution of large sparse problems: Plassmann [P90] has considered the
general case, and future consideration should be given to problems that have special
structure. For example, the row-oriented approach could also be used if the Jacobian
were banded and would be efficient in solving problems with a block structure.

Acknowledgments. The work reported in this paper was partially completed
with the assistance of computing facilities of the Advanced Computing Research In-
stitute at the Cornell Center for Theory and Simulation in Science and Engineering,
which is supported by the National Science Foundation and New York State. We
would also like to acknowledge discussions at Oak Ridge National Laboratory (as
part of their Numerical Linear Algebra Year) and thank the referees for a number of
constructive comments.

REFERENCES

[B88]

[BSS88]

[c86]

[CP86]

[csa]

[CL87]

[CP89]

[HR88]

[JH88]

C. BISCHOF, QR factorization algorithms for coarse-grained distributed systems, Tech.
Report 88-939, Computer Science Department, Cornell University, Ithaca, NY, 1988.

R. BYRD, R. SCHNABEL, AND G. SHULTZ, Parallel quasi-Newton methods for uncon-
strained optimization, Tech. Report CU-CS-396-88, Department of Computer Sci-
ence, University of Colorado, Boulder, CO, 1988.

R. M. CHAMBERLAIN, An algorithm for LU factorization with partial pivoting on the
hypercube, Tech. Report CCS 86/11, Department of Science and Technology, Chr.
Michelsen Institute, Bergen, Norway, 1986.

R. M. CHAMBERLAIN AND M. J. D. POWELL, QR factorisation for linear least-squares
problems on the hypercube, Tech. Report CCS 86/10, Department of Science and
Technology, Chr. Michelsen Institute, Bergen, Norway, 1986.

E. CHU AND A. GEORGE, QR factorization of a dense matrix on a hypercube multipro-
cessor, Tech. Report ORNL/TM-10691, Mathematical Sciences Section, Oak Ridge
National Laboratory, Oak Ridge, TN, 1988.

T. F. COLEMAN, Large sparse numerical optimization, Lecture Notes in Computer Sci-
ence 165, G. Coos and J. Hartmanis, eds., Springer-Verlag, New York, 1984.

T. F. COLEMAN AND G. LI, Solving systems of nonlinear equations on a message-passing
multiprocessor, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 1116-1135.

W. F. COLEMAN AND P. E. PLASSMANN, Solution of nonlinear least squares problems
on a multiprocessor, in Lecture Notes in Computer Science 384, Parallel Computing
1988, G. A. van Zee and J. G. G. van de Vorst, eds., Springer-Verlag, Berlin, New
York, 1989, pp. 44-60.

M. T. HEATH AND C. H. ROMINE, Parallel solution of triangular systems on distributed
memory multiprocessors, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 558-588.

L. JOHNSSON AND D. T. HO, Algorithms for matrix transposition on boolean n-cube
configured ensemble architectures, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 419-
454.

A PARALLEL NONLINEAR LEAST-SQUARES SOLVER 793

[L44]

[LC89]

[LCSS]

[M63]

[MVV87]

[M87]

[M78]

[MGH80]

[P90]

[PR87]

[ss8]

K. LEVENBERG, A method for the solution of certain non-linear problems in least squares,
Quart. Appl. Math., 2 (1944), pp. 164-168.

G. LI AND T. F. COLEMAN, A new method for solving triangular systems on distributed
memory message-passing multiprocessors, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 382-396.
A parallel triangular solver for a distributed memory multiprocessor, SIAM J. Sci.

Statist. Comput., 9 (1988), pp. 485-502.
D. W. MARQUARDT, An algorithm for least squares estimation of non-linear parameters,

SIAM J. Appl. Math., 11 (1963), pp. 431-441.
O. M. McBRYAN AND E. F. VAN DE VELDE, Hypercube algorithms and implementations,

SIAM J. Sci. Statist. Comput., 8 (1987), pp. s227-s287.
C. MOLER, Matrix computations on distributed memory multiprocessors, Tech. Report,

Intel Scientific Computers, Beaverton, OR, 1987.
J. J. MORI, The Levenberg-Marquardt algorithm: Implementation and theory, in Lec-

ture Notes in Mathematics 630, Numerical Analysis, G. Watson, ed., Springer-Verlag,
New York, 1978, pp. 105-116.

J. J. MORI, B. GARBOW, AND K. HILLSTROM, User guide for MINPACK-1, Argonne
National Laboratory Report ANL-80-74, Argonne, IL, 1980.

P. E. PLASSMANN, Sparse Jacobian estimation and factorization on a multiprocessor,
in Large-Scale Numerical Optimization, T.F. Coleman and Y. Li, eds., Society for
Industrial and Applied Mathematics, 1990, pp. 152-179.

A. POTHEN AND P. RAGHAVAN, Distributed orthogonal factorization: Givens and House-
holder algorithms, Tech. Report, Department of Computer Science, The Pennsylva-
nia State University, State College, PA, 1987.

Y. SAAD AND M. H. SCHULTZ, Data communication in hypercubes, Yale University
Research Report DCS/RR-428, Department of Computer Science, Yale University,
New Haven, CT, 1985.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 794-814, May 1992

() 1992 Society for Industrial and Applied Mathematics
011

WELL-CONDITIONED ITERATIVE SCHEMES FOR MIXED
FINITE-ELEMENT MODELS OF POROUS-MEDIA FLOWS*

MYRON B. ALLENt, RICHARD E. EWINGt, AND PENG LU$

Abstract. Mixed finite-element methods are attractive for modeling flows in porous media
since they can yield pressures and velocities having comparable accuracy. In solving the resulting
discrete equations, however, poor matrix conditioning can arise both from spatial heterogeneity in
the medium and from the fine grids needed to resolve that heterogeneity. This paper presents two
iterative schemes that overcome these sources of poor conditioning. The first scheme overcomes poor
conditioning resulting from the use of fine grids. The idea behind the scheme is to use spectral
information about the matrix associated with the discrete version of Darcy’s law to precondition the
velocity equations, employing a multigrid method to solve mass-balance equations for pressure or
head. This scheme still exhibits slow convergence when the permeability or hydraulic conductivity is
highly variable in space. The second scheme, based on the first, uses mass lumping to precondition
the Darcy equations, thus requiring more work per iteration and minor modifications to the multigrid
algorithm. However, the scheme is insensitive to heterogeneities. The overall approach should also
be useful in such applications as electric field simulation and heat transfer modeling when the media
in question have spatially variable material properties.

Key words, mixed finite elements, iterative solution schemes, heterogeneous porous media

AMS(MOS) subject classification. 65

1. Introduction. We consider methods for solving discrete approximations to
the equations governing single-fluid flow in a porous medium. If the flow is steady
and two-dimensional with no gravity drive, Darcy’s law and the mass balance take
the following forms:

u=-Kgradp in

divu-f in Ft.

Here u,p, and f represent the Darcy velocity, pressure, and source term, respec-
tively. For simplicity, we take the spatial domain to be a square, scaled so that
/= (0, 1) (0, 1). The coefficient K(x, y) is the mobility, defined as the ratio of the
permeability of the porous medium to the dynamic viscosity of the fluid. In appli-
cations to underground flows, the structure of K may be quite complex, depending
on the lithology of the porous medium and the composition of the fluid. We assume,
however, that this ratio is bounded and integrable on and satisfies K >_ /inf 0.
We impose the boundary condition p 0 on c0, so that p effectively represents the
deviation in pressure from a reference value known along 0.

Scientists modeling contaminant flows in groundwater or solvent flows in oil reser-
voirs often need accurate finite-element approximations of u and p simultaneously.
For this reason, mixed finite-element methods for solving the system (1.1) are
particularly attractive, since they can yield approximations to u and p that have
comparable accuracy [1], [5], [9]. The key to achieving such approximations
is the use of appropriate piecewise polynomial trial spaces, such as those proposed by

Received by the editors April 12, 1990; accepted for publication (in revised form) February 20,
1991. This research was supported by National Science Foundation grant RII-8610680, Office of
Naval Research grant 0014-88-K-0370, and the Wyoming Water Reseach Center.

Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071-3036.
Department of Mathematics, University of Georgia, Athens, Georgia 30605.

794

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 795

Raviart and Thomas [11]. As we review in 2, if we use the lowest-degree Raviart-
Thomas spaces, the mixed formulation yields systems of discrete equations that have
the form

AU + NP 0,
(1.2)

NTu F.

Here, U and P signify vectors containing nodal values of the trial functions for u and
p, defined on a grid over f, and A and N are matrices. As we illustrate below, the
matrix A contains information about the spatially varying material property K, while
N and NT are essentially finite-difference matrices.

Equations (1.2) can be quite difficult to solve efficiently, for the following reasons.
When K varies over short distances, accurate finite-element approximations require
fine grids on t. For example, one might choose grids fine enough to allow reasonable
approximations of K by piecewise constant functions. Fine grids, however, typically
yield poorly conditioned matrix equations. For classical stationary iterative schemes,
this increase in the condition number of the system leads to slow convergence, no
matter how "nice" K may be [2, 4.11]. The problem is compounded whenever K
exhibits large spatial variations, as can occur near lithologic changes in the porous
medium or sharp contacts between fluids of different viscosity. In such problems, as we
shall demonstrate, the poor conditioning associated with spatial variability typically
aggravates that associated with the fine grids needed to resolve the physics of the
problem. Thus, in problems with significant material heterogeneity, methods that are
relatively insensitive to these two sources of poor conditioning can have considerable
utility.

In this paper we discuss two iterative schemes for the mixed-method equations
(1.2). The first scheme possesses convergence rates that are independent of the fineness
of the grid. The second scheme, derived from the first, also overcomes the sensitivity
to the spatial structure of K, at the expense of somewhat more computation per
iteration. Briefly, the first scheme proceeds as follows: Let (U(),P()) be initial
guesses for the value of (U, P). Then the kth iterate for (U, P) is the solution of

(1.3) (col N) (V(k)) (0) (wl-A 0) (V(k-l))NT 0 p(k) F -[-
0 0 p(k-1)

where I stands for the identity matrix and w signifies a parameter, discussed below,
that is related to the spectral radius p(A) of A. For each iteration level k, the main
computational work in (1.3) is to solve a linear system of the form (w-INTN)p(k)

G(k-). However, the matrix w-NTN remains vulnerable to the poor conditioning
associated with fine grids. We overcome this difficulty by using a multigrid scheme to
solve for p(k), thereby greatly reducing the computational work in each iteration.

An interesting feature of this approach is that NTN is essentially the matrix
associated with the five-point difference approximation to the Laplace operator with
Dirichlet boundary conditions. Hence, the multigrid portion of the scheme does not
encounter the variable coefficient, and the algorithm is particularly simple. The price
paid for this simplicity, as we shall see, is sensitivity to the poor conditioning associ-
ated with spatial variability.

To overcome this second source of trouble, we modify the first scheme to get new
ones of the form

(1.4) (D N) (V(k)) (0) (D-A 0) (V(k-I))NT 0 p(k) F + 0 0 p(k-1)

796 M.B. ALLEN, It. E. EWING, AND P. LU

where D denotes a diagonal matrix that we compute from A. This new class of
schemes requires us to invert NTDN, which we again do using a multigrid method
to preserve h-independence of the convergence rate. While the multigrid method
must now accommodate spatially varying coefficients, the overall scheme possesses
the advantage that its convergence rate is independent of the spatial structure of K,
provided K is piecewise constant on the grids of interest.

Our paper has the following format. In 2 we review the mixed finite-element
method that we use. Section 3 describes the first iterative scheme in more detail
and analyzes its convergence. In 4 we discuss the application of multigrid ideas to
the first scheme. Much of the motivation and groundwork for the second class of
iterative schemes resides in 3 and 4. In 5 we present some numerical results for
this algorithm. Section 6 describes the modifications necessary to produce the second
class of iterative schemes and presents numerical results illustrating good convergence
rates even in the presence of heterogeneities.

2. A mixed finite-element method. We begin with a brief review of the
mixed finite-element method, following the notation of Ewing and Wheeler [8]. Let
H(div, Ft) (v e L2(t) L2(t) div v e L2()}. The variational form for (1.1) is
as follows: Find a pair (u,p) e H(div, t) L2(12) such that

(2.1)

u ..v dx dy f divvdxdy=0 ’ff E H(div,)P V
K

div u f)q dx dy 0 V q e L2(gt).

By our assumptions on K, there exist constants Kinf, Ksup such that 0 < Kinf <_ K <_
Ksup. Implicit in these equations is also the assumption that K-1 is integrable on t.

To discretize the system (2.1), let Ax {0 xo < X < < Xm 1} be a set
of points on the x-axis and Ay {0 Yo < Yl < < Yn 1} a set of points on the
y-axis. Let Ah Ax Ay be the rectangular grid on t with nodes {(xi, Yj)ji=0,j=0-
The mesh of this grid is

h ma.x{xi xi_l, yj yj-1}.

We assume throughout the paper that A and Ay are quasi-uniform in the sense that
xi xi-1 _> ah and yi yy-1 _> ah for some fixed a (0, 1). With Ah we associate
a finite-element subspace Qh Vh of H(div,) z L2(). The "velocity space" is
Qh Q z Q, where Q and Q are both tensor-product spaces of one-dimensional,
finite-element spaces. In particular, we use the lowest-order Raviart-Thom spaces
in which Q contains functions that are piecewise linear and continuous on Ax and
piecewise constant on Ay. Similarly, Q contains functions that are piecewise linear
and continuous on Ay and piecewise constant on A. The "pressure space" Vh consists
of functions that are piecewise constant on Ah.

Given these approximating spaces, the corresponding mixed finite-element method
for solving (2.1) is as follows: Find a pair (Uh, Ph) Qh Vh such that

dx dy Ph div vhdx dy 0 V Vh Qh,

div Uh f)qhdx dy 0 V qh Vh.

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 797

This finite-element discretization yields approximations Uh and Ph whose global er-
rors are both O(h) in the norm I1" [IL2(Ft)" Ewing, Lazarov, and Wang [6] also prove
superconvergence results that guarantee smaller errors at special points in t. This
phenomenon appears in our numerical examples in 5. In contrast, standard ap-
proaches solve for approximations to p and then numerically differentiate to compute
u -K gradp, thereby losing an order of accuracy in the velocity field [1].

To see the linear algebraic equations implied by (2.2), suppose Uh and Ph have
the expansions

)u(x,) u.. (x,) u.. (x,),, ,,
i=0 j=l i=1 j=0

m n

Ph (x, y) Pi,ji,j (x, y).
i=1 j=l

Here, i,y, i,j, and i,y signify elements in the standard nodal bases for Q, Q,
and Vh. Define the column vectors U IR2""+m+", P IRm" containing the nodal
unknowns as follows:

ur=(u0 u u ..u, u u,1 ,1’’" ,1" 0,n 1,n’’" ,n

(2.3) Uy U Uy Vm,1 UYm,n1,0 i,I l,n Um,o
pT (Pl,1, P2,1,""", Pm,1, Pl,n, P2,n, Pro,n).

Figure 1 shows how to associate these coefficients with nodes on a spatial grid Ah

with m 4, n 3.
With these bases, the problem (2.2) has a matrix representation of the form

(A N
NT o)(U 0

(:.4)

Here A is a symmetric, positive definite matrix having the block structure

A-
0 A

in which A IR(’+l)(m+) and Ay (+1)(+) have entries of the form
x x Y Y

/ i’jCk’
dx fa i’jCk’e

dx

respectively. Note that these entries contain information about the spatiMly varying
coefficient K. The matrix N has the block structure

N- N

where N N(+)nxn and N m(n+l)xmn have entries given, respectively, by

0,
dx dy, ’J Oy

az dy.’ Ox
By calculating these integrals, one readily confirms that N and N reduce to the
usual difference approximations to O/Ox and O/Oy. The vector F N has entries
given by the integrMs fa fi,jdx dy. The appendix to this paper gives more detail on
the construction of A and N.

798 M.B. ALLEN, R. E. EWING, AND P. LU

Y2"

Yl"

Yo"
Xo

U03 P13 U13 P23 U23 P33

02 P12

01

U
12 P22

U P2

U22 P32

.->U
21 P31

-.uX
33 "P43

32 "P42

.>.uX
31 P41
Uo

X X X

FIG. 1. Sample 4 3 rectangular grid on t (0, 1) (0, 1), showing locations of the nodal
unknowns in the velocity and pressure trial functions.

3. An h-independent iterative method. Our first iterative scheme for solv-
ing the discrete system (2.4) is as follows.

ALGORITHM 1. Beginning with initial guess (U(), p(0))T for (U, P), the kth

iterate (U(k), p(k))T is the solution of

(0)NT 0 p(k) F + 0 0 p(k-1)

where I E]R(2mn+m+n) (2mn+m+n) is the identity matrix and w is a parameter chosen
to satisfy w >_ p(A).

Here, p(A) denotes the spectral radius of the matrix A. Later in this section
we discuss a practical way to pick w that does not require detailed knowledge of the
spectrum of A.

Computationally, Algorithm 1 has the following compact form: Given an initial

guess (U(), P()) T, compute (U(k), P(k))T by executing three steps:

(3.2) (i) C(k-) +- -F + w-NT(wI- A)U(k-),

(3.3) (ii) Solve w-INTNp(k) G(k-l),

(3.4) (iii) wU() (wI- A)U(k-l) NP(k).

In each iteration, the main computational work is to solve for p(k) w(NTN)-IG(k-1)
An easy calculation shows that the matrix w-I(NTN) is positive definite, being pro-

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 799

portional to the standard five-point, finite-difference Laplace operator applied to p(k).
Therefore, we expect the numerical solution for p(k) using stationary iterative meth-
ods to be plagued by poor conditioning when the grid mesh h is small.

This observation leads us to use a multigrid scheme to get approximations to
p(k). (In fact, any fast solver for the five-point discrete Laplacian operator would be
appropriate here.) Such a device preserves the h-independence of the overall scheme’s
convergence rate. We discuss this facet of the algorithm in more detail in the next
section. For now let us analyze the convergence properties of the overall iterative
scheme, assuming an efficient "black-box" solver for p(k).

We begin by writing (3.1) as a stationary iterative scheme

(3.5) (U()p(k))
where

=L+M(U(k-1) Ip(k-1)

wI N --1
0

0) ()
(wI N)-I(wI-A O)M= NT 0 0 0

The convergence of Algorithm 1 depends on the spectral radius of the matrix M, for
which the following proposition gives a bound.

PROPOSITION 3.1. Let

(3.6) 0 < Ami

_ _
Amax

be the eigenvalues of the matrix A, and let w >_)max. Then the spectral radius of M
obeys the estimate

(3.7) p(M) <_ 1
)krnin

Proof. Let A 0 be an eigenvalue of M with eigenvector (Ux, Px)T. Thus

(3.8) P NT 0 0 0 Px P
SO

(wI- A)U A(wU + NP),

(3.9b) 0 ANTU.
Since (Ua, pa)T =fi O, (3.9a) shows that Ux # 0; however, Ua may be complex. Let
U/ denote its Hermitian conjugate. If we multiply (3.9a) by U/, observe that N is
a real matrix, and apply (3.9b), we obtain

U(wI A)Ua AwUU + A(NTUa)HPa

800 M.B. ALLEN, R. E. EWING, AND P. LU

This equation allows us to conclude that

o < I;,I uH (I w-A)U <_ p(I w-lA),

which implies

(3.10) p(M) <_ p(I w-A).
Also, by (3.6) and the fact that w >_ Amx, we have

p(I- w-lA) < 1- ,min.

These last two inequalities imply the desired bound (3.7). [3

If we choose w Amax p(A), then the estimate (3.7) for the spectral radius of
the iteration matrix M becomes

)tmin
p(M) < 1

To estimate Amin/,max, the following proposition is helpful.
PROPOSITION 3.2. For the matrix A appearing in (2.4), there exist constants ko

and kl, independent of h, such that

(3.11) koh2UTU <_ UTAU <_ klh2UTU.

Proof. The representation of Uh given in (2.3) leads to the identity

UTAU -lUhl2dx dy -lUhl2dx dy,
j--1

where ,j (x_l,x) (yy_,yy). Since K is bounded and integrable on
the mean value theorem for integrals [10, pp. 184-185] guarantees the existence of
number K,j, satisfying inf, K K,j sup, K, such that

1 1 / ,Uh ,dx dy",]uh2dxdy
Ki,y

(If K-1 is continuous on j then K-1 actually assumes the value K: somewhere
on ,j.) Calculating the last integral using our basis for Qh, we get

UTAU EE aij i-l,j 2

6Kj Uz 1
i--1 j--1

,3-1 2 I
-I- UY. 1 2 UY.

,3 ,3

where aij signifies the area of ti,j. To simplify notation, we notice that the 2 2
matrix appearing in each term of this sum is positive definite. This observation allows
us to define a new norm on IR2 as follows:

U1
2 T

U2) (Ul 1
1 2)(ul

A U2)"

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 801

If I1" 112 denotes the usual Euclidean norm on IR2, then it is easy to check that

I1" 1122 <- I1" I1 <- 311" I1. In terms of the new norm,

UTAU ,; u.. u.
i--1 j--1 ’J A

The quantity uTu is easier to calculate:

m n m n

i=0 j=l i=1

Now we use the bounds on K and the quasi uniformity of Ah to observe that

5 ()1 I1() :]UTAU
6Kup = i

, A ,

Vi_ l,j
2

U.. +
’,.7 2

m n

i=1 j=0

c2h2

6Ksup
uTu.

This observation establishes the first inequality in (3.11), since we can take k0
a2/6Ksup. To prove the second inequality in (3.11), we rewrite (3.12) as follows:

i=o j=o

1 V_l,j ,,.7-1
0 0-1---

i=1 j=l 2

where we agree that U 0 if either j 0 or j n + 1, and U 0 if either 0
or i m + 1. Hence,

1[(U.-xl.,j)12+11(Uy,J-1) 22]U..uTu >
i=1 j=l ,,.7 2 ,,.7

6
i=i j=l

Ui_ l,j
2

U.. +
’,3 A

>_ Kh-n---f UTAU.

We conclude that UTAU <_ klh2UTU, where kl 1/Kinf.

802 M.B. ALLEN, R. E. EWING, AND P. LU

If we apply Proposition 3.2 to the case when U is an eigenvector of A associated
with the eigenvalue /min or max, respectively, we find that ,min

_
o2h2/6gsup and

Amax <_ h2/Kin. Therefore, provided we choose w >_ Amax in Algorithm 1, the spectral
radius of our iteration matrix M obeys the bound

o2Kinf(3.13) p(M) <_ 1-
6Ksup

Notice that the right side of this inequality is a constant independent of h. This is
the sense in which the convergence rate of Algorithm 1 is independent of h.

Two remarks about the practical implications of the estimate (3.13) are in order.
First, the bound on p(M) depends strongly on the nature of the coefficient K(x, y).
In particular, if Kinf/Ksup is very small, reflecting a high degree of heterogeneity in
the physical problem, then we can expect the actual convergence of the algorithm
to be slow, albeit independent of grid mesh. Several examples in 5 confirm this
expectation. Second, even though the bound (3.13) suggests choosing w max to
accelerate iterative convergence, this choice is impractical owing to the expense of
calculating ,max. In practice, we typically pick w IIAII _>)max- This choice is
easily computable as the maximum row sum of A, and it preserves h-independence of
convergence rate, even though it may be theoretically nonoptimal.

4. Application of a multigrid solver. As we have mentioned, the computa-
tion of the pressure iterate p(k) in step (ii) of Algorithm 1 is inefficient if we use direct
schemes or classical stationary iterative methods on fine grids. However, the fact that
w-1NTN is essentially the finite-difference Laplacian operator motivates us to reduce
the computational work for each iteration by calculating an approximation to the kth
pressure iterate by using several cycles of a multigrid method on the system (3.3).
We refer the reader to [3] for a discussion of the multigrid approach and for a Fortran
code applicable in the context of our problem. The modified scheme is as follows.

ALGORITHM 2. Begin with an initial guess (U(), p(0))T, and suppose that we

have computed (V(k-l) p(k-1)) T
the following steps:

1. Compute the residual,

Compute a new approximation (U(k) p(k)) T

(4.1) G(k-l) -- -F -- NT(I- w-IA)U(k-l).

2. Let /5(k) denote the exact solution of the problem

(4.2) w-INTN[:)(k) G(k-1).

(4.3)

using

Calculate an approximation p(k) of/5(k) by applying r cycles of the multigrid
algorithm [3] to (4.2), using p(k-) as initial guess. (We discuss the choice of
r below.)

3. Compute U(k) as in Algorithm 1"

wU(k) (wI- A)U(k-) NP().

Multigrid methods for solving elliptic problems have an advantage that is quite
relevant to the conditioning problems associated with fine grids: Each cycle has a
convergence rate that is independent of h [4, Chap. 4]. Therefore, we need only show

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 803

that we can choose a fixed number r of multigrid cycles such that each iteration of
Algorithm 2 reduces the error norm by an appropriate factor close to p(M). We
do this in Proposition 4.1. Since the factor is independent of h, Algorithm 2 has
convergence rate independent of h.

We begin by defining norms on the "pressure" and "velocity" spaces that will
make the proof easier. Any Ph E Yh has a representation

(x, (x,
i,j

Taking advantage of the fact that NTN is positive definite, we compute a norm of
the vector

by setting IIPII pT(w-INTN)p. On the other hand, any Uh e Qh has a repre-
sentation

i,j

We compute a norm of the vector

Uz Uz UzU-- UXo,I,UI,, m,l," 0,n, 1,n,’",U-n,n,

by setting liul]2 uTu.
The norm [l" II is just a scalar multiple of the Euclidean distance function II"]],

and since w is a constant related to p(A), I1" I1 is actually a discrete analog of
the Euclidean norm I1" IIL(n)L2(n) on the velocity space by Proposition 3.2. This

norm is appropriate for measuring the convergence of velocity iterates U(k) to the
true discrete approximation U. Also, since NTN is just the positive definite matrix
associated with the five-point difference approximation to the Laplace operator, the
norm I1" IIh is appropriate for measuring the rapidity with which the pressure iterates
satisfy the discrete pressure equation (3.3) as the iterations progress. Ultimately, we
want to relate our results to more familiar norms such as I1" 112 and I1" I1; for this step
we shall rely on the equivalence of norms for finite-dimensional Euclidean spaces.

In the following proposition, we assume p(I-w-lA) < 1. Thus is an upper
bound on p(M). Suppose the multigrid iteration used to approximate/5(k) in step (ii)
of Algorithm 1 has convergence rate # (0, 1). This implies that, after r multigrid
cycles for p(k) using p(k-1) as initial guess,

(4.4)

PROPOSITION 4.1. For any ,’ (, 1), there exists a number r of multigrid cycles
such that

804 M.B. ALLEN, R. E. EWING, AND P. LU

where (P, U) is the solution of the problem (2.4) and (p(k), U(k)) is the approximation
to (P, U) produced by the kth iteration of Algorithm 2.

Proof. Suppose we compute () according to (a.4) with the exact (nonmultigrid)
pressure iterate/5(). Thus,

(4.5) wgr() (wI- A)U(-1) N)(),
where p(k) satisfies (4.2). Then from (2.4), (4.1), (4.2), and (4.5), we have

(4.6)

Multiplying (4.6)by (U and using the identity (4.7), we get

IIU 0()l (0) (wI- A)(U U(k-I))

Therefore, the velocity iterates obey the estimate

Similarly, multiplying (4.6)by [w-lN (P-/5(k))]
T

we get

NTw-I(wI A)(U- U(-))

Hence, the pressure iterates obey the bound

Now we derive bounds on lIP P(k) ll h and IU U(k) l} in terms of their values at
the previous iterative level. For liP- P(k)llh, we use the triangle equality and the
multigrid estimate (4.4) to get

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 805

But the original iterative scheme (3.5) implies that

So, in light of the inequality (3.1) bounding p(M) by , we have

This inequality allows us to simplify (4.8), getting

Turning to Iu- u<>ll, w use (4.3), multiplied by w-I, to write

This identity implies that

}]U- U()[I -< I1(I-w-lA) (U- U(-I))II + II-N (P-

(4.10)
IIu- u(-) I + (+ " +)IIP P(k-1)[Ih

_< (t, + + t#) (I P P(-x) I + Iu U(-l) [)
Combining the inequalities (4.9) and (4.10), we get

(+ + t) (1 IP P(-I) I + Iu
Since # < 1, #r + ,#r

__
0 as r --. oo. We can therefore choose r large enough so that

u + #r + u# + u _< u, < 1. In this way,

In view of the norm equivalence mentioned earlier, Proposition 4.1 leads us to
expect that, if we choose w as prescribed in 3, then the computed convergence rate

(4.11)

should be a constant independent of h as h 0. In fact, for "generic" initial guesses,
the contribution from the eigenvector associated with the largest magnitude eigen-
value of M will eventually dominate the error. We therefore expect # to give good
approximations to p(M) in computational practice [2, p. 129].

806 M.B. ALLEN, It. E. EWING, AND P. LU

5. Numerical examples of h-independence. To test our results, we apply
Algorithm 2 to several versions of the following boundary-value problem:

(5.1)
-div [K(x, y)gradp(x, y)] f(x, y), (x, y) E

0, e 0a.

We use the lowest-order, mixed finite-element method on grids with h 2-, where
4, 5, 6, 7, 8. Each iteration of the solution scheme includes r 2 V-cycles of the

multigrid algorithm described in [3], where the coarsest grid in each cycle has mesh
2-1, and the finest has mesh 2-. We use the following realizations of the coefficient
K(x,y):

K(x, y) 1,

KII(X, y) e-x-y,

1 ifx < y,KHI(x,y)-- 0.1 ifx_>y,

KIV(X, y) Kii(x, y)" KIII(X, y),

1Kv(x,y) 0.01
ifx <y,
ifx>_y.

To confirm the convergence properties of the mixed finite-element method as
h -- 0, we examine the exact and numerical solutions to (5.1) using K KII and
taking f(x,y) to be the function that results when the solution is p(x,y) x(1-
x) sin(ry) + y(1 y)sin(rx). We compute the nodal error indicators IIUexact UI[
and IIPexact Pilot, where Uxct and Pxct stand for the vectors of nodal values
of the exact solutions u and p, and U and P are vectors containing nodal values of
the finite-element approximations on a uniform grid of mesh h. Figure 2 shows plots
of log IIUexact UIIo and log IIPxct P]I versus log h having least-squares slopes
of 1.899 and 2.000, respectively. These results suggest that the nodal values of U
and P are accurate to O(h2), corroborating the equal-order accuracy available in the
Raviart-Thomas subspaces and indicating superconvergent nodal values in accordance
with the work of Ewing, Lazarov, and Wang [6].

To check the convergence properties of the iterative scheme, we examine the
behavior of the ratio #, defined in (4.11), for each of the choices of K. Our results,
shown in Fig. 3, support the expectation that, as h -- 0, the convergence rate of the
scheme tends to a constant independent of h. Notice however that, as K exhibits
more spatial variation, the convergence of the algorithm becomes slower. Any effects
of variability in K on the conditioning of the discrete equations still influence this
first algorithm; the only effects of poor conditioning that we have eliminated so far
are those associated with grid refinement.

6. Modified schemes for heterogeneous media. To mitigate the difficulties
associated with spatial variability, we modify the first iterative scheme (3.1) to get a
class of new schemes having the following form.

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 807

log (h)
-6 -4 -2

Uexact" U
o Pexact" p

slope

--4

-10

,-12

FIG. 2. Convergence plot for the mixed finite-element scheme for Poisson’s equation, using
lowest-order Raviart-Thomas trial spaces. The plots demonstrate the rate of decrease in the nodal
errors as h O.

0 0 0 0 0

KEY
o K
A

K]r
KW

[] Kv

-6 -5 -4 -3 -2 -1

log (h)

1.0

0.8

I:::

-0.6 I

0.4
>
0

0.2

FIG. 3. Rate of convergence f versus grid mesh h for Algorithm 2, using the various choices

oI oJin (,).

808 M.B. ALLEN, R. E. EWING, AND P. LU

ALGORITHM 3. Given initial guess (U(), p(0))T, the kth iterate (U(k), p(k))T is
the solution of

(6.1) (D g 0 0
NT 0)(U(k) 0 0)(p(k-1))"

Here, the "preconditioning" matrix D c=_ IR(2mn+m+n)x(mn+m+n) is a diagonal matrix
whose choice we discuss below.

When we construct D properly, the iteration matrix

(n i)-1 (D-A 0)(6.2) M= NT 0 0 0

has spectral radius that is independent of both h and the structure of K. The price
we pay for this benefit is apparent in the computational form of the new algorithm:

(6.3) (i) G(k-l) -- -F + NTD-I(D- A)U(k-l),

(6.4) (ii) Solve NTD-1NP(k) G(-1),

(6.5) (iii) U(k) .- D-(D- A)U(k-) D-1Np(k).

In contrast to (3.3), solving for p(k) in the new scheme calls for the inversion of
NTD-N instead of NTN. Therefore, we must modify the multigrid segment of the
algorithm to accommodate variable coefficients. As we discuss, this modification is
fairly easy to make. This section establishes criteria for the construction of D, gives
two examples that satisfy these criteria, comments on the multigrid solver used, and
presents computational results.

As with the original scheme presented in 3, the key to the convergence of the
new scheme is the spectral radius of the iteration matrix M defined in (6.2). The
following proposition gives sufficient conditions under which p(M) < 1.

PROPOSITION 6.1. Suppose D is a diagonal matrix with positive entries on the
diagonal, and suppose there exist constants bl, b2 E (0, 1) such that

UHAU < 2-b2bl < UHDU-

for all vectors U (U(m+)n+m(n+). Then the iteration matrix M defined in (6.2)
satisfies

(6.6) O < p(M) <_ max{1- bl, l b2} < l.

Proof. Let A 0 be an eigenvalue of M with associated eigenvector (Ua, p))T, as
in Proposition 3.1. Then steps similar to those yielding (3.9) show that

(D- A)U A(DU + NP),
0 =/NTU).

Thus U(D-A)U, AUHDU,, which is nonzero since D is positive definite. There-
fore,

I1= 1- UAUUHDU

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 809

Hence, using the hypothesized bounds on UAU),/UDU),, we have the desired
inequalities (6.6).

To use this proposition, we need estimates on UHAU. Given the structure of A
as shown in the Appendix, one can calculate a useful expression for UHAU, assuming
U E ((m+l)n+m(n+l) has the form (Ux, UY)T indicated in (2.3). In particular,

11
S(U) + R(U),UHAU - -where, in the notation of the Appendix,

m n

U.X. [2 IV U.y. 2 TvI U.y. 2),S(U) EE TI 12 TI’II" *,,
’p r,J + i,j ?’,,(,jlU’I,j + ,,

i=1 j=l

m n

R(U) rT.n. U.. TY. (7s UY. . UY.)]?’,, (i,jV-l,j "-p- V-l,j ?’,2) -p-
?’,2 (i,j ?’,2-1 "-p" ’,2-1 ?’,3

i=1 j=l

Here, 2 denotes the complex conjugate of z. The coefficients T. TvI
?’,3, i,j appearing

in these expressions are values depending on K(x, y) and arising from applications of
the mean value theorem for integrals over each cell 12i,j in the finite-element grid Ah.
By using the inequality Iwl 2 + Izl 2 >_ -21wllzl, we can estimate R(U) as follows:
(6.7)

-2EE (TIIIuIIU- 1,1 + TY. UY.
i=1 j=l

m n

< E (TIIIu-I,J Ie + TIIIu, Ie TY. U.u. e TY. U.U.I 2
i=1 j=l

In general, the estimates 0 < Kin

_
K <_ /’(sup may be too coarse to provide

enough control on the coefficients T. TVI for constructing a reasonable precon-?’,3 i,j
ditioner D. Strictly speaking, the necessary level of control will be available only if
we have information about the local variation of K on each cell 12i,j.

In practice, however, we rarely have such fine-scale knowledge of K, and even
if we did we would not try to use it in calculating the Galerkin integrals fa K-lu"
vdx dy exactly. Instead, most practical codes use approximate quadrature schemes
that effectively treat K-1 as piecewise polynomial. In fact, as we suggested in 1,
for sufficiently fine grids it is reasonable to treat K-1 as piecewise constant. In such
applications, we can use the second inequality in (6.7), together with the identities
T.II. TY. Ti,j to show that

?’,3 ?’,3

1

_
1S(U)uHAu- -S(U) + R(U) <_

Similarly, the first inequality in (6.7), together with the identities T..?’,3 TIIIi,j TT,jIV

810 M.B. ALLEN, R. E. EWING, AND P. LU

TvI,j T,j, shows that

11S(U) + IS(U)+ R(U)]UHAU ->-S(U)+ -Ti,j (Ig_ I-IU..i) 2

6 X,j z,? -[- (I U’y" U.y 2

i=1 j=l

1> -gs(u).
S(U) whenever K is piecewise constant on the grid1S(U) < UHAU < -In summary, g

Ah.
Now consider the choice D lump(A), where

{k if 7 j’
[lump(A)]i,j Ai,j if i j.

This is the matrix that results when we add entries along each row of A and assign the
sum to the diagonal entry in that row. Gonzales and Wheeler [9] use this "mass lump-
ing" idea to improve conditioning in mixed finite-element discretizations of petroleum
reservoir problems. This choice of D is also a simple instance of a preconditioner
developed in [7] for other iterative schemes. It is a straightforward matter to show

1S(U), so gHDU iS(U). Asthat, when K is piecewise constant, UHlump(A)U
a consequence,

1 UHAU 3
bl < < 2 b2.2 UHDU 2

Therefore, by Proposition 6.1, p(M) < 1/2, and the iterative scheme converges with a
rate independent of h and K. According to our remarks at the end of 4, we expect
the ratio of error norms between successive iterates to approach 5 as the iteration
counter k --As an even simpler example, consider the choice D diag(A), where

0 ifiCj,
[diag(A)]i,j Ai,i if i- j,

is the matrix A stripped of its off-diagonal entries. This choice has the attractive
feature that it is trivial to compute from A. With D defined in this way, we once

S(U) when K is piecewise constant on Ah. Therefore,again find that UHDU g
and this iterative scheme also converges with a rate independent of hp(M) <_ 5,

and K.
Either choice of D requires us to solve a matrix equation of the form

NTD-1Np(k) G(k-l)

at each iteration. To do this, we use two cycles of a multigrid scheme in which the
Jacobi iteration is the smoother, the coarse-to-fine interpolation is bilinear, and the
fine-to-coarse restriction is accomplished using half-injection [4, p. 65]. This scheme
preserves the h-independence of the overall algorithm’s convergence rate and appears

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 811

TABLE 1
Convergence rates for various coejficients and grids.

Coefficient

KI

gIII

Kiv
Kv

Grid Mesh h

2-a 2-5 2-6 2-7
0.4933 0.4988 0.4993 0.4995

0.4966 0.4995 0.4988 0.4997

0.4948 0.4982 0.4991 0.4998

0.4947 0.4980 0.4992 0.4998

0.4939 0.4978 0.4989 0.4999

2-8
0.4999

0.4999

0.4999

0.4999

0.5000

to handle the variable coefficient K effectively. Alternative multigrid implementations
are certainly possible here.

To test the convergence rate of Algorithm 3, we apply it to the boundary-value
problems described in 5, using the preconditioner D lump(A). Table 1 shows
values of the convergence rate # computed for each choice of coefficient K, for each of
five different values of the grid mesh h. All of the tabulated values are very close to

We conclude that this scheme converges at athe spectral radius estimate p(M) <_ .
rate independent of both grid mesh h and the heterogeneity reflected in the mobility
coefficient K.

7. Conclusions. Poor conditioning associated with heterogeneity and fine spa-
tial grids is a common problem. While this paper focuses on steady flows in porous
media, similar equations and results apply in other fields. Two obvious applications
for (1.1) arise in heat transfer, where temperature plays the role of pressure and
heat flux plays the role of the Darcy velocity, and in electrostatics, where the electric
potential and the electric field serve as the analogs of pressure and Darcy velocity,
respectively. In either case, mixed finite-element methods can give useful approxi-
mations. However, heterogeneity, either in the thermal diffusivity or in the dielectric
coefficient, can lead to poor conditioning in precisely the same way as it does for
porous media. One virtue of the mixed finite-element formulation is that it permits
us to attack the two sources of poor conditioning separately, exploiting multigrid ideas
to reduce the sensitivity to fine grids and using spectral information associated with
the material coefficient to reduce the sensitivity to heterogeneity.

Appendix: Matrix structure of the finite-element equations. The mixed
finite-element equations (2.2) give rise to integral equations having the following forms.
For the x-velocity equation,

(Oi’) dx dy O, i-0,...,m, j-1K- u i, Ph Ox

For the y-velocity equation,

fn (Oi’) dx dy O, i- 1,-..,m,K- uYh i, Ph Oy

For the mass balance,

j -O,...,n.

\ Ox - Oy f i,jdx dy O, i -1, m, j-l,

812 M.B. ALLEN, R. E. EWING, AND P. LU

The following integrals appearing in these expressions involve no spatially varying
coefficients and hence are easy to compute using the bases for Qh and Vh",

Ph Ox
dx dy, 0i, dx dy,Ph Oy 0-i’jdx dy, OUh-y ,dx dy.

However, the remaining integrals involve the spatially varying functions K-l(x, y)
and f(x, y). We compute these integrals using the mean value theorem for integrals
[10, pp. 184-185] as follows: Since K-1 is bounded and integrable on each cell ,j,
there exist numbers T,j, TII,j, TIII, such that

TII/6i,j !

x xg-1 8,t i,j dx dy (Ti,j + TIdal,j)/3,

TI I, /6,

t=j, s=i-1;

t j, s i;

t=j, s=i+l.

Here, T,j/[(x- x-l)(yj- yj-1)] is a number lying between the upper and lower
bounds of K-1 on the cell ,j and similarly for TI and T.H. Analogous calculationsi,j -,3

show that

T,/6,
K-1CsY, , dx dy (T.V. TvI, z,a + i,+1)/3’

TV /6,i,j+l

t=j-1, s=i;

t=j, s=i;

t=j+l, s=i.

The calculations of fn f i,j dx dy can proceed similarly.
Now let us adopt the following orderings for the vectors of unknown nodal coef-

ficients:

UyUX

O,n

U

Then the entire algebraic system arising from (2.2) has the structure

0 AU Nu Uu 0
(Nx)T (Ny)T 0 e F_

Here,

A E]I(m+l)nx(m+l)n

A

ITERATIVE SCHEMES FOR MIXED FINITE ELEMENTS 813

where each block A E]R(m/l)x(m-bl) has the tridiagonal structure

Similarly,

TImI,j 2TIII’m,3

A ".. E]Rm(n+l)xm(n+l)

where each block A e]R(n+l)x(n+l) has the tridiagonal form

A= 1

2TVI Tvi,1 i,1

TV,i 2(T,V11 + TI,V2) TVi,2

TY 2TvI,n in

Finally, the two "difference" matrices Nx and Ny have the following structures"

where

N E :n(m-bl)xnm

NZ

N; --(yj -yj-l)
1

E]a(re+l) xm

while

Ny E]a(n-bl)mxnm

Nm
where

814 M.B. ALLEN, l:t. E. EWING, AND P. LU

Ni, (xi xi-1)

column

row j + 1 E]a(aWl) xm

REFERENCES

[1] M. B. ALLEN, R. E. EWING, AND J. V. KOEBBE, Mixed finite-element methods for computing
groundwater velocities, Numer. Meth. P.D.E., 3 (1985), pp. 195-207.

[2] G. BIRKHOFF AND R. E. LYNCH, Numerical Solution of Elliptic Problems, Society for Industrial
and Applied Mathematics, Philadelphia, 1984.

[3] A. BRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31
(1977), pp. 333-390.

[4] W. L. BIIGGS, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadel-
phia, 1987.

[5] J. DOUGLAS, R. E. EWIN(, AND M. F. WHEELER, The approximation of the pressure by a
mixed method in the simulation of miscible displacement, RAIRO Anal. Numr., 17 (1983),
pp. 17-33.

[6] R. E. EWING, R. D. LAZAROV, AND J. WANG, Superconvergence of the velocities along
the Gaussian lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991),
pp. 1015-1029.

[7] R. E. EWING, R. D. LAZAROV, P. Lu, AND P. S. VASSILEVSKI, Preconditioning indefinite sys-
tems arising from the mixed finite-element discretization of second-order elliptic systems,
in Preconditioned Conjugate Gradient Methods, Lecture Notes in Mathematics 1457, O.
Axelsson and L. Kolotilina, eds., Springer-Verlag, Berlin, 1990, pp. 280-343.

[8] R. E. EWING AND M. F. WHEELER, Computational aspects of mixed finite element methods,
in Numerical Methods for Scientific Computing, R. S. Stepelman, ed., North-Holland,
Amsterdam, 1983, pp. 163-172.

[9] R. GONZALES AND M. F. WHEELER, Mixed finite element methods for petroleum reservoir
engineering problems, in Proceedings, Sixth International Conference on Computing Meth-
ods in Applied Sciences and Engineering, INRIA, Versailles, France, 1983, North-Holland,
Amsterdam, 1984, pp. 639-658.

[10] M. E. MUNROE, Introduction to Measure and Integration, Addison-Wesley, Cambridge, MA,
1953.

[11] P. A. RAVIAPT AND J. M. THOMAS, A mixed finite element method for 2nd order elliptic prob-
lems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics
606, I. Galligani and E. Magenes, eds., Springer-Verlag, Berlin, 1977, pp. 292-315.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 815-825, May 1992

() 1992 Society for Industrial and Applied Mathematics
012

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m)*
KATHRYN TURNERt AND HOMER F. WALKERt

Abstract. Consideration of an abstract improvement algorithm leads to the following principle,
which is similar to that underlying iterative refinement: By making judicious use of relatively few high
accuracy computations, high accuracy solutions can be obtained very efficiently by the algorithm.
This principle is applied specifically to GMRES(m) here; it can be similarly applied to a number of
other "restarted" iterative linear methods as well. Results are given for numerical experiments in
solving a discretized linear elliptic boundary value problem and in computing a step of an inexact
Newton method using finite differences for a discretized nonlinear elliptic boundary value problem.

Key words. GMRES(m), "restarted" iterative linear methods, high accuracy solutions, iterative
refinement, large-scale linear and nonlinear systems, elliptic boundary value problems

AMS(MOS) subject classifications. 65F10, 65H10

1. Introduction. Our specific objective is to outline efficient algorithms for ob-
taining high accuracy with GMRES(m), the restarted version of the generalized
minimal residual (GMRES) method of Saad and Schultz [10] for numerically solving
general nonsingular linear systems. These algorithms are based on general observa-
tions which have broader applicability and are of interest in their own right, and we
begin with them.

We consider a very abstract improvement algorithm for a problem in which the
solution x* E Inn is characterized as a zero of a residual function r:IRn -- IRn, i.e.,
r(x*) O. The algorithm centers around an unspecified correction process which,
given a current approximate solution x, computes a correction z such that x + z is,
one hopes, an improved approximation of x*. Our presumption is that the accuracy
in the computed value of z is limited by the accuracy in the computed value of r(x).
Therefore, we explicitly require in the algorithm that r(x) be computed accurately,
by which we mean as accurately as is reasonably possible or affordable, or in some
sense especially accurately. For similar reasons, on which we expand in the following,
we require x + z to be computed accurately in the same sense.

Algorithm GI: General Improvement Algorithm
LET AN INITIAL X BE GIVEN.

UNTIL TERMINATION DO:

COMPUTE r(x) ACCURATELY.

DETERMINE z BY THE CORRECTION PROCESS.

UPDATE x x + z ACCURATELY.
END DO.

The termination criterion may be based on the smallness of lit(x)II, or on some related
but different feature, as in the iterative refinement example below.

Our interest is in the limits of accuracy which can be obtained by Algorithm GI.
Since the actual error in x is unknown, we take "limits of accuracy" to mean limits
of reduction of IIr(x)ll, where I1" is an appropriate norm on IRn. If we assume that

Received by the editors May 29, 1990; accepted for publication (in revised form) February 6,
1991.

Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900.
The work of the second author was supported by United States Department of Energy grant DE-
FG02-86ER25018, National Science Foundation grant DMS-0088995, and United States Air Force
grant AFOSR-91-0294, all with Utah State University.

815

816 KATHRYN TURNER AND HOMER F. WALKER

the accuracy in the computed value of z is limited only by the relative error in the
computed value of r(x), and not by the smallness of IIr(x)ll per se, then it is clear
that accuracy is limited only by the accuracy which can be maintained in computing
r(x) and in updating x --x + z.

A familiar example of Algorithm GI is iterative refinement for improving approx-
imate solutions of a system of linear equations. (See, e.g., Golub and Van Loan [7,
3.5.3] as a general reference.) Consider a linear problem written as follows:

(1) Given A E IRnn and b E IRn, find X*]Rn such that Ax* b.

Suppose that we have computed factors of A and have used them to compute an
initial x. In iterative refinement, we take r(x) =_ b- Ax and, at each step, determine
a correction z by solving Az r(x) using the previously computed factors of A.
Iterative refinement is typically applied when we can afford to do most computing
only in single precision, but full single precision accuracy is desired in the computed
solution. Thus A, b, x, r(x), and z are stored in single precision, and the factors of A
are computed and stored in single precision. The accuracy in z depends on the relative
error in the computed value of r(x) and not on the smallness of IIr(x)ll, provided all
computations remain within the floating point range of the machine. However, if
r(x) is small, then special care must be taken to compute it accurately. The usual
prescription is to compute it in double precision in a well-known way. Unless A is very
ill conditioned, this results in sufficient accuracy in r(x) and z to provide improvement
in x until z is so small that x and x + z have the same single precision representation,
i.e., the updating x *--- x / z results in no change, at which point x is the single
.precision representation of the exact solution and the algorithm terminates. Since
only single precision accuracy is desired in x, there is no need to form x + z with more
than single precision accuracy. If higher accuracy were desired in x, then it could be
obtained by maintaining x in double precision and forming x + z with z represented
in double precision; however, this is unlikely to be of practical interest.

This discussion illustrates our guiding principle: By making judicious use of rela-
tively few high accuracy clculations within Algorithm GI, specifically in computing
r(x) and in updating x +--x + z, we can obtain essentially the accuracy that would
be realized by using high accuracy calculations throughout, while maintaining storage
requirements and execution times only modestly above those which would be required
if only low accuracy calculations were used.

We now turn to the case of particular interest, viz., that of problem (1) in which
r(x) =_ b- Ax and the correction process consists of one cycle of GMRES(m). Al-
though we focus exclusively on GMRES(m), we emphasize that Algorithm GI and
the guiding principle drawn from it are more broadly applicable. In particular, there
are a number of other "restarted" iterative linear methods which could be used in
place of GMRES(m) in the algorithms formulated below, e.g., a restarted version of
a method of Axelsson [1], the iterative Arnoldi method of Shad [9, 3.2], and GCR(m)
given by Elman [5] and Eisenstat, Elman, and Schultz [4].

For completeness, we give very brief descriptions of GMRES and GMRES(m)
here; for more detailed descriptions, see Shad and Schultz [10] or Walker [12], [13].
The GMRES method begins with an initial approximate solution x and initial residual
r(x) b- Ax. At the kth iteration, a correction z is characterized as the solution of
the least-squares problem

(2) min llr(x)min lib- A(x + ’)11
E

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 817

where Ck is the kth Krylov subspace generated by A and r(x), defined by

]Ck =-- span{r(x), Ar(x), Ak-lr(x)}.
The correction z is not actually computed by the method unless a termination criterion
is satisfied. If it is computed, then the least-squares problem (2) is solved by using a
basis of Ck to reduce (2) to a k-dimensional least-squares problem for the coefficients
of the basis elements. The basis used in practice is the orthonormal Arnoldi basis,
generated inductively by

v (x)/ll(x)ll
Vj+l P:Avj/IIPcAv 112 for j 1,..., k 1.

Here, Pv denotes the orthogonal projection of a vector v onto the orthogonal com-
plementf K:y; it can be computed using either the modified Gram-Schmidt process
[10] or Householder transformations [12]. We use the modified Gram-Schmidt process
below since it is used more often in practice. Note that the process (3) fails for some
j < k if and only if Pj Avj O, i.e., Avj E j, in which case it can be shown that
GMRES produces z E Cy such that r(x 4- z) 0, i.e., x 4- z x* (see [10, Prop. 2,
p. 865]). The process (3) is implemented as the GMRES iterations proceed, i.e., vl
is determined and stored initially and at the kth iteration, (only) Vk+l is generated
and added to storage. At the kth iteration, k 4- 1 n-vectors must be stored, and
orthogonalizing Ark against v,..., Vk requires O(kn) arithmetic operations.

Because storage and arithmetic costs increase as the GMRES iterations proceed,
the lgorithm usually implemented in practice is GMRES(m), where m is some max-
imum allowable number of iterations which is prescribed at the outset, typically much
less than n. In one cycle of GMRES(m), beginning with a current approximate so-
lution x, up to m GMRES iterations are performed; the iterations are terminated
when either the residual norm has been reduced sufficiently or the full m iterations
have been taken. The residual norm can be monitored during the iterations without
actually computing the correction or the residual; see below. After the iterations
have been performed, the cycle is concluded with the computation of the correction
z. If IIr(x + z)l]2 is not sufficiently small, then additional cycles may be performed as
needed.

We give below a detailed outline of one cycle of GMRES(m) as used here. In
it, for each i, Ji denotes a Givens rotation which "rotates" components and i 4- 1
of vectors on which it acts; see, e.g., [7, 5.1] for definitions and properties of Givens
rotations. Also, for each k, (JkP)k+l denotes the (k 4- 1)st component of the vector

JkP and Wl,’.., w+ denote the first k 4- 1 components of the vector w.

Algorithm: One Cycle of GMRES(m)
LET r(x) O, m, AND TOL> 0 BE GIVEN.

INITIALIZE:
SET Vl r(x)/llr(x)lla AND w (llr(x)ll., 0,..., 0)T e tm+.

ITERATE:
FOR k 1, 2,...,m, DO:

EVALUATE Vk+l Avk.
FOR 1,...,k, DO:

SET Pi vTi Vk+l"
OVERWRITE Vk+l <--’--- Vk+l pivi.

END DO.

818 KATHRYN TURNER AND HOMER F. WALKER

SET Pk+l llV’/ll"
IF Pk+l ? 0, OVERWRITE Vk+ Vk+1/Pk+1.

SET p-- (Pl,’’’,Pk+I,0,’’’,0)T E]Rm+l.
IF k > 1, OVERWRITE p gk-l"’" JlP.
FIND gk SUCH THAT (JkP)k+l- 0 AND OVERWRITE

P --- gkP AND W +---- Jkw.
SET Rk--[p] IF k--1 AND Rk--[Rk-l,p] IF k > 1.
IF IWk+ll <TOL, THEN GO TO SOLVE.

END DO.

SOLVE"
LET k BE THE FINAL ITERATION NUMBER REACHED LET

[=k]Rkk BE THE UPPER TRIANGULAR MATRIX DETERMINED

BY THE FIRST k ROWS OF Rk, AND SET - (Wl,’’’,Wk)T]ak.
SOLVE Rky- FOR y.
FORM Z [Vl,’’’, vk]y.

The test IWk+ll <TOL at the final step of the iteration is explained by the fact that
if the correction z were formed, then we would have IIr(x + z)l12 IWk+ll, at least
in exact arithmetic; see [10, Prop. 1, p. 862]. Also, we note that Rk is always
nonsingular.

Our general efficient high accuracy algorithm centering around GMRES(m) is
the following adaptation of Algorithm GI.

Algorithm EHA: Efficient High Accuracy Algorithm
LET AN INITIAL x BE GIVEN. UNTIL TERMINATION DO:

COMPUTE r(x) ACCURATELY.

DETERMINE z BY ONE CYCLE OF GMRES(m).
UPDATE x-- x - z ACCURATELY.

END DO.

Algorithm EHA terminates when the residuM norm becomes less than a given tol-
erance TOE> 0. If IIr(x)ll2 <TOE prior to beginning GMRES(m) cycle, then the
algorithm terminates immediately; if this criterion is met during a GMRES(m) cycle,
then the algorithm terminates as soon as the updating x-x + z is done.

In the following, we explore applications of Algorithm EHA. In 2, we show how
the steps in Algorithm EHA can be specified so that essentially all of the accuracy ob-
tainable from a full double precision implementation of GMRES(m) can be obtained
with storage requirements and arithmetic costs which, in a typical problem, are only
a little greater than those of a single precision implementation. In 3, we consider the
computation of inexact Newton steps for a nonlinear problem by means of Algorithm
EHA, in which products of the Jacobian (matrix) with vectors are approximated by
finite differences. We show that by using high-order finite difference approximations
in the computation of each r(x) and low-order finite difference approximations in ech
cycle of GMRES(m), we can obtain essentially the accuracy that could be obtained
by using high-order finite difference pproximations throughout, but at much less
cost.

2. Obtaining double precision accuracy efficiently. Here we show how AI-
gorithm EHA can be used to obtain essentially double precision accuracy efficiently
in the solution of a linear problem (1). By double precision accuracy, we mean the
accuracy which could be obtained by using double precision arithmetic throughout;
we do not mean that the result will be the exact solution rounded to double precision.

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 819

In applying Algorithm EHA, we use three double precision vectors: one for the
approximate solution x, one for the right-hand side b, and one for the matrix-vector
product Ax. A subroutine to compute Ax in double precision is needed in addition to
a subroutine that is used within GMRES(m) to compute products of A with other
vectors in single precision. We apply Algorithm EHA as follows: Given a double
precision approximate solution x, we first compute r(x) by computing Ax in double
precision, subtracting Ax from b in double precision, and then rounding the difference
to single precision. A cycle of GMRES(m) is then carried out, entirely in single
precision, producing a single precision correction z. The update of the approximate
solution is x -- x + dble (z), where dble (z) indicates that z is represented in double
precision in the addition. This representation is done componentwise and does not
require that z be converted in toto to a double precision vector.

2.1. Numerical experiments. We conducted numerical experiments on non-
symmetric linear systems arising from the discretization of the elliptic boundary value
problem

(4)
Aw+cw+ Ox f in D,

where D [0, 1] [0, 1] and c _> 0 and d are constants. In the experiments reported
here, we took f

_
1 and used a 100 100 mesh of equally spaced discretization points

in D, so that the resulting linear systems were of dimension 10,000. Discretization
was by the usual second-order centered differences.

We compared Algorithm EHA as specified above with methods which differed only
in that either exclusively single or exclusively double precision arithmetic and storage
were used throughout. We refer to the latter two methods as the full single precision
(FSP) and full double precision (FDP) methods, respectively. We note that in the
context of these experiments, Algorithm EHA requires only a little more storage than
the FSP method, which requires about half that of the FDP method. The additional
storage required by Algorithm EHA over the FSP method arises mainly from the
double precision storage of b, x, and Ax. In the double precision computation of
Ax, the simplicity of A in these experiments allows the nonzero entries of A to be
represented by a few nonzero constants.

In GMRES(m), we used m 10 in all of the experiments reported here because
that seemed to be more effective than other choices we tried. All computing was done
on a Sun Microsystems SPARCstation 1 using the SunOS FORTRAN compiler.

In our first set of experiments, we took c d 10 and used right preconditioning
with a fast Poisson solver from FISHPACK [11], which is very effective for these
fairly small values of c and d. We first started each method with zero as the initial
approximate solution and allowed it to run for 40 GMRES(m) iterations, after which
the limit of residual norm reduction had been reached. Figure 1 shows plots of the
logarithm of the Euclidean norm of the residual versus the number of GMRES(m)
iterations for the three methods. We note that in Fig. 1 and in all other figures
below, the plotted residual norms were not the values maintained by GMRES(m),
but rather were computed as accurately as possible "from scratch." That is, at each
GMRES(m) iteration, the current approximate solution was formed and its product
with the coefficient matrix was subtracted from the right-hand side, all in double
precision. It was important to compute the residual norms in this way because the
values maintained by GMRES(m) become increasingly untrustworthy as the limits

w 0 on OD,

820 KATHRYN TURNER AND HOMER F. WALKER

of residual norm reduction are neared; see [12]. It is seen in Fig. 1 that Algorithm
EHA achieved the same ultimate level of residual norm reduction as the FDP method
and required only a few,more GMRES(m) iterations to do so.

2.00

0.00

-2.00

-4.00

-6.00

-8.00

-10.00

0 10 20 30 40

FIG. 1. Log10 of the residual norm versus the number of GMRES(m) iterations for c d 10
with fast Poisson preconditioning. Solid curve: Algorithm EHA; dotted curve: FDP method; dashed
curve: FSP method.

In order to assess the relative amount of computational work required by Algo-
rithm EHA and the FDP method to reach comparable levels of residual norm re-
duction, we observed in each of 20 trials the GMRES(m) iteration numbers and run
times required by each method to reduce the residual norm by a factor of 10-12. Since
timing was of major interest, the residual norms were not computed "from scratch" in
these trials; instead, the values maintained by GMRES(m) were used. These values
were trustworthy because 10-12 is significantly larger than the limiting residual norm
reduction factor for these methods evident in Fig. 1. In each trial, the components
of the initial approximate solution were obtained by generating uniformly distributed
random numbers over [-1, 1]. The means and standard deviations of the run times
are given in Table 1. Each method required exactly 30 GMRES(m) iterations to
reach termination in every trial, which accounts for the small standard deviations.

In our second set of experiments, we took c d 100 and carried out trials
analogous to those in the first set above. No preconditioning was used in these ex-
periments, both because we wanted to compare the methods without preconditioning
and because the fast Poisson preconditioning used in the first set of experiments is not

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 821

TABLE 1
Statistics over 20 trials of run times required to reduce the residual norm by a factor of 10-12.

Fast Poisson preconditioning; c d 10. Each method took 30 GMRES(m) iterations to terminate
in every trial.

Method
EHA
FDP

Mean Run Time
(Seconds)

28.77
45.80

Standard
Deviation

.03125

.06442

cost effective for these large values of c and d. We first allowed each method to run
for 600 GMRES(m) iterations, starting with zero as the initial approximate solution,
after which the limit of residual norm reduction had been reached. The results are
shown in Fig. 2. We note that Algorithm EHA reached the same ultimate level of
residual norm reduction as the FDP method but required about ten percent more

GMRES(m) iterations to reach this level.

2.00

0.00

-2.00

-4.00

-6.00

-8.00

-10.00

-12.00

0 100 200 300 400 500 600

FIG. 2. Log10 of the residual norm versus the number of GMRES(m) iterations for c d 100
with no preconditioning. Solid curve: Algorithm EHA; dotted curve: FDP method; dashed curve:
FSP method.

We then observed in each of 20 trials the numbers of GMRES(m) iterations and
run times required by Algorithm EHA and the FDP method to reduce the residual
norm by a factor of 10-12. In these trials, the initial approximate solutions were
obtained by generating random components as in the previous such trials. In contrast

822 KATHRYN TURNER AND HOMER F. WALKER

TABLE 2
Statistics over 20 trials of GMRES(m) iteration numbers and run times required to reduce the

residual norm by a factor of 10-12 No preconditioning; c d 100.

Method
EHA
FDP

Mean Number
of Iterations

346.2
345.9

Standard
Deviation

34.18
35.56

Mean Run Time
(Seconds)

91.57
153.0

Standard
Deviation

9.068
15.72

to the previous trials, there was in these trims significant variation in both the numbers
of GMRES(m) iterations and the run times for each method. Consequently, the
means and standard deviations of the GMRES(m) iteration counts as well as the run
times are given in Table 2.

3. Computing inexact Newton steps using finite differences. We now
consider an inexact Newton method [3] for the solution of a nonlinear problem, written
as follows:

Given F" IRn -]an, find u* E]an such that F(u*) O.

Given an approximate solution u of (5), an inexact Newton method determines a
step x such that F’(u)x -F(u) and updates u -- u / x; such a method is of
interest when computing the exact Newton step -F’(u)-lF(u) is infeasible. We shall
apply Algorithm EHA to the computation of a single inexact Newton step, in which
u remains fixed and r(x) -F(u)- F’(u)x.

We focus on the case in which Fl(u) cannot be used analytically. In this case,
we might approximate F’(u) using finite differences. However, with GMRES(m),
F (u) or an approtimation of it is not explicitly needed; we require only its action on
vectors v, which can be approximated, e.g., to first, second, fourth, and sixth order,
respectively, by

(6)
1

+5

(7)
L

[E(u + 5v)25

()]8F -8E

(9) 9105 [256F (u+ v)- 256F (u -5)-40F (u+ v)

In an inexact Newton method, F(u) is already available; therefore, each of (6)-(9)
requires a number of new F-evaluations equal to its order.

We apply Algorithm EHA in this context by using a higher-order formula, e.g., one
of (7)-(9), in the residual computation preceding each cycle of GMRES(m) and using
a lower-order formula, e.g., the first-order formula (6), for matrix-vector products
required within GMRES(rn).

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 823

3.1. Numerical experiments. We conducted numerical experiments in com-
puting inexact Newton steps for discretizations of a modified Bratu problem, given
by

(w
Aw + ceTM + d--_ f in D,

(10)
w 0 on OD,

where c and d are constants. The actual Bratu problem has d 0 and f 0. It
provides a simplified model of nonlinear diffusion phenomena, e.g., in combustion and
semiconductors, and has been considered by Glowinski, Keller, and Rheinhardt [6], as
well as by a number of other investigators; see [6] and the references therein. See also
problem 3 by Glowinski and Keller and problem 7 by Mittelmann in the collection
of nonlinear model problems assembled by Mor [8]. The modified problem (10) has
been used as a test problem for inexact Newton methods by Brown and Shad [2].

In our experiments, we took D [0, 1] [0, 1], f 0, c- d- 10, and discretized
(10) using the usual second-order centered differences over a 100 100 mesh of equally
spaced points in D. In GMRES(m), we took rn 10 and used fast Poisson right
preconditioning as in the experiments in 2. The computing environment was as
described in 2. All computing was done in double precision.

Letting F denote the nonlinear function obtained by discretizing (10) and letting
u denote an approximate solution of the discretized problem, we used (6)-(9) in
approximating Jacobian-vector products F (u)v. The value of 5 used for each formula
was chosen according to the usual heuristic when F is evaluated to full machine
precision" If p is the order of the formula, then 5 u1/(p+1), where u is unit roundoff
(taken to be 10-16 here).

The methods we compared in our experiments are the following:
1. Four methods, each of which used one of (6), (7), (8), or (9) exclusively for

all Jacobian-vector products. We refer to these below as FD1, FD2, FD4,
and FD6, respectively.

2. Three versions of Algorithm EHA, each of which used one of (7), (8), or
(9) exclusively in the accurate evaluation of initial residuals and then used
(6) exclusively in the GMRES(rn) cycles. We refer to these below as EHA2,
EHA4, and EHA6, respectively.

3. A method in which all Jacobian-vector products were evaluated analytically.
We refer to this as method A.

In the first set of experiments, we allowed each method to run for 40 GMRES(m)
iterations, starting with zero as the initial approximate solution, after which the limit
of residual norm reduction had been reached. The results are shown in Fig. 3. In
Fig. 3, the top curve was produced by method FD1. The second curve from the top
is actually a superposition of the curves produced by methods EHA2 and FD2; the
two curves are visually indistinguishable. Similarly, the third curve from the top is
a superposition of the curves produced by methods EHA4 and FD4, and the fourth
curve from the top, which lies barely above the bottom curve, is a superposition of
the curves produced by methods EHA6 and FD6. The bottom curve was produced
by method A.

In the second set of experiments, our purpose was to assess the relative amount of
computational work required by the methods which use higher-order differencing to
reach comparable levels of residual norm reduction. We compared pairs of methods
EHA2 and FD2, EHA4 and FD4, and EHA6 and FD6 by observing in each of 20

824 KATHRYN TURNER AND HOMER F. WALKER

3.00

1.00

-1.00

-3.00

-5.00

-7.00

-9.00

0 10 20 30 40

FIG. 3. Loglo of the residual norm versus the number of GMRES(m) iterations for the finite
difference methods.

TABLE 3
Statistics over 20 trials ofGMRES(m) iteration numbers, F-evaluations, and run times required

to reduce the residual norm by a factor of e. For each method, the number of GMRES(m) iterations
and F-evaluations was the same in every trial.

Method
EHA2
FD2
EHA4
FD4
EHA6
FD6

10-1 26
10-1 26
10-12 30
10-12 30
10-12 30
10-12 30

Number of
Iterations

Number of
F-Evaluations

32
58
42
132
48
198

Mean Run Time
(Seconds)

47.12
53.79
56.76
81.35
58.56
100.6

Standard
Deviation

.1048

.1829

.1855

.3730

.1952

.3278

trials the number of GMRES(m) iterations, number of F-evaluations, and run time
required by each method to reduce the residual norm by a factor of e, where for
each pair of methods e was chosen to be somewhat greater than the limiting ratio
of final to initial residual norms obtainable by the methods. In these trials, the
initial approximate solutions were obtained by generating random components as
in the similar experiments in 2. We note that for every method, the numbers of
GMRES(m) iterations and F-evaluations required before termination did not vary
at all over the 20 trials. The GMRES(m) iteration counts, numbers of F-evaluations,

EFFICIENT HIGH ACCURACY SOLUTIONS WITH GMRES(m) 825

and means and standard deviations of the run times are given in Table 3.

Acknowledgments. We thank John Dennis and Gene Golub for stimulating
conversations relating to this work.

REFERENCES

[1] O. AXELSSON, Conjugate gradient type methods for unsymmetric and inconsistent systems of
linear equations, Linear Algebra Appl., 29 (1980), pp. 1-16.

[2] P. N. BROWN AND Y. SAAD, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 450-481.

[3] R. S. DEMBO, S. C. EISENSTAT, AND W. STEIHAUG, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400-408.

[4] S. C. EISENSTAT, H. C. ELMAN, AND M. H. SCHULTZ, Variational iterative methods for
nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345-357.

[5] H. C. ELMAN, Iterative methods for large, sparse, nonsymmetric systems of linear equations,
Ph.D. thesis, Department of Computer Science, Yale University, New Haven, CT, 1982.

[6] R. GLOWINSKI, H. B. KELLER, AND L. RHEINHART, Continuation-conjugate gradient methods
for the least-squares solution of nonlinear boundary value problems, SIAM J. Sci. Statist.
Comput., 6 (1985), pp. 793-832.

[7] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD, 1989.

[8] J. J. MOR, A collection of nonlinear model problems, in Computational Solutions of Nonlinear
Systems of Equations, E. L. Allgower and K. Georg, eds., Lectures in Applied Mathematics,
Vol. 26, American Mathematical Society, Providence, RI, 1990, pp. 723-762.

[9] Y. SAAD, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp.,
37 (1981), pp. 105-126.

[10] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual method for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[11] P. N. SWARZTRAUBER AND R. A. SWEET, Efficient FORTRAN subprograms for the solution of
elliptic partial differential equations, ACM Trans. Math. Software, 5 (1979), pp. 352-364.

[12] H. F. WALKER, Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152-163.

[13] , Implementations of the GMRES method, Computer Phys. Comm., 53 (1989), pp. 311-
320.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 3, pp. 826-839, May 1992

1992 Society for Industrial and Applied Mathematics
013

A (]RID-BASED SUBTREE-SUBCUBE ASSIGNMENT STRATEGY
FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON

HYPERCUBES*

MO MU AND J. R. RICEr

Abstract. The authors propose a grid-based subtree-subcube assignment strategy for solving
PDE problems on hypercubes. A complexity analysis of the communication is given for the proposed
approach and the standard subtree-subcube assignment when applied to a variant of nested dissection
indexing and a nonsymmetric sparse solver. The new assignment reduces communication cost using
p processors by a factor of O(log p) in message startups and a factor of about two in traffic volume.
Using a modified nested dissection indexing, the total effect on message startups is a reduction by
a factor of O(log N) compared to previous approaches, where N is the number of unknowns. This
grid-based assignment strategy achieves the optimal order in both traffic volume and startups; it
provides good load balancing and as much parallelism as is inherent in the underlying algorithm.
Some experimental results are presented which confirm the increased communication efficiency.

Key words, sparse matrices, parallel methods, hypercubes, partial differential equations, com-
munication efficiency

AMS(MOS) subject classifications. 65F50, 65N55

1. Introduction. Parallel sparse solvers for elliptic partial differential equation
(PDE) problems on a distributed memory, message passing (DMMP) multiprocessor
can be generally divided into three major components: assignment, indexing, and
solution. By assignment we mean that the discrete equations and the associated
subtasks are assigned to processors. Indexing means that equations/unknowns are
given an order, which establishes a system of linear algebraic equations. Solution
means applying a numerical method to solve this linear system. Potentially, one can
apply any algorithm to each of these three components. Various combinations of these
algorithms will, of course, perform differently. Our Parallel Ellpack system provides
a test bed for such performance experiments [11], [16].

Most parallel implementations of sparse solvers are based on elimination trees
which represent the sparse structure of a linear system (e.g., [6], [13], [2]). A better
shaped elimination tree (balanced, wide, and short) implies higher parallelism. The
elimination tree shape is, in turn, determined by indexing because it determines the
sparse structure. Indexings of the nested dissection type are appropriate for generating
well-shaped elimination trees. See [13] and [3] for further references to earlier work in
this area.

This paper mainly deals with one of the three components, the assignment is-
sue, for a hypercube multiprocessor. An ideal assignment strategy should keep the
load balanced, exploit fully the parallelism inherent in the problem, and minimize
the communication requirement. For a nested dissection type indexing and a gen-
eral purpose sparse solver, an attractive subtree-subcube approach is proposed by [7]
which has the lowest order of traffic volume. However, for most current commercially
available hypercube multiprocessors, both the traffic volume and the number of com-
munication startups strongly affect efficiency. We observe that this assignment does

Received by the editors May 17, 1989; accepted for publication (in revised form) January 23,
1991.

Computer Science Department, Purdue University, West Lafayette, Indiana 47907. The work
of the first author was supported in part by National Science Foundation grant CCR-8619817. The
work of the second author was supported in part by Air Force Office of Scientific Research grant
88-0243, and Strategic Defense Initiative Office contract DAAL03-86-K-0106.

826

GRID-BASED ASSIGNMENT FOR PDEs ON HYPERCUBES 827

not achieve the lowest order of startups, and thus propose a new assignment strategy,
grid-based subtree-subcube, which minimizes the startup cost while also retaining the
other desirable properties.

A geometric (or physical) approach to develop parallel sparse solvers for solv-
ing PDE problems is suggested in [13], [16] which has several advantages over some
standard algebraic approaches (e.g., [6], [2]). For example, it naturally allows non-
symmetric structure in the linear system, avoids symbolic factorization, leads to a
well-shaped (block) elimination tree, and also allows flexible combinations of various
techniques in different regions according to the local information about the geome-
try and physics of the PDE problem. Basically, the approach is based on a domain
decomposition in a nested dissection manner. For indexing, we use nested dissection
modified by locally using minimum degree ordering combined with an idea from the
multifrontal method. This, together with the domain decomposition, implies a block
elimination tree. Various parallel sparse solvers can then be devised based on this
block elimination tree.

2. Background.

2.1. Domain decomposition and block elimination tree. For the readers’
convenience, this section briefly describes our geometric approach to developing a
parallel sparse solver and the associated algorithms used in indexing and solution.
For more details, see [13], [15]-[17]. For simplicity, we consider a PDE problem on
a rectangular domain Q. The approach can be extended easily to general domains.
Suppose we have p (- 224) processors available, 2d in each direction. By domain
decomposition t is divided into p subdomains Qij, i, j 1, 2, ,pl/2 as shown
in Fig. 2.1. One puts a local grid on each subdomain Qij and discretizes the local
problem whose solution Uij only depends on unknowns at grid points of 0ti, the
boundary of tj.

f121 fi22 fl23 fl24

-31 -32 33 fi34

-41 fi42 fi43 44

FIG. 2.1. Domain decomposition of a rectangle for d 2.

Initially, all interior unknowns Uj are eliminated locally as in the standard domain
decomposition approach. This step is obviously totally parallel. Then, all processors
participate in eliminating interface unknowns. To exploit more parallelism, we use
dissection in alternating directions to partition the interface set into several levels
suitable for a hypercube machine. Each level consists of several separators, groups
of unknowns which separate regions. The partition, which we call the incomplete

828 M. MU AND J. R. RICE

nested dissection decomposition (borrowing the term used in [10]), is shown by Fig. 2.2
with circles representing the subdomain tij, and boxes representing the separators.
For simplicity, these are all called subdomains of this domain decomposition and are
numbered from top level to bottom level as shown in Fig. 2.2.

FIG. 2.2. Partition of the subdomain interfaces in Fig. 2.1 using the incomplete nested dissec-
tion. The circles (16-31) represent the 16 groups of subdomain unknowns and the boxes represent
groups of interface unknowns or separators. All boxes of the same size in each direction are on the
same level of the elimination tree.

This domain decomposition naturally inherits certain parallelism because the
PDE discretization process leads to a local or boundary dependence property for
interfaces. For example, if we consider the union of subdomains 16, 17, and 8 as a
more general subdomain then the local interior solution set U is uniquely deter-
mined by unknowns on 0t. This relation holds similarly for groups at higher levels
of the dissection decomposition for the unknowns arising in PDE applications. This
local dependency can be described by a binary tree as shown in Fig. 2.3 with each
tree node corresponding to a subdomain in the decomposition as shown in Fig. 2.2.
We call it a block elimination tree because it plays a similar role as the standard elim-
ination tree [2] does in exploiting parallelism. However, each node corresponds to,
in the former case, a block of unknowns/equations, while in the latter case, a single
unknown/equation. In other words, we are seeking the parallelism in the block sense
no matter what local properties the linear system has within each subdomain locally.
This block elimination tree has the following properties: (a) Each node corresponds
to a set of unknowns from one location; local ordering and lack of symmetry in the
linear system do not affect the tree structure. (b) Eliminating a node only has effects
on its ancestors. (c) The eliminations of nodes that are not descendants/ancestors
of one another are independent of one another. It thus implies several basic rules
for assignment, indexing and solution, as in Fig. 2.3, to exploit the full parallelism
inherent in the block elimination tree.

2.2. Indexing. It is natural to index the unknowns/equations globally accord-
ing to the order of the dissection decomposition, i.e., if unknowns u and v are in nodes

GRID-BASED ASSIGNMENT FOR PDEs ON HYPERCUBES 829

2nd y level

2nd x level

1st y level

1st x level

0 level

FIG. 2.3. Block elimination tree produced by the incomplete nested dissection domain decompo-
sition. The numbering of nodes corresponds to the groups of unknowns in Fig. 2.2; the x, y levels
refer to the directions of the bisection.

S and T, respectively, and S is on a higher level than T is, then the index of u is
larger than that of v. This variation of nested dissection is incomplete in the sense
that each separator is a line, instead of a cross as usual. It is also incomplete in the
sense that we do not perform the dissection all the way until each node on the bottom
level contains a single unknown/equation. Potentially, any linear system solver can
be applied locally within each node without affecting the good shape of the block
elimination tree. This allows us to choose appropriate local indexings in different
regions for different purposes and thus to mix nested dissection with other indexings
to improve performance without affecting the parallelism. For example, within each
subdomain on the bottom level, elimination occurs sequentially in a single processor
while the local problem is still sparse, so the fill-in issue here is a major concern. For
example, the minimum degree ordering may have less fill-in than nested dissection
does [12], especially for irregular domains. In the following, we will generically use
minimum degree to mean whatever indexing gives the best performance on the sequen-
tial problems on the lowest level. The classic minimum degree ordering is just one
reasonable choice here. Furthermore, if we keep the elimination front in Ftij as far as
possible from Oj, it helps to reduce the communication cost. Denote the boundary
layer of grid points in Ftij (those next to Otj) by Bj as shown in Fig. 2.4. Without
loss of generality assume that only unknowns on Bij are related to those on Ofj in
the linear system, such as the five-point star discretization would generate. So we
first eliminate the unknowns on j Bj using the minimum degree ordering. There
is no communication required at this stage. Then unknowns on Bj are eliminated.
Notice that the local indexing we use here is the minimum degree combined with the
multifrontal method idea. We call the indexing described above the modified nested
dissection.

Processing the boundary Bj last in tij might increase the fill-in and computa-
tional cost. Application of the argument in [5] shows that the effects are very minor.
And, as the size of the domains fj increases, this small effect becomes less impor-
tant. More specifically, if one performs operation counts for nested dissection applied
to all of tj and for nested dissection applied to tj Bj followed by Bj elimina-
tion, one finds that not only is the order (in terms of k) the same, but the leading
coefficients are the same. We have not experimentally measured this effect since we

830 M. MU AND J. R. RICE

I III ilI,
Interior of

flU

i. \

FIG. 2.4. View of a typical subdomain gtij of the PDE discretization. There are k2 unknowns
(grid points) in ij, (k- 2)2 in the interior and no 4(k- 1) in Bij, the boundary layer (dashed
area). The separators (shown as boxes) are lines of grid points separating the subdomains.

expect it to be small or even totally absent. On the other hand, for existing and con-
templated DMMP machines, these algorithms are usually communication bound, so
that processing the boundary Bij last appears to be the correct choice for algorithm
designs.

As far as the nodes on higher levels (separator subdomains) are concerned, local
indexing does not affect fill-in and communication significantly since the local systems
are almost dense when the elimination front arrives. In the following, a wrapping
ordering is assumed for each of these nodes locally.

No pivoting is assumed in the above discussion because we are mainly interested
in solving elliptic PDEs where the matrix problems are usually numerically stable
even though the matrices are often nonsymmetric. However, using this framework,
one can still perform certain local pivoting within each ij Bij or within separators.

2.3. Solution. There are four kinds of potential parallelism here. First, elim-
ination steps in independent nodes of the block elimination tree can execute simul-
taneously. We call this the outer parallelism. Second, if there are several processors
available for a single node, we can also exploit inner parallelism within the node. This
does not occur at leaf nodes if each leaf node has only one processor, as in usual cases,
even though it represents a sparse subproblem. For the other nodes we apply various
efficient parallel dense solvers to exploit the inner parallelism. Third, the task to
modify an equation to eliminate an unknown (or simply, a modification) is indepen-
dent for different equations just as for dense matrices. Finally, fourth, modifications,
even on the same equation, due to independent descendant nodes can be performed
in arbitrary order and hence in parallel. Further, modifications of one equation are
vector operations whose components can be processed in parallel.

The potential parallelism inherent in the block elimination tree provides many
ways to develop parallel algorithms for different matrix properties and machine ar-
chitectures. Fan-in [1], multifrontal [2], and fan-out [8] organizations are commonly
used in parallel sparse solvers. The fan-in scheme is currently known to be efficient
in communication [1]. But it is strictly restricted to symmetric matrices when used

GRID-BASED ASSIGNMENT FOR PDEs ON HYPERCUBES 831

on DMMP machines because forming the so-called aggregate update column (or row)
needs the information from not only a set of columns (or rows), but also a row (or
column) for the corresponding multipliers. This causes substantial communication
expense for nonsymmetric matrices, even if they are structurally symmetric. We do
not assume structural symmetry in our analysis. We believe that practical solvers will
have the matrix distributed to the processors either by rows or by columns.

One can easily see that a realistic sparse solver essentially involves the follow-
ing communication assumption for handling nonsymmetric linear systems on DMMP
machines.

ASSUMPTION 3.1. For Gauss elimination of nonsymmetric matrices on a DMMP
machine, each pivot equation must be sent to those processors which hold equations
related to the pivot equation.

In other words, if a,k 0, m > k, then the processor holding the ruth equation
must receive the kth equation (after it becomes a pivot equation). This communica-
tion assumption is enough for the communication complexity analysis in 4 so that
further details about a particular solution algorithm are not used. The multifrontal
and fan-out schemes both satisfy this assumption. We recently presented a new or-
ganization of Gauss elimination for nonsymmetric problems in [17] which achieves
much higher speedup than the fan-in, multifrontal, and fan-out methods do even for
symmetric problems with comparable sizes. This very efficient algorithm (which is
basically of fan-out type) still satisfies this assumption except for the bottom level in
the elimination tree. That level, however, does not affect the analysis in 4. In sum-
mary, the analysis includes all potential solution algorithms for solving nonsymmetric
problems on DMMP machines except the fan-in scheme which is not applicable here.

3. Assignment strategy. By assigning an unknown to a processor we mean
assigning both the problem data and the factorization subtask associated with this
unknown. To achieve high parallelism, load balancing, and low communication costs
based on the block elimination tree, we want to (a) avoid assigning independent
nodes to the same processor, and (b) assign processors to a single node so as to have
minimal communication connections. The standard wrapping assignment is not as
effective here even though it achieves load balancing. Recall that the primary goal in
parallel algorithms is efficiency and that load balancing is not a necessary condition
to achieve maximum efficiency.

In [7] an attractive subtree-subcube with local wrapping assignment is proposed. We
refer to it as the standard subtree-subcube assignment. It is a top to bottom process.
First, the root node of the elimination tree is assigned to the whole hypercube and
then the hypercube is split into two subcubes to which the two descendant subtrees
are assigned. This process goes on recursively until all subtrees become assigned to
single processors. The assignment within each node is simply in a wrapping manner.
Note that: (a) eliminating an unknown in a node need not affect all of its ancestor
nodes, and (b) even when effects occur in some ancestor nodes, they need not affect all
equations in them. Geometrically, the effect of elimination spreads in a multifrontal
manner with each processor starting with one subdomain and continuing to work on
"merged" domains containing it as interface (separator) unknowns are eliminated.
However, one cannot represent these properties completely by elimination trees even
though they may affect the parallel efficiency very much. This suggests that unknown
assignments be made in a multifrontal manner with a processor responsible only for
those unknowns located at the fronts of some nodes to which the processor has been
assigned. If several processors (usually a subcube) correspond to the same set of

832 M. MU AND J. R. RICE

unknowns, then local wrapping can be applied within this set. We call this the grid-
based subtree-subcube assignment which is defined more precisely as follows.

This is a bottom to top assignment process. Let us denote the levels in the block
elimination tree from bottom to top by 0, 1st x, 1st y, 2nd x, 2nd y, ..-, ith x, ith
y, and so on. The x and y refer to the horizontal (j) and vertical (i) directions,
respectively. The process is related to Fig. 2.2 where level zero consists of the leaves,
1st x consists of the eight separators 8-15, 1st y consists of the four separators 4-7,
2nd x consists of separators 2 and 3, and 2nd y consists of separator 1. The first step
is to map the given hypercube to a two-dimensional grid (for domain decomposition)
by the well-known gray code such that adjacent processors are directly connected and
tj is assigned to proessor Pij. This defines the assignment at the leaves of the
block elimination tree, the 0 level. Next, we subdivide each separator on the ith x
level and the ith y level into 2i-1 and 2 segments, respectively. This subdivision of
segments corresponds to the natural geometric segments along the separators of the
domain decomposition. We take care of the intersection points of adjacent segments
in each separator by adding an intersection point to its top (left) segment for the
x(y) direction. Then we assign each segment on the ith x(y) level to the closest 2
processors in the x(y) direction. The assignment within each segment uses wrapping.
This scheme is illustrated in Fig. 3.1. Thus, processors PI and P2 are assigned to the
interface unknowns of separator 8 (the upper left box in Fig. 3.1). For comparison,
Fig. 3.2 illustrates the standard subtree-subcube assignment strategy.

The potential for reducing communication is seen by examining separator 4 which
is the top, left horizontal box in Figs. 2.2 and 3.2. In Fig. 3.1 we see those unknowns
divided into two separate groups (segments). In the grid-based subtree-subcube as-
signment (Fig. 3.1), the processors Pll and P21 only handle the interface between
the two subdomains (16 and 18) they handled at the lower level. In the standard
subtree-subcube assignment (Fig. 3.2), the processors Pll and P21 are part of a group
of processors handling the four subdomains (16, 17, 18, and 19). Thus P and P2
must now obtain information about subdomains 17 and 19 at this step while this
is not required in the grid-based subtree-subcube assignment. This reduction in the
communication occurs in a similar manner for every separator.

4. Communication complexity analysis. Throughout this section, we use
the communication Assumption 3.1. The communication complexity, of course, de-
pends on indexing schemes, too. We will make it clear which indexing is used whenever
necessary.

In [7] it is proved that the total amount (or volume) of communication for the
standard subtree-subcube assignment is O(pN). This order is optimal in the sense
of minimizing traffic volume for nested dissection algorithms; the grid-based subtree-
subcube assignment has this same optimal order, as the analysis in [7] applies to all
types of subtree-subcube assignments. We give an analysis which provides estimates
for the communication complexity of startups as well as of traffic volume for both
assignments when applied to the modified nested dissection indexing and general
nonsymmetric solution algorithms. The analysis does not apply to the fan-in scheme
because the fan-in algorithm does not satisfy Assumption 3.1. But this algorithm is
not applicable to nonsymmetric problems which we are considering here.

Suppose that a set of q processors composes a connected subgraph in the hyper-
cube architecture and it is involved in communicating a piece of message. We assume
that each nonroot processor receives the message exactly once from one of its direct
neighbors. This occurs in most procedures for multicasting, i.e., sending a message

GRID-BASED ASSIGNMENT FOR PDEs ON HYPERCUBES 833

Pll P12

[el, P21 P31 P41][P,PePa2P4

P32

P41 P4

P4

P14

P.23 IP14 P24]

P:4

[PI3P’23P33P43 ID14 P24 P34P44

P33 P34

P33 P4aI[P34 P441

P4a /44

FIG. 3.1. Grid-based subtree-subcube assignment for 16 processors. Within the subdomain

interfaces we show how the processors are assigned to unknowns in parts of the separators.

from one processor to a list of other processors. Therefore the total number of start-
ups required in such a communication process is equal to q- 1. Putting a k k
grid on each subdomain fO, we have the total number of grid points on Ft equal to
N n n with n pl/2 k + pl/2 1. Without loss of generality assume that there
is a correspondence between each unknown and a grid point, as in the five-point star
discretization.

Let startup(n, p) denote the number of startups required for communication corre-
sponding to the n n grid and the p processors assigned to this grid. From Assumption
3.1, in eliminating a particular unknown we need to count the cost for communicating
a piece of multiplier message (a vector) among those processors holding unknowns
which are currently related to this unknown. First we estimate startup(n, p) for the
grid-based subtree-subcube assignment and the modified nested dissection indexing
using the recursive analysis similar to the argument used in [7].

THEOREM 4.1. Suppose d >_ 3 and there are N n n unknowns and p 4d

processors. Assume that a nonsymmetric sparse solver uses the grid-based subtree-
subcube assignment, the modified nest dissection indexing, and a solution algorithm
which satisfies Assumption 3.1. Then, on a DMMP machine the number of startups
satisfies

834 M. MU AND J. R. RICE

Pll PI2

P P2 P 2

P13 P14

P P2 P4 P4]

P23 P24

Pll P21P31 P41P12 P22P32 P42P13 P23P33 P43P14 P24P34 P44

P31 P32

P41 P42

Ps1 P33 P34

P43 P44

FIG. 3.2. Standard subtree-subcube assignment for 16 processors. Within each box unknowns
are assigned in wrapping manner to processors shown in the box.

(4.1) startup(n,p) < lOnp + 80np1/2.

Proof. Notice that the "cross" set on the top level consisting of two separators
on the dth x level and one on the dth y level divides the n n grid and the set of p

n nprocessors into four 7 7 subgrids and four groups of] processors. We introduce the
function f2(m, q) as the number of startups required due to the outside processors on
the subgrid border for eliminating unknowns in each m x m subgrid with two border
sides on the top level "cross" set and each side having q processors assigned to it. So,
startup(n, p) is bounded by three terms:

(4.2) startup(n,p) < 4 startup(-,) + 4f2(-,) + {2(p) + n p },

The third term in (4.2) corresponds to the number of startups required for elim-
inating unknowns in three separators of the "cross" set.

nTo estimate f2(7,), we examine one lower level by using the "cross" set in the
n n subgrids and we have2x7 grid to further divide it into four

(4.3) f2(-,-) <f2(,]) + 2f1(,)+ {[-(] + -)+ -] + - (+ -)}

GRID-BASED ASSIGNMENT FOR PDEs ON HYPERCUBES 835

where the function fl has a meaning similar to f2, but with only one border side
on the top level "cross" set. The third term in (4.3) comes from eliminating three

n n grid.separators in the "cross" set of this $ x
Similarly, we go to the next lower level to estimate the function fl as follows"

(4.4)

Notice that on the bottom level, i.e., the domain decomposition level, we have

n n(4.5) fl(p__/, p/2) <_ (4. p--/), p/2
By recursively using (4.4) till the bottom level, we get

2n.

f(-,-)
_
np+ 2f(-,-)

n pl/2(4.6) <_ np(1 + + +...)+ 2f(p-/
<_ 3nP + 4n.

Similarly, on the bottom level we have

n n(4.7) f2(, pl/2) (4.). pl/2 4n.

Substituting f from (4.6) and recursively using (4.3) and then using (4.7), we obtain

(4.8)
f2(,) np+8n+f2(,)

nnp(1 + + +...) + 8n(1 + + +...) + f2(, pl/2)
}np+16n+4n
3np+ 20n.

We substitute (4.8)into (4.2) to obtain

(4.9)

We observe that

startup(n, p) <_ 5up + 80n + 4startup(,).

n(4.10) startup(p-/, 1) 0.

We apply (4.9) recursively and then use (4.10) to obtain

startup(n, p) + 80n(1 2 22 2d-1<_ 5up(1 + + ...) + + + + +_
lOnp + 80up/2.

This completes the proof.
This analysis gives an upper bound. We see that the bound is sharp in terms

of the orders for n and p for a pipelined algorithm (one where a processor forwards
information needed by another processor as soon as it becomes available). The final
step (node 1 of the elimination tree) involves the n unknowns on the separator 1;
see Fig. 2.2. This step involves a dense matrix where all p processors must exchange
information with all other processors about all the remaining n equations. If we

836 M. MU AND J. R. RICE

maintain pipelining, then each multiplier vector must be broadcast as soon as it is
available. Thus np message startups are required. Thus we see that the grid-based
subtree-subcube assignment is of optimal order with respect to startups; we thus have
the following.

COROLLARY. With d >_ 3, p processors, n n unknowns, and a pipelined algo-
rithm, we have

startup(n,p) O(pn).

One could consider a partially pipelined algorithm where several multiplier vec-
tors are collected before being broadcast. This would be similar in philosophy to
loop unrolling (see [4]); it has the disadvantage of delaying computations on other
processors. While the optimal strategy will depend on the exact characteristics of the
hypercube, we believe that the optimal strategy will usually involve only a small num-
ber of vectors to be collected together before broadcasting so the order will remain
the same.

Changing the new assignment in Theorem 4.1 to the standard subtree-subcube
one, we see that the functions fl and f2 do not depend on the second argument, the
number of processors. Therefore, an extra factor log2 p is introduced into the estimate
for startup(n,p). Furthermore, if the indexing in Theorem 4.1 is also changed to
the standard nested dissection, then the factor log2 p will become log2 n because the
number of the dissection levels increases from log2 p to log2 n. This is also pointed
out in [19]. These two facts are stated as follows.

THEOREM 4.2. Change the subtree-subcube assignment in Theorem 4.1 from grid-
based to standard. Then we have

startup(n, p) O(pn log p).

Further, if the indexing is replaced by the standard nested dissection, then we have

startup(n,p) O(pn log2n).

We can also bound the traffic volume for both assignments. Specifically, let Vg
and V denote the total communication volume for the grid-based subtree-subcube
assignment and the standard subtree-subcube assignment, respectively.

THEOREM 4.3. With the assumptions of Theorems 4.1 and 4.2 we have

(4.11) Vg <_ 14.4pN + O(log2 pN),

(4.12) V _< 31.85pN + O(log2 pN).

We do not give the proof for Theorem 4.3 here. It can be found in [14]. From
Theorem 4.3 we see that the bound on Vs is about twice the bound on Vg. Both have
the same optimal order O(pN) as seen by examining the elimination at node 1. It is
intuitively clear and not hard to show that both algorithms are load balanced, i.e.,
the volume of messages from each processor is O(N).

5. Implementation and performance. Serious experimental studies are need-
ed to measure the value of the many variations in sparse matrix algorithms for hy-
percubes. This is a difficult challenge because of the sheer number of variations and
the difficulty is further compounded by (a) the lack of a stable architecture, and (b)

GRID-BASED ASSIGNMENT FOR PDEs ON HYPERCUBES 837

the lack of good performance analysis tools for hypercubes. Thus, even if we knew
everything now, the next generation of hypercubes is likely to have such a different
balance of hardware capabilities that we would have to start over. Even now, we
face the problem of whether poor performance observed is due to an inherent flaw
in the algorithm/method or to a terrible implementation of some underlying system
service. In view of this, we settle for performance comparison of these two assignment
strategies, which are implemented as two assignment modules in our Parallel Ellpack
and are combined with the indexing module MODIFIED NESTED DISSECTION and
two solution modules PARALLEL SPARSE [15], which is basically a fan-out scheme,
and NEW GAUSS ELIMINATION [17], on our two hypercubes (a first generation
NCUBE with 128 processors and a second generation NCUBE with 64 processors).

We solve a Poisson equation with Dirichlet boundary condition on a rectangle do-
main using 16 processors by our geometric approach with five-point star discretization.
We only consider the communication cost and timing of the LU factorization phase.
While this problem is actually symmetric, we still treat it as a nonsymmetric one since
we want to examine the effects of these two assignments on general problems. In the
following, we use standard and new to briefly denote the standard subtree-subcube and
the grid-based subtree-subcube assignments, respectively.

Figure 5.1 shows the number of messages versus N1/2 for both standard and
new. The total message volume versus N for both standard and new is shown in
Fig. 5.2. PARALLEL SPARSE is used as the solution module for both of these
figures. We observe a substantial reduction in communication requirements using
the new assignment strategy. These data lso firmly support the analysis in 4. If
the standard nested dissection indexing is used with the "standard" curve, then the
number of messages is increased.

Applying the new assignment and indexing strategies to the NEW GAUSS ELIM-
INATION module, we get a speedup of 4 for solving a 23 23 grid problem using
four processors, and a speedup of 15.7 for solving a 61 61 grid problem using 16
processors. Notice that even for symmetric solvers, the best speedup reported previ-
ously for 16 processors is 10.62. This is for solving a 125 63 L-shaped grid problem
with nine-point star by the fan-in scheme on an Intel iPSC/2 hypercube [1]. For more
detailed performance data, see [18].

6. Conclusion. We propose a grid-based subtree-subcube assignment strategy
appropriate for sparse matrix algorithms to solve PDE problems on hypercubes. The
change from the standard subtree-subcube assignment is motivated by the multifrontM
method used in PDE solvers where interfaces between subdomains are handled by the
processors assigned to the subdomains. For both assignments we give a complex-
ity analysis of the communication costs of the elimination considering both the total
traffic volume and the number of message startups. The analysis is given for a PDE
problem on a rectangular domain but the arguments can be extended to more gen-
eral domains. We show that our assignment has, theoretically, about half the total
communication volume as the standard assignment and the number of communica-
tion startups is improved by a factor of log2 p. With the modified nested dissection
indexing, the number of startups is then improved in total by a factor of log2 n.
This approach achieves the optimal order in traffic volume and number of startups.
Experimental measurements indicate that these theoretical improvements occur in
practice. This assignment also provides load balancing and exploits fully the paral-
lelism inherent in the problem. It is applied to nonsymmetric problems.

838 M. MU AND J. R. RICE

5500

5000

4500

4000

number 3500-
of

3000messages

2500

2000

1500

1000

standard."

15 20 25 30 35
number n of unkIowns in one direction

40

FIG. 5.1. Number of messages S versus number n N1/2 of unknowns in one direction with
16 processors.

total
message
volume
V

450000
425000
400000
375000
350000
325000
300000
275000
250000
225000
200000
175000
150000
125000
100000
75000
50000
25000

200

..-

400 600 800 1000 1200 1400 1600
number of unknowns N

FIG. 5.2. Total message volume V versus number N of unknowns with 16 processors.

GRID-BASED ASSIGNMENT FOR PDEs ON HYPERCUBES 839

Acknowledgment. We appreciate the helpful comments and suggestions of the
referees which substantially improved the presentation.

REFERENCES

[1] C. ASHCRAFT, S. EISENSTAT, AND J. LIu (1990), A fan-in algorithm for distributed sparse
numerical factorization, SIAM J. Sci. Statist. Comput., 11, pp. 593-599.

[2] I. S. DUFF (1986), Parallel implementation of multifrontal schemes, Parallel Comput., 3,
pp. 193-204.

[3] K. A. (ALLIVAN, M. T. HEATH, E. NG, J. M. ORTEGA, B. W. PEYTON, R. J. PLEM-
MONS, C. H. ROMINE, A. H. SAMEH, R. G. VOIGT (1990), Parallel algorithms for matrix
computations, Society for Industrial and Applied Mathematics, Philadelphia, PA.

[4] G. A. GEIST AND C. H. ROMINE (1988), LU factorization algorithms on distributed-memory
multiprocessor architectures, SIAM J. Sci. Statist. Comput., 9, pp. 639-649.

[5] A. GEORaE (1973), Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal.,
10, pp. 345-363.

[6] A. GEORGE, M. HEATH, J. LIU, AND E. NG (1988), Sparse Cholesky factorization on a
local-memory multiprocessor, SIAM Sci. Statist. Comput., 9, pp. 327-340.

[7] A. GEORaE, J. LIU, AND E. Na (1987), Communication reduction in parallel sparse Cholesky
factorization on a hypercube, in Hypercube Multiprocessors, M. Heath, ed., Society for
Industrial and Applied Mathematics, Philadelphia, PA, pp. 576-586.

[8] (1988), n data structure for sparse QR and LU factors, SIAM J. Sci. Statist. Comput.,
9, pp. 100-121.

[9] A. GEORGE AND E. NG (1988), Parallel sparse Gaussian elimination with partial pivoting,
Tech. Report ORNL/TM-10866, Oak Ridge National Laboratory, Oak Ridge, TN.

[10] A. GEORGE, W. G. POOLE, AND R. G. VOIGT (1978), Incomplete nested dissection for solving
n by n grid problems, SIAM J. Numer. Anal., 15, pp. 662-673.

[11] E. HOUSTIS AND J. R. RICE (1989), Parallel Ellpack, Math. Comput. Simulation, 31, pp. 497-
508.

[12] J. W. H. LIu (1989), The minimum degree ordering with constraints, SIAM J. Sci. Statist.
Comput., 10, pp. 1136-1145.

[13] M. Mu AND J. R. RICE (1989), LU factorization and elimination for sparse matrices on
hypercubes, in Fourth Conference on Hypercube Concurrent Computers and Applications,
Monterey, CA, March, 1989, Golden Gate Enterprises, Los Altos, CA, 1990, pp. 681-684.

[14] (1989), A grid-based subtree-subcube assignment strategy for solving PDEs on hyper-
cubes, CSD-TR-869, CER-89-12, Computer Science Department, Purdue University, West
Lafayette, IN.

[15] (1990), Parallel sparse: Data structures and algorithm, CSD-TR 974, CER-90-17, Com-
puter Science Department, Purdue University, West Lafayette, IN.

[16] (1990), The structure of parallel sparse matrix algorithms for solving partial differential
equations on hypercubes, CSD-TR 976, CER-90-19, Computer Science Department, Purdue
University, West Lafayette, IN.

[17] (1990), A new organization of sparse Gauss elimination for solving PDEs, CSD-TR-991,
CER-90-22, Computer Science Department, Purdue University, West Lafayette, IN.

[18] (1992), Performance of PDE Sparse Solvers on Uypercubes, in Unstructured Scientific
Computation on Scalable Multiprocessors, P. Mehrotra, J. Saltz, and R. Voigt, eds., MIT
Press, Cambridge, MA, pp. 345-370.

[19] E. ZMIJEWSKI (1989), Limiting communication in parallel sparse Cholesky factorization,
TRCS89-18, Department of Computer Science, University of California, Santa Barbara,
CA.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 841-859, July 1992

(C) 1992 Society for Industrial and Applied Mathematics

001

PARALLEL METHODS FOR SOLVING NONLINEAR BLOCK BORDERED
SYSTEMS OF EQUATIONS*

XIAODONG ZHANG], RICHARD H. BYRD$, AND ROBERT B. SCHNABEL$

Abstract. A group of parallel algorithms, and their implementation for solving a special class ofnonlinear
equations, are discussed. The type of sparsity occurring in these problems, which arise in VLSI design,
structural engineering, and many other areas, is called a block bordered structure. The explicit method and
several implicit methods are described, and the new corrected implicit method for solving block bordered
nonlinear problems is presented. The relationship between the two types of methods is analyzed, and some
computational comparisons are performed. Several variations and globally convergent modifications of the
implicit method are also described. Parallel implementations of these algorithms for solving block bordered
nonlinear equations are described, and experimental results on the Intel hypercube that show the effectiveness
of the parallel implicit algorithms are presented. These experiments include a fairly large circuit simulation
that leads to a multilevel block bordered system of nonlinear equations.

Key words systems of nonlinear equations, parallel computation

AMS(MOS) subject classifications. 65H10, 65W05

1. Introduction.
1.1. Definition of block bordered nonlinear problems. In this paper we present a

group of parallel algorithms and their implementations for solving a special class of
nonlinear equations, instances of which occur in VLSI design, structural engineering,
and many other areas. The class of sparsity occurring in these problems is called a
block bordered structure. In such a problem the general system of n nonlinear equations
in n unknowns may be grouped into q + 1 subvectors xl,’’’, Xq+l and fl,""" ,fq+l
such that the nonlinear system of equations has the form

(1.1)

where

fi(xi, Xq+l)--0, i= 1,""", q

fq+l(Xl, ,Xq+l)--O

X E R hi,

fiE R ni i=1,’’’ q+l

q+l

i=1

The block bordered Jacobian matrix of (1.1) is

A1
A2

(1.2) ".

aq
C C C

nl

Received by the editors January 16, 1990; accepted for publication (in revised form) May 14, 1991.
This research was partially supported by Air Force Office of Scientific Research grant AFOSR-85-0251.

? Division of Mathematics and Computer Science, University of Texas, San Antonio, Texas 78285-0664
(zhang@ringer,cs.utsa.edu).

S Department of Computer Science, University of Colorado, Boulder, Colorado 80309-0430
(richard@cs.colorado.edu and bobby@cs.colorado.edu).

841

842 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

where

Ai=0fR"n",, i=l,...,q,

B=Rn’xnq+’ 1
OXq+

Ci
Ofq+l

G Rnq+lXn., 1
Ox

q,

q,

p Ofq+l Rnq+,Xn+,
OXq+

Newton’s method is the fundamental approach for solving a general nonlinear
system of equations. Several parallel algorithms for solving general systems of nonlinear
equations that are based upon Newton’s method have been developed and implemented
on various parallel computers. These parallel algorithms consist mainly of solving the
linear Jacobian system in parallel. Many parallel algorithms have been developed for
solving linear systems, such as as parallel factorizations, parallel SOR methods, parallel
red-black methods, parallel multicolor, and others (see e.g., Ortega and Voigt [1985],
O’Leary and White [1985], White [1986], Fontecilla [1987], and Coleman and Li
[1990]).

In the case of very large nonlinear problems we cannot expect a single parallel
algorithm to efficiently handle all the instances of the system of nonlinear equations
problem, but rather the algorithm must take into account the sparsity structure and
other special characteristics of the problem. In fact, many nonlinear problems arising
in applications have their own special sparsity structure. Parallel algorithms taking
advantage of this special structure may be much more efficient than the algorithms
ignoring the special structure. This paper is an instance of developing special algorithms
for a special, important structure.

1.2. Background on block bordered problems. Block bordered problems of the
form (1.1) arise in many areas of science and engineering, and a few algorithms have
been developed to efficiently solve linear block bordered systems of equations. In
applications such as structural engineering, large spatial models may be divided into
q regions such that each region only interacts directly with neighboring regions. The
variables x for each region are chosen so that the model can determine their values,
given the values of the linking variables (the xq/l) at the boundaries of the regions.
The linking variables are tied together by a (q + 1)st set of equations representing the
interactions between the regions. Thus the equilibrium equations for such a model will
be of the form (1.1). In addition, the Jacobian matrix is symmetric. These problems,
and parallel algorithms for solving the linear block bordered systems that arise from
them, are discussed in Farhat and Wilson [1986] and Nour-Omid and Park [1986].

Mu and Rice [1989] study parallel Gaussian elimination for the block bordered
matrices arising from the discretization of partial differential equations (PDEs).
Christara and Houstis 1988], 1989] implement a domain decomposition spline collo-
cation method and a preconditioned conjugate gradient (PCG) method for this linear
block bordered system on both NCUBE/7 and Sequent multiprocessors.

All the work described above concerns parallel methods for solving linear block
bordered equations. Our research is to develop, implement, and analyze parallel
methods for solving nonlinear block bordered problems. To our knowledge, no one
has done similar work.

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 843

Block bordered equations also arise in VLSI circuit design, where parts of the
circuits may be divided into regions. The concept of macromodeling the circuit is to
decompose the circuit into subcircuits and to analyze the subcircuits separately (see
Rabbat, Sangiovanni-Vincentelli, and Hsieh [1979] and Rabbat and Sangiovanni-
Vincentelli [1980]). Macromodeling of the circuit results in a system of nonlinear
equations of form (1.1). Ai and Bi (i 1,..., q) in the Jacobian matrix are usually
used to represent internal and input-output variables in each of the q independent
subcircuits. The variables represent voltages and currents. The bottom block fq+l
represents the voltages or currents between subcircuits. Since each voltage or current
is used only in one block of equations f plus possibly the bottom block fq+l, the
nonzero columns of the Bi’s (and A) are disjoint, meaning that the matrices Bi, Bq
in (1.2) also follow a block diagonal pattern. In addition, since fq/l describes the
point-to-point connections of voltage and current, it is a linear function. The size of
the function fq+ depends on the number of connections among the subcircuits.

We have studied parallel methods for solving block bordered nonlinear equations
extensively from both theoretical and practical viewpoints. Section 2 considers the
explicit method and several implicit methods for solving block bordered nonlinear
equations, and presents a new implicit approach--the corrected implicit method. A
mathematical analysis of the two types of methods and a computational comparison
in a sequential context is made. Section 3 briefly discusses techniques used to make
these methods globally convergent. In 4, we give a group of parallel algorithms for
solving block bordered nonlinear systems of form (1.1), which may be implemented
and distributed on both shared and distributed memory multiprocessors. The
implementations and experimental results of these algorithms on the Intel hypercube,
a distributed memory multiprocessor, are presented in 5. Finally, our conclusions
and some future research directions are summarized in 6,

2. Explicit and implicit methods.
2.1. Introduction. There are two basic ways in which Newton’s method can be

applied to the nonlinear block bordered system of equations (1.1), which we refer to
as the explicit and implicit approaches. The explicit approach is to simply apply
Newton’s method to (1.1). This involves iteratively solving the linear system

(2.1) (X)AX:-(X), =0, 1,...

for AX k, where J(X ’) is the Jacobian of F, which has the block bordered structure
(1.2), and X (x,. ., xo, x0+).

The pure implicit approach is to use each of the q systems of nonlinear equations

(2.2) f(xi, Xq+l)--0, i= 1,’’’, q

to solve for x, given a fixed value of Xq/ This means that each of the x is implicitly
given by a function of Xq/. The whole problem (2.2) is then equivalent to solving

(2.3) fq+,(Xl(Xq+),’’’, Xq(Xq+l) Xq+l) O.

The Jacobian of this system is given by

(2.4) .= Ofq+
OXq+l

or

(2.5)

Ofq+l(Of
-1 of

i=1 Oil IkOXi] OXq+l

q. P CiA7 1Bi
i--1

844 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

and we may solve (2.3) by Newton’s method. We will be considering practical variants
of the implicit method that do not calculate xi(xq+,) exactly. We assume here and for
the rest of 2 that the matrices Ai and J are nonsingular. The situation where this
does not hold will be discussed in 3.

In this section we describe the explicit and implicit methods and their relations
to each other, introduce the new corrected implicit method, and give some simple
experimental results using these methods on a sequential computer.

2.2. Algorithms and analysis for the explicit and implicit methods. Newton’s method
applied to (1.1) in the explicit method consists of solving the following linear equations
at iteration k (k=0, 1,...)" from f(x)=0, i= 1,..., q,

(2.6) AAxki + BiAxk k++f,(x,, x+) 0,
kand from fq+,(xk, Xq, Xq+,) O,

q

(2.7) q+l
i=1

(For simplicity, we omit superscripts k on Ai, B, C, and P, but note that at least the
Ai’s and Bi’s can change at each iteration.) Solving for Ax/k in (2.6) and substituting
into (2.7), we obtain

q

(2.8) YAxg --fq+,(xk, g g g
q+l "’’, Xq, Xq+l)’+- Z CiAT’f(xki, Xq+l)

i=1

where J is given by (2.5). So
k+ k qk(2.9) Xq+ll Xq+ "]- AX +1

can be determined from (2.8), and

(2.10) x/k+’= x/k+Ax/k, i= 1,..-, q

can be determined from (2.6).
In the pure implicit method, Newton’s method is applied to (2.3) and gives

(2.11) a?AXqk+, +fq+,(X,(X g g g+,), x(x+,), x+,) o,
where x(xq+,) (i 1,. ., q) is implicitly determined by solving the nonlinear system

(2.12) f(x,, gXq+l) --’0

for xi. To turn this into a practical computational procedure, we use a second (or
inner) Newton process on (2.12) to calculate xi(Xq+,), which solves (2.12) approxi-
mately. For each 1,-.., q, this yields the inner iteration

(2.13) iAxki,J-1.3vfi(xki,J-1 kx+,)=0, i= l, q, j= l,2, Ii,,.

Here x/’= Xk, Ii,, is the number of inner iterations, and i Ai if it is only evaluated
once at the beginning of each outer iteration; or, it may be evaluated up to Ii times.
At the end of each inner iteration, we set

(2.14) x/k’j= x/kd-’ + Ax/kd-’, i= 1, q.

When we exit the inner iterations, we set
k /k+l ".(2.15) xi(xq+,) x xki ’2

Then Xq+l is determined from (2.11) and
k+ k AXqk+l.(2.16)

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 845

The implicit Newton iteration (2.11) is also considered by Rabbat, Sangiovanni-
Vincentelli, and Hsieh 1979], but instead of focusing on the number of inner iterations,
they assume that (2.12) is solved to some tolerance. By considering a method with a
fixed number of inner iterations, we are led to the following theorems, which show a
close relationship between the explicit method and the implicit methods just described.
We are also led to a new method--the corrected implicit method.

THEOREM 1. Iffq+l is linear, the matrices Ai and J are nonsingular, and only one
inner Newton iteration is applied to solve for xi ’j (i= 1,..., q) in the implicit method,
i.e., I, 1, then for a fixed k, the steps Axq+l are identical in both methods.

k k+l k+l kProof In this case xi +1 =x-AC, lf(x, xq+l) and fq+l(xl ,’" ", xq xq+l)
k k ciaYlfi(xk xkfq+,(x,..., Xq,Xq+l)-Yqi=l -, q+l). Substituting this into (2.11) gives

(2.17)
q

1, ,xq, xq+l)+ E cia:, lf(xi, k
Xq+ll,]

i=0

which is identical to the explicit formula (2.8).
The corrected implicit method. In the implicit method described above, the steps

Axi for < q do not involve any information about fq+l or Axq+l, and are not the same
as in the explicit method. If the value of xi+l(i <= q) calculated by the implicit method
is corrected after each iteration to account for the change in Xq+l, however, the implicit
method can be made closer to the explicit method and quadratically convergent. The
problem may be defined to find a correction term 6 such that

k+l(2.18.) f(X/k+l+ 8, Xq+l)0
or

(2.19) fi(xi+ + 6, xq+ 1-11- Ax 0q+l

Making a linear approximation to f/ in (2.19) yields the condition

(2.20) Xq+l) +A+ BAxk
q+l 0.

The correction term 6 obtained from (2.20) would then be

(2.21) 8 _A/l[f(xi+l k k
Xq+l -[- BiAx].q+l

However, after I, inner iterations of solving for xk+1 f(xk+1 k
Xq/l) O. Thus we make

a further approximation giving the correction term

(2.22) i -A71BiAxkq+l
We call the new implicit method with this correction the corrected implicit method. The
cost of the correction term (2.22) is small since the matrices AC, Bi (i 1,..., q) have
been calculated already and in a parallel implementation, the matrix-vector products
can be parallelized fully.

We can now see that when fq+ is linear, the explicit method is a special case of
the corrected implicit method.

THEOREM 2. Iffq+ is linear, the matrices Ai and J are nonsingular, and only one
Newton iteration is applied to solve for xki " (i 1,’’’, q) in the implicit method, i.e.,
In 1, and the system is corrected by adding -A,IBAxq+I to xgi+l(i<=q) after each
iteration, then the explicit method and implicit method are identical.

k is identical for the two methods Combining (2.14)Proof From Theorem 1, AXq+l
with j 1 and (2.22) gives

(2.23) k kXi +1 Xi A;l[fi(xki,, Xq+l) BiAxq+
which is identical to (2.6) in the explicit method.

846 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

This equivalence, together with the standard convergence analysis for Newton’s
method, gives the following convergence result.

COROLLARY. Suppose J(X) is continuously differentiable near a solution X*, the
matrices Ai(x*) and J(X*) are nonsingular, andfq+l is linear. Then the corrected implicit
method with Iin 1 inner iterations per outer iteration is locally quadratically convergent
to the solution.

Quadratic convergence can also be shown for Ln > 1 and when fq+l is nonlinear.
The proof is given in Zhang [1989], and is based on the fact that the extra inner
iterations tend to move X closer to the solution, and the nonlinearity in fq+l at most
adds a term of order IIx-x*ll= to the error at X k+l.

2.3. Some experiments on a sequential processor. The previous subsection shows
that a variant of the implicit method is equivalent to the explicit method, but does not
indicate why the implicit method might be preferred. The main reason is that, by using
more than one inner iteration per outer iteration in the implicit method, the number
of outer iterations can be reduced substantially, which is advantageous, especially for
parallel computation. In this subsection we give a first indication of the sort of
computational behavior that we have found.

We initially tested the methods discussed in this section on several artificial
problems. Here we report results on a simple 20 20 nonlinear block bordered system
of quadratic equations that has four 4 4 blocks, A1, , A4, and a 4 4 bottom block
P, with fq+l linear. In all cases, the starting value of x was close to the solution, and
no global strategy (e.g., line search) was used. All these experiments were run on a
Pyramid P90 computer.

First we compare the performance of the three methods when only one inner
iteration (Iin 1) is used in the uncorrected implicit and corrected implicit methods
(Table 2.1). The explicit method and the corrected implicit method with I 1 are
identical in this case (see Theorem 2). Thus the same number of iterations is required
to converge to the solutions. The computing times are slightly different since the
implementations of the two methods are different. The uncorrected implicit method
converges more slowly than the other two methods, which is reasonable since the
correction step is needed to make it quadratically convergent.

TABLE 2.1
Experiments with the three methods.

(Ii, 1) Outer iterations (seconds)

Explicit Implicit Corrected implicit

13 (0.44) 14 (0.40) 13 (0.40)

Next we increased the number of inner iterations in the uncorrected and corrected
implicit methods. The experimental results (Tables 2.2 and 2.3) show that the number
of outer iterations is sharply decreased when the number of inner iterations is two.
However, the number of outer iterations decreases more slowly as Ii, increases further.
There exists an optimal value Iin for computing time in both the methods, but it is
problem dependent. Our experiments also show that the corrected implicit method
converges a little bit faster than the uncorrected implicit method when I, > 1, which
is consistent with our convergence analysis. In 5 we will see that for larger problems,

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 847

TABLE 2.2
Experiments with the (uncorrected) implicit method.

(/n > 1) Outer iterations (seconds)

Ii.=l I,, 2 I.,=3 I.,=4 I,, 5

14 (0.40) 8 (0.34) 7 (0.40) 6 (0.44) 6 (0.54)

TABLE 2.3
Experiments with the corrected implicit method.

(Ii > 1) Outer iterations (seconds)

I.,=1 I.,=2 1.,=3 I,, 4 I,, 5

13 (0.40) 8 (0.38) 6 (0.36) 6 (0.50) 5 (0.54)

the improvements in time for the corrected implicit method with L > 1 can be consider-
ably larger than t’hose seen here. Also, we will see in 4 and 5 that the decrease in
iterations is advantageous for parallel computation.

3. Globally convergent modifications of the explicit and implicit methods. The expli-
cit method and corrected implicit method are locally quadratically convergent to the
solution. In other words, when the initial solution approximation is good enough,
those methods are guaranteed to converge rapidly to a solution. However, it is often
hard to find a good initial approximation for nonlinear problems in practice. In addition,
many practical problems, such as the circuit equations, are highly nonlinear, and if
the current solution approximation is not close enough, a Newton step may easily
result in an increase in the function norm. For example, a small change in some voltage
difference in a nonlinear circuit equation may result in a great change in an exponential
term in a diode or transistor’s function evaluation. Also, many block bordered equations
result in nearly singular or singular Jacobians in the process of the iterations, for
example, because a transistor with an exponential model is turned on at a nearly fiat
function curve (see Zhang, Byrd, and Schnabel 1989]). For these reasons, the methods
need to be modified to handle unacceptable steps and singular Jacobian matrices in
order to converge to a solution. In this section, we briefly describe the modifications
we have used, which are motivated in part by their appropriateness for parallel
distributed computation. They are described in more detail in Zhang [1989]. A global
convergence analysis will be given in a forthcoming paper.

We achieve convergence from poor starting points by using a line search. The
explicit method is just a standard Newton’s method, so we can use a standard line
search. That is, we calculate the overall step direction d k --(AXlk’’" Axq, AXqk+l) as
described in 2.2, and then set

xk+I Xk -- Akd k,
where the steplength parameter A k > 0 is chosen by a line search procedure that assures
sufficient descent on [IF(X)II2. Our line search is based upon Algorithm A6.3.1 in
Dennis and Schnabel [1983].

The implicit method is more complicated since we have both inner and outer
iterations. We need to choose the steps Axk3= (xk3+l- xk3) in the inner iterations so

848 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

that the overall step direction

(3 a 2 q+l
X j=0 j=0

where) is the correction step (2.22), is a descent direction on IIF(x)ll=, In addition,
we would like the calculation of the steps Ax’j for different values of to be
independent, so that the calculations of the inner iterations can be parallelized easily
and eciently.

Zhang [1989] shows that if each Ax"j is calculated by

(3.2) Ax’=-A’jA(x"j Xq+), i= 1,..., q

(i.e., the step discussed in 2.2 multiplied by a line search parameter I’J>0), the
correction steps are calculated by (2.22), Ax+ is calculated by (2.11) as before,
and fq+ is linear, then d given by (3.1) satisfies

J(X)d

j ,jXq+l), 2 Xq Xq+l),fq+l(X1,’’’ Xq, Xq+l)
j =o =o

Since the derivative of I[F(X)ll in the direction d is equal to

q Iin
F(X) J(X)d 2 (X

=o j=o

it is clear that a sucient condition for d given by (3.1) to be a descent direction on

Ilf(x)l is that for each i= 1,..., q,

Iin
(3.3) 2 A’J(x"j, Xq+)> 0.

j=0

Note that (3.3) always holds for Ii 1 (since each ’ >0), and that it is true for

I 2 if ll(x)’ ,Xq+)ll < ll(x’,Xq+)ll (which any line search will enforce) and
.o Thus we expect to get a descent direction most of the time. However, since

(3.3) can be monitored independently for each i, the following parallel procedure
could be used to guarantee that a descent direction is generated. For each j, the
procedure calculates each Ax"j by (3.2) using a standard line search as mentioned
above, and then checks whether the corresponding paffial sum of (3.3) is satisfied. If
it is not, it sets Ax’ =0 for =j,..., I- 1 and exits the inner iteration for xi. The
outer line search can be performed as in the explicit method.

Our approach for dealing with (nearly) singular Jacobians is based upon the
Levenberg-Marquardt approach as described in Dennis and Schnabel [1983]. For a
general system of nonlinear equations, if the current Jacobian matrix J is (nearly)
singular, this approach modifies the search direction to be _(jrj + I)-jTF, where
F is the current function value, and is a small positive number. This direction is a
descent direction on [[F(x)lle and is the solution to the trust region problem

minimized F+ Jd [12 subject to d 112 <- A

for some A> O. In the limit as /x-O, this direction equals -J+F, where J+ is the
pseudoinverse of J.

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 849

In the explicit and implicit methods described in 2, we need to solve systems of
linear equations using the matrices A,..., Aq and the matrix . P-Y CiAT,Bi.
If any of these matrices, say, M, is nearly singular (i.e., either the factorization detects
numerical singularity or the estimated condition number of M is greater than
macheps-1/2) we simply replace M- by (MTM+ txI)-IM T in the formulas of 2,
where /z is chosen by the trust region strategy described by Dennis and Schnabel
[1983], and is thus a function of M and the trust region size. These perturbations
again have interpretations in terms of trust regions. Note also that the algorithms for
deciding whether to perturb each A,..., Aq, and for perturbing them if necessary,
are totally independent so that they can be performed in parallel.

Combining these perturbation techniques with the inner line searches to assure
descent at the outer iteration and global convergence is somewhat more complex, and
will be addressed in a future paper. In our implementations, we have simply taken Ii,
inner iterations for each block i, i= 1,. ., q. We have used a standard line search to
choose each A’ (requiring sufficient descent on.f) but have not checked a condition
like (3.3) that assures global descent, as this condition is more restrictive than necessary.
To our knowledge, the algorithm has still always produced a descent direction.

The algorithm we implement is summarized below. If J or any Ai below is (nearly)
singular,)-1 or A-1 is replaced by (.T.+ tzI)-IjT or (AfAi+ tziI)-lATi for a small
positive/x or/xi, respectively. When fq+ is linear, the explicit method is just a special
case with In 1 and each A’1= 1.

IMPLICIT METHOD WITH GLOBAL MODIFICATION
k1. For j 0,..., Ii, 1, calculate x"+1 x)d- A’aT,lf(xd x,+l) where)’-> 0,

i=l,...,q.
2. Form and factor .= P-q CAB
3 Calculate x _-lf+(. ,,.,X1, m, Xq q+q+l X 1)"
4. Calculate the corrections =-A’BAx+, and set ff+’= x’z’-+6, i= 1,..., q.
5. CalculateX+=X-Adkwhere d=(ff+-x,...,q+-xq, Axq+).

4. Parallel explicit and implicit algorithms.
4.1. Motivation--LU factorization of block bordered linear equations. Note that

the LU factorization of the block bordered Jacobian matrix

A1 B1
A2 B2

o
Aq Bq

C C2 Cq P

\Cl2"’’qLq+l
where for i- 1,.--, q,

U1

Ai LiUi

i L1Bi

850 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

and

q q

Lq+l Uq+l . P E C,AT, B, P ., (?i,,
i=1 i=1

provided that the matrices AX are non,singular. (This is the same matrix J as in 2.)
The calculations of Li, Ui, B, and C for each are independent, and thus can be
parallelized very efficiently. The factorization of must follow these calculations and
will not parallelize as efficiently, especially on distributed memory multiprocessors,
because it will require considerable communication.

A parallel version of the explicit method essentially consists of performing the
above factorization in parallel at each iteration. The parallel version of the implicit
method that we discuss next will be seen to perform closely related operations. The
major difference will be that, by performing more than one inner iteration per outer
iteration, it will spend a larger portion of its time on the calculations that parallelize
very efficiently (those for blocks 1,..., q) and a smaller portion of its time on the
calculations that parallelize less wellmthe formation and factorization of J and the
outer line search. Thus the implicit method can be expected to parallelize more
effectively than the explicit method, especially on distributed memory computers. If
the two methods require similar amounts of time on sequential computers, as indicated
in 2, then the implicit method can be expected to be faster on parallel computers.

4.2. Parallel algorithms. Below we give a general description of a parallel corrected
implicit method that is based upon the sequential method presented in 2 and 3. The
parallelism comes mainly from executing all the operations on blocks 1 through q,
which have been designed to be independent, concurrently. The parallel explicit method
is just the special case with//n 1 and no inner line search.

INNER ITERATIONS
1. For i= 1, q, Do in parallel:

1.1. Factor Ai and estimate its condition number Cond (A).
1.2. If Cond (A) <- Tol then set M A, N =/.

Else choose/x > 0, form and factor Mi AfAi + I, set Ni Ai.
1.3. For j 0, /, 1, Do:

Solve MiAxki "j Nif(xki,J kXq+l) for Ax/k’j.
Inner line search" x/k’j+l x/k + A/k"JAXk’j for some hk’ > 0.

1.4. Solve MiW NB for W.
1.5. Calculate T/= CW.

OUTER ITERATION
2. Form = P-/q= T/.
3. Factor J and estimate its condition number Cond (.).
4. If Cond (.) -_< Tol then set M], N-- L

Else choose/x > 0, form and factor M ?r. +/z/, set N= jr.
5. Solve k k I. k,I. kMaXo/l Sf/(,x , /.Xl’ ,n, Xq+l) for AXq
6. For 1, q, Do in parallel:

Calculate corrections 8 W/Axq+l and set
7. Outer line search: xk+l X k +/k(lk+l _Xk -k+l k AXk

Xq Xq, q+l) for some

The steps marked with stars require synchronization (on a shared memory multi-
processor) or communication (on a distributed memory multiprocessor). Step 2 requires
synchronization if the matrices Ti are full. In the VLSI problems, however, the nonzero

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 851

columns of Bi, and hence T, are disjoint (see 1.2) and hence step 2 can be performed
in parallel.

On shared memory machines, steps 3-5 can be performed in parallel using standard
parallel methods for solving linear equations. On a distributed memory machine, it
will only be efficient to perform steps 3-5 in parallel if the dimension of J is rather
large. In our test problems, J was fairly small, so we performed steps 3-5 on one
processor, on which we kept P, J, and xq/l. The remaining data was distributed in the
obvious way: Ai, Bi, Ci, and x were stored together on one processor that handled
block i. Step 7 includes two main operations, the calculation of trial points :k+l and
the evaluations of F at the points, which are performed in parallel on a shared memory
machine, and may be performed in parallel on a distributed memory machine depending
on their costs relative to the cost of communication.

5. Experimental results on a hypercube multiprocessor.
5.1. The test problem: A nonlinear block bordered circuit equation. The nonlinear

block bordered application we consider for testing is the VLSI circuit simulation
problem. Standard circuit simulation methods consist of stiffly stable implicit integra-
tion formulae to discretize the differential equations, Newton’s method to solve the
resulting nonlinear algebraic equations

(.) F(X) =0,

and sparse LU decomposition to solve the linear equations that arise at each iteration

(5.2) JaX -F(X),

where J R is the Jacobian matrix of (5.1). Typically, less than 2 percent of the
entries of J are nonzero for n > 500 (see, e.g., Sangiovanni-Vincentelli and Webber
[1986]). The Newton iteration is repeated until the solution converges or the upper
bound on the number of iterations is reached. The program then decides whether to
accept the solution, based on its estimate of local truncation error and the number of
iterations required.

As mentioned in 1.2, partitioning the circuit leads to a block bordered system
of nonlinear equations of the form (1.1) (see, e.g., Rabbat, Sangiovanni-Vincentelli,
and Hsieh [1979]). Given a circuit network F, a group of partitioned subnetworks %,

1,..., q, and the connecting current and voltage equations, the block bordered
nonlinear system of equations is defined as follows. Currents between two subnetworks
and voltages at the boundary are each represented by two variables, one in each
subnetwork, which are set equal to each other by equations of fq+l. Variables x
(i= 1,. ., q) are used to represent internal voltages and current variables in each of
the q independent subnetworks. Some of these are the current connecting variables
among the q subnetworks. The variables Xq+ are used to represent the voltage connect-
ing variables among the q subnetworks. Here the equations for voltages and currents
are standard current equations involving resistors, transistors, diodes, voltage sources,
and other elements. Since the connecting equationfq+ is linear, the coefficient matrices
C, i-- 1,. ., q for the current connecting functions are constant, and the coefficient
matrix P for the voltage connecting function is also constant.

For a very large circuit, the network F may be divided into subnetworks recursively,
which leads to a multilevel block bordered system of nonlinear equations. In such a
case, the diagonal blocks A (i 1,..., q) are themselves block bordered matrices.
The border elements of the multilevel system represent the connections of the highest
level.

852 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

We applied our algorithm to a simulation of the 741 op-amp circuit (see, e.g.,
Sedra and Smith [1982]), which was introduced in 1966 and is currently produced by
almost every analog semiconductor manufacturer. The circuit is partitioned into four
parts with roughly equal nodes in each subcircuit. A transistor is viewed as a nonlinear
three-terminal device in the circuit. Thus, applying the Ebers-Moll transistor model
(see Ebers and Moll [1954]), 24, 27, 23, and 27 KCL functions are defined in the first,
second, third, and fourth block, respectively. The seven connections among the four
blocks result in 14 linear current and voltage connecting functions. The total number
of variables is 24 + 27 + 23 + 27 + 14 115.

We also used a large analog filter composed of three 741 op-amp circuits (see,
e.g., Smith [1971] and Valkenburg [1982]) to construct a two-level block bordered
nonlinear system. The analog filter is first partitioned into three parts, each of which
contains one 741 op-amp circuit. The first-level block bordered structure is thus formed
with three diagonal blocks and one connecting block. Each of the diagonal blocks is
a 741 op-amp circuit that is partitioned into the second-level block bordered structure.

5.2. The 741 op-amp circuit simulation on the Intel Hyperculae. The nonlinear block
bordered equations of the 741 op-amp circuit were solved in parallel on an Intel iPSC1
hypercube using the algorithm of 4.2. The four blocks of the circuit were distributed
among four nodes ofthe hypercube. For convenience, the steps involving the connection
function fq/ (steps 3-5 of the parallel algorithm) were performed on a different node
which plays the control role. They could just as well have been done on one of the
four nodes. Identical initial values were used as the inputs for all the above experiments,
and the convergence tolerances were also the same for those experiments. The solutions
of the experiments were verified by comparing them to the solutions computed by the
program SPICE, which is a general-purpose circuit simulation program for nonlinear
dc, nonlinear transient, and linear ac analysis (see Newton, Pederson, and Sangiovanni-
Vincentelli 1988]).

Tables 5.1 and 5.2 show the experimental results for the explicit method. Tables
5.3 and 5.4 list the experimental results for the corrected implicit method with one or
more than one inner iterations per outer iteration and with inner line searches. Note
that as long as the inner line search is applied, the corrected implicit method even
with one inner iteration per outer iteration is not the same as the explicit method.

In Tables 5.1 and 5.3, Ti (i 1, , 4) is the total computing time for all computa-
tions for solving the ith diagonal block on node i, Tb is the total computing time for
all computations for solving the bottom block on the control node, Tc is the total

TABLE 5.1
The explicit method times for the op-amp 741 circuit.

12.81 14.20 13.45 14.58 3.42 0.43 20

TABLE 5.2
The explicit method parallel performance for the op-

amp 741 circuit.

L Tp sp eff

58.46 18.43 3.14 78.5%

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 853

TABLE 5.3
The corrected implicit method times for the op-amp 741 circuit.

11.81 13.06 11.96 13.28 2.84 0.38
2 12.60 14.01 12.83 14.45 1.65 0.32
3 11.28 12.84 11.46 13.01 1.38 0.25
4 18.48 20.57 18.81 21.34 1.32 0.25
5 29.04 32.12 29.92 32.89 1.34 0.24

18
15
12
11
11

TABLE 5.4
The corrected implicit method parallel performance for the op-amp

741 circuit.

Ii,, L Tp sp eff

52.95 16.5 3.21 80.25%
2 55.54 16.42 3.38 84.50%
3 49.97 14.64 3.43 85.75%
4 80.52 22.91 3.50 87.500/0

5 125.31 34.47 3.60 90.0%

communication time for the computation, No,.,t is the total number of outer iterations
required to converge to the solution, and Iin in Table 5.3 is the number of inner
iterations used in the corrected implicit method. In the performance Tables 5.2 and
5.4, Ts is the computing time for solving the same problem on one node"

4

L ., Ti + Tb,
i----1

Tp is the parallel computing time;

Tp =max (Ti, , T4)+ Tb + T,

sp is the speedup of the parallel computation:

sP re
and elf is the parallel efficiency defined by

eff=
sp

number of processors"
Our experiments show that the inner line search and inner iterations indeed speed

up the convergence to the solution. For example, the experiment with one inner iteration
with inner line search used 18 iterations to converge to the solution. The same
experiment without inner line search (explicit method) used 20 iterations. As the
number of inner iterations In is increased, the total number of outer iterations Nou,
decreases from 18 to 11, and the speedup increases because the bottom block computa-
tions constitute a smaller percentage of the overall computation. However, the sequen-
tial computing time only decreases by a small amount for Ln 3, and then increases
dramatically because the cost of the extra inner iterations swamps the smafi s:vings
from the further decrease in the number of outer iterations. Both the sequential and

854 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

parallel computing times are minimized when the number of inner iterations is L, 3,
and the speedup in this case, 3.43, is good.

Our experiments also show that the bottleneck computing time Tb of the corrected
implicit method is more than 50 percent lower than in the explicit method if more
than one inner iteration is applied. The communication time is also lower since the
total number of iterations, and hence the time to send the updated variables among
the nodes, is less than for the explicit method. Consequently, the advantage of the
implicit method over the explicit method should be greater in larger problems where
the amount of communication and cost of solving the bottom block are larger.

5.3. Experiments for two-level block bordered circuit equations. We also solved in
parallel the two-level system of nonlinear block bordered equations for an analog filter
formed by connecting together three blocks of the 741 op-amp circuit. We again used
the Intel iPSC1 hypercube multiprocessor. The linearization of these equations at each
iteration has the form

(.3) Jax -F,

where J is the two-level block bordered matrix

n

p1Cq

Bq

A3 B

U

A B

and

F (fll, ., fq, fq+l, fl, ", fq, fqZ+,, f3,.. ", fq3, f3,, f+,) T

The system (5.3) could be solved by applying the block bordered solver to each
of the three block bordered submatrices, and then solving the whole system by applying

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 855

the block bordered solver again. Alternatively, the block bordered Jacobian matrix
may be reordered to

A B

Ao Ba

p1

C1 C q

with AX reordered to

c
C2 C3

p2

AX AX2 Ax2 Ax31 AX 2 3qmx (mxl, q, 1, q +1, q+lXq+l Xq+l x
and F reordered to

F (f, .,f,f,...,f,f,...,f,f+,fq+l,fq+,2 fq+ 1) T.
In solving this block bordered system, two levels of parallelism can be exploited. Let
m be the number of amplifiers in the analog filter and q the number of subcircuits
inside each amplifier; here m 3 and q 4. First the m x q independent operations
for solving the diagonal blocks can be performed in parallel. Second, the m independent
operations for transforming the matrices pS, j 1,. ., m, and solving the resultant
systems of eguations can be performed in parallel. Finally, the very bottom block, with
the matrix P, must be transformed and solved.

In our test program, the 12 diagonal block equations of the analog filter were
distributed among 12 nodes of the Intel hypercube. The first level of internal connection
functions in each amplifier,f+ (j 1, , 3), was distributed to three of the 12 nodes,
and the second level connection function among the three amplifiers in the analog
filter, fq+, was handled sequentially by one of the 12 nodes.

Tables 5.5 and 5.6 give the experimental results and the performance of the explicit
method for solving the two-level analog filter equation. Tables 5.7-5.11 show the

TABLE 5.5
The explicit method times for the analog filter.

13.49 14.93 14.21 15.34 13.44 14.85 14.16 15.46 13.36

To T T12 T T T T T Nou

14.76 14.25 15.63 3.01 3.12 3.17 0.58 1.31 21

856 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

TABLE 5.6
The explicit method parallel performance for the analog

filter.

183.76 20.69 8.88 74.00%

TABLE 5.7
Corrected implicit method times for the analog filter, Ii, 1.

11.54 12.78 12.13 13.13 11.52 12.69 12.10 13.21 11.42

Lo T TI T T T Tb T No,

12.61 12.20 13.40 2.56 2.67 2.73 0.5 1.12 18

TABLE 5.8
Corrected implicit method times for the analog filter, Ii, 2.

11.83 11.93 11.84 12.09 11.91 12.01 11.89 12.12 11.84

T T TT, T, T r T No.

12.05 11.94 12.13 1.65 1.65 1.64 0.36 0.73 12

TABLE 5.9
Corrected implicit method times for the analog filter, Ii, 3.

21.25 23.67 23.25 24.51 21.67 23.29 24.21 24.35 21.22

Tlo Tll T12 T T T T Tc Nou,

23.56 23.21 24.75 1.52 1.51 1.53 0.34 0.69 11

TABLE 5.10
Corrected implicit method times for the analog filter, I, 4.

29.03 32.24 29.98 32.75 29.11 32.04 29.87 32.71 29.40

Tlo 7"11 T2 T T T r rc Nout

32.21 31.05 32.34 1.50 1.51 1.50 0.35 0.69 11

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 857

TABLE 5.11
Parallelperformance ofthe corrected implicit methodfor the analogfilter.

Iin T Tp sp eff

157.19 17.19 8.86 73.83%
2 148.68 14.86 10.01 83.40%
3 283.84 27.31 10.39 86.58%
4 373.08 34.89 10.69 89.08%

experimental results and performance of the corrected implicit method for solving the
two-level block bordered analog filter equations with one to four inner iterations. The
symbols in the tables have the same meanings as in Tables 5.1-5.4, with the following
exception: T, 1,..., 12, is the total time for the 12 first-level blocks, while T,
j 1, 2, 3, is the time for the three second-level blocks.

Our experimental results show that the corrected implicit method is also more
efficient than the explicit method on this larger block bordered system of equations.
The total number of iterations No,t decreases from 18 to 11 as the number of inner
iterations Iin is increased from 1 to 4, but the sequential computing time Tb only
decreases from 157.19 to 148.68 for Iin 2, then increases again. The high speedups
for I, 3 and 4 in comparison to the same sequential method are not significant since
the large number of inner iterations makes the algorithm inefficient, and the sequential
time is suboptimal. For the optimal number of inner iterations, Ii, 2, the speedup is
10.01 out of 12 processors and the efficiency is 83.40 percent. The computation time
improvement over the parallel explicit method is 28 percent, as compared to 19 percent
in the sequential case. Our parallel analog filter simulation experiment indicates that
applying the implicit method to solving large block bordered circuit equations on a
distributed memory multiprocessor can result in high efficiency.

6. Summary and future research. We have introduced a corrected implicit method
for solving block bordered systems of nonlinear equations. It allows multiple "inner"
iterations, iterations on the variables, and equations of the q diagonal blocks, to be
performed per each "outer" iteration, which involves all the variables and equations
including the connecting bottom block. If only one inner iteration is performed per
outer iteration, no line search is used, and the bottom connecting equations are linear,
then the corrected implicit method is identical to the explicit method (Newton’s
method). When more than one inner iteration is performed per outer iteration, however,
the methods are different, and in our experiments the corrected implicit method solves
problems in somewhat less time than the explicit method on sequential computers. On
parallel computers, the corrected implicit method has a larger advantage over the
explicit method because it parallelizes more effectively, since the inner iterations
constitute a larger percentage of the total computation and parallelize far better than
the outer iterations. On one- and two-level block bordered problems from VLSI circuit
design that we tested, the parallel efficiency of the fastest (sequential and parallel)
corrected implicit method on an Intel iPSC1 hypercube was about 85 percent.

The methods presented in this paper all assume that the Jacobian matrix is available
at each iteration, either analytically or by finite differences, and that it is not too
expensive to evaluate. In some applications, however, the nonlinear equations are
given by an expensive computational procedure, and analytic or finite difference
Jacobians are very expensive to obtain. In such cases, for general systems of nonlinear

858 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

equations, secant approximations to the Jacobian are used that are based entirely on
function values at the iterates (see, e.g., Dennis and Schnabel 1983]). The development
ofrelated secant approximations to the Jacobian for block bordered nonlinear equations
seems to be an attractive research topic, since it appears possible to construct approxi-
mations that retain the block bordered sparsity pattern of the Jacobian, and also allow
the factorization of the Jacobian approximation to be updated efficiently.

REFERENCES

C. CHRISTARA 1988], Spline collocation methods, software and architectures for linear elliptic boundary value
problems, Ph.D. thesis, Computer Science Department, Purdue University, West Lafayette, IN, August,
1988.

C. CHRISTARA AND E. HOUSTIS 1989], A domain decomposition spline collocation methodfor elliptic partial
differential equations, in Proc. 4th Conf. Hypercube Concurrent Computers and Applications, Monterey,
CA, March 6-8, 1989.

L. CHUA AND P. LIN [1975], Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational
Techniques, Prentice-Hall, Englewood Cliffs, NJ.

T. COLEMAN AND G. LI [1990], Solving systems of nonlinear equations on a message-passing multiprocessor,
SIAM J. Sci. Statist. Comput., 11, pp. 1116-1135.

J. DENNIS AND R. SCHNABEL [1983], Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, Englewood Cliffs, NJ.

J. EBERS AND J. MOLL [1954], Large-signal behavior ofjunction transistors, Proc. IRE, 42, pp. 1761-1772.
Co FARHAT AND E. WILSON [1986], Concurrent iterative solution of large finite element systems, Tech.

Report, Civil Engineering Department, University of California, Berkeley, CA.
R. FONTECILLA [1987], A parallel nonlinear Jacobi algorithm for solving nonlinear equations, Tech. Report,

Computer Science Department, University of Maryland, College Park, MD, May.
M. R. GAREY AND D. S. JOHNSON [1979], Computers and Intractability, A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, CA.
P. GILL, W. MURRAY, AND M. WRIGHT [1981], Practical Optimization, Academic Press, New York.
M. Mu AND J. RICE [1989], Solving linear systems with sparse matrices on hypercubes, Tech. Report

CSD-TR-870, Computer Science Department, Purdue University, West Lafayette, IN, February.
A. NEWTON, D. PEDERSON, AND A. SANGIOVANNI-VINCENTELLI [1988], SPICE 3B1 user’s guide,

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA.
B. NOUR-OMID AND K. C. PARK [1986], Solving structural mechanics problems on a Caltech hypercube

machine, Tech. Report, Mechanical Engineering Department, University of Colorado, Boulder, CO.
J. M. ORTEGA AND R. G. VOIGT [1985], Solution of partial differential equations on vector and parallel

computers, SIAM Rev., 27, pp. 149-240.
D. P. O’LEARY AND R. E. WHITE 1985], Multi-splittings of matrices and parallel solution of linear systems,

SIAM J. Algebraic Discrete Meth., 4, pp. 137-149.
N. RABBAT AND H. HSIEH [1976], A latent macromodular approach to large-scale sparse networks, IEEE

Trans. Circuits and Systems, CAS-23, pp. 745-752.
N. RABBAT, A. SANGIOVANNI-VINCENTELLI AND H. HSIEH [1979], A multilevel Newton algorithm with

macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain, IEEE
Trans. Circuits and Systems, CAS-26, pp. 733-741.

N. RABBAT AND A. SANGIOVANNI-VINCENTELLI [1980], Techniques of time-domain analysis of LSI
circuits, Tech. Report RC 8351 (#36320), IBM T. J. Watson Research Center, Yorktown Heights, NY,
July.

C. ROMINE AND J. ORTEGA 1986], Parallel solution oftriangular systems ofequations, ICASE Tech. Report,
National Aeronautics and Space Administration, Hampton, VA.

A. SANGIOVANNI-VINCENTELLI, L. CHEN, AND L. CHUA [1977], An efficient heuristic cluster algorithm

for tearing large-scale networks, IEEE Trans. Circuits and Systems, CAS-24, pp. 709-717.
m. SANGIOVANNI-VINCENTELLI AND D. WEBBER [1986], Computer architecture issues in circuit simulation,

in High Speed Computing, R. Wilhelmson, ed., University of Illinois Press, Chicago, IL.
A. SEDRA AND K. SMITH [1982], Microelectronic Circuits, CBS College Publishing, New York.
J. SMITH [1971], Modern Operational Circuit Design, John Wiley, New York.
M. VALKENURG [1982], Analog Filter Design, CBS College Publishing, New York.
R. S. VARGA [1973], Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 859

R. E. WHITE [1986], Parallel algorithms for nonlinear problems, SIAM J. Algebraic Discrete Meth., 7,
pp. 137-149.

X. ZHANG [1989], Parallel computation for the solution of nonlinear block bordered equations and their
applications, Ph.D. thesis, Department of Computer Science, University of Colorado, Boulder, CO, July.

X. ZHANG, R. BYRD, AND R. SCHNABEL [1989], Solving nonlinear block bordered circuit equations on

hypercube multiprocessors, in Proc. 4th Conf. Hypercube Concurrent Computers and Applications,
Monterey, CA, March 6-8.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 860-873, July 1992

(C) 1992 Society for Industrial and Applied Mathematics

OO2

AN EFFICIENT SCHEME FOR UNSTEADY FLOW PAST AN OBJECT
WITH BOUNDARY CONFORMAL TO A CIRCLE*

MO-HONG CHOUt

Abstract. An efficient finite-difference method is presented for studying unsteady two-dimensional
incompressible flow past an object with boundary conformal to a circle. At each time step the computations
of vorticity transport and streamfunction are decoupled and based on a body-fitted, prowake, orthogonal
grid. To handle the no-slip condition properly and efficiently, a new wall-vorticity conditioning algorithm
is proposed and incorporated into the vorticity transport equation. When the object presents sharp edges,
this algorithm performs particularly well in that it yields a significant increase in the time step increment
that can be used in comparison to other known "decoupled" methods. In the method developed here the
vorticity is advanced by an implicit scheme of Crank-Nicholson type, and the streamfunction equation is
solved by a multigrid technique based on body-fitted coordinates. As an application, the experiment on
flow past an inclined thin ellipse with angle of attack ranging from 5 to 85 and at Reynolds number 200
and 400, is presented in detail. Depending on the angle of attack, the computed results present in the long
run a quasi-steady or quasi-periodic feature, as demonstrated by the flow pattern and by the curves of drag,
lift, and moment coefficients. Furthermore, the pivot point, with respect to which the thin ellipse exercises
no torque, is also investigated and compared to the asymptotic result based on Kirchhoff theory. Such a
result might be useful in modeling a pivoting prosthetic heart valve.

Key words, conformal mapping, Kirchhoff-Rayleigh, Navier-Stokes, Crank-Nicholson, vorticity con-
ditioning, defect correction, multigrid, finite-difference, vector computer

AMS(MOS) subject classifications. 30A24, 65F10, 65M05, 76.65

1. Introduction. In this paper we present a finite-difference method to tackle the
problem of unsteady two-dimensional flow past an object with boundary conformal
to a circle. Such a problem is encountered, for example, in the modeling of prosthetic
heart valves [7]. The numerical simulation is based on the unsteady Navier-Stokes
equations, which are written in terms of vorticity and streamfunction. Some important
features in our scheme are stated as follows.

We propose a novel, body-fitted, orthogonal grid system which, in contrast to the
standard radial coordinates, automatically provides a prowake computational domain.
Such a setup facilitates long time computations in the wake region. At each time step,
the computations of vorticity and streamfunction are decoupled. The vorticity transport
equation is handled by a Crank-Nicholson-type scheme in which a new wall-vorticity
algorithm is incorporated. This algorithm provides a mechanism to couple the interior
vorticity and the wall vorticity in such a way that the no-slip condition is handled
properly and efficiently. This idea of vorticity conditioning is similar to that of Quar-
tapelle’s [8] in that the Green’s identity plays an important role in both cases. However,
as seen in 2, our implementation is quite different from [8]. Owing to such an
approach, the stability of the proposed numerical scheme is increased, and hence we
are able to employ a larger time increment than can be used with other known
"decoupled" schemes (see [5], for example). The elliptic problem that determines the
streamfunction is solved by a multigrid method. The rate of convergence of the iterative
method is extremely fast, as compared, for example, to unigrid line SOR [5]. The
accuracy of the whole scheme is approximately of the second order in space. The
temporal accuracy of the proposed Crank-Nicholson-like scheme, strictly speaking,

Received by the editors February 20, 1990; accepted for publication (in revised form) March 6, 1991.
t Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China.

860

EFFICIENT SCHEME FOR UNSTEADY FLOW 861

is of the first order, since there is a time lag in updating the streamfunction. However,
the efficiency we have gained from this scheme is better than the backward Euler
scheme. Finally, since the computation domain is doubly connected, the single-valued-
ness ofthe surface fluid pressure might be of great concern in the conventional approach
to compute the fluid dynamic properties, such as drag and lift (see Wu [12]). We
propose an alternative to circumvent this difficulty. The idea has the same spirit as
our vorticity conditioning algorithm. Namely, the Green’s identity is employed together
with auxiliary functions in order to get an integral viewpoint of the desired data. Van
Der Vegt [11] has also used such an alternative in conjunction with discrete vortex
methods. For flow past an object with sharp edges, this alternative is important in our
experience in that it generates much smoother data, especially when we use an unsteady
approach to quasi-steady flow problems.

This paper is organized as follows. In 2 we present the details of our approach
for the problem of flow past an inclined thin ellipse. For other bodies, the only
adaptation required is the change of the conformal mapping from a circle to the
boundary of the object. As we check on the accuracy of our approach, we compare
our results with an asymptotic result concerning the pivot point about which the
ambient fluid exerts no torque on the ellipse. This asymptotic result is presented in
3. This result is derived from the classical Kirchhott-Rayleigh theory and provides

elegant information on how this point varies with the angle of attack, which would be
quite useful, for example, for designing a pivoting artificial heart valve whose maximum
angle of opening (that is, 90 minus the torque-free angle of attack) matches the
physiological conditions (see the work of Peskin and McQueen [7]).

The efficiency and accuracy of our approach is demonstrated in 4 for flow past
an inclined thin ellipse. The angle of attack ranges from 5 to 85. The Reynolds number
is taken to be between 200 and 400. Depending on the angle of attack, the computed
results present, in the long run, a quasi-steady or quasi-periodic feature, as demonstrated
by the flow pattern (streamlines, lines of equal vorticity) and by the curves of drag,
lift, and moment coefficients. Among these computed results a particular case of 45
incidence is also compared with the work of Lugt and Haussling [5], where good
agreement is shown. Furthermore, the aforementioned zero-torque pivot point is also
investigated and compared with the Kirchhoff theory. The Strouhal number, regarded
as a function of the angle of attack, is also compared with some relevant experiments
[1], [2], [5], and it is shown that our result is within the correct range.

2. Numerical method for Navier-Stokes equations. As sketched in Fig. 1, we
consider a uniform flow, with density p--- 1 and velocity (U0) at infinity, past a thin
ellipse inclined at an angle of attack a measured clockwise from the negative x axis.
The thinness of the ellipse is measured by the aspect ratio A l/L, in which l(L)
denotes the length of the short(long) axis. In our consideration A --0.1 (or 10 percent)
is taken in order to have the results directly compared with existing literature.

y

FIG. 1. Sketch of uniform flow past an inclined thin ellipse.

862 MO-HONG CHOU

The flow is governed by unsteady Navier-Stokes equations, which we write in
terms of vorticity(to) and streamfunction(q) as follows.

2
tot -- I]lytox I]lxtoy ----- (toxx -- toyy),

(2.1)

System (2.1) is supplemented by some initial and boundary conditions, which will be
stated later. Note that in (2.1) the length scale is based on half long axis, i.e., L/2,
while the Reynolds number R is defined as R (LUoo/v) (is the kinematic viscosity).

The proposed finite-difference scheme for solving (2.1) starts with the following
generation of a body-fitted orthogonal coordinate system. This system is essentially
composed of two conformal mappings. Let z x + iy denote the physical coordinates,
and ’--:+ is the transformed coordinates (note that i= v/21). Then, the map z

z((sr)) is determined as follows.

x/1 A- (e-2i)(2.2a) z =----- forll >-,[’’’=d/1 -A

(2.2b) - + Log (/d for r such that -F -<_ sc F, s -<_ 0.

We note that (2.2a) provides desired high resolution in the vicinity of the edges (where
+de-i) of the ellipse, as is done in the standard elliptic coordinates. The novelty

of our system is due to (2.2b), which generates a prowake computation domain (see
Fig. 3) through the introduction of a strong circulation term with strength 2F >> 0. To
increase the resolution in the proximity of the ellipse, a quadratic scaling in the
s-direction is also introduced. Namely, let a, b be suitable positive constants; then

(2.2c) s -(a7 + b7 2) f(7) for 7 => O.

We also note that, in our scheme, (2.2a) is the only component that varies with the
boundary of the object in consideration.

By virtue of (2.2), the Navier-Stokes equations (2.1) are transformed into the
following. For (:, r/)

(2.3a) (Jf’2)t, +f’(q%toe-$,to,)= ton, -7 ton +f,2toee

(2.3b) q%, -7 q% +f,2q + (jf,2)to O.

In (2.3), J--Idz/dl2 is the Jacobian of the mapping composed of (2.2a) and (2.2b),
and f’, f" denote the first and second derivatives of the function f defined in (2.2c).
Note that, in the sequel, J is modified to denote the combined term jf,2.

The initial condition of (2.3) is specified by uniform potential flow past the given
ellipse. We denote the initial streamfunction by qo. With the aid of Fig. 3, in which
the mapping (2.2) is sketched, boundary conditions are specified as follows.

EFFICIENT SCHEME FOR UNSTEADY FLOW 863

(2.4a) q=0___:_=0O for r/=0, -F<-_-<F;

(2.4b) q(-F, r/) q(F, rt), to(-F, r/) to(F, r/) for 0_-< r/-<_ rt*, where,

associated with (2.2), ’= +F+ if(,1*) is the point(s) such that

(2.4c) o+/-q,(+r, n)=6 r, n)=0 for

(2.4d) o oq
and to is updated through (2.3a) with R c,

for r/= r/oo, -F_-< :-<F.
We note in passing that in our experiment the downstream boundary conditions

for q, as proposed by Lugt and Haussling [5] and by Mehta and Lavan [6], will lead
to abnormal vorticity accumulation along the downstream boundary for long-term
computation, unless q is sufficiently large. To obtain comparable results, condition
(2.4d), on the other hand, allows us to use smaller r/, which in turn leads to a smaller
algebraic system to be solved.

In our computation, the vorticity and streamfunction are decoupled at each time
step. According to such an approach the specification of wall vorticity plays a very
important part in the stability consideration, especially in the presence of sharp edges.
The standard method, which utilizes (2.3b) together with (2.4a), places a severe
limitation on the time increment (see [5], for example). To relax this limitation, we
propose a new approach, which is based on the following theorem.

THEOREM 1. (As shown in Fig. 2.) Let 1) be a neighborhood of the ellipse. The
boundary 01)= Bo (.J B1 with unit outer normal v. If to, b are such that Atp =-to in 12
and d/=-constant on Bo, then the condition that 0/0v=0 on Bo is equivalent to the
following:

(2.5a) tog,dxdy+ g, ou-q--,,(g,) ds=O forn=O, 1,2,...,

where, with the aid of (2.2), the auxiliary functions g, are given by

(2.5b) g,(z) =- g,(z()) exp(iTrn(+ F)/F) for n O, 1, 2,....

The proof of Theorem 1 is a straightforward application of Green’s theorem and
Fourier analysis, and is therefore omitted.

n

FIG. 2. Illustration of Theorem for wall-vorticity conditioning.

864 MO-HONG CHOU

This idea of replacing the no-slip condition by a set of integral constraints on to

has been used, for example, by Quartapelle [8]. As compared to [8], some major
differences are noted below. First, the integration domain 12 is just a small portion of
the whole computational domain. Thus, for each n, (2.5) contains a term involving q,
which, though not known in advance, is assumed to have a smooth time-varying
property provided that B1 is chosen not too close to the ellipse Bo. Second, the test
harmonic functions, i.e., {g,}, are given analytically. However, the expression of to in
terms of {g,} is not pursued. Thus Theorem 1 is applied to vorticity conditioning in a
way quite different from [8], as will be seen below.

The transformed Navier-Stokes equations (2.3) are discretized over a uniform
grid. Centered differencing is used to approximate spatial differentiation except for
the terms toe and ton. For these two terms, a third-order upwinding involving cubic
interpolation [4] is used instead, in order to suppress spurious oscillations that occur
as the Reynolds number R gets large, while the mesh is fixed. This type of upwinding,
in our experience, is certainly superior to those hybrid schemes combining first-order
upwinding and centered difference. In fact, this kind of hybrid scheme will introduce
erroneous numerical diffusion around the sharp edges, which eventually destroys the
accuracy of the whole computation.

To apply Theorem 1, we couple (2.5) with (2.3a). Before doing so, we assume
they have the following discrete forms.

(2.6a) Jtot + G(, too)to 0 for (2.3a),

(2.6b) Ao’too+A’to+g’$=O for (2.5).

The matrices Ao, A, and g in (2.6b), with Ao invertible, are discrete integral operators
corresponding to suitable quadrature formulas. Note that the wall vorticity too has
been separated from the interior vorticity to. In (2.6a) the convection and diffusion of
to is handled by the operator G, which is discretized according to the discussion of
the last paragraph.

By virtue of (2.6), we can discuss the advancement of to, too as follows. Let At
denote the time increment and (ton, to, ,) denote the quantities at the nth time step.
Then, (ton+l, to+l) are obtained as the asymptotic steady state of the following coupled
ordinary differential equations"

dto
(2.7a) + to to

At
"+-- {G(O" ,Oo),O + G(," ,o),o"}/y 0,

2

(2.7b) dtoo--+/3[too + a-dl(a to + g" q)] 0 for r > 0,
dr

(2.7c) to to", too tog at " 0.

Note that the relaxation parameter/3 > 0 in (2.7b) is introduced to accelerate the
convergence. Also note that (2.7a) presents an implicit scheme for the interior vorticity,
which is of Crank-Nicholson type, when the z-derivative term becomes negligible.
Since there is a time lag in updating , the temporal accuracy of this scheme, strictly
speaking, is of the first order. However, it is more accurate than the backward Euler
scheme.

The ODE (2.7) is solved over a sequence of discrete r, namely, z= kAr, k >=0.
Denote the result of the kth step by (ton+l,k, to)+l,k). Then (ton+l,k+l, to)+l,k+l) is
obtained through the following algorithm.

EFFICIENT SCHEME FOR UNSTEADY FLOW 865

ALGORITHM A.
(1) Defect-correction formula for (2.7a)"

J +1 6k+l-[-F(On, to
2

-{J(o n+l,k At n/l,k)+-[a(, Oo)o

n+l,k+l n+l,k k+l
to =to +6

(e)
(3)

(4)

where F differs from G only in the convection part in which first-order
upwinding is used instead.
Obtain approximate 6 g+l for (1) through incomplete LU factorization (ILU).
Substitute ton+l,g+l into (2.7b), and solve it for too by forward Euler
method.
Go back to (1) and repeat the cycle until, for some prescribed tolerance e,
RMS (Hg) < e where RMS (.) means the root mean square over the whole
computational grid.

Some remarks on the efficiency and accuracy of Algorithm A are made below.
Associated with our choice of {gn} in (2.5), the matrix Ao is the product of an orthogonal
matrix and a diagonal one. So the additional effort to obtain A-1 is negligible.
Furthermore, the computation of A-I(A to + g. O) is fully vectorizable and hence the
labor of updating too through (2.7b) can be largely saved on a vector computer. For
fixed At, we can adjust Az and /3 such that ILU is an excellent preconditioner, and
the stopping criterion can be met in just a few cycles. If the tolerance e-0, our
algorithm is of second-order accuracy in space. For small e we expect that it is
approximately of this order. Finally, the complexity of Algorithm A is well offset by
its stability, which allows us to employ much larger At, as compared to other "de-
coupled" methods [5].

After obtaining to,+1, we must update 0 by solving the transformed Poisson
equation (2.3b) together with the boundary conditions (2.4), in which we note that the
condition 00/0r/=0 along the ellipse has been dropped. To this end, a three-grid
iterative method is adopted, which yields considerably fast convergence as compared,
for example, to one-grid line SOR [5]. Such an approach is also more efficient than
GMRES [9] in our experiment. The basic ingredients of this scheme are listed as
follows. Namely, standard double coarsening strategy on the grid, five-point central
difference formula for (2.3b), incomplete LU factorization as smoothing operator, and
standard nine-point prolongation and restriction scheduled in a "saw-tooth" manner.
For details of this framework, we refer to the work of Sonneveld, Wesseling, and de
Zeeuw [10]. The overall efficiency of the proposed Navier-Stokes solver is evidenced
in 4.

Finally, we discuss the computations of drag, lift, moment, and the pivot point
of zero torque. As a rule, the surface pressure p is calculated through the expression

(2.8) Op_ 20to,
O’r R Ov

where z, u denote the counterclockwise tangential and outer normal components,
respectively. Since the computational domain is doubly connected, the single-valued-
ness of this computed surface pressure might be of great concern. See, for example,

866 Mo-nONG cnot

the discussion of Wu [12]. In our experience in small angle-of-attack simulations,
formula (2.8) leads to unpleasant fluctuations in determining the pivot point of zero
torque, while the variation of this point is supposed to be quite small in these
quasi-steady situations. To circumvent this difficulty, we propose the following alterna-
tive. The idea has the same spirit as our vorticity conditioning algorithm, Theorem 1,
as will be seen in Theorem 2. Van der Vegt [11] has also used such an alternative in
conjunction with discrete vortex methods.

THEOREM 2. Let 1, Bo, B be as shown in Theorem 1, and to, d/ denote the vorticity
and streamfunction, respectively. Then, the drag, lift, and moment exerted by the non-
dimensionized surface pressure can be expressed as follows.

2
(2.9a)

dt

where the auxiliary function q satisfies the following partial differential equation (PDE):

Aq 0 in

0=0 on B1,
(2.9b) 0v

0q 0g
on Bo

where g(x, y) -y for drag; x for lift; (x2 + y2)/2 for moment.
The proof is sketched as follows. By definition, we have (drag, lift, moment)p-

BoP(-dy, dx, xdx +ydy). Substitute the result of (2.9b) into the last integral. Then,
(2.9a) follows from Green’s theorem, momentum equation (tTt+(tT.V)+Vp=
(2/R)AtT), the Gauss theorem, and the physical boundary conditions on the velocity.

The skin friction part is handled as usual, namely,

(2.10) (drag, lift, moment), =- m(dx, dy, x dy- y dx).

For large R, the contribution of (2.10) is minor, except for the drag component in
those cases where a is small, as compared to the pressure part (2.9). The drag, lift,
and moment coefficients are defined as

(2.11) (C C) (drag, lift) 2/-pUL and C4 moment/1/2pUL22.

Along the long axis of the ellipse, there exists a pivot point with respect to which
the ellipse experiences no torque. The signed distance, q, of this point from the ellipse
center is given by

(2.12) q=[Ct/(CD" sin a+CL" cos a)]. L.

If q < 0 this point is closer to the leading edge than to the trailing edge, and conversely
if q>0.

3. An asymptotic result for zero-torque pivoting. For studying high Reynolds num-
ber flow past a thin ellipse, the classical Kirchhoff-Rayleigh model [3, 76-77] of
steady inviscid flow past a flat plate can be used as a first approximation. Thus we
consider a uniform potential flow past a flat plate inclined at an angle of attack a,
0< a-< r/2. Behind the plate the wake is occupied by dead fluid, which is bounded
by two free streamlines emanating from the edges of the plate. Let the plate, of length
L, be uniformly parametrized by q such that -l<=q <- 1, in which q=-I and +1
correspond to the leading edge (LE) and the trailing edge (TE), respectively.

EFFICIENT SCHEME FOR UNSTEADY FLOW 867

With respect to a pivot point q, the ambient fluid exerts a torque T on the plate,
which, after being nondimensionized by 1/2p 2 2UL, has the following form"

7rsina [q+ 3cosa].(3 1) T(a, q)
4+ 7r sin a 2(4+ r sin a)

Formula (3.1) is derived by following the procedure as presented in [3]. From
(3.1) it is easy to see that the pivot point of zero torque is

-3 cos a
(3.2) q(a)

2(4+ Tr sin a)
for0<a=<Tr/2.

In view of (3.2), it is easy to check that: (1) The zero-torque pivot point is unique
for each a with 0< a _-< r/2; (2) The distance 1 + q of this point from the leading edge
of the plate is a smooth increasing function of a; (3) As a - 0+, 1 + q - -> 0, however.
This means that when the plate is placed parallel to the incoming flow, there exists,
starting from the leading edge, a wide range for picking a torque-free pivot point.

4. Numerical results.
4.1. Computing facilities. The numeric computations were run on an ETA10-Q108

computer. We do take advantage of this machine’s vector facilities. Associated with
our program, the vector/scalar speed ratio is 8/1. The numerical results were then
loaded down to a VAX8530 computer in which we used GKS to generate the graphic
output.

4.2. Computational domain. Figure 3 sketches the result of (2.2). In the trans-
formed rt-plane, we employ a 60 x 80 uniform grid. The corresponding physical domain

ORTHOGONAL COORDINATE SYSTEM: ANG=60(DEG)

(a)

212[3

f3 o

3

BOUNDARY OF COMPUTATIONAL DOMAIN

(b)

FIG. 3. (a) Body-fitted, prowake, orthogonal computational mesh; (b) Boundary correspondence between
physical and transformed domains.

868 MO-I-IOG CI-IOV

is outerscribed by the rectangle [-7, 50] x [-17, 17], and the downstream boundary is
about 25 plate lengths from the ellipse center.

4.3. Vorticity transport with R 200 and 400. According to Algorithm A in 2,
the interior and wall vorticity are advanced with time increment At--0.04, which is 8
times as large as that used by Lugt and Haussling [5]. To check the temporal accuracy,
a comparative experiment with At 0.02 is also performed. For c _-< 45 the difference
is negligible. The cases with higher c will be discussed later in conjunction with the
estimate of Strouhal number. A much smaller time increment, e.g., At is used for
the first few steps in order to make a smooth transition from the potential flow. In
Algorithm A, the pseudo time increment A- is chosen as A--- 1.5 for R --200, and as
A-= 1.75 for R 400. The relaxation parameter /3 for wall vorticity is chosen such
that /3. A-=0.45. Although such an arrangement of/3 and A- is not optimal, the
average reduction rate/x --- RMS (Hk)/RMS (Hk/l) reaches the value 2.4 for R 200,
and 2.7 for R 400. With e 2 x 10-5, Algorithm A takes few (_<-6) iterations to advance
one time step for angle of attack c ranging from 5 to 85. The long-term behavior of
the vorticity transport presents either a quasi-steady or a quasi-periodic feature,
depending on the angle of attack. Figures 4(a)-4(d) show several stages in one period
of vortex shedding for c 60 and R 200. In our computations, the results for R 200
and for R--400 are quite similar.

4.4. Streamfunction calculation. As discussed in 2, the transformed Poisson
equation (2.3b) was solved by a three-grid iterative method. The stopping criterion is
that the RMS (see Algorithm A) of the left-hand side of (2.3b) is less than or equal
to 2x 10-5. For each time step with At =0.04, the work done to meet this criterion is
no more than two "saw-tooth" cycles in which the ILU smoothing is applied twice in
each grid level. Such a convergence rate is certainly superior to one-grid line SOR [5],
and is also better than GMRES [9] with ILU preconditioning. The streamlines during
one period of vortex shedding are also shown in Figs. 4(a)-4(d).

4.5. Drag, lift, moment, and Strouhal number. Figures 5(a)-5(f) present the Co,
CL, and C4 curves plotted against time. They also show a quasi-steady or quasi-periodic
feature. In those quasi-periodic cases (c => 30), we found that these curves reach their
respective local extreme (maximum for Co, CL, and -CM) around the time when the
recirculatory region developed behind the leading edge reaches its maximum and is
going to separate from this tip. With higher c, these curves also reach their respective
local extreme (maximum for Co, C, and CM) around the time when the recirculatory
region developed behind the trailing edge reaches the same situation as stated above
for the leading edge. However, the local C-maximum corresponding to trailing-edge
vortex shedding is illegible for R 200, and becomes appreciable for R 400. In view
of these results, our work is in agreement with the observation of Lugt and Haussling
[5] for c =45 and R 200 (note that as compared to (2.11), Lugt’s definitions of Co,
C, and C have an amplification factor of 2, 2, 4, respectively).

In Fig. 6 the Strouhal number, as defined by S =fL sin c/U where f is the
frequency of vortex shedding, is plotted against ce. This curve is expected to be nearly
constant, as demonstrated by some relevant experiments [1]. It turns out that, with
At =0.04, the computed curve increases slightly with c, and yields a mean 0.20. To
improve the accuracy we try again with At 0.02; this curve becomes much flatter and
yields a mean 0.18. To judge the correctness, we cite some relevant known results as
follows. For an ellipse having the same aspect ratio as ours, the result of Lugt and
Haussling [5] with c =45 and R 200 indicates that S =0.16-0.18; the wind tunnel
experiment of Fage and Johansen [1] indicates that S =0.15 for inviscid flow past a

EFFICIENT SCHEME FOR UNSTEADY FLOW 869

870 MO-HONG CHOU

0
0

ANG=5 RE=200 CD=0.304 CL=0.213 CM=-0.0663 PV=-0.558

(a)

CD

CL

CM

-1
0 i’0 2’0 3’0 40

TIME

(b) 1
ANG=I5 RE=200 CD=0.376 CL=0.575 CM=-0.172 PV=-0.529

-i o 1’o .’o
TIME

CL

CD

CM

0

ANG=30 RE=200 CD=0.71 CL=0.86 CM=-0.208 ST=0.328 PV=-0.380
(e) 2

1

o o .b b
TIME

CL

CD

CM

5O

(d)
ANG=45 RE=200 CD=1.38 CL=I.09 CM=-0.189 ST=0.259 PV=-0.214

2

0

-i
0 Ib 2’0 3’0 4’0

TIME

CD

CL

CM

5O

FIG. 5(a)-(d). Drag, lift, and moment coefficients vs. time" R 200, a 5, 15, 30, 45.

872 MO-HONG CHOU

(e)

-1

ANG=60 RE=400 CD=2.52 CL=1.23 CM=-0.108 ST=0.24 PV=-0.0765

0 1’0 2’0 3’0 4’0 5’0 6’0 7’0 80

TIME

CD

CL

CM

ANG=75 RE=400 CD=3.51 CL=0.84 CM=-0.068 ST=0.23 PV=-0.0367

4

3 CD

2

1 CL

0 CM

-i
0 10 20 30 40 50 60 70 80

TIME

FIG. 5(e), (f). Drag, lift, and moment coefficients vs. time" R =400, a =60, 75.
0’.3

0.2

0.1

STROUHAL #:
O RE=200, DT=0.04
[] RE=400, DT=0.04

RE=200, DT=0.02

30 45

FIG. 6. Strouhal number vs. angle of attack
--[-]-- R 400, A 0.04.

60 75 85
ANG(DES

R=200, At=0.02; --o-- R=200, At=0.04;

flat plate; an experiment on a 12 percent thick symmetric Joukowski airfoil with a 15,
30, and R 1000 as made by Ghia, Osswald, and Ghia [2] indicates that S 0.17 -0.18.

4.6. Pivot point of zero torque. The time history of this point is quite similar to a

CM-curve with largely reduced amplitude. In Fig. 7, the mean position of this point
scaled by L/2 is plotted against a along with the result from Kirchhoff theory as
presented in 3. We see that these results show agreement in qualitative behavior. In
spite of its simplicity, the Kirchhoff-Rayleigh model also serves as an excellent
approximation for high a for finding this zero-torque pivot point.

EFFICIENT SCHEME FOR UNSTEADY FLOW 873

0.3

0o1"

-0.5

-0.7

ZERO-TORQUE PIVOT:
O RE=200
[] RE=400

KIRCHHOFF

’5 i’5 3’0 4’5 6b 7’5 90
ANG(DEG)

FIG. 7. Zero-torque pivot point vs. angle of attack: Kirchhoff theory; --0 R 200; m[]__ R 400.

Acknowledgments. I would like to thank Professor Charles Peskin at Courant
Institute, New York University, for introducing me to the potential application of the
present work to the modeling of prosthetic heart valves. I would also like to thank
Mr. H. C. Lin for his help in preparing the graphic output.

REFERENCES

A. FAGE AND F. C. JOHANSEN, On the flow of air behind an inclined fiat plate of infinite span, Proc.
Roy. London Soc. Ser. A, 116(1927), pp. 170-197.

[2] K. N. GHIA, G. A. OSSWALD, AND U. GHIA, Simulation of self-induced unsteady motion in the near

wake of a Joukowski airfoil, Lecture Notes in Engineering 24, C. A. Brebbia and S. A. Orszag,
eds., Springer-Verlag, New York, 1986, pp. 118-132.

[3] S. H. LAMB, Hydrodynamics, Dover, New York, 1945.
[4] B.P. LEONARD, Third-order upwinding as a rational basisfor computationalfluid dynamics, computational

techniques and applications: CTAC-83, J. Noye and C. Fletcher, eds., North-Holland, Amsterdam,
1984, pp. 106-120.

[5] H. L. LUGT AND H. J. HAUSSLING, Laminar flow past an abruptly accelerated elliptic cylinder at 45
incidence, J. Fluid Mech., 65 (1974), pp. 711-734.

[6] U. B. MEHTA AND Z. LAVAN, Starting vortex, separation bubble and stall: A numerical study oflaminar
unsteady flow around an airfoil, J. Fluid Mech., 67 (1975), pp. 227-256.

[7] C. S. PESKIN AND D. M. MCQUEEN, Modeling prosthetic heart valves for numerical analysis of blood
flow in the heart, J. Comput. Phys., 37 (1980), pp. 113-132.

[8] L. QUARTAPELLE, Vorticity conditioning in the computation oftwo-dimensional viscousflows, J. Comput.
Phys., 40 (1981), pp. 453-477.

[9] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[10] P. SONNEVELD, P. WESSELING, AND P. M. DE ZEEUW, Multigrid and conjugate gradient methods as

convergence acceleration techniques, IMA Conference Series 3, D. J. Paddon and H. Holstein, eds.,
Clarendon Press, Oxford, 1985, pp. 117-167.

[11] J. J. W. VAN DER VEGT, Calculation offorces and moments in vortex methods, J. Engrg. Math., 22
(1988), pp. 225-238.

[12] J. C. Wu, Numerical boundary conditions for viscous flow problems, AIAA J., 14 (1976), pp. 1042-1049.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 874-884, July 1992

1992 Society for Industrial amd Applied Mathematics

003

SOLUTION OF STRUCTURED GEOMETRIC PROGRAMS IN SAMPLE
SURVEY DESIGN*

FAIZ A. AL-KHAYYAL’, THOM J. HODGSON:, GRANT D. CAPPS,
JAMES A. DORSCH, DAVID A. KRIEGMAN:z, AND PAUL D. PAVNICA

Abstract. Determination of the optimal design of a survey to measure minority voting participation
can be posed as a very large number of highly structured geometric programming problems. The problem
formulation is discussed, and an efficient special-purpose algorithm based on relaxation and duality is
presented. The approach can also be applied to problems with similar structure.

Key words, stratified sampling, sample survey design, geometric programming, Lagrangian duality

AMS(MOS) subject classifications. 62D05, 90C28

1. Introduction. Determination of the optimal design of a survey to measure
minority voting participation can be posed as a very large number of highly structured
geometric programming problems. A special heuristic algorithm was devised to exploit
the structure of the thousands of geometric programs that needed to be solved. The
heuristic procedure is exact for special cases. In the other cases, a methodology is
developed for determining an a posteriori bound on the relative error of the solution
obtained by the procedure. We discuss the model formulation, solution procedure,
and its application to the survey design problem.

1.1. Survey background and requirements. A 1978 survey of voting and registration
statistics was designed by the U.S. Census Bureau to measure the difference in the
voting participation rates between a given minority population and the (white) non-
minority population in specified voting jurisdictions across the nation, but concentrated
largely in the South. Congress, the Department of Justice, and the Census Bureau
jointly identified 955 voting jurisdictions (mostly counties) to be surveyed. The
minorities of interest, which varied by jurisdiction, included black, Spanish origin,
American Indian, Japanese, Chinese, Filipino, Hawaiian, and Native Alaskan
subgroups.

A design goal of the survey was to satisfy a given standard error of the estimated
minority/nonminority voting rate differential within 718 jurisdictions. (The sampling
procedure was specified a priori in the remaining 237 jurisdictions.) For each jurisdic-
tion, all minorities that comprised three percent or more of the voting age population
were considered to be minorities of interest. Frequently, there were two or more
specified minorities in a jurisdiction, thereby requiring a sample design that reliably
measured several voting rate differentials.

Received by the editors February 14, 1985; accepted for publication (in revised form) May 30, 1991.
? School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia

30332. The research of this author was supported in part by Office of Naval Research contract N00014-86-K-
0173.

Department of Industrial Engineering, North Carolina State University, Raleigh, North Carolina
27695. The research of this author was supported in part by Office of Naval Research contract N00014-86-K-
0046.

Statistical Methods Division, Bureau of the Census, Washington, D.C. 20233.
Present address, Fleet Analysis Center, Corona, California 91718.
Present address, Defense Intelligence Agency, Washington, D.C. 20340-0001.
Present address, Systems Research and Applications Corporation, Arlington, Virginia 22201.

874

GEOMETRIC PROGRAMS IN SURVEY DESIGN 875

1.2. Efficient sample survey design. The estimated total cost of conducting the
survey was large (approximately $40,000,000). To keep the costs as low as possible,
the survey design was chosen as follows. First, sixteen possible sampling schemes were
considered for each jurisdiction. For every jurisdiction, the "optimum" implementation
of a given scheme was determined as a solution to the optimization problem of finding
the combination of sampling parameters that satisfied the specified error requirements
at a minimum cost. Completion of this step required the solution of more than 11,000
such optimization problems. The "best" scheme for each jurisdiction was then taken
as the least expensive of the sixteen optimized schemes.

In 2 we describe how the specification of the optimum version of each scheme
in a single jurisdiction can be formulated as an optimization problem, and in 3 we
derive a specialized algorithm for such a problem.

2. Development of a typical optimization problem. In demographic sample surveys,
the Census Bureau typically selects populations from three frames (groups). These
three frames are mutually exclusive and cover (virtually) all housing units in a typical
jurisdiction.

(1) Permit old construction (POC) frame consists of all housing units which existed
in permit-issuing areas (i.e., areas that issue building permits) at the time ofthe previous
national census. Computer records of these housing units contain demographic infor-
mation, and hence it is straightforward to perform a stratified sample.

(2) Permit new construction (PNC) frame consists of all housing units constructed
in permit-issuing areas since the previous census. Within this frame, clusters of eight
housing units were systematically selected from a sorted list of building permits.

(3) Nonpermit area (NPA) frame (old and new construction) consists of all
housing units not in permit-issuing areas. Three basic sample designs were considered
for use in this frame. Common to all three designs is the selection of a number of land
areas with known boundaries. The selection of housing units within these land areas
depends on parameters of the chosen sampling scheme.

We will describe only the first of the sixteen sampling schemes, which illustrates
the optimization problem in its most general form. With scheme 1, free parameters
are associated only with the first and third frames, and the scheme is defined as follows.

(a) The POC frame sample is divided into n strata, where nl is known for each
jurisdiction and can be as large as eight. One parameter is associated with each stratum;
let xj, j 1,. ., nl, represent the number of housing units to be taken from stratum j.

(b) In the PNC frame, a systematic sample of clusters of housing units is selected,
where the expected number of units in each cluster is predetermined to be eight.

(c) The NPA frame sample is selected in three stages and depends on two
parameters. First, xn,+ enumeration districts (EDs) are selected, where an ED contains
approximately 300 housing units. These EDs are then divided into segments whose
average size is 30 housing units, and xn,+2 segments are chosen from each ED. Finally,
a sample of eight housing units is chosen from each of these segments.

To formulate an optimization problem whose solution gives the optimum
implementation of this scheme, we must first define the objective function to be
minimized with respect to the parameters {xj}, j 1,..., n +2. The cost function,
expressed in dollars, is taken as (see [9]):

(1) cost= 17.5 x +87.35x,,+1 +89.87x,l+x,+2+ 17.5N,
j=l

where the PNC frame sampling size of N housing units was predetermined for each
jurisdiction, and the aim is to minimize (1).

876 AL-KHAYYAL, HODGSON, CAPPS, DORSCH, KRIEGMAN, AND PAVNICA

The constraints on {xj} come in two forms. First, the variance associated with
scheme 1 for the estimated difference between the nonminority voting rate and that
of the ith minority is defined as (see [4], [6]):

nl a nl+2(2) V ai+ai,,+ + -(fli-Ai-t-f3i) for i= 1,..., m,
j=l Xj Xnl+ Xnt+ Xn+2

where rn is the total number of minorities. In (2), the quantities {a0} are nonnegative
constants (see [9] for details and [4] for a simple example). The constants fli and f3i
reflect the finite population correction factors associated with the POC and NPA
frames, respectively. The constant f2i is equal to the variance component associated
with PNC frame sampling. The x’s are the unknown sample sizes. All of the constants
vary by jurisdiction and minority. The reliability requirements for the survey impose
m nonlinear constraints of the following form

(3) Vi<=o’, i= l, m,

where o- is the required standard error for the ith minority.
In addition to the m nonlinear constraints (3), upper and lower bounds are placed

on each variable, so that we require

(4) O<xj<=uj, j=l,..’, hi+2.
For =<j_-< n l, the upper bound u is the total number of housing units available to be
in the sample from stratum j of the POC frame. (Frequently, uj is much less than the
total number of housing units in stratum j, since in some jurisdictions the sample was
not chosen from the full census.) The upper bound u,+l is the total number of the
NPA frame EDs, and Un,+2 is an estimate of the average number of segments per NPA
frame ED. It is assumed that the average segment contains approximately 30 housing
units, and 30Un,+2 is the average number of housing units per NPA frame ED.

In summary, the optimization problem associated with sampling scheme 1 includes
the objective function (2), and constraints (3) and (4). (In our work, we did not require
that the sample sizes be integers for two reasons. The use of integer variables would
substantially increase the algorithmic complexity, and the optimal values were typically
very large.) To simplify the notation, let n nl + 2, let ej be the coefficient of the jth
term in the objective function (1), and let bi=o’Z+f-f2i+f3i. The optimization

n-1

minimize c; x; + c,x,,x,,
j:l

ai gin
(P1) subject to m+ _<- b, i= 1,. ., m,

Xj XnXn

O<x<--u, j=l,...,n.

3. A solution approach. To complete the survey design, approximately 11,000
problems of form similar to (P1) needed to be solved. Obviously, these problems could
have been solved using general-purpose nonlinear programming methods. However,
a crucial special feature of this application was that in more than 90 percent of the
problems, rn =2 and it was known a priori that only a single constraint would be
satisfied exactly at the solution. We now describe how a special solution procedure
was developed to exploit these properties.

A constrained optimization problem of the form

minimize f(x)
(C 1) subject to gi (x) <- b, 1," , m,

problem thus has the form

GEOMETRIC PROGRAMS IN SURVEY DESIGN 877

is called a convex program whenever f and each gi are convex functions. (For a
definition of convex functions and related properties, see, e.g., Rockafellar [8].) A
function h of n real variables {xi}, i= 1,..., n, is said to be a posynomial (i.e., a
generalized polynomial with positive coefficients) if it can be written as

h(x)= 2 c, x’,
i=1 j=l

where ci > 0 and aij are real constants. If f and each g are posynomials defined on
the positive orthant, then (C1) restricted to the positive orthant becomes a posynomial
geometric program, a class of problems that can be transformed into equivalent convex
programs (see, for example, [1]).

The general approach, to be described in detail below, is to solve a sequence of
(simpler) convex programs related to (P1). Consider the following two convex
programs:

minimize cxj
j=l

(P2) subject to <_- b, 1, , m,
=lX

and

x>0, j=l,...,n,

minimize

(P3) subject to ---<_ b, 1, , m,
j=l Xj

O<x<- u, j= l, n.

Note that (P3) is (P1) with the x,,x,,_l term in the objective replaced by xn, and that
(P2) is (P3) without upper bounds on the variables.

The partial Lagrangian function (see, e.g., Bazaraa and Shetty [2, Chap. 6]) for
(P2) is given by

(5) L x, , cj xj + _, , b,
j=l i=1 j=l Xj

where x is the n-vector of decision variables and I is the m-vector of Lagrange
multipliers for the general constraints. For fixed , _-> 0 (A 0), the function L is strictly
convex in x for x > 0. Its unique feasible minimizer (with respect to x) is given by

(6) x(,) , j= 1,. ., n.
c

Substituting (6) into (5) and simplifying yields

(7) h(a) L(x*(a), A)= 2 cj E aijA,- . a,bi.
j=l i=1 i=

It is not difficult to show that h is a concave function and its maximum for A >-0
coincides with the minimum value of the objective function in (P2). We thus have the
dual of problem (P2)

maximize h(A)
(D2) subject to A >_- 0,

878 AL-KHAYYAL, HODGSON, CAPPS, DORSCH, KRIEGMAN, AND PAVNICA

where A is now called the dual vector. Problem (D2) is also a convex program, so let
A* denote the unique optimal solution. It follows that the solution of (P2) is defined
by x x(h*).

Problem (D2) can be solved using general methods for bound-constrained optimiz-
ation (e.g., McCormick [7, Chap. 13]). However, if (P2) has only one constraint, then
(D2) has only one variable and its solution is given in closed form as

(8) 1,=
1

#cja,.
j=l

Thus, the solution to (P2) when rn 1 is given by

which corresponds to the well-known Neyman allocation [5]. In the next section, we
consider how to use this result to solve (P3) when m 1.

3.1. Te ese m 1. When m 1, the single general constraint is always active at
the optimal solution of (P3), assuming a nonempty feasible set. Let x* and denote
the unique optimal solutions of (P2) and (P3), respectively. Standard optimality
conditions then indicate that, for each component j for which x u, it holds that

=u (see, e.g., Rockafellar [8, 28] or Bazaraa and Shetty [2, Chap. 4]). This
observation is much stronger than the result for general convex programs (see, e.g.,
[2, Exercise 4.15]) which only guarantees the existence of a solution, say , to a convex
program such that at least one constraint violated by the optimal solution of a relaxed
problem (obtained by dropping that constraint along with, possibly, others) is active
at . Moreover, in our situation, knowledge of an active (upper bound) constraint at
the optimal solution automatically reduces the dimensionality of the problem. These
observations suggest the following simple solution procedure for (P3) (assumed feas-
ible), which is based on repeated solution of subproblems obtained from relaxations
(P2) by fixing different sets of variables to the bound u.

ALGORITHM A.
Step O. Set k 1, b b, and J {1, 2, , n}. Problem (P2) with m 1 can be

written as

minimize cx
jeJk

(P2MI(k)) subject to al k,

X>0, j J.
Step 1. Let xk solve problem P2MI(k). The solution is given by (7) as

1 / 2 (e,a forj

Step 2. If x u for all j Jk, set x x for all j 6 J STOP, x* solves (a3).
Step 3. If x > u for some j Jk, set x u for all such j. Define

(a) F {j: x> u, j J}
(b) J+
(c) b+=b- a.

F U
Set k k + 1 and return to Step 1.

GEOMETRIC PROGRAMS IN SURVEY DESIGN 879

Remark. The algorithm clearly terminates since, at the unique solution to (P3),
we know that Yj alj/j bl and that reduction of problem dimensionality at each
iteration does not change the implication on active upper bounds inferred by solving
the relaxed problem (P2). The algorithm assumes the feasible set for (P3) to be
nonempty. Infeasible problems can be detected by simply verifying Yj al / uj > bl.

3.2. The case m>_2. For m-> 2, it is no longer true, in general, that if x > u in
the optimal solution of (P2) then it follows that uj in the optimal solution of (P3).
However, the (heuristic) rule of fixing the jth variable to its upper bound whenever

xf > uj, and repeatedly solving lower-dimensional relaxations (P2), leads to a feasible
solution to (P3) whose closeness to can be measured.

We next present a formal statement of this procedure for finding the solution x*
to (P3) obtained using the foregoing rule. In the next section, we present a method
for computing a relative error bound on using x* as an approximation to the true
optimum solution : of (P3).

ALGORITHM B.
Step O. Set k 1, bk b, and Jk {1, 2,’’ ", n). Problem (P2) can be written as

minimize cx
JJk

aiJ< b 1, m,(P2(k)) subject to --=
JJk Xj

and its dual becomes

xj>O, jJk

maximize 2 Y cj Y aoAi-Y Aib
JJk i=

(D2(k)) subject to Ai->- 0, 1,. , m.

Step 1. Solve (D2(k)) by any terminating procedure and let A k denote the solution.
Then the solution to (P2(k)) is given by (4) as

x;= haig
forjJk.

i=1 Cj

Step 2. Ifx ug for all j Jk, set x x for all j Jk STOP, x* is an approximate
solution for (P3).

Step 3. If x > ug for some j Jk, set x ug for all such j. Define

(a) Fk {j: x> uj, j Jk}
(b) J+, JF
(c) b+=b- 2 a i=l,...,m.

jF, j
Set k k + 1 and return to .Step 1.

Remark. Here again, we assume that the feasible set of (P3) is nonempty; other-
wise, a0/u > bi for at least one i. Convergence of the algorithm depends on the
procedure selected in Step 1 for solving (D2(k)). A general variable reduction algorithm
(see, e.g., [7, Chap. 13]) such as the reduced gradient method can be used, or a
specialized technique such as the projected Newton method using only the diagonal
elements of the Hessian matrix and an Armijo-like inexact line search presented in
[3]. Moreover, it is easy to show that if one and only one component of an optimal

880 AL-KHAYYAL, HODGSON, CAPPS, DORSCH, KRIEGMAN, AND PAVNICA

solution to (P2) exceeds its upper bound, then that variable is at its bound in the
optimal solution of (P3). Hence, if the optimal solution xk of problem (P2(k)) has at
most one component exceeding its upper bound for every k, then the solution obtained
by the preceding algorithm is optimal for (P3).

3.3. Bound on relative error. By expending a little more effort, the feasible point
x* can be checked to see if it is in fact optimal for (P3). Otherwise, an error bound
can be calculated by just finding a point Y that satisfies

(10) f(:) <f() <f(x*),
where the second inequality follows from feasibility of x*, and then using [f(x*)-
f()]/f(:) as an upper bound on the relative error [f(x*)-f()]/f() of using x* to
approximate . In this way, an a posteriori error bound on the optimal objective
function value is available for purposes of assessing the goodness of the heuristic
employed.

Suppose Algorithm B terminates in iteration k. Then x* solves the problem
minimize cjxj

jN

(11) subject to --<--bi, iM,
jGN Xj

xj uj, j F(k),
xj>O, jN,

where M={1,2,..., m}, N={1,2,..., n}, and F(k)=

_
Fi is the index set of

variables fixed to their upper bounds. Let v* and w* be the multiplier vectors such
that (x*, v*, w*) solves the following Karush-Kuhn-Tucker conditions (see, e.g.,
Bazaraa and Shetty [2, Chap. 4]):

Cj E Vitro /X Wj, j F(k),
iM

cj 2 v, aj / x] j N\F k),
iM

v ao /x bi O, M,
J

V > O, M.
Here w* is the vector of multipliers for the active upper bounds. If w >-0 for all

j F(k), then x*= is the unique solution of (P3). Otherwise, a point x satisfying
(10) can be computed in the following way

The general idea for determining an appropriate error bound is to take Y as the
optimal solution determined by an application of Algorithm A to the problem of
minimizing cjxj subject to a single functional constraint, which is either chosen from
the index set M or constructed as a convex combination of two constraints from M.

Assume w < 0 for at least one j F(k). From (12) we have

x= vaij/(cj+w) for allj F(k).
iM

It follows that

v*ai,/c<x forjF(k) such that w<0,(13))j ,M

x otherwise

is infeasible to (P3). We shall use the vector ff given by (13) to identify the single
constraint to be passed to Algorithm A.

GEOMETRIC PROGRAMS IN SURVEY DESIGN 881

Two cases are distinguished depending on whether or not ff violates all constraints
in M.

Case 1. satisfies at least one constraint.
Let M be the index of a satisfied constraint and u M be the index of a violated

constraint. Then, because of convexity, the convex combination ofthese two constraints
that passes through : contains the feasible region; specifically,

(14) aaq+(1-)a<=ab+(1-a)b,,,
jN Xj

where

q(X)-b

and

q,(x)= E a,j.
juXj

In problem (P2MI(1)) of Algorithm A, take alj=aao+(1-a)aj and
abi + (1-a)b and let denote the solution obtained for this problem.

Case 2. violates all constraints.
A simple procedure in this case is to choose, for Algorithm A, that violated

constraint which is closest to : in the direction c. This constraint can be determined
as the binding constraint of the easily solvable problem

maximize

subject to gi (a) >= bi, M,

a>=O,

where

gi(a)= E aij

u Z+ ac
For both cases above, more elaborate procedures are not difficult to devise, but

our aim here is to keep the treatment simple, since a comparative experiment (or
theoretical analysis) of different heuristics is not the focus of this study.

An example that illustrates Case 1 is presented next.

3.4. Example. The following example illustrates Case 1.

minimize 100xl + 5x2 + x3

1 5 1
subject to --+--+--=< 1.6,

Xl 22 23

(15) 125 1 1200
++ =< 252.75,
Xl X2 X3

X1, X:, X O,

X 15, X2
<Z 4.5, X 5.

Algorithm B returns the point x* (9.98, 4.5, 5) with f(x*) 1025.5, k 2, and F(2)
{2, 3}. The triple (x*, v*, w*) with (v*, v*) (0, 79.68) and (w2*, w3*) (-1.07, 3823.66)

882 AL-KHAYYAL, HODGSON, CAPPS, DORSCH, KRIEGMAN, AND PAVNICA

solves (12), and if= (9.98, 3.99, 5) is now available from (13); checking feasibility of
fffixes i--1 and v=2.

Replace the two functional constraints in (15) by the convex combination deter-
mined by (14); namely,

(16)
77.88 2.52 744.38
--+ =< 157.31.
X1 X2 X3

Algorithm A gives Y= (9.90, 4.5, 5), with f(Y)= 1017.08, as the optimal solution for
the problem with (16) as its single constraint, and all other data being the same as (15).

Since [f(x*)-f(Y,)]/f(Y,)=0.0083, then f(x*) is within 0.83 percent of the true
optimum value f(). Here, we know that the optimal solution is (10, 4, 5) with
f() 1025, so that our heuristic solution is actually within 0.05 percent of optimality.

4. Solving the survey design model. In this section we describe a solution procedure
for the survey design model (P1), which we stated earlier to be related to the simpler
convex program (P3). We now make this relationship clear. It is easy to see that (P1)
is equivalent to

(P4)

minimize

subject to --<---- bi, 1, , m,
=lYj

Y, UnYn-1 <- O,

O<yj_<-- fij, j=l,...,n,

where t7 uj for all 1 <-j <= n 1 and tT, u,,u,,_l. The equivalence follows immediately
from the one-to-one correspondence between the feasible points under the transforma-
tion defined by y=xj (1 =<j=< n-l) and y,,=x,,x,,_l. Note that (P3) is a relaxation of
the above problem. For convenience, (P3) is rewritten here as

minimize cy
j=l

P5
subject to --=ai< bi, 1, m,

0 <y =< tTj, j=l,...,n,

If 33 denotes the optimal solution of (P5) and 37 is the optimal solution of (P4), it is
straightforward to show that if 33, > u,33,_1, then 97, u,37,_1. Hence, with
(P4) reduces to

minimize Y cy
j=l

(P6)
subject to ao __< hi, 1, , m,

:Y
O< y<--_ (tj, j=l,...,n-1,

--<j= n-2 and all i, and c, c,_ ,,_-where cj =c and a o ao for 1 < + c,,u,, and a’
a,,,_ + ai,,/u,,. Since (P6) has the same form as (P3), then (P1) can be solved by solving
at most two problems of the form (P3). The overall algorithm for (P1) is presented

GEOMETRIC PROGRAMS IN SURVEY DESIGN 883

next, followed by a remark on bounding the relative error of the heuristic solution
obtained.

ALGORITHM C.
Step 1. Solve (PS) and let j3 denote a solution. One of three alternative procedures

may be used.
(1) If m 1, use Algorithm A, whereupon j is the solution to the problem.
(2) If m-> 2, apply Algorithm A for each of the m constraints and let

y1,..., ym denote the solutions obtained. For any j, if yJ satisfies all
m constraints then 33 yJ solves (PS). If all m solutions are infeasible
to (PS), then use Algorithm B, whereupon j? is an approximate solution
to the problem.

Step 2. If fin -< Unn--1, then

fi* (fi, fi2,""", Y"-, fin/fin--)

is an exact or approximate solution to (P1), depending on whether)3 is
an exact or approximate solution to (P5). Otherwise, go to Step 3.

Step 3. Solve (P6) using one of the alternative procedures in Step 1. Let
(Y*, Y2*," ", Y,*-I) denote a solution. Then

Y* (Y* Y* Y’n-l, uny*n-1)

is an exact or approximate solution to (P1), depending on the method
used to solve (P6).

Remark. The methodology for bounding the relative error of the heuristic solution
(3.3) can be applied to either (P5) or (P6), depending on whether the algorithm
terminates in Step 2 or Step 3, respectively.

5. Concluding remarks. In the sample survey design application, sixteen sampling
schemes were considered for each ofthe 718 jurisdictions. The optimum implementation
of each scheme required the solution of an optimization problem to determine the
least cost stratified sample sizes that met voting participation variance limits. Each
problem was either of the form (P1) if both NPA and POC frames were used in the
survey design, or of the form (P3) if only POC frames were used. For the 11,488
problems considered, the number of stratified sample sizes n did not exceed nine, and
the number of minorities m was four or less. Moreover, experimentation with different
stratifications and different techniques for estimating variance resulted in the need to
solve these problems several times. Approximately 90 percent of the jurisdictions had
only one or two minorities, and many ofthose had only POC frames. Thus, a substantial
proportion of the problems that needed to be solved were of the form (P3) with m-<2,
for which the approach presented above is ideally suited. Available general optimization
procedures could not satisfactorily process the large number of small problems in this
application because they did not exploit the highly specialized nature of the survey
design optimization problems.

One of the sixteen sampling schemes is a minor variation of the standard scheme
that the Census Bureau usually uses for this type of survey. In each jurisdiction, the
optimum scheme was compared to the optimized standard scheme (SC). For this
purpose, 650 of the 718 jurisdictions were optimized. Schemes for the remaining
jurisdictions were preselected. In 155 jurisdictions, the feasible region of SC was empty.
That is, SC does not satisfy the variance constraints unless either the nonpermit area
(NPA) frame cluster size or the permit new construction (PNC) frame sample size is
increased.

884 AL-KHAYYAL, HODGSON, CAPPS, DORSCH, KRIEQMAN, AND PAVNICA

For the 495 jurisdictions where SC was feasible, the cost of using SC in all
jurisdictions was estimated to be $15,400,000. In 118 jurisdictions, an optimum scheme
different from SC was selected at an estimated savings of about $400,000. In the 155
jurisdictions where SC was infeasible, the savings from selecting an optimum scheme
was estimated to be about $140,000. Therefore, a conservative estimate of the amount
saved on the cost of conducting surveys in the 650 jurisdictions was $540,000.

A jurisdiction is said to be undercovered if not all housing units have a chance
to be surveyed, and in some jurisdictions such an occurrence was unacceptable. By
listing the costs of the 16 different schemes, the optimization procedure allowed the
analysts to weigh coverage against costs in a precise manner. In some jurisdictions,
suboptimal survey designs were chosen to prevent either known or suspected under-
coverage. These subjective choices resulted in an estimated $260,000 loss of savings.

Without optimization, alternatives to the standard Census Bureau scheme could
not have been considered while still conducting the survey on schedule. Unfortunately,
for unrelated reasons the survey project was canceled at the last moment. However,
the model and methodology have been successfully applied in subsequent studies by
the bureau (see, e.g., Causey [4]).

Acknowledgments. The authors are grateful to the referees and to the Reviewing
Editor, Margaret H. Wright, who provided many constructive comments.

REFERENCES

[1] M. AVRIEL, ED., Advances in Geometric Programming, Plenum Press, New York, 1980.
[2] M. S. BAZARAA AND C. M. SHETTY, Nonlinear Programming: Theory and Algorithms, John Wiley,

New York, 1979.
[3] D. P. BERTSEKAS, Projected Newton methods for optimization problems with simple constraints, SIAM J.

Control Optim., 20 (1982), pp. 221-246.
[4] B. D. CAUSEY, Computational aspects of optimal allocation in multivariate stratified sampling, SIAM J.

Sci. Statist. Comput., 4 (1983), pp. 322-329.
[5] W. G. COCHRAN, Sampling Techniques, Third Edition, John Wiley, New York, 1977.
[6] M. H. HANSEN, W. N. HURWITZ, AND W. G. MADOW, Sample Survey Methods and Theory, John

Wiley, New York, 1963.
[7] G. P. MCCORMICK, Nonlinear Programming: Theory, Algorithms, and Applications, John Wiley, New

York, 1983.
[8] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[9] Sampling Specifications for the 1978 Survey of Voting and Registration Statistics, Memorandum 2, Bureau

of the Census, Washington, D.C., March 20, 1978.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 885-903, July 1992

()1992 Society for Industrial and Applied Mathematics

004

BLOCK M-MATRICES AND
COMPUTATION OF INVARIANT TORI*

LUCA DIECI AND JENS LORENZ$

Abstract. In this work a generalization of nonsingular M-matrices to block matrices is pro-
posed, where positivity of numbers is replaced by positive definiteness of blocks. In addition, the
outer diagonal blocks are multiples of the identity. This generalization is arrived at by studying the
matrices that arise from discretizing linear first-order systems of partial differential equations (PDEs)
where each equation has the same principal part. These PDEs occur in the study of invariant tori
of dynamical systems. In this paper, a first-order discretization of these PDEs is investigated and
block M-matrix properties are used to establish stability and error estimates. To obtain higher-order
convergence, an error expansion is proved, which legitimates Richardson’s extrapolation. Some of the
numerical and algorithmic aspects of the proposed discretization are discussed and briefly contrasted
to others. Some numerical examples to illustrate the theory and to highlight the interplay between
attractivity and smoothness of the tori versus accuracy of the approximation are also presented.

Key words, invariant tori, numerical computation, PDEs with same principal part, upwinding,
extrapolation

AMS(MOS) subject classifications. 65L99, 65N07, 34C99

1. Introduction. In [DLR], we considered the problem of computing invariant
tori of dynamical systems numerically. Our approach required the solution of an
associated system of partial differential equations (PDEs). We used the leap-frog
discretization for this system, and proved stability and second-order convergence for
linear constant coefficient problems. The extension to linear variable coefficients has
been the main motivation for this paper. Here, we provide such an extension for
an upwind scheme; under suitable assumptions, we prove stability and first-order
convergence. To prove stability, we are led to define a class of block matrices that
generalizes the usual class of nonsingular M-matrices. This generalization is necessary,
because the PDE is not scalar. We prove that the block M-matrices are invertible, and
we give explicit bounds on the norm of their inverse. This allows us to show stability.

An outline of the paper is as follows. In the remainder of the introduction we
set some notation. In 2 we define block M-matrices and, extending a basic prop-
erty of usual M-matrices, we obtain a bound on their inverse. In 3, we consider the
application of block M-matrices to the computation of invariant tori. Under certain
assumptions, an invariant torus can be parametrized by the solution of a system of
first-order PDEs, where each equation of the system has the same principal part. For
linear systems of PDEs of this type, we investigate a first-order upwind scheme. The
discretization leads to a block M-matrix if the coefficient matrix of the zero-order
term in the PDE system is positive definite. (Positive definiteness of this zero-order
coefficient implies attractivity of the torus.) It is then possible to prove stability and

*Received by the editors August 13, 1990; accepted for publication (in revised form) April 25,
1991. This work was supported in part by National Science Foundation grant DMS-8802762 and
Department of Energy grant DE-AS03-76ER72012.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 (diecimath.
gatech.edu).

:Department of Mathematics and Statistics, University of New Mexico, Albuqlerque, New
Mexico 87131 (lorenzaltona.unm.edu).

885

886 LUCA DIECI AND JENS LORENZ

first-order convergence. Under smoothness assumptions, we show that the discretiza-
tion error admits an expansion in terms of powers of the mesh sizes. This result
can be used in conjunction with Richardson’s extrapolation to obtain higher-order
procedures. In 4, we present some of the implementation considerations, and two
examples, to illustrate the theory and to stress the relation between smoothness and
attractivity of the tori and accuracy of the computed approximations.

We consider block square matrices of the form

Aii Ain)(1.1) A
Anl Ann

where each Aij E IR"xm.
write

For matrices B, C E IRmxm

B>_qC

possibly unsymmetric, we

if and only if the quadratic form defined by B C is positive semidefinite, i.e.,

xTBx > xTCx /X E]Rm.

For vectors ab E IRn, we write a >_ b if and only if ai >_ bi, for all i. Also, for e E IRn,
we write e > 0 if and only if all ei > 0. A vector e > 0 induces the scaled maximum
norm for vectors in IRn (Ixil denotes absolute value)"

Ilxlle max Ixi--- x e]Rn
l<i<n ei

For vectors cd E IRm we denote the usual Euclidean scalar product and induced norm

m

(c,d) := c,d,, Icl := (C,C) 1/2.
i--1

For vectors

(xi)X E]Rrim, xJ E IRm, and e E IR, e > 0,
Xn

we define the scaled maximum two-norm:

i<_j<_n ej

and if ey 1, for all j, we denote this norm simply as I[x[I. Induced matrix norms are
defined in the usual way.

2. Block M-matrices. Nonsingular M-matrices can be characterized in many
ways. In [Be] and [P], 40 equivalent conditions are listed. Here, we will generalize the
following semipositivity characterization (it is Ka3 or K35 of [e]).

DEFINITION 2.1. A matrix B (bij) E]Rnn is an M-matrix if

(2.1a) b _< 0, i # j

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 887

and if there exists a vector e E IRn such that

(2.1b) e>0 and Be>0.

Several properties/characterizations of M-matrices are well known. For example,
if B is an M-matrix, then B-1 exists (and B-1 >_ 0). We will extend this invertibility
result in the stronger form given by the following lemma, of which we provide a simple
proof for completeness.

LEMMA 2 2 Let B IRnn be an M-matrix, and let e]Rn e > 0 and Be > 0
Let 1 lit, l > O, such that Be >_ le. Then we have

1
(2.2) Ilxll _< llBxll Vx e n.

Proof. Clearly we have

+/-r _< IIlle v r e R.

Since B- > 0, if we set Bx --: r we have

1+x +B-r <_ IlrllB-e _< Ilrll-e.

This implies (2.2), because

We are ready to define block M-matrices.
DEFINITION 2.3. A matrix A as in (1.1) is called a block M-matrix if

(2.3) Aij aijI, aij e IR, aij <_ O, i j,

where I is the identity matrix, and if there exists a vector e IR’, e > 0, and a scalar
a E IR, a > 0, such that

n

(2.4) E ejAii >_q aI, i 1,..., n.
j=l

Remarks. (1) Conditions (2.3) and (2.4) generalize (2.1a) and (2.1b), respectively.
If the blocks are scalar (rn 1) we obtain Definition 2.1.

(2) Since e > 0 in the above definition, an immediate consequence of (2.4) is the
following: there is some r/ IR, r/> 0 such that

n

(2.5) E eyAij >_q eiI, i= 1,..., n.
j=l

The conditions (2.4) and (2.5) express a "scaled diagonal dominance" property. If
ey 1 in (2.4), for all j, we obtain a condition equivalent in this context to that of a
strictly block diagonally dominant block matrix.

888 LUCA DIECI AND JENS LORENZ

We can now prove the following theorem.
THEOREM 2.4. Let A be a block M-matrix. Let E IR, r > O, such that (2.5) is

satisfied. Then we have

1
]anm(2.6) Ilxll _< IIAxII Vxe

Proof. (i) Let us first assume that (2.4) is satisfied with ej 1, j 1,..., n. Let
xr Innm such that Ax r. Determine an index k so that

j 1,--.,n.

Taking the scalar product of Akkxk + YjCk AkjxJ rk with xk, and using (2.3), we
obtain

(x)TAkkX + akj(Xk)Tx (xk)Trk.

Since akj <_ 0 and (xk)TxJ _< (xk)Txk we have

(x)TAkkX + -(x)TAkyxk <_ (xk)Trk.
jk

Then, (2.4) with i k gives us

alxkl 2 -< (xk)Trk <- xkl" Irk{,

and therefore (2.6) follows in this case, because

;Ixll Ix < 11 -< lllr;i.
o" 19"

(ii) In the general case, where e > 0 is arbitrary, we define the invertible nmxnm
diagonal matrix

A---- Oo
0

and then A-1AA =: B is a block M-matrix to which the first part of the proof applies
with a r]. Now, Ax r implies

BA-lx A-lr,

and therefore
1 1

and the proof is completed.
An immediate consequence of the theorem is Corollary 2.5.
COROLLARY 2.5. Under the assumptions of Theorem 2.4, A is nonsingular and

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 889

Remark. It is possible to generalize other properties of standard M-matrices to
block M-matrices. In this work we have only extended that property which is needed
for the stability analysis in the next section. However, not all of the properties that
characterize usual M-matrices can be extended to block M-matrices, as we have de-
fined them. This aspect will be addressed in the future. Other extensions (not equiv-
alent to ours) of standard M-matrices to the block case are in [EM] (and also here,
not all standard M-matrix properties extend to the block case).

3. Computation of invariant tori.

3.1. Basic setting. In this paper, we restrict the setting to dynamical systems
of the following form

(3.1) - f(0),
/" -C(0)r + g(0),

where O(t) e Tp and r(t) e IRa; here Tp IRp(mod p) denotes the standard p-torus.
The functions

f" TP - IR P, C" Tp --+ IRqq, g" TP ---+]aq

are assumed to be in Cr, where r > 1 will be specified below. Then, for all initial data

(3.2) (0(0), r(0)) (00,r0) e Tp)< IRa,

the system (3.1) has a unique solution existing for all times. We are interested in
determining a manifold j/[, diffeomorphic to Tp, of the form

(3.3) .h/[{(0, R())" 0 e Tp}, R" Tp IRq,

which is invariant under the flow of (3.1). This means that if (0, r0) E jPI, then the
whole trajectory determined by the initial data (3.2) lies in

The following well-known result (e.g., see [S]) is at the core of our computational
technique.

LEMMA 3.1. Suppose R: Tp IRq is a Cl-function. Then t/[in (3.3) is
invariant under the flow of (3.1) if and only if R satisfies

v OR
(3.4) f(O)-o(O + C(O)R(O) g(0), 0 e Tp,

where f and 0, v 1,...,p, denote the components of f and , respectively. D
Remark. Note that (3.4) is a vector equation for the q components of R. The

principal part of each equation reads

v’--1

i.e., the coefficients are the same for each # 1,..., q. This is why we can force the
outer diagonal blocks of the discretization matrix to become multiples of the identity,
and we are able to satisfy the condition (2.3).

890 LUCA DIECI AND JENS LORENZ

To motivate condition (3.6) below, let us assume temporarily that the matrices

C(O) are all positive definite. Then we can expect that the influence of initial data
r(0) r0 becomes negligible as t -- oc, and the r-vector becomes a function of (t)
only, r(t) R((t)). Thus we expect existence of an attracting manifold (3.3), which
is positively invariant. (For the compact manifold JA, invariance for t --, oc implies
invariance for t --, -o as well.)

However, precise existence and smoothness statements are more involved. The
basic difficulty is well understood, and it is given by the fact that (3.4) does not
generally have a smooth solution R even if f(0), C(O), and g(0) are in C. General
existence and smoothness results for invariant manifolds can be obtained from Fenichel
IF]. For our purposes, Theorem 3.2 below suffices. To state the result, we need some
further definitions.

Consider the two initial value problems

r(0),
o(o) Oo,

with solution O(t) St(Oo), and

-c(s,(Oo)),,
r(0) ro,

with solution r(t) M(t, 00)r0, M(t, 0o) C IRqq. We let DSt(Oo) C IRvv denote the
derivative of S with respect to 00. Then we define the generalized Lyapunov-type
numbers (denoted by v and a, respectively, in IF])

(3.5a) p(Oo) inf{a C (0, oc) lM(t S-t(Oo))[/a --, O, as t --+

(3.5b) #(00) inf{s e (0, c)’[DS-(Oo)[. [M(t, S-t(00))[8 - 0, as t --+ oc}.

(The expressions do not depend on the chosen matrix norm I" I, but in our discussion
below we shall assume that I" corresponds to the Euclidean vector norm.)

THEOrtEM 3.2. Let f, C, g E Cr, r IN, in (3.4). Let p(o) < 1, #(o) < l/r, for
all o Tp. Then (3.4) has a solution R e Cr(Tp, IRq). The solution is unique in
C(Tv, IRq).

Remark. The existence result follows from Theorem 1 of IF] if we consider (3.1)
with g _-- 0 as the unperturbed case with the invariant torus

A4o { (O, O) O c Tp}.

Then a perturbation eg(0) is introduced and the result of IF] applied; because of the
linearity of the equation, the size of e is irrelevant. Uniqueness of 1% follows from the
proof in IF], which is based on a contraction argument.

To illustrate Theorem 3.2, let us assume:

(3.6) There exists a a IR, a > 0 such that C(O) >_q aI V 0 Tp.

Then we obtain IM(t,O)l < e-t for all t >_ 0 and all 0 c Tp, and therefore

p(Oo)<_e-<1 for all00TP.

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 891

Thus, if g 0 in (3.1), JP[0 attracts all trajectories at the exponential rate e-, for
t >_ 0. Furthermore, let us assume that

(3.7) [Df()[<e VcTp, where0<e<<l,

i.e., if g 0 in (3.1), then the flow on A40 is almost parallel. From (3.7) it follows
that IDS-t(Oo)I <_ ea for all 0 E Tp, t >_ O, and therefore we have IDS-t(o)I
IM(t,S-t(o))l 8 _< e(-8)t. In (3.5b) we obtain #(0) _< , for all 0 E Tp. Thus,
Theorem 3.2 guarantees a Cr solution R of (3.4) as long as f, C, g Cr and re < a.
The invariant manifold (3.3) still attracts trajectories at the exponential rate e- for
t -. cx. This follows easily from (3.6) using linearity of (3.1) in r. To summarize
the discussion, the larger a > 0 in (3.6) (that is, the stronger the attractivity), and
the smaller e > 0 in (3.7) (that is, the closer the flow on J/[0 is to being parallel),
the more derivatives of the solution R can be guaranteed, and the faster the solution
trajectories approach [.

Next, we propose a discretization scheme for (3.4), which we want to investigate.
Assumption (3.6) will enable us to satisfy the condition (2.5) for the discretization
matrix.

3.2. Numerical discretization. To discreti.-.c (3.4), we use equispaced grid
points in each of the angular coordinates. We let hv 2r/Nv, u 1,...,p, and
h- (hi,..., hp), and replace the torus Tp by its discrete analog

T {Oh (jlhl,’",jphp), jv C mod Nv, u- 1,..-,p}.

Then T denotes a periodic grid with N N1 Np mesh points. The unknown grid
function will be denoted by Rh, Rh’T -+ IRq.

In the usual way, we define the shift operators my, 1,...,p, as

(EvRh)(Oh) Rh(" ", (jr + 1)hv,..-)

(and the integer jv+ 1 is computed modulo Nv). We also define the forward, backward,
and centered divided difference operators as usual:

1
D+v - 1 (I_EI) 1

D0v (D+v / D-v).

We replace (3.4) by the following periodic difference equations of upwinding type

(3.9a) ’ f,(Sh)Do,R.h -hv(fv(Oh))D+vD-vRh + C(Oh)Rh =g(0h),

Oh C T,
where

(3.9b) (a)- (1 + a2) 1/2 1
(my 21 + E-1).D+vD-v

The "classical" upwind scheme consists in taking (a) lal in the above; the choice of
a nonsmooth , however, does not allow the error expansion of 3.3. This motivates us
to choose a smooth in (3.9b); the particular choice (a) (1 + 32)/2 is considered

892 LUCA DIECI AND JENS LORENZ

in [St] for a convection-diffusion equation with dominating convection. Other choices
are possible.

Remark. Our computational experience indicates that the "classical" ((c)
and the "smooth" ((a) (1 + (2)1/2) upwinding perform very similarly in accuracy
terms. However, the classical choice leads to greater computational efficiency because
the resulting matrix has a more exploitable structure. As we will see in the following,
Theorems 3.3 and 3.4 also hold for the classical upwinding. For this reason, unless
the smooth choice of (a) is needed, for the extrapolation procedure, we suggest
the use of the clsical upwinding scheme.

To obtain a matrix equation, we order the N grid points in a reverse lexicographic
way, for example and we keep the q components of Rh at each grid point together.
So doing, we obtain a system matrix Ah, consisting of (N N) blocks, each of size
(q q). The diagonal blocks have the form

P 1
(3.10) C(Oh) + (f(Oh)) Iq.

The outer diagonal blocks are either 0, or have the form

1 1
(f(Oh) + (f(Oh))) Iq and (f(Oh) (f(Oh))) Iq

(for the clsical upwinding scheme, one of these two blocks in (3.11) is 0). Since
() I], we satisfy condition (2.3) and because of assumption (3.6) we also satisfy
(2.4) with all ei 1. Therefore, we can use Theorem 2.4 and Corollary 2.5, with all
ej 1 and a, to obtain Theorem 3.3.

THEOREM 3.3. Assume that (3.6) holds and that the matrix Ah corresponding to
(3.9) has been set up as described above. Then the difference equations (3.9) have a
unique solution Rh. Furtheore, the discretization is unconditionally stable in the
sense that the following bound on A holds unifoly in h

(3.12) IAll] .
It is now standard to obtain error estimates and convergence for the scheme (3.9),

if existence of a sufficiently smooth solution R of (3.4) is sumed. In fact, we can
prove the following theorem.

THEOREM 3.4. Assume that (3.6) holds and that (3.4) has a solution R
C2(Tp,q). Let R[h denote the restriction of R to T and let Rh denote the

solution of the difference equation (3.9). Then we have

(3.13) ,R- R,,, ,h,a (+ "f")
where we have used the notations

[h[max h,
lp

IPOTP
v OR OR

lDR]] m (a)

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 893

with I" the Euclidean norm in IRq.

Proof. Taylor’s formula with remainder in integral form (or integration by parts)
yields

with

and

Therefore,

00v
(0) D0.R(0) + T., IT,I _<

We substitute R.Ih into (3.9a), use (3.4), and subtract (3.9a) to obtain

P 1 P

v--1 v--1 .(0) (f. (0))

1 P 1 P

Eh --- hfT - hvD+D_R.
v--1 v=l

l_v_p

and since we have ICvlo _< 1 + If]oo for our choice of , an application of the stability
result Theorem 3.3 finishes the proof. 0

Remarks. (1) Let J denote the union of the ranges of the functions f, v

1,...,p. Then Theorem 3.3 remains valid if we choose any function (a) in (3.9a)
with (c) >_ Icl for all c E J. Similarly, a result like Theorem 3.4 is valid for any
with Icl _< (c) _< const (1 + Icl) for all (E J. In particular, these results are valid for
classical upwinding corresponding to (a)]c and for schemes based on exponential
fitting.

(2) The scheme (3.9) is only first order. In [DLR] we considered the leap-frog
scheme, for which the local truncation error for a C3-solution is second-order. A sta-
bility analysis based on block M-matrices seems to be restricted to first-order schemes,
however, and different tools--like discrete L2-estimates--will probably be necessary
to analyze higher-order difference schemes. However, we can also resort to extrapo-
lation (or deferred correction) techniques for the above first-order scheme to increase
the order; see 3.3.

(3) To discuss the influence of the parameter a in (3.6), let us assume that we keep
the coefficients f(tg) and g() in (3.4) fixed whereas we choose C(tg) C09 or) >_q aI
for different a > 0. If a is increased, we can, in general, expect increased smoothness
of the solution R(t), a) of (3.4); see Theorem 3.2. Another consequence of increasing
a is a stronger attractivity of A/I; see the discussion following Theorem 3.2. On the
discrete level, we obtain from (3.12) an improved stability constant with increasing a.

Thus, for small a, we must expect difficulties in the numerical calculations because
of a possible lack of smoothness of R and because of a large stability constant of the
discrete system. On the other hand, for large a, the solution R will become smoother
and the stability will become better. These occurrences are borne out in practice (see
4).

(4) Note that our results do not require any restriction on the mesh ratios

(v #). Thus nothing like a CL condition is required for stability though one of
the variables 6v in (3.1) might correspond to time.

894 LUCA DIECI AND JENS LORENZ

(5) It is interesting to note that the discretization (3.9) can also be viewed as a
discretization of the PDE

#(o)-.(o1 -b.(o) + c(o)a(o) g(0).

with ev > 0 corresponding to 1/2 hv(f). Thus the setting is closely related to "elliptic
regularization," as also used, for example, by Sacker [Sa]. However, in Sacker’s analysis
the dissipation term is introduced to ensure smoothness of the solution of the modified
continuous problem, whereas we add the artificial dissipation term to ensure the block
M-matrix structure, which leads to stability.

3.3. Global error expansion and extrapolation. We again assume (3.6).
Here we want to show that the scheme (3.9) allows an expansion of the error RIh
Rh in terms of powers of the stepsize. To prove such a result, we need to assume
sufficient smoothness of the solution R of the continuous problem (3.4). In addition,
to obtain the expansion, the PDE (3.4) must be solved with smooth right-hand sides
different from g, and we need existence and smoothness of the corresponding solutions.
Sufficient conditions for these assumptions can be obtained by Theorem 3.2. For
simplicity, we take all stepsizes h as equal, h h, u 1,..-, p. Then we can show
an expansion

R] R + hzz]n + h2z21h +-.. + hzjlh + O(h+Z),

where zi Tp -- IRq are smooth functions with restrictions Zilh on T. We give
a precise formulation and a proof only for j 1; a generalization to higher-order
corrections follows along the same lines.

THEOREM 3.5. Consider the discretization (3.9) for (3.4), and assume R E
Ca(Tp, IRq) solves (3.4). Also, let f e C2, and assume that the PDE (3.4) has a C2-

solution for any C2-right-hand side. Then, there exists a function zz C2(Tp, IRq)
such that

(3.15) R]h Rh + hZllh + O(h2).

Proof. By Taylor’s formula (for R C3),

00
(0) DovR(O) + T,

D+D_R(O)
02R h
-O-- (o1 + gs,

ITI<-

IS.l_< oo.
We substitute 11 into (3.93), use (3.4), and subtract (3.93) to obtain

P 1 P

(3.16) E fDv(Rlh Rh) ZhD+D-(RIh Rh) + C(RI R) E
--1 v--1

with
.(0) (#(0))

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 895

and
hu h 0R h
6 EfT- 002 6 ES.

v:l v:l v--I

Thus, the right-hand side of (3.16) has the form

Eh($) hrl ()+ O(h2)

where
1 P 02R

r (0) (01 (0)

is a C2-function. We define z E C2 to be the solution of

P (Z1Efv- + Czl =rl,

and we define Z,h to be the solution of the discrete analogue,

AhZl,h rl

(Here we identify, as usual, vectors with grid functions, and difference equations with
their matrix representations.) Then we have

Ah(RIh Rh) hrlh / O(h2)
hAhz,h / O(h2),

and therefore (by Theorem 3.3)

RIh Rh hZl,h -- O(h2)hZllh + O(h2).

To obtain the last equation, we have used the fact that

Zllh Zl,h + O(h),

which follows from Theorem 3.4. This completes the proof of the theorem. [:1

4. Algorithm of solution and numerical examples. Here we present the
results obtained for two sample problems, which highlight the considerations of the
previous sections. We restrict our attention to two angular coordinates, the two-torus
T2 {0- (x, y)’x, y E IR mod 2r} and two "radial" coordinates r () E IR2

V

The PDE system (3.4) then assumes the form

(4.1)
x y

_C(x,y)(Uv) g2(x,

with C(x, y) E IR22.
The discretized periodic square is T {(xi, yj) (ihl,jh2), h 2r/N, h2

2r/M, i e mod N,j e mod M}, and we order the grid points as (xl, yl),’",

896 LUCA DIECI AND JENS LORENZ

(XN, Yl), (Xl, Y2),
structure:

(XN, YM). Then, the discretization matrix assumes the macro-

BIt BI2 BIM
B2 B2 B23 ()

(4.2) Ah ".. ".. "..
(BM-1,M-2 BM-1,M-1 BM-1,M
BM1 BM,M-1 BMM

where each Bij E IR2Nx2N. Each outer diagonal Bij has the form

D (C)

with (2 2) diagonal matrices [::] along the diagonal of Bij. Each Bii has the form

D D D
D D

D D

where all blocks D are again of size (2 2); the (2 2) blocks along the diagonal of
Bii are full, in general, whereas the outer diagonal blocks of Bii are (2 2) diagonal
matrices. This structure is typical for many discretizations of (4.1) (e.g., see [DLR]).

For the scheme (3.9), the (2 2) diagonal blocks are given by (3.10) and the
(2 2) outer diagonal blocks are given by (3.11). We would like to stress that the
matrix Ah, seen as a block matrix with blocks Bij, is not a block M-matrix according
to Definition 2.3, in general. We must look at the microstructure of (2 2) blocks in
order to use block M-matrix theory.

There are various possibilities for solving systems of the type Ahx b with Ah
as in (4.2). In [DLR], we described an efficient compactification procedure. This
compactification takes advantage of the sparsity of the blocks Bij, and it can be
opportunely generalized to block M-matrices as well. However, in this paper we favor
a direct factorization of the matrix Ah. This approach does not impose restrictions
on the discretization, and it has its main limitation on storage requirements.

We gained experience with two (related, but not equivalent) factorization strate-
gies for Ah. The first factorization relies on the bordered LU algorithm, which orginates
from attempting the following block decomposition, Ah LU, with L block unit lower
triangular (see also [Ma]):

(4.3a) L

I
L2 I ()

() LM-1
E1 EM-2 EM-1 I

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 897

Vl B12

U
(4.35) U .. (C)

BM-1,M-1

el

GM-1
UM

We have successfully used this factorization as implemented in the solver LU2-SOL2,1
where pivoting is performed only on the tridiagonal part of Ah; this reduces fill-in
while retaining numerical stability in practice.

The second factorization, to be described next, and already mentioned in [DLR],
uses a reordering of blocks. For our examples, we found this strategy to be more
efficient, and the numerical results that we present below rely on this second strategy.

LEMMA 4.1. Consider the permutation vector

(4.4)
(1, M, 2, M- 1,.. M M

"’2’2 }-1)T
P=

(1, M, 2, M 1, M M

M even

M odd,

and consider the block permutation matrix IP, associated with P. That is, IP is zero
except for identity blocks of dimension 2N, which are placed in locations (j, Pj), j
1,..., M. Then, IP transforms Ah into block-pentadiagonal structure:

(4.5) Ah]PAh]PT

Bll B1M B12 0
BM1 BMM 0 BM,M-1
B21 0 B22 0 B23

BM-1,M 0 BM-1,M-1 0 BM-1,M-2

Proof. The proof is by direct verification. D
If M is even, we might consider Ah as a block tridiagonal matrix with blocks of

dimension 4N 4N. However, the results in IV] cannot be used, in general, because
block diagonal dominance is not ensured. In any case, the block tridiagonal factor-
ization of IV] would require as much work and storage as the factorization based on

(4.3).
In our strategy, we disregard any block structure of A and consider A as a

band matrix with upper and lower bandwidth 4N; this takes into account that Bj is
diagonal for i j. To compute the factorization, we use the LINPACK implemen-
tation. The factorization requires as much work and storage as the above-mentioned
block factorization algorithms if no pivoting is performed (see IV]), and slightly more
work and additional 4MN2 memory locations if partial pivoting is performed. Partial
pivoting is necessary to retain numerical stability.

We also tried general-purpose sparse direct factorization software (using Harwell’s
routines MA28), but the performance was not competitive with the other approaches
on our computational environment.

All computations below have been performed on a SPARC workstation in single
precision arithmetic (unit roundoff is approximately 10-z).

This code was kindly provided to us by B. Fornberg.

898 LUCA DIECI AND JENS LORENZ

TABLE 1
Example 1.

N M a f cond Eu Ev
10 10 1

.1

10-3
10-3
10+3

1

.1

10-3
10+3

10-3

11

19

23

5,105
5,105

.6

1.59

1.95

.83

.0016

I0

103

1

.I

10-3
10-3
10+3

I0

103

10

103

1

.1

10-3
10+3

10-3
10

103

2

1

20

58

85
5,105
5,105

3

1

.O8

.0008

.36

1.37

2

.43

.0008

.04

.0004

.6

1.59

1.95

.0016

.83

.08

.0008

.37

1.37

2

.0008

.43

.04

.O004

Example 1. This problem, with a known analytical solution, has been chosen to
confirm our theoretical results on the order of convergence and extrapolation, and to
illustrate the dependence of the numerical error on the attractivity of the tori. If a
in (3.6) is small, we experience numerical difficulties because Ah has a large inverse.
(In general, a small a might also lead to a nonsmooth solution, but in the present
example the solution is Ca.) We have the system

ux + uy + u v c(sin x + cos y),
vx + vy + u + v --/(cos x sin y),

as usual, subject to periodicity conditions, which has the exact solution u(x, y)
sin x + cos y, v(x, y) cos x sin y. It is easy to see that the matrix

is positive definite for any positive value of and/, and that (3.6) is satisfied with
a min(,/), and that (3.7) is satisfied with e 0. The discretized problem leads to
a block M-matrix, but not an M-matrix in the usual sense. The original dynamical
system is simply

/ -u + v + ((sin x + cos y),
) -u -/v + (cos x sin y),

and it is clear that u and v approach the invariant torus (become functions of x and
y only) approximately as fast as e-st and e-at, respectively. By changing and/
we change this speed. In Tables 1 and 2 we report on some results for various grids
and values of c and/. The entries Eu and Ev refer to the max-error on the grid for
u and v, respectively, and cond measures (as from LINPACK) the condition number
of Ah. Obviously, the scheme is only first order.

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 899

TABLE 2
Example 1.

N M a 3 cond Eu Ev
4O 4O 1

.1

10-3
10

1

.1

10-3
10

1

.1

10-3
10

1

.1

10-3
10

38

174

330

4.7

74

469

1293

8.3

.2

1.05

1.98

.022

.105

.714

1.96

.01

.2

1.05

1.98

.022

.105

.714

1.96

.01

TABLE 3
Extrapolation for Example 1.

Order N M a Ev Ev
h2 10

20

4O

10

20

4O

2O

10 10 .0066

.0017

.0005

.119

.038

.011

.376

.26

.0066

.0017

.0005

.119

.038

.011

.376

.26

For this particular problem, by using (2.1) to obtain IIA-lll <_ l/a, we might
expect

cond(Ah) _< max(a,)+ 1 + min’a,)’
and from Table 1 we observe that such a bound is essentially achieved for a 10+/-3

and fl 1/a. For a 10+/-4, / l/a, Ah is singular to working precision (that
is, cond(Ah) > 5,10+7). From Tables 1 and 2, we clearly see that for a / the
stronger (weaker) the attractivity, the smaller (larger) the error, as we expected from
the error estimates (3.13). For strongly attractive tori (say, a fl 103), very few
grid points (N M 10) suffice for four digits accuracy, but for weakly attractive
tori (say, a 10-1 or 10-3) even with N M 80, we have no significant digits
at all. A higher-order scheme is of some help in this situation. In Table 3 we report
on some typical results obtained with Richardson’s extrapolation. The entry "Order"
refers to the theoretical order of the procedure. Now we get one digit accuracy when
a / .1. The procedure is clearly second order, as can be appreciated when
a==l.

Finally, an interesting occurrence can be inferred from Table 1: strong attractivity
in only one of the u or v coordinates results in a very good approximation for that
component and it also helps the approximation of the other one. The error estimates
do not account for this behavior. This fact suggests that different (and more detailed)
error estimates could be achieved.

900 LUCA DIECI AND JENS LORENZ

FIG. 1. Example 2, b-- 1.

1.14 2.48 3.82 5.16 6.50

FIG. 2. Example 2, b -.

Example 2. In this second example the function f(8) changes with , and a smooth
solution cannot be guaranteed; in fact, it does not exist in the case considered. We
have chosen this example to demonstrate how well the upwinding scheme still works

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 901

TABLE 4
Example 2, b- 1.

N M cond Error
10

20

40

80

10

20

4O

8O

12

25

51

105

.23

.13

.065

.03

TABLE 5
Extrapolation for Example 2, b- 1.

Order N M Error

h2 10

20

4O

10

20

10

.0077

.0025

.00046

.0008

.0002

.0004

in this context. The problem is adapted from an example in [Mo]. We have the scalar
PDE

-ux cos x Uy sin y + bu sink y,

with b chosen so that sinb y makes sense and with the usual periodicity conditions.
The exact solution is a function of y only,

/ (cos t):-u(x, y) u(y) -2b tank (y/2)]12 - dr.

To satisfy (3.6) we take b positive (yielding, in this case, a standard M-matrix after
We observe that (3.7) isdiscretization). Here we consider the case of b 1 and b .

satisfied with e 1, and thus the discussion following (3.7) only guarantees a solution
in C. In fact, with a bit of calculus and patience, we can find explicitly u(y) when
b-- 1 and b--- , e.g., when b- 1,

u(y) -2 tan In sin

and when b ,
u(y) -(2tan)l/a 1 Y Y 1) -1/2(1- / /

arctan + 6

902 LUCA DIECI AND JENS LORENZ

It is possible to check that, in both cases, u is a continuous function as y E [0, 2r)
(in particular, u(0) u(r) 0), but the first derivative blows up at y 0. When
b 1/2, the first derivative of u is not even in L2. The assumptions of Theorems 3.4 and
3.5 do not hold. Nonetheless, the upwinding scheme (3.9) works quite satisfactorily
and the error behaves like O(h) when b 1. In Figs. 1 and 2 we show a plot of

1 respectively.the solution u(y) computed with 80 grid points for b 1 and b ,
does notOf particular interest is that the computed approximation, even for b ,

crinkle (oscillate) and is qualitatively correct; that is, it reproduces the correct solution
profile. However, for b 1/2 the solution has only one digit of accuracy near y 0,
when N M 80. In Tables 4 and 5, we have summarized the results of a few typical
runs and of the extrapolation procedure for b 1. The x>norm of the error has been
computed at 10 equispaced points. For completeness, we point out that the classical
upwinding scheme (see the discussion after (3.9)) performs better than the smooth
upwinding for this problem, reducing the error by a factor of 2 in all runs. As already
remarked, it is also computationally less expensive (much less). In any case, the good
performance of the upwinding scheme is probably due to the very localized character
of the singularity of the solution and to the smoothing ability of the upwinding scheme;
there are similarities to the behavior of upwinding for shock calculations of hyperbolic
PDEs. We plan to study these aspects, in our context, in the near future.

5. Conclusions. In this paper we have proposed a generalization of nonsingu-
lar M-matrices to block M-matrices. Such matrices arise when discretizing a linear
first-order system of PDEs where each equation has the same principal part. PDEs
with this structure arise in the study of invariant tori, and the setting we have studied
in this paper allows us to numerically approximate a class of attracting invariant tori.
The proposed discretization scheme leads to a block M-matrix under reasonable as-
sumptions. We have proven unconditional stability and first-order convergence. Under
smoothness assumptions, we have also shown an error expansion in powers of h (the
mesh size), and have used this fact to achieve higher-order accuracy by Richardson’s
extrapolation. Finally, we have discussed some of the numerical linear algebra aspects
of this and similar discretizations, and we have given numerical examples to highlight
the theory and the interplay between attractivity and smoothness of the invariant tori,
and accuracy of the numerical approximation. The extension to the nonlinear case
will be the subject of future work.

REFERENCES

[BP] A. BERMAN AND R. J. PLEMMONS (1979), Nonnegative Matrices in the Mathematical Sci-
ences, Academic Press, New York.

[DLR] L. DIECI, J. LORENZ, AND R. D. RUSSELL (1991), Numerical calculation of invariant tori,
SIAM J. Sci. Statist. Comput., 12, pp. 607-647.

[EM] L. ELSNER AND V. MEHRMANN (1990), Convergence of block iterative methods for linear
systems arising in the numerical solution of Euler equations, preprint 90-036, SFB 343,
Universitit Bielefeld, Bielefeld, Germany.

[K] E. KAMKE (1950), Differentialgleichungen 16sungsmethoden und 15sungen, Akademische Ver-
lagsgesellschaft, Leipzig.

IF] N. FENICHEL (1971), Persistence and smoothness of invariant manifolds for flows, Indiana
Univ. Math. J., 21, pp. 193-226.

[Ma] R. M. M. MATTHEIJ (1984), Stability of block LU-decompositions of matrices arising from
BVP, SIAM J. Algebraic Discrete Meth., 5, pp. 314-331.

[Mo] J. MOSER (1966), A rapidly convergent iteration method and non-linear partial differential

BLOCK M-MATRICES AND INVARIANT TORI COMPUTATION 903

equations--I, Ann. Scuola Normale Superiore Pisa Serie 3, XX, pp. 265-315.
[P] R. J. PLEMMONS (1977), M-matrix characterizations. I: Nonsingular M-matrices, Linear

Algebra Appl., 18, pp. 175-188.
[Sa] R. SACKER (1965), A new approach to the perturbation theory of invariant surfaces, Comm.

Pure Appl. Math., 18, pp. 717-732.
[St] G. STOYAN (1979), Monotone difference schemes for diffusion-convection problems, ZAMM,

59, pp. 361-372.
IV] J.M. VARAH (1972), On the solution of block-tridiagonal systems arising from certain jnite-

difference equations, Math. Comp., 26, pp. 859-868.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 904-922, July 1992

(1992 Society for Industrial and Applied Mathematics
OO5

ANALYSIS OF INITIAL TRANSIENT DELETION FOR PARALLEL
STEADY-STATE SIMULATIONS*

PETER W. GLYNN AND PHILIP HEIDELBERGER

Abstract. This paper investigates theoretical properties of a simple method for using parallel
processors in discrete event simulations: running independent replications, in parallel, on multiple
processors and averaging the results at the end of the runs. Specifically, the problem of estimating
steady-state parameters from such an experiment is considered. Sampling plans are considered in
which the replication lengths are given by limits on either simulated or computer time, and in which
the beginning portion of each run may be deleted for the purpose of controlling initialization bias.
The critical relative growth rates for the number of processors, the length of each replication, and
the length of the deletion period that are required in order to produce valid confidence intervals for
steady-state parameters are determined. When the replication length is determined by computer
time, the straightforward estimator with deletion may not work for a large number of processors. In
this case, the deletion is essentially useless due to an additional bias term that arises because the
simulated time at the end of a replication is random. In this case, a new estimator can be used to
remove this source of bias.

Key words, simulation, parallel processing, steady-state, initial transient

AMS(MOS) subject classifications. 68U20, 65C05, 60F05, 60K05, 60K20, 60K30

1. Introduction. A simple way to exploit the power of parallel processing in
computationally intensive discrete event simulations is to run multiple independent
replications, in parallel, on the processors and to appropriately average the results
at the end of the runs. At first glance, this method produces a p-fold speedup, i.e.,
reduction in completion time, over a sequential (one processor) simulation having the
same variance where p is the number of processors. We call this the parallel replications
approach.

An alternative approach is distributed simulation, in which all p processors coop-
erate on a single realization of the simulation. While significant speedups have been
achieved using distributed simulation in specific problem domains (see, e.g., Fujimoto
(1989, 1990); Goli, Heidelberger, Towsley, and Yu (1990); Lubachevsky (1989); Nicol
(1988); Unger and Fujimoto (1989); Vnger and Jefferson (1988); and Yu, Towsley, and
Heidelberger (1989)), in our opinion, distributed simulation has not yet been demon-
strated to be a robust and effective general purpose technique for dealing with the
types of complex models arising in manufacturing, computer, and communications
systems.

In contrast, parallel replications are conceptually and practicmly simple to apply
and are almost universally applicable. The widespread applicability stems from the
fact that a major reason why many models must run for a long time is the slow rate
at which a simulation estimate’s variance decreases. Essentially, parallel replications
are inappropriate only when either

*Received by the editors December 20, 1989; accepted for publication (in revised form) March
11, 1991. This research was supported by the IBM Corporation under Shared University Research
contract 12480042, by U.S. Army Research Office contract DAAL-03-88-K-0063, and by a grant from
the Natural Sciences and Engineering Research Council of Canada.

)Department of Operations Research, Stanford University, Stanford, California 94305.

:IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598.

904

ANALYSIS OF INITIAL TRANSIENT DELETION 905

1. The model is such that a single replication cannot be completed on a single
processor within a reasonable amount of time. This may be due to either an excep-
tionally large model, which, e.g., may not fit into the memory of a single processor, or,
in steady-state simulations, to a model with a very slowly dissipating initial transient.

2. The variance from each replication is very small, in which case the output
is nearly deterministic and having a large number of replications is merely a waste of
computing resources.

A simple analytic model for comparing the statistical efficiencies of distributed
simulation and parallel replications that justifies the above conclusion was developed
in Heidelberger (1986).

However, there are some potentially serious statistical problems associated with
the parallel replications approach, especially for a large number of processors. In the
case of estimating expected values of so-called transient quantities, these problems
have been studied in Heidelberger (1988) and Glynn and Heidelberger (1991a). The
source of the problem can be illustrated as follows. Suppose that replications are run
on each of p processors and that one sets a completion time constraint of t units of
(computer) time per processor. The number of replications completed on each pro-
cessor by time t is a random variable. While there are a number of different ways
the output can be averaged, there is some sampling bias due to the fixed completion
time t and the associated random number of replications. If t remains fixed, then as
p -- oc, the estimates can converge to the wrong quantity. A variety of estimators
that alleviate this situation can be devised, but they have the property that some or
all of the replications in progress at time t must be completed before the estimator
can be formed. Thus one must pay a completion time penalty in order to obtain the
correct convergence behavior. Even in the case of a single processor, some care needs
to be taken in order to best handle the bias associated with stopping the simulation
at time t; see Meketon and Heidelberger (1982), Glynn (1989b), and Glynn and Hei-
delberger (1990). In our discussion, the above results are described primarily in terms
of estimating transient quantities, but they also apply to steady-state estimation in
regenerative simulations (see Smith (1955) or Crane and Iglehart (1975)) since, in
this case, steady-state performance measures can be expressed as a ratio of expected
values of "transient" quantities. Bhavsar and Isaac (1987) discuss other properties
associated with parallel replication schemes for transient quantities.

In this paper, we consider the parallel replications approach to the steady-state
estimation problem in more generality. Specifically, we consider sampling schemes that
delete some initial part of each run in order to reduce "initialization bias," i.e., bias due
to the fact that the model cannot typically be started in its steady-state distribution
(otherwise, there would be no need to simulate). We determine the critical relative
growth rates for

1. the number of processors (replications),
2. the length of each replication, and
3. the length of the deletion period

that are required in order for the method of parallel replications with initial transient
deletion to obey a usable central limit theorem. By a usable central limit theorem,
we mean one that is centered about the unknown steady-state parameter and upon
which confidence intervals for the steady-state parameter can be based.

Determining the length of each replication is a basic issue in such an experiment.
We consider two approaches: the first, based on simulated time, and the second, based
on computer time. The approach chosen makes a difference, in terms of both com-
pletion time and estimator bias. Deletion helps to reduce bias in the first approach;

906 PETER W. GLYNN AND PHILIP HEIDELBERGER

however, the completion time is a random variable. On the other hand, when the
replication length is based on computer time, the completion time is deterministic.
However, an additional source of estimator bias is introduced in this case. Further-
more, this additional source of bias is not eliminated by deletion, and thus initial
transient deletion is essentially useless in this case. This bias, which is of order one
over the replication length, is due to the fact that the estimate from each processor
takes the form of a ratio of two random variables. The denominator in this ratio
is the (random) length of the replication in simulated time (minus the initialization
period). When the run is based on simulated time, the denominator is deterministic
and this additional bias is not introduced. A new estimator (also based on computer
time) that gets around this problem is proposed and analyzed. This estimator has a
deterministic stopping time and benefits from the initial transient deletion.

Some comments about the analysis techniques used in this paper are appropriate.
First, we state limit theorems in a triangular array setting, i.e., we simultaneously let
p - c and t(p) --. cx where p is the number of processors and t(p) is the length of each
replication. Since in practice only a fixed, finite number of processors are available,
these results should be interpreted as determining (qualitatively) appropriate values
for t(p) in order to obtain proper convergence behavior for large values of p. Second,
many of the results are established under regenerative assumptions that would appear
to limit the applicability of the results. However, this is done mainly as a mathematical
convenience and does not impose significant restrictions since

1. Many systems have (hidden) regenerative structure. For example, Glynn
(1989a) shows that many finite state space generalized semi-Markov processes (GSMPs)
are regenerative. Essentially all discrete event simulation models can be described as
GSMPs.

2. The estimators involved do not make any specific use of the regenerative
structure, i.e., one need not identify regeneration points and group the data by regen-
erative cycles. To further amplify this point, Glynn (1989b) derives bias expansions
for certain integrals of regenerative processes and then proposes a bias-reducing tech-
nique based on the form of these expansions. However, to employ that method in
practice requires identifying the regeneration times and estimating expectations of
random variables defined over the regenerative cycles. No such requirement is made
here.

Section 4 contains further discussion of these points.
In order to present a complete and self-contained description of the relevant

results, certain theorems are restated from other papers, specifically, Glynn (1987,
1989b) and Glynn and Heidelberger (1991b). The rest of the paper is organized as
follows. In 2 we describe the formal mathematical framework, and in 3 we consider
estimators based on a fixed amount of simulated time, both with and without dele-
tion. Section 4 treats estimators based on computer time but without deletion, while

5 treats estimators based on computer time with deletion. The proofs are contained
in 6. Finally, the results are summarized in 7.

The focus of this paper is theoretical. However, in Glynn and Heidelberger (1992)
we describe experiments with these estimators on simple queueing network models
of computer systems. The experimental results reported in that paper confirm the
theoretical results developed in this paper.

2. The framework. Suppose that our goal is to estimate the steady-state mean
of X (X(t)’t >_ 0), where X is a real-valued stochastic process. We let C (C(t)"
t >_ O) be the associated cumulative computer time process, so that C(t) represents the

ANALYSIS OF INITIAL TRANSIENT DELETION 907

random amount of computer time required to generate X over the interval [0, t]. Let
denote weak convergence, or convergence in distribution (see Billingsley (1968)).

We assume that (X, C) satisfies the following set of hypotheses:
(2.1)

(i) C is a nondecreasing process.
(ii) There exist (deterministic) constants c, A-1 (0 < A-1 < cx), and a 2 x 2

matrix G such that
Z(.) = CB(.)

as 0 in D[O, o) (the Skorohod space of functions x: [0, oo) --, e that are right
continuous and have left limits), where B is a two-dimensional standard Brownian
motion and

Ze(t) -1 2 X(s)ds t, 2C(t/2) zk-lt
0

Assumption (2.1)(i) is reasonable in view of the interpretation of C(t). As for
(2.1) (ii), we note that one consequence of the assumption is that X and C satisfy a
joint central limit theorem (CLT):

(1LT C(T) A_l) = N(0, H)(2.2) TII X(s)ds , ---T--

as T -- c, where H GGt. (In this case note that GN(O,I) has the same distri-
bution as N(0, H) where I is the identity matrix. In one dimension, aN(O, 1) has
the same distribution as N(0, a2).) Thus, assumption (2.1)(ii) is best viewed as a
strengthened version of the ordinary CLT. Because of the fact that (2.1)(ii) deals
with weak convergence of stochastic processes (as opposed to ordinary random vari-
ables), it is typically termed a functional central limit theorem (FCLT) hypothesis.
See Billingsley (1968) for further discussion of FCLTs.

It turns out that a great variety of stochastic processes exhibit FCLT behavior.
For example, suppose that C(.) has a positive derivative so that it can be represented

(2.3) C(t) X(s)ds, where x(t) > 0 a.s. for t >_ 0.

Under (2.3), X(s) is the rate at which computer time is consumed at simulated time s.
If the process ((X(t), X(t)) t _> 0) is regenerative and satisfies certain moment condi-
tions, then (2.1)(ii) is known to be valid (see Glynn and Whitt (1987)). Regenerative
structure is present in many of the stochastic models that are commonly simulated;
see, for example, Glynn (1982). In addition, (2.1)(ii) holds if ((X(t), x(t)): t _> 0)
is a martingale process or mixing process satisfying certain regularity hypotheses (see
Ethier and Kurtz (1986)) or if it is an associated sequence (see Newman and Wright
(1981)). Also, (2.1)(ii) is known to be valid for a large class of Markov processes (see
Maigret (1978) and Nummelin (1984)). Because of the broad validity of (2.1)(ii), we
view this condition as a mild regularity hypothesis that is satisfied by virtually all
"real world" simulations.

One consequence of the joint CLT (2.2) is that

(2.4) X(s)ds =v a,

908 PETER W. GLYNN AND PHILIP HEIDELBERGER

1
C(T) A-(2.5)

as T - c. The law of large numbers (2.4) states that the process X "settles down,"
on average, to the constant a; the parameter a is known as the steady-state mean of
X. The goal of the steady-state simulation algorithms to be described in this paper
is the efficient estimation of a. Also, (2.5) states that A-1 may be interpreted as
the long-run rate at which computer time is expended per unit of simulated time.
Equivalently, is the long-run rate at which simulated time is generated per unit of
computer time.

Two different (reasonable) strategies for estimating a can be employed by the
simulation analyst. The first possibility is to generate a fixed amount of simulated
time on each of the p processors, and to obtain an estimator for a by averaging
the resulting observations over each of the p processors. This class of estimators,
together with related initial transient deletion strategies, is discussed in 3. The
second approach is to fix the amount of computer time available on each of the p
processors, and to obtain an estimator for a by averaging over the random amount of
simulated time generated on each of the p processors within the computational budget
constraint. For c >_ 0, let Ti(c) sup{t _> 0" Ci(t) <_ c} be the inverse process to
Ci(.). The random variable (r.v.) Ti(c) can be interpreted as the amount of simulated
time that is generated on processor i in the first c units of computer time; we refer to
Ti(c) as the cumulative simulated time process associated with processor i. Hence, the
second estimator involves averaging the process Xi over the random interval [0, Ti (c)]
and all p processors. Section 4 is devoted to studying this class of estimators when no
initial transient deletion is applied, whereas 5 considers these estimators when initial
transient deletion is applied.

3. Steady-state estimation using simulated time. Suppose that the pro-
cess X is simulated up to (deterministic) time t on each of the p available processors.
If the first/(t) simulated time units are deleted from the initial segment of each copy
Xi, we obtain the estimator

X(s)dsas(p, t)=
i=l

t--(t) (t)

(the subscript s stands for simulated time).
In our limit theorems, we shall be interested in determining how large the time

horizon t needs to be for the parallel estimation algorithm to work efficiently. We shall
therefore view t as a deterministic function t t(p) of the number of processors. Then
(t) (t(p)) is also a deterministic function of p. The limit theorems will include
growth conditions on t(p) and (t(p)). To simplify the notation, we shall write as(p)
and/8(p) as shorthand for as(p, t(p)) and (t(p)), respectively.

A consequence of (2.2) (and hence (2.1)) is that

(3.1)
T - X(s)ds a =v a2N(O, 1)2,

T C(T))_ = oN(O, 1)T

ANALYSIS OF INITIAL TRANSIENT DELETION 909

2 Hi (i 1 2). In order to carry out certain arguments, weas T --. , where a
will need to assume that the expectation operator can be passed through (3.1):

TE X(s)ds o -- a,
T

as T -- c. A variety of stochastic processes obey (3.2), including regenerative pro-
cesses (Smith (1955)), mixing and martingale process sequences (Ethier and Kurtz
(1986)), and associated sequences (Newman and Wright (1981)) under appropriate mo-
ment conditions. Condition (3.2) is equivalent to asserting that {T(T-1 foT X(s)ds-
a)2: T > to} and {T(C(T)/T- A-1)2 T > to} are uniformly integrable for some
(finite) to (see Chung (1974, p. 97)).

We will also need an assumption that controls the extent to which the initial
transient biases the observations of the simulation. To be precise, let b(t) EX(t)-a.
We assume that

(3.3) Ib(s)lds < cx.

Assumption (3.2) holds whenever EX(t) -- a exponentially fast (i.e., there exist con-
stants A, A > 0 such that Ib(t)l <_ Ae-t). This exponential rate of convergence is
typical of most "real world" simulations. For example, finite-state irreducible aperi-
odic discrete-time Markov chains and finite-state irreducible continuous-time Markov
chains both exhibit exponential convergence to their steady-state values (see Karlin
and Taylor (1975)). Also, Nummelin and Tuominen (1982) prove exponential conver-
gence rate results in a general state space Markov chain setting.

Our first theorem considers the case in which no initial bias deletion is performed,
so that fl(t)--0. Let b f b(s)ds.

THEOREM 1. Assume (2.1), (3.2), and (3.3) are in force and that (t) =_ O. Then,
(i) if pit(p) -- , t(p) cx, and b O, then v/pt(p) laB(p) a = c as

p -- Cx)

(ii) if pit(P) --+ m (0 < m < oc), then v/Pt(p) (as(p) a) alN(0, 1) + bx/-
asp--+ cx

(iii) if p/t(p) -+ O, then v/pt(p) (a(p)
The proof of this result appears in Glynn (1987). Note that if no truncation is

used, a(1, t) t- f X(s)ds. Then, (2.2) asserts that

(3.4) N(0, 1)a(1, t)

for large t (denotes "approximately equal in distribution").
Theorem 1 (iii) states that

On the other hand,

(3.5) (p.
N(0, 1)

under the conditions stated there. Comparing (3.5) to (3.4), we see that (3.5) implies
a p-fold speedup in the algorithm over that achieved with a single processor, i.e.,

910 PETER W. GLYNN AND PHILIP HEIDELBERGER

a8(1,pt(p)) as(p,t(p)).

Of course, a p-fold speedup is the best possible rate increase that we can expect in a
parallel processing environment. Hence, Theorem 1 can be interpreted as stating that
the time horizon t t(p) to be simulated on each of the p processors should satisfy
t >> p, in order that the parallel algorithm achieve optimal efficiency.

Our next theorem considers the situation in which initial transient deletion is
implemented. We note that (p)/t(p) is the fraction of the total simulated time that
is deleted. The strategies that are considered here delete an asymptotically negligible
fraction of the total observation set that is simulated.

THEOREM 2. Assume (2.1) and (3.2) are in force and that b(t) -- 0 exponentially
fast. Suppose (p)/t(p) - 0 as p-- oc. If

(i) pit(p) - oc and (p)/logp-- oc, or

(ii) pit(p) - m (0 < m < oc) and s(p) --o oc, or

(iii) pit(p) --. 0
as p -+ oc, then

X/’pt(p)(a8(p) a) = aN(O, 1)

as p- oc.
For a proof, see Glynn and Heidelberger (1991b). Theorem 2 shows that with

a modest amount of initial transient deletion, one can reduce the length of the time
horizon significantly without affecting the p-fold speedup factor. In particular, if t(p)
pr (r > 0), the p-fold speedup is retained so long as s(p) p (0 < < r). Thus,
when initial transient deletion is suitably implemented, p-fold increases in efficiency
ensue from time horizons that grow essentially arbitrarily slowly in p. A result similar
to Theorem 2 can also be derived when the bias function b(-) decays polynomially
fast (i.e., there exists A,r > 0, such that Ib(t)l <_ At-r for t _> 0); see Glynn and
Heidelberger (1991b) for further details.

In our next theorem, we consider the case in which the fraction of the total simula-
tion time that is deleted is fixed, so that the fraction deleted is no longer negligible. As
might be expected, this rule, although reasonable from an implementation viewpoint,
has a cost in terms of (greater) asymptotic variability.

THEOREM 3. Assume (2.1) and (3.2) are in force and that b(t) -+ 0 exponentially
fast. If (p) t(p) (0 < < 1) and t(p) pr (r > 0), then

x/pt(p)(a(p) a) = (1)-(1/2)alN(O, 1)

as p-- cx.
For a proof, see Glynn and Heidelberger (1991b). Theorem 3, like Theorem 2,

asserts that the time horizon over which we achieve a p-fold increase in efficiency is
broadened considerably by using initial bias deletion. However, because of the fact
that one deletes a fixed fraction of the total observation set, one pays a cost in the
sense that the asymptotic variance is inflated by a factor of (1)-1. On the other
hand, for/ 0.1, the increase in the variance is only about 11 percent. Thus, the
statistical cost incurred in using such a procedure is quite modest.

We conclude this section with a discussion of the computational cost associated
with using estimators based on simulated time. In particular, assuming that the ma-
chine is (temporarily) dedicated to the estimation of c, the question of the algorithm’s
completion time is of significant importance. Recalling that Ci (t) is the time at which

ANALYSIS OF INITIAL TRANSIENT DELETION 911

the ith processor completes the simulation of X over [0, t], the completion time for a
simulated time horizon of t is given by

C(p, t) max Ci(t).
l<i<p

An additional relevant performance characteristic is the total idle time cumulated over
all p processors, assuming that each processor must remain idle until all p processors
have completed their assigned tasks. The idle time quantity is defined as

P

I(p, t) E[C(p, t) Ci(t)].
i=1

Set Cs(p) C(p,t(p)) and Is(p) I(p,t(p)). Our final theorem of this section
examines the behavior of Cs(p) and Is(p) when the number of processors p is large.
We will need one further assumption. Note that one consequence of (2.2) is that if

a22 > 0, then

(3.6) Ft(x) O(x)

as t -- oc, where Ft(x) P{t-(1/2)(C(t)-A-lt)/a2 N x} and (I)(x) P{N(0, 1) _< x}.
We wish to strengthen (3.6) to

sup IFt(x) O(x)l 0(t-(1/2))

as t oc. This condition is known, in the probability literature, as a Berry-Ess6en
condition. The convergence result (3.7) is usually valid for stochastic processes satisfy-
ing (2.1). For example, regenerative processes (Bolthausen (1980)) and general state
space Markov chains (Bolthausen (1982)) are known to satisfy (3.7) under suitable
regularity hypotheses.

THEOREM 4. Assume that (2.1) is in force with a > 0 and that (3.2) and (3.7)
hold. If t(p)/p2 -- oc, then

Cs(p)- A-it(p) = 1,
a2 v/2t(p) logp

(ii)

a2PV/2t(p) logp
as p-- oc.

According to Theorem 4, if t(p) >> p, then we may approximate C8 (p) and Is(p)
as

(3.8)
Cs(p) A-it(p) + a2v/2t(p) logp,

18 (p) .. a2PV/2t(p) log p.

Since A-1 and a22 are typically unknown, the magnitude of the completion time
Cs(p) is, to some extent, a priori unpredictable. This is clearly undesirable. Fur-
thermore, (3.8) shows that the total idle time can potentially be quite large. As a
consequence, the machine may be significantly underutilized with estimators of the

912 PETER W. GLYNN AND PHILIP HEIDELBERGER

type considered in this section (assuming that processors are not freed until time
Cs(p)). For these reasons, the remainder of this paper explores estimators in which
the completion time is fixed.

4. Steady-state estimation using computer time: No initial transient
deletion. In this section, we suppose that each processor simulates X for a fixed
(deterministic) amount of computer time c. At the completion time c, processor i
will have generated Xi up to time Ti(c). Given that no initial transient deletion is
employed, two different estimators immediately suggest themselves:

al (p, c)
=, Ti(c)

Xi(s)ds,

c) pEi=l Ti(c)

Note that a2(p, c) bears a strong resemblance to the usual ratio estimator for steady-
state parameters in regenerative simulations (identify T(c) as the length of the ith
regenerative cycle).

As in 3, we shall be interested in limit theorems that describe how large the
(computer) time horizon c should be, relative to the number of processors, in order that
a fold speedup ensues. We shall therefore take c as a deterministic function c c(p)
of the number of processors p. The limit theorems will then provide appropriate growth
conditions on c(p). As a shorthand notation, we will write ai(p) a(p, c(p))(i 1, 2).

Our first task is to understand the behavior of the sample means obtained from
the individual processors.

THEOREM 5. Assume that (2.1) and (2.3) hold. Then,
(i) (-) B(.) as 0 in D[0,), where

Z(c) --1 2 X(s)ds 2T(c/2), UT(c/2) Ac
go

t= and =AH, 2=21=-2H2, 2=3H2.

(ii)

cl/2(f[(C) x(8)d8 T(c)) N(o,

as c --+ oo, where Hi1 -/k-lHll, H21 -AH2, and H22 A3H22.
As in 3, we shall require that the cumulative processes defined on the time scale

of computer time be appropriately uniformly integrable. Specifically, we shall need to
assume that

(4.1)

ANALYSIS OF INITIAL TRANSIENT DELETION 913

2as c --, c (recall that Hi a).
Theorem 5 asserts that the central limit behavior ofX is preserved, in a qualitative

sense, when the time scale is changed from that of simulated time to computer time.
Since initial transient bias plays a critical role in the study of the estimators considered
in this paper, it is incumbent upon us to also consider the extent to which the bias
characteristics of X are altered by a change in the time scale.

We start by noting that if E f[(c)iZ(s)lds < c and if (2.3) holds where x(t) > 0
almost surely for t >_ 0, a change-of-variables formula can be applied to obtain

/0
cT(C)

X(s)ds Y(s)ds
dO

where Y(s) X(T(s))/x(T(s)). The process Y (Y(t): t _> 0) is, in some sense,
the original process X with its time scale transformed from simulated time to com-
puter time. It turns out that the transformation that sends X into Y preserves any
regenerative structure that may be present on the time scale of simulated time.

PROPOSITION 1. Assume that (2.3) holds. If ((X(t), x(t)): t >_ 0) is regenerative
with respect to the random times (Tn n >_ 1), then (Y(t): t >_ 0) is regenerative with
respect to the sequence (n n >_ 1), where ?n C(Tn).

As indicated earlier in this paper, regenerative structure is to be found in many
of the stochastic processes X that are simulated in practice. Given that X is regen-
erative, it is reasonable to further assume that the pair (X, X) is also regenerative.
Thus, we view regenerative hypotheses on the pair (X, X) as a fairly mild restriction
on the class of processes to be analyzed here. It is worth noting that while the proof
techniques that appear in the remainder of this paper demand, to some extent, re-
generative structure, our estimation strategies will be completely independent of the
nature of the regenerations. As a consequence, our estimators will not require explicit
identification of the regeneration points during the course of the simulation. The re-
generative hypotheses will appear solely as mathematical regularity conditions and
not as a vital component of the methodology itself.

The following hypotheses help to simplify certain proofs; they are not necessary
to the development, however, and can be relaxed significantly, at the cost of greater
mathematical complexity. Because we do not require that the simulation be started
in the regeneration state, we need to make a distinction between the first (atypical)
regeneration time T1 and the subsequent regeneration times. Let r/2 -r/1 and- T2 T1.

(4.2) There exists a constant 0 < Xl < c such that X(s) >_ Xl a.s.,

< < <

(4.3) E IX(s)lds < c and E r/2]X(s)lds

Both and have probability density functions.

Assumption (4.2) merely states that there is a minimum rate at which computer time
is consumed.

We are now ready to describe the behavior of the bias of the estimators c1 (p)
and c2 (p).

914 PETER W. GLYNN AND PHILIP HEIDELBERGER

THEOREM 6. Assume that (2.1), (2.3), (4.1), (4.2), and (4.3) hold. If, in addi-
tion, c(p) --, oc as p cx), then

Eci (p) + (p) + 0

as p -- oc (i 1, 2), where bl a + H2, b2 a, and

a E (Z(s) a)ds /A Z X(T + u)du(X(+ s) a)ds

Roughly speaking, the bi in a (p) is due to two factors. First, the estimator
al(p) is a ratio estimator, i.e., it is expressible the ratio of two r.v.’s. The nonlin-
earity inherent in ratio estimators gives rise to the term H12/c(p). In addition, the

expectation of the centered numerator r.v. f()[X(s)-a]ds is nonzero, and this gives
rise to the additional bi term a/c(p). As for the bi of a2(p), the ratio estimator
bi is reduced by a factor of p because of the fold incree in the sample size of the
numerator and denominator r.v.’s that appear in a2(p).

Suppose that X(s) A- almost surely. In this ce, computer time is propor-
tional to simulated time, i.e., C(T) T/A. Thus, C(T)/T is deterministic, in which
ce a 0 and H12 0. Therefore, bl b2 and the additional bi due to the
randomness in C(T) disappears.

The following theorem provides the analogue of Theorem 1 in the current setting,
in which estimation occurs on the time scale of computer time rather than simulated
time.

THEOREM 7. Under the same hypotheses as in Theorem 6, the following results
hold:

(i) gp/c(p) , c(p) , and bi O, then pc(p)]ai(p)- a] as

(i 1,
(ii) If p/c(p) m (0 < m <), then pc(p)(ai(p) a) A-(/2)aN(O, 1)+

bim(/2) as p (i 1, 2).
(iii) g p/c(p) 0 as p , then c(p)(ai(p)- a) A-(/2)ag(o, 1) as

(i 1,
According to Theorem 7, we typically need to choose c(p) >> p when no initial

bi deletion is used in order to achieve the desired fold increase in efficiency.

5. Steady-state estimation using computer time: Initial transient dele-
tion. This section is devoted to analyzing modified versions of the estimators intro-
duced in 4. Specifically, we shall modify the two estimators so that an initial segment
is deleted from the observations generated by each processor. To precisely define the
modified estimators, we let a(c) c be a deterministic deletion point specified on the
time scale of computer time. In other words, all observations generated in the first
a(c) units of computer time are discarded. Of course, this just amounts to throwing
away the initial segment (Xi(t) 0 t i(c)), where i(c) Ti(a(c)). The modified
versions of the two estimators studied in 4 are then defined as

1 1 /T,() X,(s)ds

rT’(c)= ,() X(s)ds

ANALYSIS OF INITIAL TRANSIENT DELETION 915

Once again, to simplify notation, we set ci(p) ci(p, c(p)) (i 3, 4) and at(p)
a(c(p)). We note that the assumption ac(p)/c(p) - 0 as p (x) is just a statement
that the fraction of computer time devoted to observations that will eventually be
deleted tends to zero in the limit.

Just as Theorem 2 required exponentially decreasing bias (on the simulated time
scale), we will need some additional hypotheses to generate exponentially decreasing
bias on the computer time scale.

E exp t2 < (:x:) for some t > 0,

X is a bounded process, i.e., sup{IX(t w)l’t >_ O, we}=IIxII < oc.

Note that (5.1) is true if E expt2-2 < c for some t2 > 0 and X(s) <_ M < oc
almost surely for all s _> 0 (since 72 _< MT2 in this case). Thus if X is a bounded
process, exponential tail behavior of T]2 is inherited from that of T2.

THEOREM 8. Suppose that c(p)/c(p) -- 0 as p -- oc. If, in addition to the
hypotheses of Theorem 6, (5.1) and (5.2) hold, then

(i) if p/c(p) - oc, c(p) --, oc, and H12 0, then v/Pc(p)la3(p) 1 = oc as
p--- oc;

(ii) if p/c(p) m (0 < m < oc), then /pc(p)(a3(p) -() = A-(1/2)ag(o, 1)+
H12m(1/2) as p cx);

(iii) if p/c(p) -- O, then V/PC(p)(a3(p) a) = A-(1/2)aN(O, 1) as p -- oc.
Theorem 8 shows that even in the presence of initial bias deletion, the estimator

(3(p) does not effectively achieve a p-fold increase in efficiency unless the computer
time c(p) assigned to each processor is large (i.e., c(p) >> p). Thus, the estimator
c3(p) has essentially the same behavior as c1 (p) (see Theorem 7). In other words,
c3 (p) does not benefit from the initial bias deletion present in the estimator. The basic
problem is that deleting the initial segment from each processor’s observations does
not deal with the bias introduced by the nonlinearity of the ratio estimator obtained
from each processor. This is reflected in Theorem 8 through the fact that the bias
term that appears in part (ii) depends only on H12 and not also on the constant a
that appears in Theorem 6.

Our next theorem describes the behavior of (4 (p).
THEOREM 9. Suppose that ac(p)/c(p) - 0 as p -- oc and that the same hypothe-

ses as in Theorem 8 hold. If
(i) a.d
(ii) p/c(p) -- rn (0 < rn < oc) and a(p) oc, or

(iii) p/c(p) -- O,
as p -- oc, then

V/PC(p)(4(p) ce) = /-(1/2)crN(0, 1)
as p-- x).

According to Theorem 9, initial bias deletion has a significant positive impact on
the estimator ca(p). With a modest amount of initial bias deletion from the obser-
vations associated with each processor, a p-fold speedup in efficiency can be obtained
with computer time horizons that are significantly shorter than those associated with
no initial transient deletion. Since the estimator 4(p) incurs none of the comple-
tion time and idle time costs associated with the "simulated time" estimators of 3,

916 PETER W. GLYNN AND PHILIP HEIDELBERGER

this result suggests that the estimator c4(p) is preferable to all the other estimators
considered in this paper.

Our final theorem describes the behavior of c4(p) when a(c) ac for 0 < a < 1,
c _> 0, i.e., when a proportion a of all the observations are deleted before forming the
estimator c4 (p).

THEOREM 10. Assume the same hypotheses as in Theorem 6. If ac(p)
ac(p) (0 < a < 1) and c(p) pr (r < 0), then

V/Pc(p)(o4(p)) := (1 n)--/2-l/9crN(O, 1)

as p- oc.
The proof of Theorem 10 is similar to that of Theorem 9 and is therefore omit-

ted. As in Theorem 3, deleting a positive fraction of all the observations leads to an

asymptotic increase in the variability of the estimator of (1 a)-l. Of course, as
pointed out in 3, this increase is quite modest if we choose a small (say a 0.1).

6. Proofs.
Proof of Theorem 4. Let

(x) 1 O(x) and Wi(p) (Ci(t(p)) A-lt(p))/t(p)(1/2)a2.

Note that the independence of the Wi(p)’s yields

The quantity (I)(xv/2 logp) may be estimated by using Lemma 2 of Feller (1968, p. 179).
Noting that O(I/v/) o(llp), it is then straightforward to show that

f
P{Cs(p) < xa2v/2t(p)logp + A-it(p)} -- x<l,

x>l,

proving part (i). For part (ii), note that it is sufficient to prove that

P

E Wi(p)/Pv/logp = 0
i--1

as p -- c. Fix > 0 and use Markov’s inequality to obtain

P gEWi(P) > ev/lOgp <
= ev/logp

Assumption (3.2) states that {W(p)2 "p > p0} is uniformly integrable for some (finite)
p0, from which one may conclude that EIW1 (P)I is bounded in p. Hence, the right-hand
side converges to zero as p -- c, proving (ii).

ANALYSIS OF INITIAL TRANSIENT DELETION 917

Proof of Theorem 5. We first note that (2.1) implies that

C == -le
as e I 0, where Ce(t) 25(t/2) and e(t) t. Since X is positive, it is evident that
C-1(-) is continuous and satisfies C-1 o Ce e. We may then apply Theorem 3.3 of
Whitt (1980) to conclude that C-1 ,e as $ 0. But C-1 Te, where Te(c)
2T(c/2). Since composition is continuous as a mapping on the space of continuous
functions (see Billingsley (1968, 17)), we obtain Ze o T = GB(,e) as O. As a
consequence, the continuous mapping principle implies that h(Ze o Te) = h(GB(,e)),
where h(x, y)- (x, ,y); this proves part (i).

For part (ii), we let (s) X(s)- . We note that part (i) implies that

5-(1/2) f((s)ds, T(c) Ac = N(O,)

as c - oc. Therefore, the continuous mapping principle shows that

as c - oc. The proof of part (ii) is complete, if we note that

C--(1/2) /--1 f(s)ds, T(c) Ac N(O, H

as c - cx, and apply a converging-together argument.
Proof of Proposition 1. We first note that a(Y(t) t <_ ln) C_ a((X(t), x(t)) t <

Tn), SO it suffices to show that

(6.1) PlY(fin + ")eAIX(t), x(t) t _< Tn} P{Y(/1 + .)eA}

for arbitrary (measurable) sets A. Now, Y(n + t) V(T(n + t)), where V(t)
X(t)/x(t), and T(/n + t) T(rln + ATn(t) Tn -[- ATn(t), where ATn(t) T(rln
t)- T(rIn). We now observe that ATn(.) is the inverse to the process ACn(t)
C(Tn + t) C(Tn), in the sense that ACn o ATn e. As a consequence, ATn can
be represented as a function g(n), where n(t) (V(n + t), X(Tn + t)). Hence,
Y(?n + t) k(n(t)), where k(&) Xl((g o)(t)) and (Xl,X2). Thus, Y(r/n + ")
is a functional of the "shifted path" Vn and (7.1) is trivially satisfied.

Proof of Theorem 6. The proof for 51 (p) can be found in Glynn (1989b) (the
assumptions 4.3 are heavily used there). For part (ii), we let Si(c) f(C)[Xi(s)-
a]ds. Then,

.--pE=I S(c(p))
-"

We note that for e > 0,

{ 1
P

"i--1 p5(p) pc(p)e2 [Ti(c(p))-c(p)] _0(1 ";.,
var

X/ pc(p)) 0

918 PETER W. GLYNN AND PHILIP HEIDELBERGER

as p --, oc, where the uniform integrability condition (4.1) was used to guarantee that
the variance term was bounded in p. Hence, iP--i Ti(c(p))/pc(p) :: as p -- c (this
result will be used in Theorem 7). Expand pc(p)/-]iP=l Ti(c(p)) in a first-order Taylor
expansion about A-l, to obtain

pc(p)
---i

1 (+Ti(c(p))_)(6.3) p

i--1

where (p) lies between X and P

Since X(s) is bounded from below, there exists a finite constant M such that
I1/(p)21

_
M. By using the Taylor expansion and taking expectations we have

(6.4)

i--1
Pa(P)

i----1
(p)2pc(p)

To handle the first term on the right-hand side of (6.4), we use Glynn (1989b) to show
that

(6.5)
1 [] a

S (4p))
4p) + o

i--1

as p --, c.
To deal with the second term on the right-hand side of (6.4), we bound it by

pc(p) + 2E
(Ti(c(p))- Ac(p))

i=l
(p)2pc(p)

The second term in (6.6) is dominated by

(6.7)

2M2E
(Ti(c(p))- Ac(p))

2M2 2M2

c(p)2 (E[T1 (c(p) Ac(p))])2 + pc(p)2 var(Tl(c(p)) Ac(p))

o(l/c(p)) + O(1/pc(p)),

using (4.1)’s uniform integrability. The first term in (6.5) can be handled similarly,
yielding an estimate of O(1/c(p)). Combining (6.4) through (6.6) yields the result for

Proof of Theorem 7. We first consider al (p). We note that Theorem 6 implies
that

V94V)("() ,)
p

p-(1/2) E V(p) + V/pc(p)(Ecl (p) c)
i----1

p-(1/2) E V(p) + 51 P + V/-O
i-1

ANALYSIS OF INITIAL TRANSIENT DELETION 919

where

V(p)
Ti (c(p)) Eoi (p)"

By condition (4.1), {1/4(p) p > p0} is uniformly integrable for some (finite) p0.

We can therefore apply the Lindeberg-Feller theorem (see Chung (1974, p. 205)) to
conclude that

p

p-(1/2) E(P) -(1/2)6N(0’

p ; this proves all three implications for the estimator al(p).
The second estimator is handled similarly. We note that

pc(p) -(1/2)p(p)((p))

where Si(p) c(p)-(/2)[Si(c(p))- ESi(c(p))]. om (7.2), it is evident that

p

pc(p)/Ti(c(p)) -1 p
i=1

A uniform integrability argument similar to that for (p) then shows that

p

p-(/) L(p) (/:)aN(O, 1).
i=1

To complete the proof, we refer to Glynn (1989b), where it is shown that ES(c(p))
/(p) + o(/(p)).

Proof of Theorem 8. The argument largely mimics the proof of Theorem 7. The
first step is to obtain an expression for the bi of a(p). We claim that the bi takes
the form

(.s) E.() =. + + o

p . A careful study of Glynn (1989b) shows that the proof there needs to be
modified in two respects. First, one needs to argue that

-1 [x(- le
J(c)

is uniformly integrable for some c0 < . This follows from the observation that

[[x()]e [x(l]e +
(

each of the processes on the right-hand side is uniformly integrable a result of (4.1)
and hence the left-hand side is uniformly integrable (Chung (1974, p. 100)). Second,
we note

[x(l]e (e,
() ()

920 PETER W. GLYNN AND PHILIP HEIDELBERGER

where]Y(c) [X(T(c))- a]/x(T(c)). Since IlXll < and X is bounded away from
zero, it follows that Y is a bounded process. Hence, the results of Nummelin and
Tuominen (1982) apply, showing that EZ(t) - 0 exponentially fast. It is then evident
that

C

E(s)ds o(1)
(c)

as c -- x). As a consequence, the term that contributes the quantity a/c(p) to the
asymptotic bias of al(p) is o(1/c(p)) in the current setting. This yields (6.7).

The proof of Theorem 8 is completed in much the same way as Theorem 7.
The uniform integrability established above allows us to apply the Lindeberg-Feller
theorem once again, finishing the proof.

Proof of Theorem 9. The analogue of (6.8) for the estimator a(p) is

Eaa(p) a -b o (1/c(p)),

and is established in basically the same way. The result of the proof goes through as
in Theorem 8.

7. Summary. This paper has investigated theoretical properties of an attractive
method for using parallel processors in discrete event simulations: running indepen-
dent replications, in parallel, on multiple processors and averaging the results at the
end of the runs. In previous papers, we considered the problem of estimating tran-
sient quantities, while in this paper we consider the steady-state estimation procedure.
While the method of replications with initial transient deletion is conceptually simple
to apply, some care needs to be taken in order to obtain estimators with the proper
convergence behavior. Specifically, the growth rates for the number of processors
(replications), the length of the replications, and the length of the deletion period
need to be controlled in order to produce valid confidence intervals for steady-state
parameters. In the parallel processing setting, a sampling plan in which the replication
lengths are given by limits on computer time is particularly attractive since the com-
pletion time of the experiment is deterministic (assuming the machine is dedicated to
running the simulation experiment). However, in this case, the leading term in the bias
expansion of the straightforward estimator without deletion, OI (p), is (a + H)/c(p)
where c(p) is the computer time per replication, a is due to initialization bias, and
H12 is due to the fact that the denominator in the ratio estimate is random. Delet-
ing an appropriate portion of each replication removes the initialization bias a/c(p),
but does not remove the ratio bias H12/c(p). Thus, when this estimator is used and
the replication length is determined by computer time, deletion is essentially useless.
On the other hand, the bias expansion of a new estimator, a2(p), has leading term
ale(p), which is removed entirely by appropriate deletion. Therefore, in practice, we
recommend use of the new estimator with deletion, aa (p).

Experimental results concerning the performance of these estimators in simu-
lations of simple queueing network models are reported in Glynn and Heidelberger
(1992). Those experimental results confirm the theoretical results presented here and
reinforce our recommendation to use a4 (p) rather than a3 (p). Our experiments showed
that aa (p) outperforms a3 (p), in terms of exhibiting less bias and truer confidence in-
terval coverage, when the number of processors is large and the amount of time per
processor is relatively small.

While we have described the results in terms of a computer time constraint on
the replication lengths, they remain valid for essentially any other measure of replica-
tion length. Examples include computing charges (which may involve costs for CPU,

ANALYSIS OF INITIAL TRANSIENT DELETION 921

memory, and I/O use), real time (i.e., wall-clock time, which may differ in multipro-
grammed environments), the total number of events processed, and the total number
of events of a certain type processed (such as departures from a network). In addi-
tion, the results are applicable to simulation experiments on a single processor if the
replication lengths are determined in the above fashion.

REFERENCES

B. C. BHAVSAR, AND J. R. ISAAC (1987), Design and analysis of parallel Monte Carlo algorithms,
SIAM J. Sci. Statist. Comput., 8, pp. 73-95.

P. BILLINGSLEY (1968), Convergence of Probability Measures, John Wiley, New York.
E. BOLTHAUSEN (1980), The Berry-Essedn theorem for functionals of discrete Markov chains,

Z. Wahrsch. verw. Gebiete, 54, pp. 59-73.
(1982), The Berry-Essedn theorem for strongly mixing Harris recurrent Markov chains,

Z. Wahrsch. verw. Gebiete, 60, pp. 283-289.
K. L. CHUNG (1974), A Course in Probability Theory, Academic Press, New York.
M. A. CRANE AND D. L. IGLEHART (1975), Simulating stable stochastic systems, III: Regener-

ative processes and discrete event simulations, Oper. Res., 23, pp. 33-45.
S. N. ETHIER AND T. G. KURTZ (1986), Markov Processes: Characterization and Convergence,

John Wiley, New York.
W. FELLER (1968), An Introduction to Probability Theory and Its Applications, John Wiley,

New York.
R. M. FUJIMOTO (1989), Time warp on a shared memory multiprocessor, in Proc. 1989 Internat.

Conf. Parallel Processing, Vol. III., F. Ris and P. M. Kogge, eds., The Pennsylvania State
University Press, State College, PA, pp. 242-249.

(1990), Parallel discrete event simulation, Comm. ACM, 33, pp. 31-53.
P. W. GLYNN (1982), Regenerative aspects of the steady-state simulation problem for Markov

chains, Tech. Report 17, Department of Operations Research, Stanford University, Stanford,
CA.

(1987), Limit theorems for the method of replication, Stochastic Models, 4, pp. 344-350.
(1989a), A GSMP formalism for discrete event systems, Proc. IEEE, 77, pp. 14-23.
(1989b), A low bias steady-state estimator for equilibrium processes, Tech. Report 47,

Department of Operations Research, Stanford University, Stanford, CA.
P. W. GLYNN AND P. HEIDELBERGER (1990), Bias properties of budget constrained simulations,

Oper. Res., 38, pp. 801-814.
(1991a), Analysis of parallel replicated simulations under a completion time constraint,

ACM Trans. Modeling and Computer Simulation, 1, pp. 3-23.
(1991b), Analysis of initial transient deletion for replicated steady-state simulations,

Oper. Res. Lett., 10, pp. 437-443.
(1992), Experiments with initial transient deletion for parallel, replicated steady-state

simulations, Management Sci., 38, pp. 400-418.
P. W. GLYNN AND W. WHITT (1987), Sujficient conditions for functional-limit-theorem versions

of L)W, Queueing Systems, Theory Appl., 1, pp. 279-287.
P. GOLI, P. HEIDELBERGER, D. TOWSLEY, AND Q. Yu (1990), Processor assignment and

synchronization in parallel simulation of multistage interconnection networks, in Distributed
Simulation, D. Nicol, ed., The Society for Computer Simulation International, San Diego,
CA, pp. 181-187.

P. HEIDELBERGER (1986), Statistical analysis of parallel simulations, in 1986 Winter Simulation
Conference Proceedings, J. Wilson and J. Henriksen, eds., IEEE Press, Piscataway, NJ,
pp. 290-295.

(1988), Discrete event simulations and parallel processing: Statistical properties, SIAM
J. Sci. Statist. Comput., 9, pp. 1114-1132.

S. KARLIN AND H. M. TAYLOR (1975), A First Course in Stochastic Processes, Academic Press,
New York.

B. D. LUBACHEVSKY (1989), EJficient distributed event-driven simulations of multiple-loop net-
works, Comm. ACM, 32, pp. 111-123.

N. MAIGRET (1978), TAd or me de limite centrale fonctionnel pour une chane de Markov
redurrente au SeES de Harris et positive, Ann. Inst. Henri Poincar, 14, pp. 425-440.

922 PETER W. GLYNN AND PHILIP HEIDELBERGER

M. S. MEKETON AND P. HEIDELBERGER (1982), A renewal theoretic approach to bias reduction
in regenerative simulations, Management Sci., 28, pp. 173-181.

C. M. NEWMAN AND A. L. WRIGHT (1981), An invariance principle for certain dependent
sequences, Ann. Probab., 9, pp. 671-675.

D. M. NICOL (1988), Parallel discrete-event simulation of FCFS stochastic queueing networks,
in Proc. ACM/SIGPLAN PPEALS 1988, Parallel Programming: Experience with Applica-
tions, Languages and Systems, ACM Press, New York, pp. 124-137.

E. NUMMELIN (1984), General Irreducible Markov Chains and Non-negative Operators, Cam-
bridge University Press, Cambridge, U.K.

E. NUMMELIN AND P. TUOMINEN (1982), Geometric ergodicity of Harris recurrent Markov
chains with applications to renewal theory, Stochastic Process. Appl., 12, pp. 187-202.

W. L. SMITH (1955), Regenerative stochastic processes, Proc. Roy. Soc. London Ser. A., 232,
pp. 6-31.

B. UNGER AND D. JEFFERSON, EDS. (1988), Distributed Simulation, 1988, Simulation Series 19,
No. 3, The Society for Computer Simulation International, San Diego, CA.

B. UNGER AND R. FUJIMOTO, EDS. (1989), Distributed Simulation, 1989, Simulation Series 21,
No. 2, The Society for Computer Simulation International, San Diego, CA.

W. WHITT (1980), Some useful functions]or functional limit theorems, Math. Oper. Res., 5,
pp. 67-85.

Q. Yu, D. TOWSLEY, AND P. HEIDELBERGER (1989), Time-driven parallel simulation of multi-
stage interconnection networks, in Distributed Simulation, 1989, B. Unger and R. Fujimoto,
eds., The Society for Computer Simulation International, San Diego, CA, pp. 191-196.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 923-947, July 1992

1992 Society for Industrial and Applied Mathematics
0O6

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD
WITHOUT MULTIPOLES*

CHRISTOPHER R. ANDERSONt

Abstract. An implementation is presented of the fast multipole method, which uses approxima-
tions based on Poisson’s formula. Details for the implementation in both two and three dimensions
are given. Also discussed is how the multigrid aspect of the fast multipole method can be exploited
to yield efficient programming procedures. The issue of the selection of an appropriate refinement
level for the method is addressed. Computational results are given that show the importance of good
level selection. An efficient technique that can be used to determine an optimal level to choose for
the method is presented.

Key words. Poisson equation, fast summation, point sources

AMS(MOS) subject classifications. 65C99, 35J05, 34B27

1. Introduction. The purpose of this paper is three-fold. First we will present a
method for computing N-body interactions that is similar to the fast multipole method
(FMM) as developed by Greengard and Rokhlin [5], [6] and Van Dommelen and
Rundensteiner [15], but one that does not use complex power series in two dimensions
or spherical harmonic expansions in three dimensions. Our procedure will be based
on the use of Poisson’s formula for representing solutions of Laplace’s equation. While
the accuracy and operation count of the resulting method is almost identical to the
fast multipole method, the method does offer some advantages. One advantage is that
the component operations of the multipole method, such as shifting and combining
multipoles, are very easy to formulate for approximations based on Poisson’s formula.
Another advantage is that the difference between the two- and three-dimensional
methods is very slight, and so programming a three-dimensional method is relatively
straightforward once a two-dimensional method has been programmed. The second
aspect this paper discusses is how multigrid programming strategy can be used to
facilitate the programming of our method and others like it (such as the original
fast multipole method). Third, we wish to discuss the issue of parameter selection
when using these "fast" methods. Essentially, the computational efficiency of these
methods depends critically upon the choice of a level of refinement of physical space.
A wrong choice can lead to a very inefficient algorithm. We shall present a procedure
for obtaining an optimal choice of the refinement level.

The problem of calculating N-body interactions occurs in a wide variety of com-
putational problems--discrete vortex calculations, galaxy simulations, plasma sim-

ulations, etc. For each of these computational problems the calculation takes on a
slightly different form, but each shares the common feature that the interaction is
determined via solutions of Laplace’s equation. So, rather than address each different
application, we will discuss the following N-body model problem: Given N charged
particles at locations xi with strengths hi the goal is to calculate the potential

Received by the editors July 23, 1990; accepted for publication (in revised form) May 16, 1991.
Department of Mathematics, University of California, Los Angeles, California, 90024. This

research was supported by Office of Naval Research contract N00014-86-K-0691, National Science
Foundation grant DM586-57663, and IBM fellowship D880908.

923

924 CHRISTOPHER R. ANDERSON

where is a solution of

N

(1)

Here 5(x) is Dirac’s delta function and A is the Laplacian. Since the key ideas behind
the method presented here do not change much when one goes from two to three
dimensions, we will primarily discuss the two-dimensional case. Those aspects that
do change with dimension will be specifically addressed.

Often in simulations, one uses smoothed delta functions (or "blobs"), and the
model problem in this case is identical to (1) but we solve

N

i--1

where (x, xi) is a smoothed delta function whose support is contained within a
disk of radius e about xi. The choice of and e is important for accuracy, but not
particularly important for the methods used to accelerate the computation of (2).
We do make the assumption that the blobs have support contained within disks or
spheres of radius e, and so the blob functions cannot be completely general.

The solution of (1) is given by

N

(3/ (X)
i=1

while for (2),
N

(4) (x)
i--1

where O is the potential induced by a single blob. (This can often be calculated
explicitly by solving AO (x) using the method of separation of variables.)

From (3) or (4) it is clear that if we evaluate the solution at each point xi, i=
1,... N, then this computation requires O(N2) operations. For particle simulations,
the larger the value of N the better, and so there is great interest in reducing this
operation count. The fast multipole method is a technique for reducing the operation
count of this problem to O(N) operations.

There are two basic ingredients to the fast multipole technique. One ingredient is
the process of combining large numbers of particles into single computational elements.
When a cluster of particles is "far away" from a particular point, then the potential of
the cluster is approximated by the potential induced by a single computational element
located inside the cluster. (How far "far away" is must be determined, of course.)
In the fast multipole method the computational element is a multipole expansion
located at the center of a disk containing the cluster of particles. If we identify the
complex plane with/2, then one can represent the potential induced by a collection
of particles of strength ci located at the points z by Re gc=1 ai log(z z)). The
approximation used is the following:

(5) (z)=Re _cilog(z-z) Re a01og(z-z0)+(z_z0)k
i=1 k=l

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 925

Here z0 is the center of a disk enclosing the particles zi, p is the order of the multipole,
and ak are coefficients chosen so that the multipole is an accurate approximation of
the potential. The efficiency of the method comes about because the evaluation of the
potential of this single computational element, O(p) operations, is typically much less
work than that of computing the corresponding potential of the whole collection of
particles, O(Nc) operations. In the three-dimensional implementation of the method,
the complex multipole is replaced by an expansion in spherical harmonics [6].

The second ingredient of the fast multipole method has to do with organizing
the computations so that the application of the technique of combining particles is
efficient and does not lead to inaccuracies. For example, when one combines particles
into single elements, the more widely distributed in space the particles of a given
cluster are, the greater the inaccuracy the approximation (5) becomes (for a fixed
value of p and a fixed point of evaluation). However, if the particles are fixed and
the evaluation position z is moved away from the center of the expansion z0, then
the accuracy of the potential approximation at z improves. The net effect is that if
a fixed degree of accuracy is desired, one approximates the potential by using a hier-
archy of approximations of the form (5). Close to an evaluation point one combines
particles over small regions to form multipole approximations. Particles further away
are combined over larger regions to form multipole approximations. (Essentially the
size of the region over which particles are combined is inversely proportional to their
distance to the evaluation point.) In the fast multipole method, this aspect is orga-
nized by decomposing the region containing all of the particles into boxes of different
sizes. The particles in each of the boxes are combined and their potential is replaced
by an approximation of the form (5). The potential at a particular point is then the
sum of these approximations and the potential induced by the direct contribution of
very close particles. In Fig. 1 we show a test particle and the surrounding regions in
which the particles are combined into multipole expansions. The potential induced
by particles in the region immediately surrounding the test particle is computed using
the exact interaction formula (3) or (4).

In the approximation of the potential due to a cluster of particles by a single
computational element, one is not forced to use multipoles. There is a possibility for
other types of computational elements to be used and in this paper we shall discuss
one alternative computational element. The basic strategy is to use Poisson’s formula.
In two dimensions we have that for points outside of a disk of radius a containing the
particles, the potential can be represented by

271"

(6) (r, 0) n log(r) + (a, s)
0

1- ()2]1 2()cos((0- s))+ ()2
ds,

where the function (a, s) and the value of n are determined from the values of on the
circumference of the disk. (r, 0) is the position in polar coordinates of the evaluation
point from the center of the disk. In the numerical method, the integral in Poisson’s
formula is converted into a sum of K quantities (where K is the number of points in
an integration rule for (6)). Thus, the potential induced by a cluster of Nc particles
can be reduced to the evaluation of a sum of K terms. The idea of using a numerical
approximation of Poisson’s formula to represent the potential is similar in spirit to
an aspect of the method introduced by Rokhlin [12] for solving the equations of
scattering theory. While the idea of using Poisson’s formula is straightforward, getting
Poisson’s formula to work numerically proved quite troublesome. The problem is that

926 CHRISTOPHER R. ANDERSON

FIG. 1. The hierarchical clustering of particles used to create a multipole approximation to
the potential at a point. The evaluation point is within the darkened box. The potential induced by
particles in unshaded boxes are combined into multipole approximations. The potential induced by
particles in the lined boxes is computed using the direct interaction formula.

the numerical evaluation of Poisson’s kernel is difficult because of the singularity
in the kernel. As the evaluation point approaches the ring where the integration is
performed, the kernel becomes more and more singular, and the accuracy deteriorates
rapidly. In the first section we discuss how this problem can be eliminated. In the first
section we also present the necessary details (for both two and three dimensions) that
facilitate the incorporation of this type of computational element into a fast multipole
scheme. In order to distinguish this type of computational element based on Poisson’s
formula from a multipole element, we refer to them as "outer ring approximations"
(two dimensions) or "outer sphere approximations" (three dimensions). (We shall also
have use for these approximations inside rings or spheres and these will be "inner ring"
and "inner sphere" approximations.) In Fig. 2, a schematic of the use of this element
is presented. The computational particles (represented by the small circles) induce a
potential at locations on the circumference of a ring that surrounds the particles. The
potential outside the ring is evaluated by integrating these values against a Poisson
kernel.

There are other possible choices for the computational elements, for example,
Nowak [11] uses charge distributions over panels. While each different computational
element will give rise to a different method, the structure of the algorithm is relatively
independent of the type of element used. We shall therefore refer to the class of
methods that uses the basic computational structure of the fast multipole method
(but different elements) as "hierarchical element" methods.

As discussed earlier, in the multipole method one forms an approximation to the
potential at a point by summing the potential induced by multipole approximations
for different size clusters of particles. The same type of construction will be used with
the computational elements based on Poisson’s kernel. In both our method and the

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 927

FIG. 2. Schematic of an outer ring approximation. The computational particles (represented
by the small circles) induce a potential at locations on the circumference of a ring that surrounds the
particles. The potential outside the ring is evaluated by integrating these values against a (modified)
Poisson kernel.

original multipole method, when one chooses different evaluation points one sums a
different collection of these approximations. The organization of the evaluation of
the appropriate approximations presents a challenging computational problem. One
important component of the fast multipole algorithm as presented by Greengard and
Rokhlin [5] is an effective way to construct and evaluate this hierarchy of approxi-
mations. An observation that can be made about their method for carrying out this
computation is that it is much like the multigrid method. The observation has some
merit, and in the second section we show how this inherent multigrid structure can
be exploited to yield an efficient programming strategy for the construction and eval-
uation of the hierarchical set of computational elements. (The identification of the
multigrid, or tree structure, in the method is also useful in analyzing the performance
of such methods on parallel processors; see [9], for example.) We shall present this
discussion in the context of using Poisson kernel computational elements, but the
results apply directly to the original multipole method as well.

The efficiency of hierarchical element methods comes about from the ability to
represent a cluster of many particles by an approximation (multipole or otherwise)
that can be evaluated with little numerical work. However, there is the possibility
that the work to evaluate such an approximation may be more than that of evaluating
the field induced by the particles in the cluster directly. This problem will certainly
arise if the clusters contain only a very small number of particles. Thus, one is left
with the problem of determining what is the minimal region size that should be used
in forming the clusters of particles. This can be determined if the points are uniformly
distributed, but if they are not, the problem is much more difficult. Fortunately, an a
priori estimate of the computational time for any level of clustering is readily available
and the level that requires the smallest time can be identified and chosen. In the third
section we shall discuss this issue and present the details of a method for obtaining
timing estimates for each level of clustering. We will also give computational results
that illustrate the importance of appropriate level selection.

Finally, we present our conclusions and discuss some of the advantages and dis-
advantages of the techniques presented in this paper. The programs described in this
paper are available from the author.

2. Derivation of computational elements. A basic component of the fast
multipole method is the ability to represent the potential induced by a large number of
particles by a single computational element that is relatively inexpensive to compute

928 CHRISTOPHER It. ANDERSON

(i.e., the multipole expansion). The use of the multipole (or spherical harmonic)
expansion is not a necessity, and in this section we present a computational element
that is based on Poisson’s formula for a circle in two dimensions and a sphere in three
dimensions.

Let (r,) be the potential in two dimensions induced by a collection of N par-
ticles at locations i (ri, 0) and strengths that are contained within a disk of
radius a centered at the origin. This potential is a harmonic function outside of the
disk, so one can use Poisson’s formula (with a log term to satisfy the circulation re-

quirements) to represent it. Set EN=1(/2r) and (r, 0) (r, 0) log(r);
then if (r,) is a point in the plane outside the disk, we have

271"

(r, O) log(r) + (a, s)
o

1 (-g
ds.

1 ()cos((0-))+ ()

Our first attempt to get a representation suitable for numerical computation was
to use the trapezoidal rule to approximate the integral in (7). Let M be an integer
and set K= 2M+ 1. If we set h 2r/g and si- (acos(ih),asin(ih)),i 1,...,K,
then an approximate representation is given by

(8)
1

K

[1--(;a)2 a)2] h.(, 01 og() + (, ,1
2() cos((O)) + (;i=1

However, the approximation in (8) is very ill conditioned. As the evaluation point
moves towards the ring of radius a, the approximation is exceedingly inaccurate. In
Fig. 3 the dashed lines are the errors in the potential that are obtained using the
approximation (8). The ring is of radius a 2 and the potential is that induced
by a single particle of unit strength located at r xf/2 and 0 7c/3. The upper,
middle, and lower dashed lines correspond to K 9, K 17, and K 25 points,
respectively, in the integration formula.

The remedy for this problem becomes apparent when one considers the derivation
of Poisson’s formula. Let be a solution of Laplace’s equation exterior to the disk of
radius a, which has circulation t. If f(O) is the value of (r, 0)- e; log(r) at r a we

have, using the method of separation of variables,

k--(x)

(9) =log(r)+ E ck
r

where the coefficients Ck are the Fourier coefficients of the function f(O),

(10)
271"

Ck - f(s)e-iks ds.

0

If one combines (9) and (10) one obtains

(11)
o

1 a
-o()+ ()-d -k---cx 0

Ikl
eko"

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 929

Log
io

Error

105

102

10-1

10-10 K= 25

radial distance

FIG. 3. Error in the potential when outer ring approximations are used. The dashed lines
correspond to an unmodified Poisson kernel, and the solid lines to a modified Poisson kernel. The
ring radius was a 2 and the value of K refers to the number of points in the integration formula.

Poisson’s formula results when one interchanges summation and integration in (11)"

271"

1/- log(r)+ f(s) ds

2rr

1 e()cos((0- +
o

ds.

From this derivation one can see that using a trapezoidal rule approximation to
the integral in (7) is equivalent to implicitly using the trapezoidal rule to approximate
the Fourier coefficients (10). Clearly, if only K 2M + 1 points are used in the
quadrature rule, then one should not use any coefficients ck with Ik] > M, i.e., one
should only use those Fourier modes in (9) that can be reliably estimated using K
equispaced points. Thus we consider using (9) with only the first M modes,

271"

log(r) +
0 k=--M

e_ik(O_. (),k,] f(s)ds
27r

n log(r)+ f(s)
o

930 CHRISTOPHER R. ANDERSON

1 (--at)2 2()M+I cos((M + 1)(0 s)) + 2()M+2 cos(M(0 s))] ds.
1 2()cos((0- s))+ ()

Here, as in the original derivation of the Poisson kernel, the simplification arises from
the formula for summing a geometric series. When this integral is approximated by
the trapezoidal rule we obtain the numerical approximation

(12)
K

1
(r, O) log(r) / f(s,)

i=1

1 (a/r)2 2(a/r)M+I cos((M + 1)(0 si))+ 2(a/r)M+2 cos(M(0 s,)) 1 hx
 ,11 +

where the integration points si are equispaced on the ring with h 27talK. By
construction, this discrete approximation is precisely that which would be obtained
if one formed an approximate solution of the exterior Laplace equation by combining
solutions for the first M modes of the data f(s). The Fourier coefficients used in
the approximation are, however, those obtained from the discrete, rather than the
continuous, Fourier decomposition of f(s).

We will use (12) with -/N=l (/27r) and f(s) (a, s)- log(a) to approx-
imate the potential induced by N particles of strengths hi. The steps to create this
approximation consist of summing the strengths of the particles in a region of space
to obtain the strength of the log term in the approximation. This is then followed
by the evaluation of the potential induced by the particles (minus the log term) at
equispaced points on the ring of radius a that encompasses these points. To evaluate
this approximation at some point outside the disk, one merely adds the contribution
of the log term and the sum in (12). As before, if the number of particles N contained
within the ring is large compared to K, a substantial savings in work is accomplished
by using such an approximation. We shall refer to the approximation (12) as an outer
ring approximation.

The improvement in accuracy when (12) is used is demonstrated by the solid lines
in Fig. 3. In this figure, these lines indicate the error in the potential when (12) is
used for the problem of a point charge located at r v/2 and 0 7r/3. The upper,
middle, and lower solid lines correspond to K 9, K 17, and K 25 integration
points, respectively. As shown in the figure, the error remains sufficiently small as
the evaluation point approaches the ring used in the approximation (a ring of radius
2). This behavior is in sharp contrast to the error in the approximation with the
unmodified kernel (8), which gives O(1) errors as the evaluation point approaches the
ring.

Complete error estimates for the approximation have yet to be worked out, but
the accuracy can be partially assessed using the results of Greengard and Rokhlin [5].
In particular, in the derivation of (12) one sees that the approximation is formed by
combining the solutions of Laplace’s equation corresponding to the first M Fourier
modes associated with the data f(s). If in this approximation we used the exact
Fourier coefficients (10) instead of the discrete Fourier coefficients, then the approx-
imation that would result would be identical to that of a multipole expansion with
M terms. Hence, using the result of [5] we expect that if the particles are centered
within a disk of radius a about the origin then the error in the potential at any test
point with a radial distance r will be O((ce/r)M). It is important to note that this

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 931

estimate of the error depends on the relative location of the evaluation point to the
ring of radius a that surrounds the particles, and not on the relative location of the
particle from the ring of radius a that is used in the approximation. For example,
the solid lines in Fig. 3 indicate that the error in the approximation remains small
even as the evaluation point moves inside the ring that is used for the approximation.
This is expected, and in fact necessary, since in the complete algorithm we shall have
reason to evaluate the approximation for points inside the ring. The ring radius that
is used in the approximation (12) has an indirect effect on the accuracy. Essentially,
the distance of the ring from the center of the disk that contains the particles af-
fects the aliasing that occurs with the implicit use of discrete, rather than continuous,
Fourier coefficients. If the ring is too close to the particles then large aliasing errors
occur because of the higher harmonics that are present in the potential. Conversely,
if one takes the ring radius too large, the coefficients that one is implicitly estimating
are very small in magnitude and the effects of finite precision lead to accuracy prob-
lems. After some experimentation, we found that setting the ring radius a 2c gives
acceptable results.

In the complete method there is the need to represent the potential inside a given
region. Following the same strategy for obtaining a numericMly stable outer ring
approximation we define an inner ring approximation by

(1)
1

g

i--1

)2 2()M+1 cos((M -t- 1)(s,)) -t- 2()M+2 cos(M(O s,))]1 (r

x
e()cos((O- h,

where (r,) is the evaluation point and f(si) is the value of the potential induced by
particles (or outer ring approximations) outside the ring of radius a. The evaluation
point can be taken to be outside as well as inside the ring.

To make efficient use of approximations of the form (12), clustering is done on dif-
ferent levels, i.e., approximations are constructed for collections of particles in clusters
of increasing size. In this construction it is necessary to combine several outer ring
approximations into a single outer ring approximation. (In the multipole method,
this is carried out by shifting the origin of the multipole expansions.) This opera-
tion of combining outer ring approximations is particularly simple to implement; one
just evaluates the potential induced by the component outer ring approximations at
the integration points of a single outer ring approximation under construction. (See
Fig. 4.) The situation is similar for the other required combining operations in the
method, i.e., forming inner ring approximations to represent the potential of outer
ring approximations, etc., these are all carried out by just evaluating the component
approximations at the set of points needed for the particular approximation. Due to
the close relationship between these operations and those that are used in the original
multipole method, the errors for ring approximations with K 2M + 1 integration
points can be expected to behave in a fashion similar to the errors in the multipole
method when M terms in a multipole expansion are used. In particular, there is
always concern that the hierarchical strategy of combining approximations may be
unstable due to the accumulation of errors. While there is no proof of the stability
for either the method based on ring approximations or on multipoles, all the compu-
tational results with which the author is familiar have indicated that the hierarchical

932 CHRISTOPHER R. ANDERSON

O0o 0%

FIG. 4. Schematic diagram of the operation of combining outer ring approximations. The
coarse level outer ring approximation is obtained by evaluating the potential of the outer ring ap-
proximations contained within it.

combination procedure is stable.
In three dimensions the construction is essentially the same. Let g(x, y, z) denote

values on a sphere of radius a and denote by the harmonic function external to
the sphere with these boundary values. Given a point outside the sphere of radius a,
with spherical coordinates (r, ,), let p (COS(B) sin(C), sin(0) sin(C), cos(C)) be

the point on the unit sphere that points in the direction of , then

1/[=0
(a) n+l](14) (,) (2n + 1) Pn(’" p) g(as-) ds,

S

where the integration is carried out over S2, the surface of the unit sphere, and Pn is
the nth Legendre function. (See [4, p. 513].)

As is the case with the ring approximations we shall refrain from using all of
the terms in the kernel (14). Given a numerical formula for integrating functions
on the surface of the sphere with K integration points ’i and weights wi we use an
approximation of the form

()]a n+l
(15) (") 1= (2n + 1) 7 Pn(i" ep) g(ai)wi.

We call this approximation an outer sphere approximation.
A critical choice to be made is that of the appropriate number of terms M of

the kernel in (15). If one uses an integration formula for the sphere of degree D (i.e.,

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 933

the formula integrates polynomials of up to and including degree D exactly) then an
appropriate choice for M is M <_ --D

2 The reasoning for this is as follows: Implicit
in the use of Poisson’s formula is the computation of an orthogonal expansion in
spherical harmonics. If we keep M + 1 terms in the kernel, then we are constructing
an approximation by combining the potentials corresponding to the first M/1 terms of
this expansion. In a numerical approximation of the type (15), we are implicitly using
a discrete, and hence accuracy-limited, approximation to estimate the orthogonal
expansion coefficients. We should therefore choose M on the basis of our ability to
computationally estimate the coefficients of a spherical expansion with degree less than
or equal to M. Given a function on the sphere comprised of spherical harmonics of
degree m, then the spherical expansion coefficients of this function can be determined
exactly by an integration formula with accuracy of degree 2m. (Spherical harmonics
of degree less than or equal to m can be expressed as the restriction of polynomials of
at most degree m to a sphere, so a formula of degree 2.m can calculate inner products
of two of these functions exactly.) Therefore, if we ignore the effects of aliasing, using
M <_ - allows us to determine the first M/ 1 coefficients in the orthogonal expansion
accurately. The error in the resulting approximation can be expected to be on the
order of the first neglected term in the expansion, i.e., if we keep M + 1 terms, then
the error in the potential induced by a collection of particles inside a sphere of radius

)M+2 (The highest power of r in the suma about the origin should behave like O(7
is M+ 1.)

Unlike two dimensions in which the trapezoidal rule furnishes us with the optimal
integration formula for our integration, in three dimensions the choice of integration
formula is more complicated. One obvious choice is the use of product integration
formulas. The ones typically employed are those that use trapezoidal integration in
the 0 direction and then Gaussian quadrature in the direction. These are somewhat
inefficient as the integration points are crowded near the poles, so we chose to use
integration formulas from a nonproduct family, namely, those described in [13], which
are taken from [10]. In Fig. 5 and Table 1 we present the results of computations
obtained using (15). Each of the curves in Fig. 5 are the errors in the potential in-
duced by a single unit strength particle located at r /-/2, 0 r/3, and 0.
The test points are located along the x-axis (0 0, r/2). This selection of points
was chosen to be representative of the worst possible (most inaccurate) configuration
that would occur when this element is incorporated into the complete method. The
individual curves correspond to 5th, 7th, 9th, llth, and 14th order integration for-
mulas. These formulas required 12, 24, 32, 50, and 72 points, respectively. In Table
1 we present the rates of decay of the error as the radial distance to the evaluation
point increases. As expected, the rate was approximately M / 2. It is interesting to
note that the 9th order formula has errors that are much better than expected--it
appears that the integration formula is of higher order than advertised.

The approximation used to represent potentials inside a given region is

(16) (Z) (2n + 1)
r

Pn(i" p) g(ai)wi,
n=0

a

where the notation is that used to define (15). (Note the change in the power of in
this formula.) We shall refer to (16) as an inner sphere approximation.

The operations associated with forming and combining the outer and inner sphere
approximations are essentially the same as those in two dimensions--one merely eval-
uates the component approximations at the integration points of the new approxi-

934 CHRISTOPHER R. ANDERSON

Log
i0

Error 7th order

10-4

10-5

10-6

9th order

llth order

14th order

10-7

radial distance

FIG. 5. Error in the potential for an outer sphere approximation. Each curve represents the
error for a given order of integration formula (and fixed number of terms in the Poisson kernel).
The sphere was of radius 3.

TABLE 1
Rate of the spatial decay of the error in the potential for an outer sphere approximation. The

potential is assumed to decay like O()’r.

Order of Integration
Method

5
7
9
11
14

Number of Terms
in Kernel

2
3
4
5
7

Average Rate of
Error Decay /

3.95
5.68
8.85
7.322
8.902

Expected Rate of
Error Decay

mation. If the integration points of the new approximation are sufficiently far away
from the old approximation, then the accuracy degradation is minimal. One of the
big advantages of using outer and inner sphere approximations is the simplicity of the
process of combining them. This is in contrast to the complicated formulas that must
be used if the approximations are based on spherical harmonics.

3. Hierarchical element implementation and multigrid. In this section
we discuss an implementation strategy that uses the correspondence between the
algorithmic structure of the fast multipole method [5] and the multigrid method.
Although we shall discuss an implementation that uses computational elements based
on the Poisson kernels (12) and (15), there is no explicit use of the particular features

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 935

of this computational element, and so the results apply to programming with multi-
poles or any other type of element. Our goal here is to just outline the computational
procedure that we have used (for more detailed information, one should see the pro-
grams in [1], [2]).

The basic algorithm structure used is that presented in [5]. The computation
is broken down into two sweeps: the first sweep consists of constructing outer ring
approximations for a hierarchical clustering of the computational particles. The sec-
ond sweep consists of evaluating (in an efficient manner) the appropriate members
of this hierarchy for each of the required evaluation points. There is no need for the
evaluation points to be located at the same positions as the computational particles.
In both sweeps the computational particles and evaluation points are assumed to lie
in a bounded region f. A square box is then chosen which encloses ft. The box is
then recursively divided into smaller boxes. At the 0th level we have the original box,
at the next level 4 boxes, the next 16, etc. Associated with each level n we have
a uniform grid dividing up the original box into 4n boxes. At the beginning of the
calculation one chooses a highest (finest) level of discretization. We shall call this
level nf.

In the first sweep, outer ring approximations are constructed to represent the
potential induced by the computational particles in each of the boxes at every level.
This construction is performed recursively. Starting at the finest level, outer ring
approximations are constructed for the computational particles in each of the boxes
at that level. The center of the outer ring approximations are located at the centers of
the respective boxes. The radius for the ring approximation is taken to be twice the
size of the box. One then proceeds to the next lower (coarser) level and forms outer
ring approximations for each of the particles contained within these coarser boxes.
Instead of forming an outer ring approximation directly from the particles contained
within a given box, one combines the four outer ring approximations associated with
the finer boxes contained within the particular coarse box. The process of combining
outer ring approximations is accomplished by evaluating the finer level outer ring
approximations at the integration points of the coarse level outer ring approximation.
Again, the centers of the outer ring approximations at this coarser level are located
at the centers of their respective boxes and their radius is twice the coarse box size.
This procedure is then repeated for all successively coarser levels. When the sweep is
completed, outer ring approximations are available for the particles within each box
at every level.

Two issues to be concerned with in implementing this sweep are avoiding un-
necessary work and avoiding unnecessary storage requirements. A straightforward
implementation would suggest that at each level one constructs an outer ring approx-
imation for each box. If one uses K nodes in the approximation (12), then for nf
levels the storage required will be approximately K (4(n+1)/3) real numbers. Also,
the work to construct all of these approximations for N uniformly distributed parti-
cles will be on the order of K N / K2 (4(n+1)/3). While this amount of work and
storage is necessary if the particles are uniformly distributed, this amount is certainly
not needed if they are not. If a given box (at any level) has no computational parti-
cles, then one need not compute an outer approximation for that box. Therefore, for
nonuniform distributions (which are perhaps more prevalent in applications) one can
save on storage and time by accounting for this fact.

The construction carried out in this first sweep is very similar to the computation
that is performed in one sweep of a multigrid method. Both methods progress through

936 CHRISTOPHER R. ANDERSON

a nested set of grids or boxes, and the operation of forming an outer approximation on
a given level from the four outer approximations at the previous finer level is analogous
to implementing the restriction operator (the forming of a coarse grid approximation
from a fine grid approximation) in a multigrid method. However, in a hierarchical
element method one is dealing with outer approximations associated with the grid
boxes rather than solution values, so the programming strategy is to implement the
equivalent of a multigrid restriction operator, but with this operator defined to act
on approximations pointed to by address values in the boxes rather than acting on
solution values. To carry out this computation a multigrid pointer structure Fn
consisting of a nested set of integer arrays is first constructed. At a given level n, Fn
is an integer array of size 2n 2n. The (i, j)th element of Fn is the starting address
in a storage array of the values used in the outer ring approximation associated with
the (i, j)th box of the nth level partition of the computational domain. If there is no
outer ring approximation associated with that box, then a negative integer is stored
in the pointer array.

The computation is now performed as follows. The particles are sorted according
to which box at the finest level (level nf) they reside in. Particles in the same box are
link-listed together, and the address of the first element of the link list for any given
box is stored in a 2ns 2ns integer pointer array Ins associated with the boxes at the
finest level. (By link-listing we mean that we associate with each particle an integer;
the value of this integer gives the address of the next particle in the same box.)
If there are no particles in a given box, then the value stored in Ins is a negative
integer. Outer approximations are constructed for each of the boxes at the finest
level. This is accomplished by looping over the array Ins. If there is a nonnegative
element in Ins, then there are particles in the corresponding box and the potential
induced by these particles are evaluated to obtain the values necessary for an outer
ring approximation. These outer ring potential values are put into a storage array
and the beginning address of these values is stored in the array Fs. Next, outer
ring approximations are constructed for each coarser level. If we are at level k, then
the pointer array corresponding to the finer level Fk+l is looped over. If there is an
outer ring approximation associated with a given box at the finer level (indicated by
a nonnegative entry in the pointer array), then the box at the coarser level which
contains this finer level box (its parent box) will have an outer ring approximation
associated with it. The potential induced by the finer level outer ring approximation
is evaluated to construct the coarse box outer ring approximation. These new outer
ring approximation values are put into a storage array and the beginning address of
the values is stored in the Fk. A pictorial diagram of this process is depicted in Fig. 6.
This process of constructing outer ring approximations is repeated until the second
level is reached. (No outer ring approximations are needed for the first or zeroth
levels.)

The second sweep, that in which the evaluation of the outer ring approximations
is organized, utilizes the concept of being "well separated" [5]. Assume that the boxes
on a given level are ordered by elements of Z Z; then, for a given level of refinement,
one box is "well separated with distance L" from another box, if the maximum of the
difference between their indices is greater than or equal to L (i.e., the boxes are at least
L boxes apart). For a given level, the second sweep consists of constructing inner ring
approximations for each box. The inner ring approximations are used to represent
the potential from two sources. The first source is the inner ring approximation
associated with the parent box at the previous coarser level. The second source is

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 937

Nested
Pointer
Array

Storage
Array

F

m

FIG. 6. Schematic of outer ring construction. Formation of the coarse level outer ring approx-
imation is performed by combing the four finer outer ring approximations beneath it. The storage
array addresses for the outer ring approximation values are located in the nested arrays Fn.

from all of the outer ring approximations from boxes that are well separated from the
given box (with distance 1 in two dimensions and distance 2 in three dimensions) and
are contained within boxes at the previous coarser level that are not well separated
from the parent box. A graphical representation of this step is given in Fig. 7. This
procedure is carried out for all levels except the finest. For this level, the inner
ring approximations are only constructed from the inner ring approximations of the
parents. At every level, the centers of the inner ring approximations are coincident
with the centers of the boxes with which they are associated. The radius of the ring
used in the approximation is one-half the box size. With the completion of this sweep,
the potential at any given evaluation point is obtained by computing the potential of
the inner ring approximation associated with the finest level box the point resides in.
This potential is then added to the potential induced by particles in the nearby.finest
level boxes that are not well separated from the given evaluation points box. The
reason for choosing a separation distance L 1 in two dimensions and L 2 in three
dimensions is to ensure that the decay of the error in the approximations behaves like
O(x//3) where /is determined by the number of modes kept in the kernel M. (See
formula (12).)

As is the case with the first sweep, one must avoid using unnecessary storage
and doing unnecessary work. Here, at any given level, if there is no evaluation point
within a box, then one need not compute an inner ring approximation for that box.
Work and storage space can be reduced by accounting for this fact.

938 CHRISTOPHER R. ANDERSON

FIG. 7. Formation of inner ring approximations from parent inner ring approximation and
well-separated outer ring approximations.

The construction carried out in this second sweep is also very similar to the
computations that are performed in one sweep of a multigrid method. The process
of creating an inner approximation from potential values induced by an inner ring
approximation associated with a parent box is much like the prolongation operation
of multigrid, i.e., the construction of a fine grid solution from a coarse grid solution.
The process of combining the outer ring approximations from well-separated boxes
is analogous to performing relaxation. Again, in this sweep we are working with
approximations associated with the grid boxes rather than solution values, and so
the programming strategy will be to implement multigrid-type operators, but with
the operators defined to act on the approximations pointed to by address values in
a given box rather than solution values. To implement this sweep, we again use a
nested pointer array Gn similar to Fn. At a given level n the size of Gn is 2n 2n

and the value at the (i, j)th element of this array is the starting address (in a storage
array) of the inner ring approximation values associated with the (i,j)th box of the
nth level partition. If there is no inner approximation associated with that box, then
a negative integer is stored in the pointer array.

The first task in the actual computation is to identify which boxes will have inner
ring approximations associated with them. The general rule is that if a box at any
level has an evaluation point in it, then an inner ring approximation will be necessary
for that box. The evaluation points are first sorted according to which box at the
finest level (level nI) they reside in. Particles in the same box are link-listed together,
and the address of the first element of the link list for any given box is stored in an
integer pointer array Jnf associated with the finest level boxes. Next, the pointer
structure Gn is swept through, starting at the finest level. At each level, a zero is
stored in the pointer array if the corresponding box in the computational space with
which it is associated contains at least one evaluation point. (This can be checked
by considering the presence of zeros in the pointer array locations of the next finer

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 939

level.) Once this initial sweep is performed, then any of the boxes whose pointer is
zero indicates that an inner ring approximation will have to be formed for that box.

Now, starting at the coarsest level, each level of the nested pointer array Gn is
swept through. If there is a zero in the pointer array location at a given level, then an
inner ring approximation is constructed from a parent inner ring approximation and
from the appropriate well-separated outer ring approximations. These approximations
are combined by merely evaluating the potential they induce at the nodes of the inner
ring approximation under construction. The addresses of the values needed to evaluate
the parent inner ring approximation and the outer ring approximations are obtained
from the pointer arrays G, and F, at the appropriate level. The values for this inner
ring approximation being constructed are put in a storage array and the beginning
address of these values is stored in the pointer array G. At the last (finest) level,
inner ring approximations are formed from the parent inner ring approximations. The
potential at the evaluation points is then obtained from these finest level inner ring
approximations and direct evaluation of the potential from particles in nearby (not
well separated) boxes. The particles in nearby boxes are accessed via the initially
constructed link list whose starting addresses are pointed to by the entries in Js"

The entire procedure consists of these two sweeps. The first sweep goes from
a fine discretization of physical space to a coarse discretization and results in the
construction of a hierarchy of outer ring approximations. The second sweep goes from
a coarse discretization to a fine one and results in a hierarchy of inner ring expansions.
If one considers the operations being performed on the pointer arrays, then the method
is algorithmically similar to a multigrid V-cycle. In fact, the first version of the code
was obtained by modifying an existing multigrid code. The modification consisted
of changing the subroutines used in multigrid (like a relaxation routine) so that,
instead of working with the values at the cell centers, the routine worked with the
approximations that were pointed to by the values at cell centers. It proved to be very
productive to use the programming techniques developed for multigrid, specifically
those embodied in the sample code given in [14].

It is clear that if the computational particles and the evaluation points are dis-
tributed in a region that is not well represented by a square, then there will be a
great number of elements in the pointer arrays that will be associated with no outer
or inner approximations. In order to reduce storage space and shorten loops over the
pointer structure, one can allow for regions that are nonsquare. This is most easily ac-
complished if the bounding region is constructed to be a rectangular box whose sides
have an aspect ratio that is a power of two. To implement this, a rectangular box
is constructed that contains the computational particles and the evaluation points.
The sides of this box are then enlarged to create a rectangle that has an appropriate
aspect ratio. The refinement of this rectangle proceeds by successively dividing the
larger side by powers of two until the box side is equal to the length of the smaller
side. From this point on, the refinement is accomplished by refining the boxes in both
directions. (See Fig. 8, which depicts the refinement of a box with aspect ratio four
to one.) The corresponding nested set of pointer arrays F,, Gn, I,s, and J will be
nonsquare and contain a number of elements corresponding to the number of boxes
at each level of the decomposition of the original rectangle.

In three dimensions we found that using an outer sphere radius that was three
times the box size was more accurate than using one that was only twice the box
size. Other than this difference and the changes in the number of indices in the
pointer arrays and the form of the kernel in Poisson’s formula, the implementation of

940 CHRISTOPHER R. ANDERSON

Level 0

’"’/ !’1 i’11
III!1111111111II--

II IIIII,Jllll

Level I

Level 2

Level 3

Level

FIG. 8. Refinement of a rectangle with an aspect ratio of 4 to 1.

the three-dimensional method is identical to the two-dimensional method described
above.

The particular implementation strategy just discussed works best when a large
number of levels is not required in the computation. This will typically be the case
when one requires a modest or high amount of accuracy. (The computations in the
next section, performed with a tolerance of 1 x 10-4, demonstrate this fact.) When one
is interested in computations with a less severe accuracy criterion, then a larger num-
ber of levels is called for, and the multigrid pointer structure may be inefficient. In such
cases other implementation strategies, such as those that use a tree-based data struc-
ture, should be considered. See, for example, the methods described in Barnes and Hut
[3] or Sernquist [8].

4. Timing and level selection. As discussed in the introduction, the primary
component of a hierarchical element method, which leads to a computational sav-
ings, is the representation of the potential induced by a large number of particles
by a single computational element that requires less work to evaluate. On the other
hand, it is clear that if one uses a computational element to represent the potential
induced by only a small number of particles, then this may lead to more, rather than
less, computational work. In the implementation of the method presented here, the
computational domain is broken up into boxes, and as one increases the level of re-
finement, the size of these boxes decreases. Since the number of particles per box
will ultimately decrease, and thus the number of particles per computational element
will decrease, there is some level for which it is more expensive to use a hierarchical
element method than to use the direct method. This is illustrated by the results in
Figs. 9 and 10. (All of the computations where carried out on a SUN Sparcstation 1.
There were 25 points in the ring approximations--a number of points that provides
an accuracy of 10-4.) The figures give the time it takes to compute the potential
induced by all of the particles at the locations of all the other particles for different
numbers of particles. (These times are estimated by the procedure described below.)
For Fig. 9 the particles were uniformly distributed in a square and for Fig. 10 the
particles were uniformly distributed in a rectangle with aspect ratio of ten to one.
Each of the separate lines in the figures correspond to different finest levels of domain
discretization. As is evident from the figures the level one should choose depends on

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 941

lOOO

900

8o0

700

600

500

400

300

200

lOO

oo

Direc
]tl

1000 2000 3000 4000

Number of Particles

250

level 5/

50I! level

0
0 500 1000 1500 2000

Number of Particles

(a) (b)

FIG. 9. CPU time for a hierarchical element method based on ring approximations. The
particles are distributed uniformly in a unit square. Each of the solid curves represents the estimated
CPU time used by the method for a given level of spatial refinement. The circles represent the actual
time taken when the minimal estimate is chosen. (b) is a magnified version of

the number of particles. The more particles there are, the higher the level of refine-
ment. The choice of level also depends on the distribution of particles. The fact that
the timings vary greatly as the level is changed indicate that it is crucial to choose
the appropriate level. If the particles are always uniformly distributed in some par-
ticular geometric arrangement, then one could work out estimates of the appropriate
level of refinement one should choose. If the particles are not distributed in such a
way, then the construction of a scheme for identifying the appropriate level seems
difficult. However, a computationally efficient and optimal level selection scheme can
be constructed.

The key observation is that the amount of computational work at each level in the
hierarchical element method is completely determined (and hence one can estimate

it) by the number of computational particles and evaluation points in any given box
at any given level. In essence, the selection scheme is to "dry run" the hierarchical
element method, and, instead of performing 11 the required operations, just increment
counters. The counter increments are based on the population density of the particles
in each box and models of the computational time necessary to carry out specific
computational tasks. Timings are then estimated for the work required for different
levels of refinement, and the level selected is the one with the least amount of estimated
time. It is not necessary to perform a different timing computation for every level of
refinement--the recursive nature of the method allows one to compute the amount of
work for each level up to some ultimate level in one computation.

Before presenting the details of the implementation of this selection procedure, we
present some results. In Table 2 we present the CPU time estimate (in seconds) from
our selection code and the actual CPU time taken for a computation of the potential
induced by 2000 points distributed in a unit square. As can be seen, one can get
rather good estimates of the time it takes for any given level. The cost of performing

942 CHRISTOPHER R. ANDERSON

1000

900

800

700

60O

500

400

300

200

100

1000 2000 3000 4000

40

P 35u

s 30
e

25c
o

20n
d
s 15

10

5

0 0
0 0

Number of Particles

level 4-

200 400 60 80 1000

Number of Particles

(a) (b)

FIG. 10. CPU time for a hierarchical element method based on ring approximations. The
particles are distributed uniformly in a rectangle with an aspect ratio of 10 to 1. Each of the solid
curves represents the estimated CPU time used by the method for a given level of spatial refinement.
The circles represent the actual time taken when the minimal estimate is chosen. (b) is a magnified
version of (a).

TABLE 2
Estimated and actual CPU time for a hierarchical element method based on ring approxima-

tions. The timings are for 2000 particles distributed uniformly in a unit square.

Level Estimated CPU
Time (Secs.)

Direct 207.3
2 85.5
3 48.1
4 126.4
5 443.2

Actual CPU
Time (Secs.)

206.8
86.0
48.4
123.5
430.9

this estimation is very small. For 2000 points it takes .6 CPU seconds to estimate
the running time for six levels of refinement. This time is about 1.25 percent of the
time it takes to actually perform the calculation. Figures 9 and 10 also illustrate the
accuracy of the timing estimates. The circles in these figures correspond to the actual
CPU time taken to perform the computation when the level with the least amount
of estimated time is selected. As desired, these circles coincide with a lower envelope
for all of the timing curves in the figure.

In the implementation of the method for approximating the computational time
we use a nested set of integer arrays set up like Fn and G, of 3 (a nested set of
arrays whose individual elements at any level are associated with individual squares
in the decomposition of physical space at that same level of refinement). We have one
nested set of arrays Sn associated with the computational particles and one nested
set of arrays Tn associated with the evaluation points. At each level of these nested
arrays we store in the (i, j)th element the number of particles (or evaluation points)
contained within the (i,j)th box in computational space at that level. To construct
these population values, a finest level of refinement is chosen and the number of

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 943

particles in each box is stored in the corresponding array element of Sn associated
with that level. Next, the other levels of the array S, are swept through, and the
number of particles in each box is determined by summing the number of particles
in each of the boxes at the finer level which is contained within the given box. The
same procedure is carried out for the evaluation points and the nested array T.

In order to use the population density information in the arrays Sn and T, we
need models of the computational time necessary to carry out particular operations
of the method. Assume there are n computational particles and m evaluation points.
In two dimensions, if we are using an approximation of the type (12) with K points,
then the models used are:

(0) direct interaction

(1) formation of outer approximations
(2) combining; formation of outer approximations

from outer approximations, etc.
(3) evaluation of finest level inner approximations

coxnxm +bo,
cl xnxK +bl,

c2KK +b2,
C3 m K + b3.

These models depend upon values of the constants bo, co, bl,..., b3, C3. We call
these formulas models because they are not exact--peculiarities in specific computa-
tional hardware or compilers may mean that the constants are not truly constants.
However, on the machines the author has worked with, these formulas capture rather
well the actual amount of computational time for a wide range of the parameters n,
m, and K. In order to estimate the values for these constants, a small program was
written which times the specific operations. Using the results of these timing esti-
mates for several values of n, m, etc., the constants in the models were determined
by a least squares procedure.

In three dimensions the models are slightly different because the finite sum in
the integral kernel in Poisson’s formula is not represented by a single closed formula.
Assuming n computational particles, m evaluation points, K integration points, and
M terms in the Poisson kernel, we use the following computational models:

(0) direct interaction

(1) formation of outer approximations
(2) combining; formation of outer approximations

from outer approximations, etc.
(3) evaluation of finest level inner approximations

coxnxm +bo,
c xnxK +bt,

c2xKxKxM +b2,
C3 x m x K x M + b3.

Here, as before, values for these constants are obtained by using a least squares
fit to the output of the program which times the particular operations.

With the computational model constants determined, complete timing estimates
are obtained in two sweeps. In the first sweep the amount of computational time
needed to construct the hierarchy of outer ring approximations is estimated. Let nf
denote a finest level of discretization chosen for the timing. (This level should always
be greater than the finest level chosen for the actual computation.) Starting at this
finest level, the time it takes to construct the outer ring approximation is estimated
by using the model (1) and information in the array S, at the finest level. If there is
a nonzero value in any element of this array, then an outer ring approximation will
be constructed for the particles associated with the corresponding box. The work to
construct this outer approximation is estimated using (1), with the value of n being
the value in that particular array element of S (i.e., the particle count for the box).
Each of these estimates is added together to get a complete timing estimate for the

944 CHRISTOPHER R. ANDERSON

construction of the outer approximations at the finest level. One then proceeds to the
next coarser level. At this level two computational time estimates are computed. The
first estimate is that of the time necessary to construct all of the outer approximations
assuming that this particular level is the starting level--the same procedure as for the
finest level. The second estimate is that of the time necessary for combining outer
ring approximations from the finer level into the outer ring approximations at the
current level. In this second estimate, the current level of S is swept through and
if any element is nonzero, then an outer ring approximation must be constructed for
the corresponding box. The time to compute this construction is obtained by using
the model (2) and determining the number of finer level outer ring approximations
that must be used in the construction. (This information can be obtained from
the presence of a nonzero value in the next finer level elements of Sn.) One then
proceeds to successively coarser levels, forming these same two estimates, until level
one is reached. At this point one has information about the time necessary to form
outer ring approximations starting from any level, as well as the time to create outer
ring approximations from outer ring approximations at previous levels. By summing
appropriate combinations of these timings, one can compute the time necessary to
construct the complete hierarchy of outer ring approximations assuming one starts at
any level. As a specific example, assume that 4000 points are uniformly distributed in
a unit square. Then if the finest level chosen is nf 5, one obtains timing estimates
such as those given in the second column of Table 3. Each entry in this column is the
time it takes to compute the complete hierarchy of outer ring approximations starting
from the given level.

In the second sweep, estimates of the required time are made for the construction
of the hierarchy of inner ring approximations, as well as the time for direct locM
interaction. Starting at level one, the amount of work required for a direct calculation
is estimated. This is obtained using model (0) and computing n and m by summing
the values in the elements of the array $1 and T1 associated with level 1. One then
proceeds to higher (finer) levels. At each finer level two estimates are computed. The
first is an estimate of the time necessary to form an inner ring approximation from
nearby outer ring approximations at the same level and the inner ring approximation
at the previous coarser level. This time can be estimated by sweeping through the
array Tn and determining whether or not an inner expansion will be constructed for
any of the boxes in the computational domain. A construction for any box will be
necessary if there is a nonzero value in the corresponding element in this array. One
then employs the model (2) and determines the number of outer ring approximations
and coarse inner ring approximations used in this construction from values in Sn at
current level and values in T, at the previous coarser level. Secondly, an estimate
of the time necessary if one stops at the current level (i.e., the time to evaluate
the inner expansions at this level as well as the local direct computation time) is
formed. This time can be computed using the models (0) and (3) and population
information for the evaluation points contained in the array Tn. Both of these timing
estimates are performed for successively finer and finer levels. The computation is
stopped at the finest level nf. After this computation, we have, for every level, the
time it takes to construct the inner ring approximations and the time it takes to use
that level for the evaluation of the potential from the inner ring approximations and
local direct calculations. By summing the appropriate values of these timings, it is

possible to compute the time it takes to construct and evaluate the hierarchical set of
inner approximations for each level from the first to the finest. In the example above

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 945

TABLE 3
Estimated CPU time for a hierarchical element method based on ring approximations.

timings are for 4000 particles distributed uniformly in a unit square.

Level Outer Ring Const.
Time (Secs.)

Direct 0.0
2 1.6
3 2.6
4 6.6
5 22.5

Inner Ring Const.
and Eval. Time (Secs.)

829.0
331.5
122.1
142.2
509.4

Total
Time (Secs.)

829.0
333.1
124.7
148.8
531.9

The

with 4000 points, the timings for this second step are presented in the third column
of Table 3.

The complete estimate of the time it takes for the whole method consists of adding
the amount of work to construct the outer ring approximations and the amount of
work to construct and evaluate the inner ring approximations. The level one chooses
for the actual computation is the level for which this total is the least. For example,
an estimate of the total time is obtained by summing the elements (across the row)
in the second and third column of Table 3. These times are presented in the fourth
column of that table. One should choose level 3 for this computation.

5. Discussion and conclusions. The model problem discussed in this paper
has been the computation of the potential induced by N charged particles. In many
calculations one is interested in calculating the derivatives of this potential and not the
potential itself. There are two ways to use a hierarchical element method to determine
the derivatives of the potential. One way is to first create the complete hierarchy of
inner ring and outer ring approximations and then, at the last step, to compute the
derivatives at an evaluation point by summing the derivatives of the potential induced
by nearby particles (particles that are not contained in well-separated boxes) and the
derivative of the potential induced by the inner ring expansion associated with the
finest level box the evaluation point resides in. The local interaction is computed by
using the analytic derivative of (3) or (4). The derivative of the inner ring expansion
is computed using the derivative (either numerical or analytical) of the approximation
(13).

The other way to evaluate derivatives consists of computing each derivative by a
separate hierarchical element computation. Each derivative of the potential induced
by N charged particles is identical to a potential induced by N dipoles. Since the
hierarchical element method requires only that the interaction be governed by solu-
tions to Laplace’s equation, we can use the method to compute the potential defined
by a distribution of N dipoles. Each component of the derivative is therefore obtained
by a separate computation and the formulas used for the initial ring construction and
local direct evaluation are the analytic expressions for the derivatives of the potential.

In two dimensions, it seems best to use the first technique, i.e., compute the
potential and then differentiate the result. While there is a loss of one order of accu-
racy in this procedure, this can be compensated for by increasing the accuracy with
which the potential is calculated. (This is accomplished by increasing the number
of integration points in the ring approximations, or by using more terms in a multi-
pole approximation.) The extra cost to preserve accuracy is very small compared to
performing completely separate computations for each derivative. The first approach
is also likely to be better in three dimensions if one just wants the derivatives of a
scalar potential. However, if one is interested in computing the velocity induced by
a distribution of vorticity in three dimensions, then the second approach is more el-

946 CHRISTOPHER R. ANDERSON

ficient. In this case, the velocity field is determined by the curl of a vector potential.
To implement the first method, one must determine the three separate components
of the vector potential by three different computations and then evaluate the velocity
by taking the curl of the resulting function. In the second approach, each component
of the velocity is determined directly via separate computations and there is no need
to differentiate the result. Thus, one saves on both work and accuracy by using the
second approach.

One is of course interested in a comparison between the multipole method and
the method based on the use of Poisson’s formula. Since the method that uses Pois-
son’s formula is in some sense the discrete transform of the multipole method, one
cannot expect there to be any great computational advantages in using one method
over the other, i.e., they basically give the same results. The reason for considering
using a method based on Poisson’s formula is that it is perhaps more convenient to
program and use. Since the operations for combining and constructing the hierar-
chical elements involve only function evaluation, they are easy to formulate and to
program. Furthermore, these operations are essentially the same in two and three di-
mensions and this makes the implementation of the method in three dimensions very
easy. A hierarchical element method based on Poisson’s formula can also easily treat
the problem of determining the potential induced by collections of sources which are
more general than point charges. For example, one might be interested in computing
the potential induced by collections of segments with some given charge distribution
on them. The difficulty with using the multipole method for this computation occurs
in the first step. In this step one needs to form a multipole approximation induced
by collections of segments. While for point charges this initial multipole approxi-
mation can be analytically determined from the locations of the charges and their
strengths, this may not be possible (or if possible, then it may be rather complicated)
for segments. To get an initial ring approximation for such elements one need only
evaluate the potential induced by these distributions at the integration points of the
ring approximation. One disadvantage of using a Poisson formula representation is
that techniques [7] for further reducing the computation time of the fast multipole
method in three dimensions do not appear to be directly applicable.

For either the method presented here, or the original multipole method, one
can and should take advantage of the inherent multigrid structure. This inherent
structure allows one to take advantage of the variety of techniques that have been
formulated for programming multigrid. We have used the techniques for program-
ming on single processor machines, but there is undoubtedly some benefit to using
multigrid techniques for multiprocessor computers. Also, as seen in 3, the timing of
the hierarchical element method is very important. From the results of that section
it is easy to see why some early experimenters with the method (ourselves included),
who naively chose a high level of refinement, were not particularly pleased with the
hierarchical element method performance. Fortunately, the recursive nature of the
method allows for efficient and accurate timing estimates that can be used to select
the appropriate level of refinement. The three contributions of the paper, the use of
Poisson’s formula, the use of multigrid programming strategy, and the use of timing
estimates to obtain good level selection, certainly do not exhaust the set of tasks that
could be done to improve on the hierarchical element method. Other improvements
could come by making the method more adaptive, or improving the speed at which
the component operations can be carried out. Such procedures will hopefully lead to
even more efficient algorithms.

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD 947

REFERENCES

[1] C. R. ANDERSON, HELM2: A hierarchical element method in two dimensions, UCLA Report
CAM 90-15, Department of Mathematics, University of California, Los Angeles, CA, 1990.

[2] , HELM3: A hierarchical element method in three dimensions, UCLA Report CAM
90-16, Department of Mathematics, University of California, Los Angeles, CA, 1990.

[3] J. BARNES AND P. HUT, A hierarchical O(Nlog N) force-calculation algorithm, Nature, 324
(986), .

[4] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, Vol. I, Wiley Interscience,
New York, 1953.

[5] L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comp. Phys.,
73 (1987), p. 325.

[6] Fast methods in three dimensions, in Vortex Methods, Lecture Notes in Mathematics
1360, C. Anderson and C. Greengard, eds., Springer-Verlag, Berlin, New York, 1988.

[7] On the eJficient implementation of the fast multiple algorithm, Department of Computer
Science Report 602, Yale University, New Haven, CT, 1988.

[8] L. HERNQUIST, TREESPH: A Uni]cation of SPH with The Hierarchical Tree Method, Astro-
physical Journal Supp., 64 (1987), p. 715.

[9] J. KATZENELSON, Computational structure of the N-body problem, SIAM J. Sci. Statist. Com-
put., 4 (1989), pp. 787-815.

[10] A. D. MCLAREN, Optimal numerical integration on a sphere, Math. Comput., 17 (1963),
pp. 361-383.

[11] Z. P. NOWAK, Panel clustering technique for lifting potential flows in the three space di-
mensions, in Panel Methods in Mechanics, J. Ballman, R. Eppler, and W. Hackbusch,
eds., Notes in Numerical Fluid Mechanics, 1360, Vieweg-Verlag, Braunschewig, Wiesbaden,
1987.

[12] V. ROKHLIN, Rapid solutions of integral equations of scattering theory in two dimensions, J.
Comp. Phys., 86 (1990), pp. 414-439.

[13] A. H. STROUD, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs,
NJ, 1971.

[14] K. STUBEN AND U. TROTTENBERG, Multigrid methods: Fundamental algorithms, model prob-
lem analysis and applications, in Multigrid Methods, W. Hackbusch and U. Trottenberg,
eds., Lecture Notes in Mathematics 960, Springer-Verlag, Berlin, New York, 1982.

[15] L. VAN DOMMELEN AND E. RUNDENSTEINER, Fast adaptive summation of point forces in
two-dimensional Poisson equations, J. Comp. Phys., 83 (1989), pp. 126-147.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4 pp. 948-966, July 1992

() 1992 Society for Industrial and Applied Mathematics
0O7

ON THE SPECTRUM OF A FAMILY OF PRECONDITIONED
BLOCK TOEPLITZ MATRICES*

TAKANG KUt AND C.-C. JAY KUOt

Abstract. Research on preconditioning Toeplitz matrices with circulant matrices has been
active recently. The preconditioning technique can be easily generalized to block Toeplitz matrices.
That is, for a block Toeplitz matrix T consisting of N N blocks with M M elements per block,
a block circulant matrix R is used with the same block structure as its preconditioner. In this
research, the spectral clustering property of the preconditioned matrix R-1T with T generated by
two-dimensional rational functions T(z,,zy) of order (p:r,q:,pu,qv) is examined. It is shown that
the eigenvalues of R-1T are clustered around unity except at most O(M/u + N"/) outliers, where

max(p, q) and max(p, qy). Furthermore, if T is separable, the outliers are clustered
together such that R-1T has at most (2/x +1)(2+ 1) asymptotic distinct eigenvalues. The superior
convergence behavior of the preconditioned conjugate gradient (PCG) method over the conjugate
gradient (CG) method is explained by a smaller condition number and a better clustering property
of the spectrum of the preconditioned matrix R-1T.

Key words, block Toeplitz matrix, preconditioned conjugate gradient method

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. The systems of linear equations associated with block Toeplitz
matrices arise in many two-dimensional digital signal processing applications, such as
linear prediction and estimation [9], [12], [13], image restoration [7], and the discretiza-
tion of constant-coefficient partial differential equations. To solve the block Toeplitz
system Tu b, where T is an N N matrix with M M blocks, by direct methods,
such as Levinson-type algorithms, requires O(M3N2) operations [2], [14], [17]. Re-
cently, there has been active research on the application of iterative methods such as
the preconditioned conjugate gradient (PCG) method to the solution of Toeplitz sys-
tems. To accelerate the convergence rate, various preconditioners have been proposed
for symmetric positive definite (SPD) Woeplitz matrices [6], [8], [10], [15]. The pro-
posed preconditioning techniques can be easily generalized to block Toeplitz matrices.
Simply speaking, we construct the preconditioner with a block circulant matrix R that
has the same block structure as T. Since both R-lw and Tw, where w denotes an
arbitrary vector of length MN, can be performed with O(MNlog MN) operations
via two-dimensional fast Fourier transform, the computational complexity per PCG
iteration is O(MNlog MN) only. The PCG method can be much more attractive
than direct methods for solving block Toeplitz systems if it converges fast.

The convergence rate of the PCG method depends on the eigenvalue distribu-
tion of the preconditioned matrix R-IT [1]. Generally speaking, the PCG method
converges faster if R-1T has clustered eigenvalues and/or a small condition num-
ber. The spectral properties of preconditioned point Toeplitz matrices have been
extensively studied. Chan and Strang [3], [5] have proved that, for a Toeplitz ma-
trix with a positive generating function in the Wiener class, the spectrum of the
preconditioned matrix has eigenvalues clustered around unity except for a finite num-
ber of outliers. If the Toeplitz matrix is generated by a positive rational function

Received by the editors November 14, 1990; accepted for publication (in revised form) June
3, 1991. This work was supported by the University of Southern California Faculty Research and
Innovation Fund and by a National Science Foundation Research Initiation Award (ASC-9009323).

Signal and Image Processing Institute and Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, California 90089-2564 (tkku@sipi.usc.edu and
cckuo@sipi.usc.edu).

948

BLOCK TOEPLITZ PRECONDITIONER 949

A(z)/B(z) + A(z-1)/B(z-1) in the Wiener class, an even stronger result has been
derived by Trefethen [16] and Ku and Kuo [11]. That is, if A(z) and B(z) are poly-
nominals in z of orders p and q without common roots, the number of outliers is
equal to 2 max(p, q) and the PCG method converges in at most max(p, q)+ 1 itera-
tions asymptotically (see [11] and the discussion in 4 below). Therefore, an N N
preconditioned rational Toeplitz system can be solved with max(p, q) x O(Nlog N)
operations.

The spectral properties of preconditioned block Toeplitz matrices have not yet
been very well understood. In this research, we analyze the spectral clustering prop-
erty for a class of preconditioned block Toeplitz matrices. The block Toeplitz ma-
trix under consideration has a two-dimensional quadrantally-symmetric generating
sequence generated by a rational function in the Wiener class (see the definition in
3). We divide our discussion into two cases depending on whether or not the generat-
ing sequence is separable. When the block Toeplitz matrix has a separable generating
sequence, the spectrum of the preconditioned block Toeplitz can be easily derived by
using the preconditioned point Toeplitz result as given in [11]. However, we derive
the preconditioned point Toeplitz result from a new viewpoint in this paper so that
the same approach can be used for both separable and nonseparable cases. With this
viewpoint, we interpret the operation Tw, where T is an MN MN block Toeplitz
matrix, as a two-dimensional constant-coefficient mask operating on a certain two-
dimensional sequence construction based on w.

Our main results can be summarized as follows. Let T be an MN MN
doubly symmetric block Toeplitz matrix generated by a rational function of order
(Px, qx, py, qy), /x max(p, q) and y max(py, qy). For the separable generat-
ing sequence case, the eigenvalues of R-IT are clustered together such that it has
asymptotically (2% + 1)(2y + 1) distinct eigenvalues. The PCG method converges
asymptotically in at mosty+ 1 iterations, and the complexity of the PCG method
is therefore O(MNlog MN). For the nonseparable generating sequence case, the
eigenvalues of R-T are clustered around unity except for at most O(Mg/y + N/x)
outliers. Since the number of outliers is proportional to M and N, rather than being
O(1) as in the point Toeplitz case, the convergence rate of the PCG method cannot be
completely characterized by the number of outliers. The condition number (R-T)
should also be taken into account. For this case, the superior performance of the PCG
method over the CG method is explained by a better spectral clustering property as
well as a smaller condition number of the preconditioned matrix R-T.

The outline of this paper is as follows. The construction of the block circulant
preconditioner R for block Toeplitz matrices T is presented in 2. In 3, we study the
spectral clustering property of preconditioned block Toeplitz matrices R-1T. Toeplitz
matrices with separable and nonseparable generating sequences are examined, respec-
tively, in 3.1 and 3.2. Numerical results are given in 4 to assess the performance
of the PCG method.

2. Construction of block Toeplitz preconditioners. Let T be a block Toep-
litz matrix consisting of N N blocks with M M elements per block, which can be
expressed as

(2.1) T

950 TAKANG KU AND C.-C. JAY KUO

where Tn with Inl _< N- 1 are M x M Toeplitz matrices with elements

[Tn]i,j ti-j,n where 1 <_ i, j <_ M.

Note that T is also known as the doubly Toeplitz matrix. The MN MN block
Toeplitz matrix T is completely characterized by the two-dimensional sequence

known as the generating sequence of T. To construct the preconditioner for T, we
generalize the idea in [5], [10], and [15], and consider an MN MN block circulant
matrix of the form

(e.a) R

Ro RN-1 R2
R1 Ro RN-1 R2

R Ro
RN-2 RN-1
RN-1 RN-2 R1 Ro

where R, with 0 <_ n <_ N- 1 are M M circulant matrices with elements

[Rn]i,j -r(i-j) mod M,n where 1 _< i,j <_ M.

Thus, the block circulant matrix R is completely characterized by the two-dimensional
sequence

(2.4) rm,n where 0_<m_<M-1, 0_<n_<N-1.

The construction of R based on T is described below.
In (2.1) and (2.3), linear operators T and R are expressed in matrix form. Block

Toeplitz (or circulant) systems are in fact just one way to describe linear (or circular)
convolutions between two two-dimensional sequences. In the current context, it is
more convenient to characterize T (or R) in terms of the relationship between input
and output vectors. Consider two arbitrary MN-dimensional vectors w and v related
via v Tw. By using the natural rowwise ordering, we can rearrange elements of
these vectors into two-dimensional sequences

(2.5) w,, and Vm,n where 0 _< m _< M- 1, 0 <_ n <_ N- 1.

Then, the block Toeplitz system v Tw can be interpreted as a linear operator
characterized by the two-dimensional mask

(2.6)
tM-1,-N-I tM-2,-N+I t0,-N+l t-MT2,-N+I t-MW1,-N+I
tM-1,-N+2 tM-2,-N+2 t0,-N+2 t-M+2,-N+2 t-M+I,-N+2

tM-1,0 tM-2,0 t0,0 t-M+2,0 t-M+l,0

tM-1,N-2 M--2,N-2 t0,N--2 $-M-2,N-2 t-M-I,N-2
$M-1,N-1 tM-2,N-1 t0,N-1 $--M+2,N--1 t-M+I,N--1

BLOCK TOEPLITZ PRECONDITIONER 951

operating on an extended sequence

Wm,n, ONmNM--1, ONnNN--1,(2.7))m,n O, otherwise.

To compute the output element V,o,no, 0 <_ m0 <_ M- 1, 0 <_ no _< N- 1, we put
the center of the mask (i.e., t0,0) on mo,no, multiply ,,, with the corresponding
coefficients tmo-m,no-n, and sum the resulting products. Now let us use the mask
(2.6) to operate on a periodic sequence

(2.8) m, ---Wm mod M,n mod N, --(:K:) < m < OC, --Cx) < n < oc.

This defines a block circulant matrix-vector product Rw, which is close to the opera-
tion Tw. Since R-iv can be computed efficiently with two-dimensional fast Fourier
transform, it is natural to use R as a preconditioner for T.

The characterization of a block Toeplitz or circulant matrix by a two-dimensional
operator mask is not new. It is basically the same as the stencil form used in the finite-
difference discretization of the constant-coefficient partial differential operator. For
example, the five-point stencil discretization of the Poisson equation can be interpreted
as the mask

0 1 0]1 -4 1
0 1 0

operating on a two-dimensional sequence. By assuming the Dirichlet and periodic
boundary conditions, we obtain block Toeplitz and circulant matrices, respectively.

The preconditioner constructed above can be described in matrix notation. First,
for every point Toeplitz matrix Tn, Inl _< N-1, we construct a circulant preconditioner
T with

(2.9) t0,n, t--l,n -[- tM--l,n, t-2,n -+- tM--2,n, "’’, tl--M,n tl,n

as the first row [10].
combination

Then, we use ’n to construct Rn according to the linear

(2.10) Rn n, n O,

’n + "]N 1 <_ n <_ N- 1,

which is used in (2.3) to define the block circulant preconditioner R.
It is worthwhile to point out that it is possible to design different preconditioners

by considering different periodic extensions to form ?Om,n. For readers interested in
the design of preconditioners, we refer to [10].

3. The spectral clustering property of preconditioned block Toeplitz
matrices. Let us consider a family of block Toeplitz matrices T whose generating
sequences tm,n are quadrantally-symmetric,

(3.1) tm,n t]m],]nl, [m[_< M- 1, In[_< N- 1,

and absolutely summable (i.e., T is in the Wiener class),

(3.2) [tm,n[<_ g < oc,

952 TAKANG KU AND C.-C. JAY KUO

and whose generating functions are of the form

A(zx, zy)(3.3a) +B(zx, B(z;1,z)
where

p pu

(3.3b) A(z,zu) ai,dz-iz;d,
i=0 j=o

q

i=o

Note that the quadrantally-symmetric property of tm,n implies that T is doubly sym-
metric, i.e., Tn TnT and Tn T_,. We also assume that T has a nonsingular
preconditioner R so that R-iT is also nonsingular. We call T satisfying (3.1)-(3.3)
the MN MN block Toeplitz matrix generated by a quadrantally-symmetric rational
function of order (p, q, pu, qy). For convenience, we use the notation

% max(px, qx), % max(pv, qv).

The following discussion focuses on the spectral clustering property of the precon-
ditioned matrix R-1T, namely, a bound on the number of eigenvalues clustered around
unity. Note that the following spectral analysis does not depend on the positive-
definiteness of T or R.

3.1. Separable generating sequences. One special case of block Toeplitz ma-
trices described by (3.1)-(3.3) is that T(z, zy) is separable, i.e.,

T(z=,zy) Tx(z=)Ty(zu),

where

and where

(3.4c)

Ax(zx) aizx i,
i--O

Note that the separability of T(z, Zy) implies the separability of the generating se-
quence ’m,n, i.e.,

tm,n tx,mty,n.

Based on tx,, (or t,n), we can construct Toeplitz matrix Tx (or Ty) and the corre-
sponding preconditioner Rz (or Rv), where Tz and R (or Tv and Rv) are of dimension
M M (or N N). It is easy to see that the preconditioner R is also separable, and
the eigenvalues of R-iT are the products of the eigenvalues of R-IT and RITy.

BLOCK TOEPLITZ PRECONDITIONER 953

Thus, to understand the spectral properties of R-1T, we only have to examine those
of preconditioned (point) Toeplitz matrices R-1T and R Ty.

According to the construction (2.9) and the symmetric property of tx,m, we know
that R is a circulant matrix with the first row

tx,o, tx,1 - tx,M-1, tx,2 -1
t- tx,M-2, "’’, tx,M-1 t_ tx,1"

When Bx(z) 1 (i.e., q 0), Tx is banded with bandwidth px, and R is almost
the same as T except for the addition of elements in the northeast and southwest
corners to make Rx circulant. Thus, the elements of/kT R-Tx are all zeros except
the first and the last px rows. Consequently,/kT has at least M- 2p (= M
eigenvalues at zero and R-1Tx (T +/kT)-1T has at least M 2p eigenvalues
at one. This result can also be obtained by using the operator-mask interpretation.
That is, the products Txw and Rw, for arbitrary w (wo,." ",Wm,’" ",WM--1)T,
can be viewed as a linear operator characterized by the mask

[t, t,_l t,l t,0 t,l t,_l t,]
operating, respectively, on two extended sequences

win, 0<_m_<M-1,
andm 0, otherwise, Wm mod M.

It is clear that Tw and Rw give the same output elements if the center of the mask
is located at p _< m _< M-p- 1. There are M- 2p such elements and, as a conse-
quence, the dimension of the null space of/T is at least M-2p. The operator-mask
viewpoint will be generalized to the case of higher-dimensional generating sequences
(see 3.2).

When B(z) 7 1, we approximate the block matrix /kT R- T with an
asymptotically equivalent block matrix/kE, and then use the recursive property of
tx,m to show that /kE has eigenvalues repeated at zero. The recursive property of
tx,m is stated in the following lemma.

LEMMA 1. The sequence t,m generated by Tx(z) in (3.4b) follows the recursion,

tx,m+l -(bltx,m + b2tx,m-1 -t-"" + bqtx,m-q+l)/bo, m _> Vx max(px, qx).

Proof. The generating sequence associated with A(z)/B(z) given by (3.4c) is

ltx,o tx,1 tx,2 tx2 ,m,

Thus, we have

z tx,mz-m (bo - blz-1 + + bqz-q) ao + alz-1 + + ap
m=l

The proof is completed by comparing the coefficients of the above equation. S
Consider the approximation of AT R T with AE Fx + F, where

tM tM-1 t2 tl
tM+l tM tM-1 t2

tM+l tM
tM-1

t2M-2 tM+l tM tM-1
t2M-1 t2M-2 tM+l tM

954 TAKANG KU AND C.-C. JAY KUO

and where the subscript x is omitted for simplicity and tm with m > - is recursively
constructed from (3.5). Since elements tx,, in F satisfy (3.5), the rank of Fx or FT
is at most x. Consequently,/E has at least M-2 eigenvalues at zero.

Then, we examine the difference between/Tx and/E. Consider

(3.6) v (AT AE)w,

for nonzero w. The mth, 1

_
m

_
M, elements of/Txw and/Exw can be written,

respectively, as

M m-1

(3.7) [/Txwlm [Rxw], -[Txw]m Z tz,M+m-iWi + Z tz,M-m+iWi,
i--m+l i--1

and

M M

+ +
i--1 i--1

Therefore, v is bounded above by

2M-1

m--M

ma
l<m<M

m M

i=1 i--m

where the c-norm of the vector v (or w) is the maximum absolute value of elements
Vm (or Wm), 1 <_ m <_ M. We have

2M-1

(3.9) [I&T -/EJI mwaX ilwll m-M

which converges to zero as M goes to infinity, since m__0 It,.l converges and Sm=
-mm,=0 Itx,m, is a Cauchy sequence. The matrix/Tx -/E is symmetric so that

ASCII, --IIAT AE lloo
and

Thus, AT is asymptotically equivalent to AE. It also follows that AT has at least
M 2/x eigenvalues asymptotically converging to 0, or R-1T (Tx +/T)-1Tx
has at least M-2 eigenvalues asymptotically converging to 1.

The/Tx and/Ex above are amenable to the operator-mask interpretation (see
Fig. 1 with M 8). One can easily verify that /Txw and /Ew correspond,
respectively, to the use of the two masks

/Tx" [tx,M-1 tx,M-2 tx,1 tx,O tx,1 tx,M-2 tx,M-1],
/Ex [’" tx,M ;x,M-1 tx,1 ;x,O tx,1 tx,M-1 tx,M "],

BLOCK TOEPLITZ PRECONDITIONER 955

Wo to to to3

2

t6 t5 t4 t31
0 0 0 0

Wo Wl w2 w3
()

W0 Wl W2 W3

t3 t4 t5

Wo Wl w2 w3

t6 t4 4 t. O O 0 0 0 0 O
W0 Wl W2 W3 W0 Wl W2 W3

()

FIG. 1. Operator-mask interpretations of (a) /kTxw, (b) /kExw, and (c) (/Ex -/kTx)w.

operating on the same sequence

iVm Wm mod M, -M <_ m _< -1 or M <_ m _< 2M- 1,
0, elsewhere.

Note that the mask for AEx is of infinite length. The corresponding mask for AEx
AT is

AE- ATe" [... tx,M+l tx,M 0 0 0 0 0 tx,M tx,M+l "’’].

It is easy to derive (3.9) from the operator-mask viewpoint. Note that, for larger
M, although there are more terms contributing to the oo-norm of/kEx -/kTx, the
weighting coefficient tx,m, m >_ M, decays more rapidly. The resulting oc-norm of
/kEx -/kTx asymptotically converges to zero. We conclude the above discussion as
follows.

(a) When B(z, zy) 1, T (or Ty) is banded and RIT (or RITy) has at most
2px + 1 (or 2py + 1) distinct eigenvalues, so that R-T has at most (2p + 1)(2py + 1)
distinct eigenvalues.

(b) When B(zx, zy) 7 1, RTx (or RTy) has at most 2/ (or 2,y) outliers not
converging to unity and other eigenvalues are clustered between (1- ex, 1 + e) (or
(1 -ey, 1 + ey)). Thus, the eigenvalues of R-T can be grouped into several clusters.
The centers and clustering radii of these clusters and the numbers of eigenvalues
contained are listed in Table 1, where Ax,i (or Ay,j) denotes a typical outlier for

956 TAKANG KU AND C.-C. JAY KUO

Center
Radius

Number

TABLE 1
Eigenvalues of R-1T.

0 o(e) 0() 0(. +),
1 N- 2-yy M- 27x (M- 2,)(N,,- 2u

R;ITx (or RIT). Since ex and ey converge to zero as M and N become large,
R-T has asymptotically at most (27 + 1)(27y + 1) distinct eigenvalues.

As a consequence, the PC(] method converges in at most (29’ + 1)(2-yy + 1)
iterations for positive definite T with sufficiently large M and N in both cases
and (b). This is confirmed numerically in 4.

3.2. Nonseparable generating sequences. For nonseparable generating func-
tions T(z,zy) given by (3.3), we examine two typical cases, i.e., B(z,zy) 1 and
B(zx, z) 1 with q > 0 and qy > O.

When B(zx, zy) 1, we have a corresponding generating sequence of finite dura-
tion. As described in 2, the products Tw and Rw correspond to a linear operator
characterized by the mask

tp ,p tp ,py t0,py tp ,py tp ,py

tpx,py--1 tp--l,py--1 t0,p--i tp--l,p--I tp,py--1

tp,O tp-l,O to,o tpx-l,O tp,O

tp,pv_l tp_l,pu_l tO,p-i tp_l,pu_l tp,p_l
tp,p tp-l,p to,p tp-l,p tp,p

operating, respectively, on m,n and ,,n given by (2.7) and (2.8). The output
elements of Tw and Rw are identical if the center of the mask is located at

px <_ m <_ M-px -1, py <_ n <_ N-py 1.

The dimension of the null space of AT R- T is at least (M- 2p)(N- 2py).
Consequently, R-1T has at least (M 2px)(N 2py) eigenvalues repeated at 1 or,
equivalently, there are at most 2(Mpy + Np) -4pxpy outliers. This result is sum-
marized in the following theorem.

THEOREM 1. Let T be an MN MN block Toeplitz matrix characterized by
(3.1)-(3.3) with B(z,zy) 1. The preconditioned matrix R-T has at least MN-
2(Mpy + Npx) + 4pxpy eigenvalues repeated at one.

When B(zx, zy) 1 with q > 0 and qy > 0, the products Tw and Rw correspond
to a linear operator characterized by the mask

tM-1,N-1 tM-2,N-1 tO,N-1 tM-2,N- tM--1,N--1
tM-1,N-2 tM-2,N-2 tO,N-2 tM-2,N-2 tM-1,N-2

tM-l,0 tM-2,0 to,o tM-2,0 tM-l,0

tM-1,N-2 tM-2,N-2 tO,N-2 tM-2,N-2 tM-,N-2
tM-I,N- tM-2,N- tO,N- tM-2,N- tM-I,N-1

BLOCK TOEPLITZ PRECONDITIONER 957

operating on ,,n and (Ore,n, respectively. Let us exploit the quadrantally-symmetric
property (3.1) and decompose tm,n into four sequences

4

tm,n tk,m,n
k--1

where tk,m,n is called the kth quadrant-support sequence and defined as

(3.11a) tl,m,n

t0,0/4, m n 0,
t,,0/2, l<_m_<M-1, n=0,
t0,n/2, m=0, l_<n_<N-1,
t,,,, l_<m<_M-1 and l_<n_<N-1,
0, m<0 or n<0,

(3.11b) t2,m,n tl,--m,n, t3,m,n tl,--m,-n, t4,m,n tl,m,--n.

The following lemma is on the recursive property of tl,m,n.
LEMMA 2. Let tm,n be a quadrantally-symmetric sequence generated by the two-

dimensional rational function T(zx, zy) given in (3.3), and tl,m, is the first quadrant-
support sequence defined by (3.11a). Then,

=0
i=0 j=0

for m > x or

Proof. It is clear that A(z,zy)/B(z,zu) is the generating function for tl,,,,.
Therefore,

B(z, z) i=0 =0

We multiply both sides of the above equation with B(zx, zy), substitute (3.3b) for
A(z, zy) and B(zx, zu), and compare the corresponding coefficients. This gives the
desired equation (3.12).

Thus, we can use (3.12) to recursively define t,m,n with m > " or n > "y in
the first quadrant, and the corresponding tk,m,n with k 2, 3, 4 can be obtained from
t,m,n through the symmetry (3.11b).

As a generalization of the one-dimensional case, we define

Wm mod M,n mod N, (re, n) e [U-<i,j<Qi,j]- Q0,0,
elsewhere,

where

Qi,j ((m,n) iM <_ m <_ (i + l)M-1, jN <_ n <_ (j + I)N-1).

Then, the operation/Tw (R- T)w corresponds to the mask (3.10) operating
on CVm,n. We choose the approximation/Ew to be an extended infinite mask, with
recursively defined tm,n via (3.12), operating on m,,. This is illustrated in Fig. 2,
where we only show the first quadrant of the mask for /E. For the rest of this

958 TAKANG KU AND C.-C. JAY KUO

ATw

oooooo:ooooeeo
ooooooooiooooooo

:

FIG. 2. The matrix vector products/Tw and/xEw interpreted as (a) the operator-mask and
(b) the extended operator-mask operating on .
subsection, we are concerned with two issues: (i) the asymptotic equivalence of/T
and/E and (ii) the number of eigenvalues of/E repeated at zero.

The operation (/E-/T)w corresponds to the difference between the extended
mask and the original mask (3.10) operating on t,,n. The x>norm of the first
quadrant of the difference mask/E-/T operating on t,,n in regions Q1,0, Q0,1,
and Q, are bounded, respectively, by

2M-1 N--1 M-1 2N--1 2M--1 2N-1

m--M n--O m--O n--N m--M n---N

By exploiting the symmetry, we have the bound for/E-/T,

II/E-/TlJo < 4(Kz,z,0 + Kz,0,z + Kz,z,z) g.

With (3.2), we can order tm,n appropriately to be a Cauchy sequence and argue that K
converges to zero for asymptotically large M and N. This establishes the asymptotic
equivalence of/E and/T.

The operator/E can be expressed as a superposition of 12 operators,

/kE b-l,l,O + FI,I,1 + FI,O,1 + F2,0,1 + ’2,-1,1 + F2,-1,0,
(3.13) +F3,-1,0 -F- F3,-1,-1 -t- F3,0,-1 "-F- F4,0,-1 -’1"- F4,1,-1 -t- F4,1,0,

where Fk,i, denotes the kth quadrant of the extended mask operating on sequences
defined on Qi,. Consider operators F,l,0, F1,0,, and FI,I,. Their operations on w
can be written as

M-1N-1

J-1,1,0" Vl,i,j X,M-Fm-i,n-jWm,n,
m=0 n=j

M-1N-1

b-l,0,1 V2,i,j l,m-i,N+n--jWm,n,
m--i n--O

BLOCK TOEPLITZ PRECONDITIONER 959

M-1N-1

FI,I,1 v3,i,j-" E E tl’M+m-i’N+n-jWm’n"
m=0 n=0

With (3.12), we have

io+qx jo q-qu

E E bi-io,J-joVl,i,J
i--io j--jo m--O n-j+jo L=O =o

=0,

for 0 <_ i0 _< M- 1

io+qx jo+qu

E E bi-io,J-joV2,i,J
i-.io j-jo

M-1 N-1 | qx qu

E E IE
m=i+io n=O Li=O j=o ,m-io-i,N+n-jo-j] Wm,n O,

for 0 <_ j0 _< N- 1 -7y; and

io+qz Jo+qv M-I N--1 qv

i=io j=jo m=O n=O Li= j=O

for 0 _< i0 _< M- 1 -7x or 0 < j0 < N- 1 -%.
By combining the above three equations, we have

io+q jo+qu

+ + 0,
i=io j=jo

for 0 < i0 <_ M-1-7 and 0_< j0 _< N-1-Ty. Therefore, the rank ofF1
Fl,,0 + F,0, + F,1,1 is at most M/y + N/z -/z/y. By using the symmetry, we can
argue that the rank of Fk -i,j Fk,i,j, k 2, 3, 4, is also at most M/y + N/-/xTy.
Consequently, the rank of/kE is at most 4(M/y + NT -’y/y) or, equivalently, /kE
has at least MN- 4(M/y + NT -/-yy) eigenvalues repeated at 0.

To conclude this section, we have the following theorem.
THEOREM 2. Let T be an MN MN block Toeplitz matrix satisfying (3.1), (3.2),

and (3.3) with qx > 0 and qy > O. Then, the preconditioned matrix R-IT has at least
MN- 4(M7 + N/y- /Ty) eigenvalues asymptotically converging to one.

4. Numerical experiments. Numerical experiments are performed to illus-
trate the spectra of T and R-T and the convergence behavior of the CG and PCG
methods. Note that the spectral clustering property derived in 3 does not require T
to be positive definite. However, we focus on positive-definite T in our experiments
so that the CG and PCG methods can be conveniently applied. For all test prob-
lems below, we choose M N and use (0,-.., 0)T and (1,..., 1)T as the initial and
right-hand-side vectors, respectively.

The first three test problems have positive rational generating functions in the
Wiener class.

Example 1. Rational separable Toeplitz with (Px, qx, Py, qy) (0, 2, 0, 2). The
T(z, zy) is of the form (3.4) with A(z) Ay(zy) 1,

Bx(z) (1 + 0.8z-)(1 0.7z-) and By(zy) (1 + 0.9z-1)(1 0.6z-).

960 TAKANG KU AND C.-C. JAY KUO

A(R-’T)

A(T)

M N 24, (R-’T) 2.6

M N 16, (R-’T) 2.6

M IV 8, (R-tT) 2.7

M N 24, (T) 6.4

M N 16, (T) 6.0

M=/V=S, (T)=4.S

0 2 4 6 I0 12

(a)

10-

10.n

&

10-8

10-

=16

=128
0 2 4 6 I0 12 14 16 18

No. of iterations

(b)

FIG. 3. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 1.

Example 2. Rational Toeplitz with (p, q, py, qy) (2, 0, 2, 0). The T(z, zy) is
of the form (3.3) with B(z, zy)= 1 and

A(z,Zy) 0.25 0.02(z-t + z 1) _{_ 0.015(z-2 + z2) + O.03z;lzy
-O.02z;tz(z;1 + z1) 0.01z;2z2.

Example 3. Rational Toeplitz with (p, q, py, qy) (0, 2, 0, 1). The T(z, zy) is
of the form (3.3) with A(z, Zy) 1 and

ZyB(zx, zy) 1 + 0.hz-1 0.3z-1 0.2z-2 0.1z-1 + 0.2z-2z-1.
We plot the corresponding spectra of T and R-1T, their condition numbers, and

the convergence history of the CG (dashed lines) and PCG (solid lines) methods in
Figs. 3(a),(b)-5(a),(b). Since the eigenvalues of T for Examples 1-3 all satisfy

0 < _< A(T) _< 62 < oc,

BLOCK TOEPLITZ PRECONDITIONER 961

(R-1T)

A(T)

M N 24, a(T) 2.0

103

10-a

10-

10-Is

(a)

"N=15,128
--16

0 2 4 10 12 14 16 18

No. of iterations

(b)

FIG. 4. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 2.

where (1 and 52 are constants independent of the dimensions M and N of the given
block matrix, the condition number a(T) is bounded by 52/51 O(1). Clearly, R-1T
has a smaller condition number and a better clustering feature than T. Consequently,
the PCG method performs better than the CG method.

One important difference between the separable and nonseparable cases is that,
as N becomes larger, the PCG method converges faster for the separable case but
more slowly for the nonseparable case. This can be easily explained by the analysis
given in 3. When T is separable, the number of clusters is fixed and the cluster-
ing radius e becomes smaller as N becomes larger. According to the analysis, R-1T
has asymptotically 25 (= (2x + 1)(2-),y + 1)) distinct eigenvalues, including isolated
outliers, clustered outliers, and clustered eigenvalues converging to 1. However, the
2-norm of the residual decreases rapidly in five iterations as given in Fig. 3(b). We ob-
serve an empirical formula for the separable case, namely, the PCG method converges

962 TAKANG KU AND C.-C. JAY KUO

A(R-IT)

A(T)

M N 24, (R-T) 3.4

16, (R-T) 3.4

M N 8, (R-1T) 4.7

M=/V=24, a(T)=

M N 16, (T) 5.4

M N 8, (T) 4.4

l0

10

10

10-z

10-o.
0

(a)

FIG. 5. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 3.

asymptotically in xy + 1 iterations. This phenomenon is closely related to the point
Toeplitz result [10], where we found that although there are asymptotically 2x + 1
distinct eigenvalues, the PCG method converges asymptotically in 7x + 1 iterations.
When T is nonseparable, the number of outliers increases with N. Although the PCG
method converges more slowly for larger N, the effect is not obvious until the 2-norm
of the residual is very small. Besides, the convergence curves are getting closer for
larger N. This indicates that the number of PCG (or CG) iterations required is O(1),
which is determined by the condition number rather than the number of outliers.

A block Toeplitz with a nonrational generating function is given in Example 4.
Example 4. Nonrational Toeplitz. The block Toeplitz matrix is generated by a

spherically-symmetric sequence

tm,n 0.7/m+n q- 0.5v/m2+n -- 0.3v’m+’

BLOCK TOEPLITZ PRECONDITIONER 963

A(R-’T)

(T)

M N 24, (R-tT) 10.8

M N I6, (R-T) iO.i

M N 8, (R-’T) 15.4

M N 16, (T) .53.3

M N 8, (T) 34.4

0 10 20 30 40 50 60

(a)

10

10-2

10

I0-14

10 15 20 25 30

No. of itevatiom

(b)

FIG. 6. (a) Eigenvalue distribution of T and R-1T and (b) convergence history for Example 4.

The spectra of T and R-1T and the convergence history of the CG and PCG
methods are plotted in Fig. 6. Although our analysis in 3 is restricted to the rational
generating function case, it appears that this case does not differ much from the
rational case. The PCG method converges faster than the CG method due to a
smaller condition number and a better spectral clustering property of R-1T. The
condition numbers of T and R-1T are again O(1) so that the number of PCG (or
CG) iterations required is O(1), which is consistent with the observation that the
convergence history curves are getting closer for larger N.

For the above four problems, T is well conditioned, i.e., (T) O(1), so that the
condition number reduction through preconditioning is just a constant factor. To see
a more dramatic condition number improvement, let us consider an ill-conditioned
block Toeplitz below.

Example 5. Ill-conditioned Toeplitz with (Px, qx, Py, qy) (2, 0, 2, 0). The block

964 TAKANG KU AND C.-C. JAY KUO

Toeplitz is characterized by the two-dimensional mask:

(-1)

0.01 0.02 0.04 0.02 0.01
0.02 0.04 0.12 0.04 0.02
0.04 0.12 -1 0.12 0.04
0.02 0.04 0.12 0.04 0.02
0.01 0.02 0.04 0.02 0.01

Note that the sum of the coefficients of the mask is zero. Masks of this nature
arise in the discretization of constant-coefficient elliptic partial differential equations.
However, the preconditioning block circulant matrix R is singular for this problem,
since Rw 0 for w (1, 1,..., 1, 1)T. In order to perform the preconditioning
properly, we modify the preconditioner R slightly by replacing the zero eigenvalue
with the smallest nonzero eigenvalue of R in our experiment.

The spectra of T and R-1T, the convergence history of the CG and PCG meth-
ods, and the number of iterations required for the 2-norm of the relative residual less
than 10-I2 are plotted in Fig. 7 (a)-(c). As shown in Fig. 7(a), the condition num-
bers of T and R-IT increase at the rates of O(N2) and O(N), respectively. Thus,
the preconditioning provides an order of condition number improvement. A detailed
analysis for the improvement of conditioned number from O(N2) to O(N) is given in
[4]. We see from Fig. 7(c) that PCG and CG methods converge in O(v/-) and O(N)
iterations, respectively.

As far as the computational complexity is concerned, both the PCG and CG
methods require O(N2 log N) operations for Examples 1-4, where the condition num-
.bers of T and R-1T are O(1). For Example 5, the PCG and CG methods require,
respectively, O(N5/2 log N) and O(N3 log N) operations. For all above test problems,
the PCG and CG methods require much lower computational complexity than the
direct method, which requires O(N5) operations.

5. Conclusion. In this research, we extended the preconditioning technique
from point Toeplitz matrices to block Toeplitz matrices. We interpreted the block
Toeplitz matrix-vector Tw in terms of a two-dimensional constant-coefficient mask
operating on a certain two-dimensional sequence construction based on w. This view-
point provides a natural way to analyze the spectral clustering property of R-1T. For
block Toeplitz matrices T generated by two-dimensional rational functions T(zx,
of order (px, q, py, qy), we showed that the eigenvalues of R-1T are clustered around
unity except at most O(M"/y + NT) outliers, where 7 max(p,qx) and y
max(py, qy). Furthermore, if T is separable, the outliers are clustered together such
that R-1T has at most (2 + 1)(27 + 1) asymptotic distinct eigenvalues. Thus,
R-IT has a better spectral clustering property than T. Additionally, it was shown
numerically that R-1T generally has a smaller condition number than T. These two
spectral properties explain the superior convergence behavior of the PCG method
over the CG method.

For point rational Toeplitz matrices, the number of outliers is often small (=
2max(p, q)) and independent of the size of the problem .so that it can be used to
characterize the convergence rate of the PCG method. However, for block rational
Toeplitz matrices, the number of outliers is proportional to the size of the problem, and
is often too large to be useful for characterizing the convergence behavior of the PCG
method. Hence, we have to examine both the condition number improvement and
the spectral clustering effect. More research on the adaptation of the preconditioning
technique to more general classes of block Toeplitz matrices, such as indefinite or

BLOCK TOEPLITZ PRECONDITIONER 965

(R-1T)

(T)

24, R-T) 12.9

M=/V=16, a(R-T)=

M N a, (R-T) 4.8

M N 24, (T) 65.8

M N 16, (T) 31.1

M N 8, (T) 9.4

10-2 10-t 10 10t

(a)

...................:":"-":::..--:
10.N=:(....................N=32
10.t

c N=I6

10-55
=16

0 10 20 30 40 50 60

No. of iterations

(b)

103

10

CG

l0
101 102 103

N

FIG. 7. (a) Eigenvalue distribution ofT and R-1T and (b) convergence history and (c) con-

vergence rate oJ’ CG and PCG method for Example 5.

966 TAKANG KU AND C.-C. JAY KUO

nonsymmetric problems and the spectral analysis of the preconditioned matrices, is
expected in the future.

REFERENCES

[1] O. AXELSSON AND G. LINDSKOG, On the rate of convergence of the preconditioned conjugate
gradient method, Numer. Math., 48 (1986), pp. 499-523.

[2] E. H. BAREISS, Numerical solution of linear equations with Toeplitz and vector Toeplitz ma-
trices, Numer. Math., 13 (1969), pp. 404-424.

[3] R. H. CHAN, Circulant preconditioners for Hermitian Toeplitz system, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 542-550.

[4] R. n. CHAN AND W. F. CHAN, Circulant preconditioners for elliptic problems, Tech. Report,
Department of Mathematics, University of California, Los Angeles, CA, Dec. 1990.

[5] R. H. CHAN AND G. STRANG, Toeplitz equations by conjugate gradients with circulant precon-
ditioner, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 104-119.

[6] T. F. CHAN, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 766-771.

[7] L. F. CHAPARRO AND E. I. JURY, Rational approximation of 2-D linear discrete systems,
IEEE Trans. Acoust., Speech Signal Process., 30 (1982), pp. 780-787.

[8] W. HUCKLE, Circulant and skew-circulant matrices for solving Toeplitz matrices problems, in
Cooper Mountain Conference on Iterative Methods, Cooper Mountain, Colorado, 1990.

[9] J. H. JUSTICE, A Levinson-type algorithm for two-dimensional Wiener filtering using bivariate
Szeg5 polynomials, Proc. IEEE, 65 (1977), pp. 882-886.

[10] T. K. Ku AND C. J. Kuo, Design and analysis of Toeplitz preconditioners, Tech. Report 155,
Signal and Image Processing Institute, University of Southern California, May 1990; IEEE
Trans. Signal Processing, 40 (1992), pp. 129-141.

[11] , Spectral properties ofpreconditioned rational Toeplitz matrices, Tech. Report 163, Signal
and Image Processing Institute, University of Southern California, Sept. 1990; SIAM J.
Matrix Anal. Appl., 13 (1992), to appear.

[12] B. C. LEVY, M. B. ADAMS, AND A. S. WILLSKY, Solution and linear estimation of 2-D
nearest-neighbor models, Proc. IEEE, 78 (1990), pp. 627-641.

[13] T. L. MARZETTA, Two-dimensional linear prediction: Autocorrelation arrays, minimum-phase
prediction error filters, and reflection coejficient arrays, IEEE Trans. Acoust., Speech,
Signal Process., 28 (1980), pp. 725-733.

[14] J. RISSANEN, Algorithm for triangular decomposition of block Hankel and Toeplitz matrices
with application to factoring positive matrix polynomials, Math. Comp., 27 (1973), pp. 147-
154.

[15] G. STRANG, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp. 171-
176.

[16] L. N. TREFETHEN, Approximation theory and numerical linear algebra, in Algorithms for
Approximation II, M. Cox and J. C. Mason, eds., Chapman and Hall, London, 1988.

[17] G. A. WATSON, An algorithm for the inversion of block matrices of Toeplitz form, J. Comput.
Mach., 20 (1973), pp. 409-415.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 967-993, July 1992

() 1992 Society for Industrial and Applied Mathematics
OO8

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT*

WILLIAM D. GROPPt AND DAVID E. KEYES$

Abstract. A preconditioned Krylov iterative algorithm based on domain decomposition for
linear systems arising from implicit finite-difference or finite-element discretizations of partial dif-
ferential equation problems requiring local mesh refinement is described. To keep data structures
as simple as possible for parallel computing applications, the fundamental computational unit in
the algorithm is defined as a subregion of the domain spanned by a locally uniform tensor-product
grid, called a tile. In the tile-based domain decomposition approach, two levels of discretization are
considered at each point of the domain: a global coarse grid defined by tile vertices only, and a local
fine grid where the degree of resolution can vary from tile to tile. One global level and one local level
provide the flexibility required to adaptively discretize a diverse collection of problems on irregular
regions and solve them at convergence rates that deteriorate only logarithmically in the finest mesh
parameter, with the coarse tessellation held fixed. A logarithmic departure from optimality seems
to be a reasonable compromise for the simplicity of the composite grid data structure and concomi-
tant regular data exchange patterns in a multiprocessor environment. Some experiments with up
to 1024 tiles are reported, and the evolution of the algorithm is commented on and contrasted with
optimal nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational
comparisons with some other popular methods are presented.

Key words, domain decomposition, elliptic problems, parallel algorithms, mesh refinement

AMS(MOS) subject classifications. 65N20, 65F10, 65W05

1. Introduction. The combination of domain decomposition with precondi-
tioned iterative methods provides a framework that extends the usefulness of numeri-
cal techniques for certain special partial differential equation (PDE) problems to those
of more general structure. Nonsmooth features, nonseparable geometries, or massive
sizes of practical problems limit the application of many "standard" numerical tech-
niques. Direct methods are rapidly defeated by problem size. "Fast" methods that
take advantage of special coefficient and grid structure often do not apply globally.
Iterative methods often depend, for efficient implementation, on regular grids that,
if global in extent, are inconsistent with accurate and economical resolution of the
physics of the problem. However, the domains of problems with these features can of-
ten be decomposed into smaller subdomains of simpler structure, increasing the utility
of extant software libraries, particularly as components of preconditioners. Moreover,
the domain decomposition can be made to produce a convenient mapping of many
problems onto medium-scale parallel computers. Our primary focus in this paper is
the incorporation of spatially varying mesh refinement requirements into a domain
decomposition algorithm based on finite differences. We illustrate the convergence
behavior of the algorithm on a variety of two-dimensional elliptic PDE problems,

(1) :u- f on , with au + bun g on dt,

Received by the editors September 13, 1989; accepted for publication (in revised form) April
23, 1991.

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois
60439-4844. The work of this author was supported by the Applied Mathematical Sciences sub-
program of the Office of Energy Research, U.S. Department of Energy contract W-31-109-Eng-38.

Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520-2159.
The work of this author was supported by the National Science Foundation under contracts EET-
8707109 and ECS-8957475. This work was performed in part while the author was visiting the
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439-
4844.

967

968 WILLIAM D. GROPP AND DAVID E. KEYES

including nonselfadjoint, nonseparable geometry cases. We also point out features
of the method that are relevant to a parallel implementation. We defer most dis-
cussion that would be distinctly architecture- and performance-related to a companion
paper [27].

Many PDE problems that are "large" in the discrete sense are so because the con-
tinuous problems from which they are generated require resolution of several different
length scales for the production of a meaningful solution. The value of compromis-
ing between the extremes of globally uniform refinement (which leads to simple and
usually vectorizable algorithms but wastes time and memory) and pointwise adaptive
refinement (which minimizes the discrete problem size for a given accuracy require-
ment but leads to complicated data structures) has been recognized for some time
and described in contexts too numerous to acknowledge fairly. Locally uniform mesh
refinement (LUMR) characterizes one such class of discretizations, based on com-
posites of highly structured subgrids. Many treatments of LUMR in the literature
pertain to explicit methods for transient problems, a class with its own advantages
(see [4] and references therein) and limitations [45], which is somewhat distinct from
ours. Implicit treatments of locally regular refinement for elliptic problems include
approaches arising out of classical multigrid ([8]; see [38] for a concise state-of-the-art
treatment), a nonconforming spectral technique [35], and methods rooted in iterative
substructuring for finite-element problems [6], [16].

Computationally practical locally uniform grids are usually expressible as the
union of a coarse uniform tensor-product grid covering the entire domain with one or
more refined tensor-product grids defined over subregions, including the possibility of
multiple, nested levels. Generalizations of these grids within the LUMR framework
include allowing the grids at any particular level of refinement to themselves be the
union of tensor-product subgrids, and reinterpreting "uniform" as "quasi-uniform" to
allow general curvilinear coordinates for custom body- or solution-fitting. Few parallel
implementations of schemes of this generality have been reported thus far. Selected
for consideration here is a structurally restricted form of LUMR in which refinement
occurs exclusively within complete cells of a quasi-uniform coarse grid, as described
in 3 below.

The goal of the present contribution is an LUMR methodology with starkly simple
data structures for efficient portability to a variety of parallel machines. Current im-
plementations on two distributed- and two shared-memory parallel machines share ap-
proximately 98 percent common code measured by line count, inclusive of comments,
exclusive of standard libraries. The methodology borrows from the mesh refinement
and domain decomposition literature and from the authors’ own experience in these
areas and in parallel computation [23], [24], [34]. The serial arithmetic complexity
bows somewhat to modularity, portability, and overall parallel performance, in which
we include both efficiency and total execution time. For example, by refining only in
units of full coarse-grid cells, we often impose a tendency towards refinement in sub-
regions where it would be unnecessary from the viewpoint of truncation error alone.
As another example, the convergence rate of many domain decomposition algorithms
is mildly dependent upon a coarse-grid resolution which may be chosen with criteria
beyond convergence rate, such as the balance of work among multiple processors. Our
algorithm therefore does not scale (with constant problem size) to indefinitely large
numbers of processors, but it does sit comfortably on today’s MIMD supercomputers.
We comment in the final section about a hybridized two-level algorithm suitable for
massive parallelism on an MIMD cluster of SIMD subclusters.

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 969

Prior to the discussion of LUMR, 2 describes a domain decomposition algorithm
employing "nearly" parallel preconditioners in conjunction with generalized minimal
residual (GMRES) iteration, a nonstationary method not dependent upon operator
symmetry. In two dimensions, the preconditioner involves three phases: a global
coarse-grid solve, independent solves along interfaces between subdomains, and inde-
pendent solves in the subdomain interiors. The global coarse-grid solve is an essential
feature, as it provides the only global exchange of information in the preconditioner
itself. We introduce a simple "tangential" operator preconditioning for the subdomain
interfaces that is preferable to the interface probe preconditioning advocated in our
earlier work on convective-diffusive systems with stripwise decompositions [32]. We
also prefer exact subdomain solves to incomplete factorizations. These "exact solves"
can be performed by multigrid if the subdomains become too large for direct methods.
For multicomponent problems in which source terms codominate with convection and
diffusion, block incomplete factorization may also be an economical subdomain solver.

The main body of the paper (4) is a collection of numerical experiments on
two-dimensional elliptic boundary value problems (BVPs). The experiments include
reentrant domains, nonselfadjoint operators, and mixed boundary conditions. Up
to 1,024 coarse-grid elements, called tiles, are used. The last two subsections of
4 compare the boxwise decompositions used throughout the paper with stripwise
decompositions exploiting physical anisotropies, as well as with some conventional
undecomposed solvers.

Section 5 indicates some future directions for this methodology.

2. An iterative domain decomposition algorithm. Preconditioned iterative
methods and domain decomposition provide a framework that includes a wide class
of algorithms. This framework comprises four elements:

1. a global operator arising from the discretization of the PDE (or system of
PDEs);

2. an approximate inverse, or preconditioner, for the global operator;
3. an iterative method requiring only the application of the preconditioned op-

erator; and
4. a geometry-based partition of the discrete unknowns so that size, locality,

and uniformity can be exploited in forming the action of the preconditioned operator.
Since the numerical analysis literature contains many successful discretization schemes
and iterative methods specialized for different operator properties, such as the pres-
ence or absence of definiteness and symmetry, the recent burgeoning effort in iterative
domain decomposition algorithms has concentrated primarily (though not exclusively)
on the interaction of the second and fourth of these elements. In the parallel context,
this is a natural preoccupation because the bottleneck to parallelism usually (though
not exclusively) lies in the requirement of the global transport of information in the
preconditioner.

2.1. Iterative methods and operator structure. Many of the numerical ex-
amples described in 4 rule out the use of iterative methods based on symmetry but
permit the assumptions of definiteness and diagonal dominance. In particular, full or
incomplete factorizations of preconditioner matrix blocks can be undertaken without
pivoting. Because of its robustness, we adopt the parameter-free generalized minimal
residual (GMRES) method [43] as the outer iteration. The main disadvantages of
GMRES, its linear and quadratic (in iteration index) memory and execution time
requirements, respectively, must be mitigated by scaling and preconditioning. For
other acceleration schemes, such as Chebyshev, the memory and execution time re-

970 WILLIAM D. GROPP AND DAVID E. KEYES

quirements may be only constant and linear, respectively; however, GMRES dispenses
with the difficulty of estimating parameters. The recently proposed, parameter-free,
bounded recursion Bi-CGSTAB method [14] combines the above-mentioned advan-
tages and deserves further study. In preliminary tests we have found it usually to
be competitive in execution time with GMRES, but it can in some instances be sub-
stantially slower. Other methods for the iterative solution of nonsymmetric systems,
such as QMR [21], also deserve broader investigation. In solving Au b each of these
methods requires an initial iterate for x that it improves through repeated calls to a
routine forming the product of A with a direction vector. For improved convergence
we employ a change of variables, iteratively solving (AB-1)y b for y and then
Bx y for x. Here, B is a right preconditioner matrix, whose inverse action should
be convenient to compute and should cluster the eigenvalues of AB-. A arises from
an FD, FE, or FV discretization, with a local stencil. The stencil is regarded as
uniform in this section and generalized in 3.

The type of domain decomposition used here involves unit aspect ratio subdo-
mains, as opposed to thin strips joining opposite sides of a domain; therefore, interior
subdomain vertices are created. We denote all subdomain vertices "cross points" but
distinguish between interior and boundary cross points. Ordering the interior points
as well as the physical boundary points other than cross points first, the interfaces
connecting the cross points plus the cross points on the boundary next, and the in-
terior cross points last imposes the following outer tripartition on the global discrete
operator A:

(2) A_
A. AIB Axc)ABI AB ABC
AcI ACB Ac

Note that the partitions vary greatly in size. If H is a quasi-uniform subdomain diam-
eter and h a quasi-uniform fine-mesh width, the discrete dimensions of Ax, Ae, and
A are O(h-2), O(H-lh-i), and O(U-2), respectively. The numerical experiments
described below employ a five-point stencil (extended in [33] to second-order upwind
differencing with a skew six- or seven-point stencil). No cross-derivative terms appear;
therefore, there are no corner points in the stencil and blocks AIc and AcI may be
set to zero.

The outer structure of our preconditioner B may be a conformally partitioned
block upper triangular matrix:

(3) B 0 Be Aec
0 0 Be

whose components are elucidated in the next subsection. The application of B- to a
vector v (v., vB, VC)T consists of solving Bw v for w (wI, we, wc)T. It begins
with a cross-point solve with Bc for we. This updates through BC the right-hand
sides of a set of independent interface solves for subvectors of we. These, in turn,
update the right-hand sides through -B of a set of independent interior solves for
subvectors of wi. For a stencil with corner points, f4ic would be nonzero, and the
cross-point result would also update the interior block right-hand sides. Within the
preconditioner, however, there is no dependence of the interface solution upon the
result of the interior solution, or of the cross-point solution upon either. This fact

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 971

distinguishes the method from [7] and [10] and means that the O(h-2)-sized block of
the preconditioner is visited only once per iteration.

A useful optimization is available when the tilde quantities in the top row are
taken equal to their tilde-free counterparts. In this case, it is readily verified that the
right-preconditioned form of the operator is

(4) AB-1
I 0

* (AB ABIA-[1AIB)B[
0

0)(Ac AcBBIftBc)B
where the starred blocks are nonzero (and not necessarily small). The identity block
row means that O(h-2) of the unknowns in the Krylov vectors can go untouched
(except for scaling) throughout the entire solution process until the preconditioning is
unwound in the final step, after the interface and cross-point values have converged.
Since A- is needed to advance the solution on these separator sets, we cannot entirely
escape solving subdomain problems, but substantial arithmetic work can be saved.

2.2. Components of the preconditioner. The derivation of the coefficients
of the preconditioner blocks is as follows. The cross-point operator Be is simply an
H-scale coarse-grid discretization of the continuous PDE. To accommodate Neumann
or Robin boundary conditions, we include physical boundary points lying at subdo-
main vertices in the cross-point system in this step. (Later the boundary cross-point
values are overwritten with the results of more accurate h-scale data from the inter-
face solve. This distinction is, of course, moot for Dirichlet data but important for
boundary conditions involving spatial gradients.) The cross-point system right-hand
side at interior points can be taken as the injected vertex values of the fine-grid right-
hand side, though we remark on a better choice below. The current implementation
supports a direct solve on the coarse-grid system. If strip decompositions are used,
there is no cross-point system, and the lower right block of the preconditioner consists
only of the interface system described next.

Unlike the coarse-grid and subdomain interior problems, which possess the full
physical dimension of the domain of the underlying PDE and thus inherit a litera-
ture full of preconditionings, the lower-dimensional interfacial equations are properly
derived from a pseudodifferential trace operator. (See [5, 3] for an informal theory.)
The tangential interface preconditioner we employ below is the one-dimensional dis-
cretization of the terms of the underlying operator that remain when the derivatives
normal to the interface are set to zero. It is equivalent to solving a two-point BVP
with boundary conditions inherited from the interior cross-point values or from the
physical boundary.

The subdomain interior equations consist of approximate fine-grid discretizations
of the PDE over local regions, with physically appropriate boundary conditions along
any true boundary segments and Dirichlet boundary conditions derived from the
ready available WB at artificial interfaces. Only first-order interior differences are
accommodated in the physical boundary conditions of the preconditioner, though
first- or second-order boundary conditions may be elected in the operator A. The
current implementation supports full LU Gaussian elimination with both banded and
sparse data structures, fast cyclic reduction, incomplete LU decomposition, and mod-
ified incomplete LU decomposition. To maintain a reasonable scope, we concentrate
on full elimination results here. Full elimination on the interiors yields the best iter-
ation counts, although not always the best execution times (for large H/h). Like the
interface solves, each subdomain interior solve may be performed independently.

972 WILLIAM D. GROPP AND DAVID E. KEYES

2.2.1. A better variant of the cross-point system. In keeping with an ex-
position that is as independent as possible of particular discretization techniques, the
right-hand side of the cross-point system was assumed above to be the injected vertex
values of the fine grid weighted by the subdomain areas instead of the grid-cell areas.
It is necessary, however, to rely on a finite-element discretization with a hierarchi-
cal basis to properly motivate the construction of a better cross-point system. In
particular, we have obtained faster convergence by using the function space decom-
position approach of [7], which yields essentially the same coefficient block Bc but
replaces the simple injection of fine-grid values with ramp-weighted averages of inter-
face values along all interfaces feeding a given cross point. Specifically, the element
of the right-hand side vc corresponding to an interior subdomain vertex is a discrete
approximation to one-quarter of the sum of four line integrals of the form

(5) - v(s) 1-- ds,

where s parameterizes the interfaces leading from the vertex in question. This leads
to the following sequence of steps to produce a preconditioned matrix-vector product
u from input v, where v (vi, Vs, vc)T:

First, vc is reweighted according to (5). The reweighting has the matrix repre-
sentation v Cv, where

C= 0 I 0
0 K J

J is diagonal with all positive elements, all elements of K are nonnegative, and the
row sums of K and J together give unity. Then, as above, we solve for w B-iv
and multiply by A to get u Aw. Thus, the preconditioned matrix-vector product is
u AB-1Cv. Treating everything apart from A itself as the effective preconditioner
Q, we find that Q-I B-IC, or equivalently, Q C-B, which is straightforwardly
seen to be

Q 0 BB ABC
0 -J-KBB J-(Bc KBC)

When tilde-free quantities are used in the first block row, AQ-1 has a first block
row equal to the identity. Thus, the remark following (4) about not touching the
upper portion of the Krylov vectors, except for scaling, remains valid. Although the
preconditioner with ramp weighting of the right-hand side of the cross-point system is
no longer strictly block triangular, it still requires only one solve with AI per iteration.

2.3. Parallelism in the preconditioner. We note that the permutation into
block matrix form described in this section is a purely formal one for notational
convenience. The data structure used in a computer implementation is a local natural
ordering of gridpoints within a natural ordering of tiles, as detailed in 3 below. The
parallelism within I and BB is not visible at the level of blocking in (3), but the
parallel bottleneck represented by communication-intensive Be and the sequential use
of that result in multiplications with tsc (and, generally, IC) blocks is evident. We
mention variants of the algorithm that alleviate this bottleneck at the price of some
extra local work and extra storage.

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 973

The solve with Bc itself can be performed in any of three ways: redundantly on
each processor after broadcasting the required coefficient data, with single-threaded
code between collecting the coefficients on a single processor and redistributing the
results, or in a fully (or partially) distributed fashion. Determination of the most
efficient technique is generally decomposition- and network-dependent, since prob-
lem size and computation-to-communication ratios enter the complexity estimate in
nonisolable ways. Some global data exchange is necessary in this phase, so it may
be desirable to prevent idling on a given multiprocessor to allow the remaining local
exchange phases to proceed before the cross-point results are available.

The sequentiality of the cross-point solve can be broken by the following technique,
which exploits the relatively small size of the cross-point system. Lumping the balance
of the unknowns together, let (3) be condensed to

B- (BhO BhH

where Bh contains the upper 2 2 blocks of (3), and BH is just another name for
Bc. Consider the application of the preconditioner

with the sequential solution

WH BIlVH,
w, B; (v, B,w).

A preprocessing step can compute and store the vectors gk (B-l)(BhH)ek, k
1,..., K, where there are K interior cross points and ek is the kth unit vector in

this K-dimensional space. Once WH BlvH and W(h1) Blvh are independently
(1)solved for, we can (through local computations) form Wh wh -k(WH)kgk. By

construction, the support of each gk is limited to the four tiles sharing vertex k, and
the cross points possess a four-coloring that allows the gk to be computed in just four
sets of independent subdomain solves (for a scalar PDE). This process was inspired
by, and has an interpretation in terms of, function space decompositions. Indeed, the
function space framework is critical in generalizations to multilevel preconditioners,
but for a two-level preconditioner the algebraic description above is sufficient.

3. Mesh refinement by tiles. This section describes a simple mesh refinement
philosophy based on a regular tessellation of two-dimensional domains into subdomain
"tiles." A tile is a tensor-product of half-open intervals in each coordinate direction,
except that a tile abutting a physical boundary along what would ordinarily be one of
its open edges is closed along that edge. Each tile possesses its own interior, at least
two of its four sides, and at least one of its four corners and is locally discretized on
a tensor-product grid. Although the specific convention is arbitrary, we assume for
definiteness that in its own local right-handed coordinate system, each tile contains
its origin and its x and y axes (see Fig. 1).

We require that the cross points be embeddable in a tensor-product global quasi-
uniform coarse grid, from which only points lying exterior to the (possibly multiply
connected) boundary are missing. Irregular tiling patterns such as in Fig. 2(b) are
ruled out for convenience in setting up the coarse-grid system and keeping the code

974 WILLIAM D. GROPP AND DAVID E. KEYES

FIG. 1. The anatomy of a tile. Unless closed by a physical boundary, a tile is open along its
high-x and high-y perimeter.

() (b)

FIG. 2. Sample tessellations: (a) is permissible, (b) is not.

that manages the interfacial data exchanges short. However, there is no requirement
that the domain itself be of tensor-product type; the decomposition in Fig. 2(a) is
permissible. Without coordinate stretching and other body-fitted coordinate trans-
formations, the embedding requirement would generally enslave the granularity of the
decomposition to the geometric complexity of the domain, a situation that we wish
to avoid since granularity has important implications on load balance and conver-
gence rate. Although we have yet to fully implement them, domain-wide coordinate
transformations represent a simple extension in principle. From an algebraic point of
view, an orthogonal body-fitted coordinate transformation is indistinguishable from a
perturbation to the operator coefficients. Preserving orthogonality should create less
of a strain on a mesh generator acting over local regions than it does in much current
practice using global mappings.

Associated with each tile is the data defined over a quasi-uniform grid covering
its portion of the domain, and a set of operators for executing its block-row portions
of the preconditioner solve, as described in 2. In our object-oriented approach, these
operators can vary widely from tile to tile. In our present examples, however, we
assume that the grids covering individual tiles share a common parent uniform tile
(of arbitrary discrete size) and are refined only in powers of two. We can therefore
later indicate refinement levels using the graphical shorthand of Fig. 9, where the

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 975

.

FIG. 3. Sample tile, showing the computational buJer region (dashed extensions) required for
the completion of standard five-point stencils centered at the points of the local grid.

integer indicates the logarithm of the refinement ratio.

3.1. Tile-tile interfaces. To minimize restrictions on the structure of adjacent
tiles (and to eliminate redundant communication between tiles in a multiprocessor
implementation in which different tiles will generally be assigned to different proces-
sors), each tile stores and maintains, in addition to its own data, the data associated
with a buffer region of phantom points equal in width to one-half of that of its associ-
ated discrete stencil. Figure 3 illustrates the buffer unknowns for a five-point stencil,
superimposed on Fig. 1. With the exception of these redundant phantom points, each
point of the domain is uniquely associated with a single tile.

Data at the phantom points is supplied in a manner dependent upon the in-
ternal structure and refinement ratios of the associated adjacent tiles. A finer tile
obtains biquadratically interpolated data from its coarser neighbor. Since the prob-
lems studied here involve second-order operators, this allows the use of conventional
finite-difference techniques in generating the difference equations at the subdomain
interfaces. (Bilinear interpolation alone would limit the potential accuracy of a second-
order differencing scheme, as observed in some preliminary experiments.) A coarser
tile obtains its data by simple (unweighted) injection. That is, the value at the point
in the finer neighboring tile that lies on the extended coarser tile stencil is scaled
appropriately and used in the coarser grid.

We note that such a simple scheme neither guarantees discrete flux conservation
nor delivers a symmetric A for a selfadjoint . However, the algebraic method does
not depend on either property. The focus of this paper is on the solution of a consistent
set of discrete equations. More careful attention has been given to the conservation
properties of the discretization in the context of locally regular refinement in [19] and
[38], for instance.

Each iteration of GMRES requires multiplying with A, which involves at most
nearest-neighbor data exchanges between tiles to complete the local stencils, and
solving with B, which likewise requires only nearest-neighbor data exchanges to form
right-hand sides, apart from the globally cooperative task of solving with Be.

The selection of refinement criteria is a much studied, yet still open, problem;
see [30] and the collections [2] and [20] for representative work in this area. The
refinement criteria, however, are orthogonal to the equation-solving aspect considered
here, except to the extent that a part of the computational work required by one of

976 WILLIAM D. GROPP AND DAVID E. KEYES

these tasks may be a by-product of the other. In the examples, "good" refinement
strategies can be done manually.

In general, tile interfaces can also be the site of changes in the discretization in
addition to the refinement level. For instance, the discrete stencil can change order
at interfaces. Even the form of the operators or the number of dependent variables
can change at interfaces while still preserving the subdomain uniformity required for
efficient subdomain solution algorithms. As a motivational example, a reacting flow
problem frequently consists of large regions in which there is only transport of mass,
momentum, and thermal energy but no reaction among stable constituents to all
adequate orders of approximation. In other regions it is essential to retain a full set
of composition variables, including trace radicals, and reaction terms must also be
retained in the equations. To accommodate such generality, the routines that pack
the buffer regions are responsible for providing the necessary mappings.

3.2. Physical boundaries. For generality, the equations for the physical bound-
aries are incorporated into the overall system matrix, including Dirichlet conditions.
Our implementation allows inhomogeneous Robin boundary conditions at all bound-
ary points, namely,

u)a(x, y)u -+- b(x,

Either first- or second-order one-sided difference approximations to the normal deriva-
tive term may be employed in the actual operator, but only first-order approximation
is used in the preconditioners (to preserve uniformity of bandwidth). Although tempt-
ing in their simplicity, Dirichlet boundary conditions alone in the preconditioner were
found to perform poorly in practice in mixed boundary condition (BC) problems, as
expected. The hierarchical structure of the preconditioner renders the BC mismatch
between the operator and preconditioner difficult to study theoretically. The theory
in [36] and [40] reveals that spectral equivalence is generally lost in such BC mis-
matches, but only a small number of eigenvalues of the preconditioned operator may
be responsible.

3.3. Comparison with other approaches. Before appealing to numerical ex-
perimention to illustrate the techniques presented above, we briefly compare them
with other known techniques arising from similar motivations.

The field of locally uniform mesh refinement is spanned by a continuum of reso-
lution strategies governed by clustering rules that control the size and shape of the
refined subregions. Global refinement lies at one extreme and pointwise adaptive re-
finement at the other. As soon as the global tensor-product mesh is abandoned, a
host of difficult practical decisions must be made about data structures and clustering
algorithms. The logic required to handle the numerous types of subgrid-subgrid inter-
actions that can arise and to ensure the consistency of the possibly distributed data
structure can be a significant impediment to efficient parallelism. It is impractical
to use domain-based "horizontal" decompositions to obtain distributed parallelism if
refined subgrids are allowed to span the coarse grid in a general nested fashion. In-
stead, parallel decompositions of general, multilevel, locally uniform, composite grids
should proceed by level, as argued and implemented in [37]. However, "horizontal"
neighbor-neighbor interactions on a tensor-product grid of individually refined tiles
are simple.

The tile algorithm requires only one grid that possesses connectivity with arbitrar-
ily distant regions of the domain, namely, the grid of cross points. In the framework

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 977

FIG. 4. One-dimensional schematic of the tile basis functions.

of the hierarchical basis function technique [3], [47], we have simply a two-level hi-
erarchy, but the higher level may be different in different subregions. Figure 4 is
a one-dimensional illustration. This represents a severe condensation of the range
of intermediate scales present in multilevel local uniform refinement, on which the
asymptotic convergence theory is based. Tiles are much closer to being the software
equivalent of the "geometry-defining processors" (GDPs) of [1]. The tile algorithm
shares the philosophy of commercial structural analysis packages offering libraries of
elements that an engineer can assemble in composing a domain, although comparably
transparent user interfaces have yet to be written. Unlike most structural analysis
packages, no global linear system involving all of the degrees of freedom is formed,
nor is an exact Schur complement derived through the expensive process of static
condensation. Rather, an iterative path to parallelism is elected.

In the latter respect, the tile algorithm is similar to the original additive Schwarz
method [15] and the techniques of [7]. All three rely upon a single, coarse-domain-
spanning grid. The main differences between the techniques of [7] and [15] and the tile
algorithm are in the treatment of the interfacial degrees of freedom. In the additive
Schwarz technique, interior problems are solved on extended overlapped subdomains,
so that the interfacial degrees of freedom of one subdomain are interior points of
another and thus demand no special consideration. In [7], good preconditioners for
the interfacial degrees of freedom of abutting subdomains are derived theoretically
for selfadjoint operators. Near optimal algebraic convergence for the refined case has
been proved for both classes of algorithms in [16] and [6], respectively, for selfadjoint
systems. For nonselfadjoint systems, convergence proofs for the uniformly refined case
have been given in [9] and [11] for overlapping and in [10] for abutting decompositions,
respectively.

A disadvantage shared by all two-scale approaches is that the coarse grid--on
which the optimal approaches perform an exact solve, and on which we also prefer
one--cannot necessarily remain as coarse as one might like. In contrast, multilevel
methods are not held hostage to a fine "coarse" grid. Even so, multilevel convergence
estimates for nonselfadjoint operators are aided by sufficiently fine coarse grids, and
complex domain geometry or "ragged" coefficients can also make a fine coarse grid

978 WILLIAM D. GROPP AND DAVID E. KEYES

(1,1)

(3/8,1/2)

(7/8,1)

(o,o) (o,o) (o,o)

(1,1)

(a) (b) (c)

FIG. 5. The three domains considered in this paper.

desirable in practice.
General multilevel methods with a number of levels substantially larger than two

maintain their optimal convergence rates at the price of increasingly complex data-
dependency patterns with attendant degradation on multiprocessor architectures and
intricacy of coding in practical problems. The additive or asynchronous methods [38]
relieve most of the interlevel data traffic but do not obviate the need to collect data
vertically across the levels at each iteration. The ability of a two-level approach to
obtain convergence rates only a log factor worse than optimal is demonstrated in

4. Compelling overall superiority of approaches with a greater richness of scales has
not been established in production-parallel software. In the course of establishing it,
experience on parallel computers with a two-level algorithm will be beneficial and will
aid in evaluating the complex tradeoffs.

We have too little experience with the full spectrum of methods discussed above to
conjecture about the sizes of the relevant constants in asymptotic complexity analyses
or to provide experimental comparisons (but see [10] for a comparison of the tile
algorithm with additive Schwarz on a model scalar convection-diffusion problem). It
is clear, however, that the limitations of the tile algorithm are shared to some degree by
the optimal methods, while the simplicity of implementation and straightforwardness
of generalization are not universally shared.

4. Numerical experiments. To illustrate the effectiveness of the tile algorithm
in terms of the convergence of the iterations, and the effectiveness of the locally
uniform mesh refinement in terms of the convergence of the discretization, we consider
a suite of experiments.

4.1. Model problems. We present ten model problems, each containing a single
dependent variable and two independent variables. Some of the problems below are
selfadjoint and could be discretized in a symmetric manner and perhaps solved more
cheaply with conjugate gradients than with GMRES. Our main interest, however,
is in the more extensible formulation. In all the examples an exact solution of the
continuous problem u f is specified. From this u(x, y), all of the source terms

f and boundary condition inhomogeneities g may be calculated. In cases where the
expressions for f and g are sufficiently simple, they are written out along with the
solution. The ten problems are defined over three different domains, pictured in Fig. 5.

The first two examples, with constant coefficients and an exact solution quadratic
in each independent variable, are extremely simple and possess second-order finite dif-

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 979

ference representations free from truncation errors. They are identical except for the
type of boundary conditions along one side of their square domain. These problems
are not candidates for mesh refinement; rather, they were chosen to illustrate the dete-
rioration in convergence rate caused when Dirichlet boundary conditions are replaced
with Neumann, and to allow controlled experimentation on the effect of mismatched
boundary conditions in the preconditioner. The poor convergence of Problem 2 using
the preconditioner of Problem 1 originally forced the decision to expand the cross-
point system to include physical boundary points in the general case.

PIOBLEM 1. Pure isotropic diffusion with all Dirichlet boundaries.

V2u 4,
u(x, y) x + y,

Dirichlet data on

f Unit square.

PROBLEM 2. Pure isotropic diffusion with a partial Neumann boundary.

V2u 4,
u(x, y) x2 + y2,

Dirichlet data on the three lower sides of

OU(x 1)=2,On
f Unit square.

The next example is included to study orientation sensitivity of the substructur-
ing resulting from anisotropic diffusion, for comparison with Problem 1, to which it
is identical when a 1. It is of further interest in that the order-of-magnitude ratio
between the diffusion coefficients in the x and y directions is mathematically indis-
tinguishable at the discrete level from an order-of-magnitude physical domain aspect
ratio in an isotropic diffusion problem. Thus, the discretized version of Problem 3
covers two physical problem parameter extremes in one.

PROBLEM 3. Anisotropic diffusion.

0
Ox \ i)x]

4- Oy2

u(x, y) x + y,
a-- 10,

Dirichlet data on

f- Unit square.

The fourth example is a prototype convection-diffusion problem: a passive scalar
in a plug flow that is well developed at the outflow. It is a companion problem to
Problem 2 in the sense of possessing a smooth solution with one Neumann boundary,
but it is asymmetric as a result of the convection term. In that its anisotropy comes
from a first- rather than second-order operator, it also complements Problem 3.

PROBLEM 4. Plug-flow convection-diffusion with fully developed outflow bound-
ary.

+ c-_-x: f,
oy

980 WILLIAM D. GROPP AND DAVID E. KEYES

c- 10,
u 0 on the three lower sides of 0gt,

U(x 1)=0,On
Ft Unit square.

The next two canonical examples (from the "population" of elliptic problems in
[41] and [42]) bring in nonconstant coefficients, the latter in a nonselfadjoint way with
Robin boundary conditions.

PROBLEM 5. Selfadjoint, nonconstant coefficient, Dirichlet boundaries.

0 + - + x +
u(x, y) exy sin(rx)sin(ry),

u 0 on

Ft Unit square.

The derivative is the outward normal.
The seventh example, from [5] and [31], is on an irregularly shaped domain with

reentrant corners, but possesses a smooth solution. It emphasizes how an irregular
domain may force a minimum granularity upon a tessellation comprising congruent
tiles. For the problem at hand, however, the minimum granularity is near the ideal
one.

PROBLEM 7. T-shaped domain.

V2u 4- 2 cos(y)ex,
(x,) + cos(),

Dirichlet data on 0gt,
Ft T-shaped region.

The last three examples are obtained by taking three different values of the
convection--respectively, c 0, c -1, and c 10--in the convection-diffusion
problem below.

PROBLEMS 8--10. Cylindrically separable reentrant corner convection-diffusion
problem.

c Ou--V2U -- O,
r Or

The more widely available reference [29] contains an identical listing of Problem 5 and a similar
but not identical version of Problem 6. A typographical error in the latter renders it ill posed.

PROBLEM 6. Nonselfadjoint, nonconstant coefficient, Robin boundaries.

C2U O(y2OU) Ou (l+2y+y2)Ou
Ox- -- y (1+)yy Ox

u(x, y) 0.135(e+y + (x2 x)2 log(l + y2)),
Ou

u
On

g on

gt- Unit square.

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 981

c=O, a=213 0=-1, a=113
2 2

=10, a=10.0q42
40

01. 5 ’0’0 o 0.5 1.o

(a) (b)

FIG. 6. Cross section of u(r) along the symmetry axis: (a) Problem 8, pure diffusion, nondif-
ferentiable at r O; (b) Problem 9, convective inflow, strengthening the singularity; (c) Problem 10,
convective outflow, eliminating the singularity.

1
u(x,y) =rsin ((O-
where r X/(x- 1)2 + (y- 1)2,

and arg((x 1) + i(y 1)), 0 _< < 27r,
Dirichlet data on

L-shaped region.

The first of these corresponds to pure diffusion, and the second and third to con-
vection in towards the reentrant corner and away from it, respectively, at a rate
inversely proportional to the radius. The respective values of the radial eigenfunc-

and approximately 10.04, from the Euler equation formulation exponent c are , ,
[c + V/C2 + (16/9)1./2. Figure 6 displays u(r) along the ray , which is the

symmetry axis of the three L-shaped problems. The first two solutions of this trio
lack derivatives at the reentrant corner. The last is everywhere twice differentiable,
but the solution is characterized by steep variation in the three nonreentrant corner
regions, where r > 1. Local mesh refinement is critical to improving the accuracy
of a finite-difference solution. In [27] we show the complementary benefit of redis-
cretization of the tiles surrounding the reentrant corner in Problems 8 and 9 to fit
the discrete solution to the known power-law radial dependence of the singular exact
solution.

4.2. Parameters studied. Four categories of experiments are reported. First,
a two-dimensional parameter space consisting of coarse-grid resolution and overall
(uniform) resolution is explored by numerical experiment for each problem. The goal
of these experiments is the evaluation of the convergence of the algorithm, in terms
of iteration count and execution time, over a range of resolutions for comparison with
a leading-term complexity analysis in 4.3 and related theory in 4.4. No adaptive
refinement is performed.

Another set of experiments is performed on Problems 8-10 only with the goal of
evaluating the economy of the locally uniform refinement technique. As previously
shown in [27], LUMR is capable of significant CPU and memory savings with no
sacrifice of accuracy relative to uniform refinement.

982 WILLIAM D. GROPP AND DAVID E. KEYES

In a third set of experiments, the effect of orientation for nonunit-aspect ratio
tiles is investigated. The limiting case of stripwise decompositions shows how physical
anisotropies can be exploited in the decomposition for improved convergence.

Finally, we compare the domain-decomposed preconditioner of this paper with
some popular global preconditioners and with the topologically related direct solve
using a nested dissection ordering [22].

Additional studies, including modular replacement of AI or BB with some of
the alternatives listed in 2, are available in [25], upon which the present article is
based. Use of two different orders of discretization in A and B is explored in [33].
(This approach loses the identity block in (4) but delivers higher-order upwinding
while preserving monotonicity in the preconditioner.) In this study, we simply use

I AI, IB AIB, and BC ABC and derive BB from the tangential terms of
the differential operator.

The timings given below are from a SPARCserver 390 with 64-bit reals. The
code was written in C except for low-level Fortran kernels, such as factoring or solv-
ing linear systems entirely resident on one processor. Relative comparisons of CPU
times for alternative formulations of the same problem executed in the same hardware
and software environment are an important part of our results. It should be borne
in mind while studying the results that different organizations of the code and dif-
ferent compiler capabilities can account for large variations in execution times across
architectures and software releases; therefore, absolute execution times are not very
meaningful. We have run the same experiments (or representative subsets, to the
extent supported by memory) in scalar mode on seven other Unix machines and find
that even the proportions of time spent in factorization and solution phases may vary
widely between machines. In spite of this, there are surprisingly few shifts in the
overall performance rankings of alternative decompositions. In other words, while the
timings in the tables are far from machine independent, the conclusions based thereon
are, until parallelism enters the picture.

4.3. Convergence as a function of coarse-grid granularity. To test coarse-
grid granularity over an interesting range, we fix the finest mesh spacing at h-1 128
(relative to the total length of the domain, whether that be 1 in the problems posed
on the unit square or 2 in the problems on the L-shaped domain) and investigate the
tradeoff between numbers of tiles and points per tile, as shown in Tables 1 and 2 and
plotted in Fig. 7. The mesh is identical and uniform for all runs in these tables (with
the obvious exception that pieces of the circumscribing square are missing from it in
Problems 7-10, whose columns therefore lack entries at the coarsest tile subdivisions).
The convergence criterion is a relative reduction in residual of five orders of magnitude.
Throughout these studies we use an initial iterate of zero. Table 1 shows that the
iteration count peaks in the middle of the granularity range, at four or eight tiles per
side, and decreases to 1 in either degenerate limit of one tile per domain or one tile
per point (not shown), where a global direct solve results.

Table 2 shows the deceptiveness of iteration count alone as a measure of overall
performance. In execution time, the extreme runs, representing few-domain cases,
suffer as a result of the high cost per iteration, even though the number of iterations
required is very small. This table is a profound illustration of an earlier version of
[12], entitled Domain Decomposition Beneficial Even Sequentially. The most favorable
total sequential execution times are found for multidomain cases at 16 or 32 tiles
per side.

The factorization of the banded matrix in the single subdomain case is the dom-

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 983

TABLE 1
Iteration count as a function of number of tiles per side of the circumscribing square, H-1,

and number of mesh points along a tile side, H/h, at constant refinement parameter, h- 128,
for a reduction in the initial residual of 10-5.

1 128 1 1 1 1 1 1
2 64 10 14 18 25 26 17 12 11 4
4 32 11 15 24 25 32 21 15 16 15
8 16 9 12 25 21 29 16 11 14 15 16
16 8 7 I0 22 18 26 12 I0 11 12 13
32 4 6 7 15 14 21 7 8 8 9 8

TABLE 2
Total execution time (sec), including both preconditioner factorization and GMRES iteration,

as a function of number of tiles per unit length, H-1, and number of mesh points along a tile side,
H/h, at constant h- 128, for a reduction in the initial residual of 10-5.

H-1 H/h #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
1 128 371. 376. 371. 373. 371. 375.
2 64 109. 118. 127. 144. 145. 125. 86.1 84.2 73.0
4 32 34.7 39.7 51.9 53.3 62.4 47.9 30.3 31.4 30.5
8 16 12.0 14.4 26.2 22.5 29.8 17.8 10.2 11.9 12.4 13.1
16 S 5.5 8.0 18.3 14.4 22.1 9.6 5.7 6.0 6.7 7.2
32 4 6.8 7.9 17.9 16.3 27.2 7.9 6.5 6.4 7.1 6.4

inant contribution to the overall time. In Problems 1-6, over six minutes are spent
doing the factorization alone. A similar penalty would accrue in an attempt to do
direct solves on a very fine "coarse" grid, in which each tile contains just one point.
However, this second peak is not visible since the table is truncated below tile sizes
of H/h 4. Even in modest-sized two-dimensional problems, direct solves on the us-
decomposed domain are inefficient relative to decomposition-preconditioned GMRES.
Of course, there are many alternatives to direct solves for solving a smooth elliptic
equation discretized on a tensor-product grid problem on a uniprocessor, some of
which are considered in 4.7, but most are not coded or parallelized as cleanly as
domain-decomposed Krylov iteration.

The behavior in Table 2 can be understood with reference to leading-term com-
plexity estimates for the solution and factorization operators of the preconditioner.
We observe that there are O(H-2) cross points, interfaces, and interiors. Naturally
ordered banded direct factorizations and solves require O(Nb2) and O(Nb) operators,
respectively, where N is the number of unknowns and b the bandwidth. For the cross-
point system, N H-2 and b H-l; for the interfaces, N H/h and b 1; and
for the subdomain interiors, N (H/h)2 and b H/h. Thus, the interface operation
counts are always asymptotically subdominant and can be omitted in the following.
From choosing the larger of the cross-point and interior complexities,we see that fac-
torization costs max{O(H-4), O(H2h-4)} and solves cost max{O(H-3), O(Hh-3)}.
The first term grows with H-1 and the second decays with it. To the resolution of the
table the minima for both factorization and solve costs occur at or between H-1 16
and 32 when h-1 128. The tendency of buffer overhead, neglected in these es-

timates, is to favor a slightly smaller number of tiles per side than thus estimated.
It is important to note that the memory requirements follow the solve complexities
above. Thus, for a fixed memory size, an intermediate cross-point grid granularity
accommodates the largest problem in core. Of course, these per iteration complexity

984 WILLIAM D. GROPP AND DAVID E. KEYES

2O

No. of I,er’a’tlons

2 6
Log of No. o’f" Tlles on a Side

FIG. 7. Plots of Tables 1 and 2 (Problems 1-10 superposed), illustrating that the minimum
execution time of the serial algorithm occurs near H-I 16 tiles on a side. (The dashed portions
of the curves are extrapolated beyond the data of the tables.)

TABLE 3
Iteration count as a function of number of tiles per side of circumscribing square, H-I, and

refinement parameter, h-1, at constant number of mesh points along a tile side, H/h 8, for a
reduction in the initial residual of 10-5

H-I h-I #1 #2 #3 #4 #5 #6 #7 #8 #9 #I0
2 16 6 9 11 11 12 11 NA 6 6 3
4 32 9 12 17 15 19 17 NA 12 12 10
8 64 9 11 22 18 23 15 10 12 13 14
16 128 7 I0 22 18 26 12 I0 11 12 13

estimates shift when the preconditioner blocks are other than banded direct solves.

4.4. Convergence as a function of refinement. In contrast to the preceding
section, we here investigate iteration count as a function of overall resolution, for
a fixed number of subintervals per tile. The results are shown in Table 3. The
global mesh grows in refinement from 16 to 128 while the number of points per tile
remains constant at 8. Thus, the fine grid in the last row of Table 3 corresponds
to the H-1 16 row of the earlier tables. In spite of the fact that the truncation
error improves with h-2 in some of these problems, we impose a constant convergence
tolerance of 10-5 on the tests in Table 3, in order to focus on the algebraic convergence
alone.

With the minor exception of Problem 5, which has not quite reached its iteration
maximum at 16 tiles per side, the experiments suggest that the iteration count is
bounded as resolution increases at constant H/h. In over half of the cases, the finest
mesh results are even relatively better than the immediately preceding coarser ones.
This fact is not surprising since there is a price for this favorable iteration count when
H/h is held constant and h-1 is increased, namely, a larger cross-point system. The
theory for conjugate gradient iteration for selfadjoint problems [7] and for GMRES
iteration for nonselfadjoint problems [10] contains similar results for abutting domains,
namely, constant upper bounds on the iteration count for constant H/h.

As representative convergence histories, we present Fig. 8, which follows the resid-
ual reduction over five orders of magnitude, and the time versus iteration count history
for Problems 1 and 2. In the latter plots, the quadratic term in the GMRES work
estimate (which comes from the need to orthogonalize each iterate over a subspace

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 985

I0

I0

10-

10_2

5
[a}

10

IO

oo o

5 o
[b]

5 10

FIG. 8. Convergence histories for Problems 1 and 2, for H-1 16, H/h 8, h-1 128. (a)
and (b) show the normalized Euclidean norm of the residual versus iteration count, and (c) and (d)
show time versus iteration count.

whose size grows linearly in iteration count) is almost invisible. This is due to the
exploitation of the identity row in (4). This pair of figures also illustrates the poorer
conditioning of Neumann problems, since the initial iterates and the solutions con-
verged to are identical, and so are the operators, except for one Neumann boundary
segment.

4.5. Economies of local mesh refinement. Problems 8-10 were used in [27]
to illustrate the well-known benefits of locally uniform mesh refinement in elliptic
problems: comparable accuracy in considerably fewer operations, compared with glob-
ally uniform refinement. These problems were solved at effective refinement levels of
h-1 32, 64, and 128, based on the global grid using both global and local refinements
for comparison. The tolerance for the relative reduction in the algebraic residual was
set to 10-8 in these tests, well below the finite-difference discretization error, so that
a clear demonstration could be made of the capability of the locally refined grid to
provide the full discretization benefit of the globally refined grid. The choice of where

986 WILLIAM D. GI:tOPP AND DAVID E. KEYES

0 0

0 0

0

0

0 0

0

2

2 :2 0

0 0

0 0 0

2 0 0

2 0 0

2 0 0

2 0 0

2 0 0

2 0 0

0 0 2 2 0

0 0 0 0 0 0 0 0 2 2 2

(b)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 2 2 2 2

FIG. 9. Refinement levels, indicated by the logarithm of the refinement ratio. The maximum

(second level) local uniform refinements are shown: (a) Problems 8 and 9, (b) Problem 10. In first-
level tests, all tiles showing "2" are set to "1." In zeroth-level refinement, all tiles are set to "0,"
which here corresponds to H/h 4 (from [27]).

TABLE 4
Number of unknowns for globally (No) and locally (NL) refined grids of the types shown in

Fig. 9, iteration counts for a reduction in the initial algebraic residual of 10-8 for each grid (IG
and IL), and ratios of globally to locally refined execution times, for Problems 8-10.

h"i NG NL(a) NL(b)
32 833 833 833
64 3201 1817 1609
128 12545 2409 4697

#8
zo, Tc/T
18 18 1.00
22 22 1.47
26 23 6.08

#9
s,, T IT,

18 18 1.00
23 23 1.50
28 25 5.76

#10
IG IL TG/TL
19 19 1.00
23 22 1.73
29 27 2.77

to refine was made manually. The local refinement is as illustrated in Fig. 9.

Table 4 shows the number of discrete unknowns for the globally and locally refined
problems and the iteration counts and execution time ratios for each refinement level.
All entries share a constant value of H-1 8 in order to fix in space regions of
enhanced refinement that do not shrink as h does. Therefore, the "global" iteration
columns of Table 4 incidentally provide a constant-H traverse through convergence
rate parameter space, complementary to Table 1 (a constant-h traverse) and Table 3
(a constant-H/h traverse).

The linear increases of iteration count with each doubling of global refinement in
the selfadjoint problem (Problem 8) and the nearly selfadjoint problem (Problem 9)
are consistent with a logarithmic growth in conditioning with h-1, though we reiterate
that we have no proof of such a bound for the algorithm generating the tables. The
locally refined examples likewise worsen mildly in conditioning with h-1 when H is
held constant, but the CPU time advantage, (To/TL), of local refinement increases
with h-1 overall. Comparing iteration counts of globally and locally refined problems
at the same effective refinement shows that the often drastically smaller number of
unknowns in the latter does not much affect convergence. This observation leads to
the hypothesis that in the case of variously refined tiles, (H/hnest) is the convergence-
controlling parameter, with the details of the tile-size distribution important only in
estimating the work per iteration.

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 987

(a) (b)

FIG. 10. The four decompositions tested in Table 5: (a) vertical strips, (b) horizontal strips,
(c) "large" boxes with the same granularity as the strips, (d) "small" boxes with the same bandwidth
as the strips.

4.6. Anisotropic decompositions. Throughout the foregoing, we have con-
sidered decompositions of the problem domain into uniform square tiles exclusively.
More general decompositions are possible and should often be considered. Varying
the aspect ratio and the orientation of tiles can lead to significant variations in conver-
gence rate in anisotropic problems. Problems 1-4 of the test suite contain a sufficient
variety of operators and boundary conditions to illustrate this point. Table 5, based
on these four problems, provides a link between the boxwise decompositions studied
in this report and the stripwise decompositions employed in many of our earlier stud-
ies, such as [34]. Four different decompositions are considered in this table: vertical
strips, horizontal strips, a boxwise decomposition with the same number of tiles as
the strip cases, and a boxwise decomposition whose tiles have the same bandwidth as
that of the most compact natural ordering of the strip cases. These decompositions
are shown in Fig. 10. In every case, the mesh spacing is held constant at h-1 128;
thus these problems contain 16,641 discrete unknowns.

Among the two boxwise decompositions, the finer is always closer to the optimum
found earlier in Table 1 for iteration count and in Table 2 for execution time.

Contrasting the boxwise and stripwise decompositions, we note that for isotropic
Problems 1 and 2 the isotropic (boxwise) decompositions lead to significantly better
iteration counts than the nonisotropic (stripwise) decompositions. The coarser box-
wise decomposition nevertheless leads to poorer execution times than either stripwise
decomposition because of the large bandwidth of its tiles, resulting in large factoriza-

988 WILLIAM D. GROPP AND DAVID E. KEYES

TABLE 5
Iteration count I and total execution time T (sec) as a function of the tessellation parameters

H and H1, at constant mesh parameter h-1 128, for a reduction in the initial residual of
10-5.

Case H- H-
a 16 1
b 1 16
c 4 4
d 16 16

#1
I T

20 13.7
20 13.7
11 34.7
7 5.5

#2
I T

29 20.5
23 15.9
15 39.7
10 8.0

3
I T

52 40.5
12 8.4
24 51.9
22 18.3

#4
I T
4 3.5
16 10.9
25 53.3
18 14.4

tion costs in setting up the interior solves of the preconditioner. The finer boxwise
decomposition yields the best execution times.

For the nonisotropic Problems 3 and 4, one or both of the nonisotropic decompo-
sitions is superior in both iteration count and execution time to both of the isotropic
decompositions. In Problem 3, we note the major advantage of handling the strong
x-directional diffusive coupling as implicitly as possible in the preconditioner when
few (here 16) subdomains are employed. In Problem 4, where the diffusive part of the
operator is isotropic, the decomposition that is aligned with the strong convection is
superior. This is related to the relatively poorer performance of the tangential inter-
face preconditioner in problems where the convection is normal to the interface rather
than tangential to it [13]. In spite of the poor representation of the convection in the
interface blocks for Problem 4, case (b), the "wrong" stripwise decomposition is still
slightly superior to the best boxwise decomposition. Although the boxwise decom-
position convergence rates are asymptotically superior to the stripwise decomposition
convergence rates (see the theoretical arguments summarized in [31]), the crossover
point is evidently strongly influenced by the physics of the problem.

4.7. Comparison with undecomposed preconditioners. Tables 1 and 2
produced the observation that among preconditioners employing direct banded fac-
torizations for both the cross-point system and the subdomain interiors, a tessel-
lation of intermediate granularity is much superior to one at either coarse or fine
extremes. In other words, domain decomposition-preconditioned GMRES methods
are superior to bandsolvers even on sequential computers and even in two dimensions.
It is of interest to attempt to strengthen such a statement by comparing domain
decomposition-preconditioned GMRES iteration with other candidate solvers in the
sequential, two-dimensional context. For this purpose, a direct sparse matrix solver
and three popular incomplete factorizations have been implemented as alternative
subdomain interior preconditioners and compared with the domain-decomposed pre-
conditioner on the first six problems of the test suite.

Table 6 lists the iteration counts and Table 7 the execution times for nine different
solution algorithms callable from the same code used to generate all previous tables.
(The global domain solvers contain just one tile.)

Six of these solvers are iterative methods based on GMRES and global precondi-
tioners of the incomplete factorization type, tested in two sets of three each. In each
set, we test ILU(0), ILU(1), and MILU(0) [17], [39], where the integer in parentheses
denotes the number of diagonals of extra fill-in retained adjacent to the original five-
diagonal structure of the discrete operator [46]. In the first set, the maximum size of
the Krylov subspace used in GMRES is 90; in the second set, the maximum Krylov
subspace has dimension 5. In a majority of cases, the globally preconditioned GM-

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 989

TABLE 6
Iteration counts for Problems 1-6 for nine different algorithmic combinations at a mesh pa-

rameter h-1 128, for a reduction in the initial residual of 10-5. ">" signifies more than 500
iterations.

Method #1
GMRES(90)/ILU(0) 73
GMRES(90)/MILU(0) 22
GMRES(90)/ILU(1) 45
GMRES(5)/ILU(0) 351
GMRES(5)/MILU(0) 27
GMRES(5)/ILU(1) 139
Direct 1
GMRES(90)/DD 7
GMRES(5)/DD 8

#2 #3 #4 #5
108 80 82 99
77 19 147 39
58 61 51 59

312 227 >
141 23 > 57
150 140 213 244

1 1 1 1
I0 22 18 26
i0 28 25 39

#6

160
>
>
>
1

12
12

TABLE 7
Execution times (sec) for Problems 1-6 for nine different algorithmic combinations at a mesh

parameter h-1 128, for a reduction in the initial residual of 10-5. The best time in each column
is italicized.

Method 1 #2 #3 #4 5 #6
GMRES(90)/ILU(0) 121. 191. 142. 149. 183.
GMRES(90)/MILU(0) 16.7 133. 13.5 256. 41.2
GMRES(90)/ILU(1) 54.2 83.1 90.1 66.7 85.4 297.
GMRES(5)/ILU(0) 195. 173. 126.
GMRES(5)/MILU(0) 14.9 78.6 12.6 31.5
GMRES(5)/ILU(1) 82.8 90.7 84.3 128. 136.
Direct/Nest. Diss. 71.2 70.1 70.1 70.1 70.0 71.6
GMRES(90)/DD/Nest. Diss. 7.1 9.9 23.8 18.7 2,9.7 12.0
GMRES(5)/DD/Nest. Diss. 8.2 10.4 25.0 23.2 34.2 12.0

RES iteration converges in fewer than 90 iterations; thus, the first set consists mainly
of full GMRES convergence results. In practical applications, restarted GMRES is
often used to conserve memory or defeat the quadratic term in the GMRES work
estimate that arises from orthogonalization over an ever-expanding Krylov subspace.
GMRES(k) denotes a restart after k steps.

One of the solvers is a direct method, the Yale Sparse Matrix Package [18] using a
global nested-dissection ordering (rather than the minimum degree ordering provided
with YSMP), which naturally converges in one step.

Finally, we test two domain-decomposed GMRES algorithms based on a 16 16
array of 8 8 tiles. Both are slight variants of the algorithm used in preceding
sections in which the bandsolver is replaced with the nested-dissection sparse solver.
Full GMRES and GMRES(5) are considered.

Comparing first the convergence rates of the various global preconditioners, we
observe that in the diffusively dominated problems with Dirichlet boundary condi-
tions (Problems 1, 3, 5) the fill-capturing modified incomplete factorization MILU(0)
is much superior to ILU(0) and ILU(1). The existence of a non-Dirichlet boundary
segment weakens MILU (boundary conditions are the only difference between Prob-
lems 2 and 1), and the presence of convection weakens it substantially (Problems 4
and 6). As expected, ILU(1) uniformly requires fewer iterations than ILU(0) in these
tests, and this convergence rate advantage translates into an execution time advan-
tage even after the marginally higher cost of the ILU(1) preconditioner is taken into
account. Experience with ILU(/) shows a law of diminishing returns as increases
beyond a fairly small problem-dependent value. The tests with GMRES(5) show how

990 WILLIAM D. GROPP AND DAVID E. KEYES

the higher iteration counts of a restarted method often translate into lower execution
times for well-conditioned problems, but how poorly conditioned problems may fail
to converge with too small a Krylov subspace.

Having noted the strong,degree of problem dependence in the selection of the best
global preconditioner, we note that this problem dependence extends to the relative
ranking of globally preconditioned GMRES and the direct sparse nested dissection
factorization. In terms of execution time, the nested dissection method loses out to the
best global iterative method, GMRES(5)/MILU(0), in the odd-numbered problems,
is close to the best global iterative method, GMRES(90)/ILU(1) in Problem 4, and
beats all globally preconditioned methods in Problems 2 and 6.

Comparison of the nested dissection rows of Table 7 with the rows of Table 2
at corresponding granularity reveals, as expected, that the sparse direct subdomain
solvers run faster than the banded direct subdomain solvers on large problems (ap-
proximately 70 sec versus approximately 370 sec on 128 128 tiles) and slower than
bandsolvers on small ones (by approximately 20-30 percent on 8 8 tiles). The latter
observation justifies our use of bandsolvers to perform the A-1 solves in the precon-
ditioner throughout the majority of this report, where the focus is on relatively fine
granularity.

Finally and most significantly, we observe that domain decomposition-precon-
ditioned GMRES always beats the direct method, and it beats the best globally
preconditioned method in all problems except for Problem 3, for which good precon-
ditioners of both global and domain-decomposed varieties can be found. Overall, it
is the fastest executing method and performs reliably and evenly over the range of
problems considered. It is a compelling serial algorithm even apart from the virtues
of modularity and adaptability.

5. Conclusions and future directions. Experiments on a variety of model
problems demonstrate that a two-level domain decomposition algorithm with a single
global coarse grid provides effective convergence and convenient refinement and per-
mits a data structure amenable to parallel and vector implementations, as summarized
in closing below. Although often motivated by parallelization, domain decomposition
also yields runtime and memory use benefits as a sequential algorithm. Relative to tra-
ditional global preconditioners, domain-decomposed preconditioners can dramatically
improve convergence rates. Furthermore, the simple structure of individual blocks of
the domain-decomposed preconditioner means that new applications are found for
the "standard solvers" in conventional software libraries. The traditional economies
of local uniform mesh refinement can be incorporated into the domain decomposition
framework at the small price of interface handlers with conditionals for refinement
differences between adjacent subdomains. Because of the highly modular nature of a
tile-oriented domain decomposition code, custom discretizations for certain classes of
singularities may be archived into applications libraries for reuse. In short, software
engineering is a major motivation for the restricted class of algorithms explored here.

The applicable problem class is greater than the present examples indicate; for in-
stance, the tile algorithm has been extended to multiple-dependent variable cases. A
two-independent-variable streamfunction-vorticity formulation of the incompressible
Navier-Stokes equations is considered in [26] and [28]. The nonlinearity in this prob-
lem is handled by a Newton method wrapped around the domain-decomposed linear
solver. The entire nonlinear code has been parallelized on shared- and distributed-
memory machines, and the linear and nonlinear portions are comparable in their
parallel efficiencies (which vary in the usual way from arbitrarily good to arbitrarily

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 991

bad, depending upon problem size relative to number of processors).
Extension of the tile algorithm to a brick algorithm in three-dimensional problems

is conceptually straightforward. The software engineering motivation for restriction
to a tensor-product grid of substructure vertices is even more compelling in three
dimensions than it is in two. One new feature is the presence of two-dimensional
interfaces, upon which preconditioner blocks could be constructed by dropping nor-
mal derivative terms, by analogy with one-dimensional interfaces in the plane. The
effectiveness of this straightforward extension is not demonstrated at present. For the
theoretically endowed selfadjoint case it is known that the condition number of the
hierarchically preconditioned system grows like the first power of (H/h), not merely
like its logarithm. A discussion and some alternatives are presented in [44].

The tile algorithm is amenable to vectorization in either of two ways. The regular
operation sequences on the tensor-product subgrid arrays are precisely the type for
which vectorizing compilers were conceived. The vector lengths depend on the precise
form of solvers used in the preconditioner but would tend to be rather small for the
rows of individual 8 8 or 16 16 tiles found best in the two-dimensional applications
above. An alternative form of vectorization can be realized by grouping together all
tiles of a given (discrete) size and shape and operating in lock step on corresponding
elements in each tile, assuming an identical solver is applied to each. A vector in this
approach consists of the ith element from each of the subdomains. Thus, 8 8 arrays
of tiles deliver optimal processing rates for machines with a vector length of 64.

Parallelization requires attention to the load balancer/mapper [27] and also to the
coarse-grid solve in the preconditioner [24]. The main disadvantage of the two-level
algorithm in the parallel context is that the choice of coarse-grid granularity is more
of an "overdetermined" problem than in serial. Communication cost per iteration and
convergence properties potentially inveigh against the lower bounds on the number
of tiles imposed by domain geometry, solution and coefficient roughness, and parallel
load balance. The key determination for future applications of the tile methodology
will be whether this overdetermination is "consistent" in practice. Inasmuch as the
early examples are representative of one or two dependent variable problems, and
parallel communication costs generally comprise a relatively smaller proportion of the
total work in coupled multicomponent problems, there are substantial grounds for
optimism that this will be the case.

Acknowledgments. We express our deep appreciation to Dr. Xiao-Chuan Cai
for his influence on the refinement of the tile algorithm through his mathematical
insight and through his experience in using the code and in adapting it to additive
Schwarz-type preconditioning. We are also indebted to two anonymous referees for
constructively critical comments on an early version of this manuscript.

REFERENCES

[1] G. ANAGNOSTOU, D. DEWEY, AND A. T. PATERA, Geometry-defining processors for engi-
neering design and analysis, The Visual Computer, 5 (1989), pp. 304-315.

[2] I. BABUKA, J. CHANDRA, AND J. FLAHERTY, EDS., Adaptive Computational Methods for Par-
tial Differential Equations, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1983.

[3] R. BANK AND H. YSERENTANT, Some remarks on the hierarchical basis multigrid method,
in Second International Symposium on Domain Decomposition Methods, T. F. Chan,
R. Glowinski, J. P6riaux, and O. Widlund, eds., Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1983, pp. 140-143.

992 WILLIAM D. GROPP AND DAVID E. KEYES

[4] M. J. BERGER AND J. OLIGER, Adaptive mesh refinement for hyperbolic partial differential
equations, J. Comput. Phys., 53 (1984), pp. 484-512.

[5] P. E. BJORSTAD AND 0. B. WIDLUND, Iterative methods for the solution of elliptic problems
on regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), pp. 1097-1120.

[6] J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK, AND A. n. SCHATZ, A preconditioning tech-
nique for the ejficient solution of problems with local grid refinement, Comput. Methods
Appl. Mech. Engrg., 67 (1988), pp. 149-159.

[7] J. H. BRAMBLE, J. E. PASCIAK, AND A. n. SCHATZ, The construction of preconditioners for
elliptic problems by substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[8] A. BRANDT, Multi-level adaptive techniques (MLAT) for fast numerical solution to boundary-
value problems, in Proceedings of the Third International Conference on Numerical Meth-
ods in Fluid Mechanics, Lecture Notes in Physics 18, H. Cabannes and R. R. Temam, eds.,
Springer-Verlag, Berlin, New York, 1973, pp. 82-89.

[9] X.-C. CAI, An additive Schwarz algorithm for nonselfadjoint elliptic equations, in Third In-
ternational Symposium on Domain Decomposition Methods, T. F. Chan, R. Glowinski,
J. Priaux, and O. B. Widlund, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1990, pp. 232-244.

[10] X.-C. CAI, W. D. GRoPP, AND D. E. KEYES, Convergence rate estimate for a domain
decomposition method, Numer. Math., 61 (1992), pp. 153-169.

[11] X.-C. CAI AND O. S. WIDLUND, Domain decomposition algorithms for indefinite elliptic
problems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 243-258.

[12] T. F. CHAN AND D. GOOVAEITS, A note on the ejficiency of domain decomposed incomplete
factorizations, SIAM J. Sci. Statist. Comp., 11 (1990), pp. 794-803.

[13] T. F. CHAN AND D. E. KEYES, Interface preconditionings for domain-decomposed convection-

diffusion operators, in Third International Symposium on Domain Decomposition Methods,
T. F. Chan, R. Glowinski, J. Priaux, and O. B. Widlund, eds., Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1990, pp. 245-262.

[14] H. A. VAN DER VOIST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631-644.

[15] M. DRYJA, An additive Schwarz algorithm for two- and three-dimensional finite-element el-
liptic problems, in Second International Symposium on Domain Decomposition Methods,
T. F. Chan, R. Glowinski, J. Priaux, and O. Widlund, eds., Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1989, pp. 168-172.

[16] M. DRYJA AND O. B. WIDLUND, On the optimality of an additive refinement method, in
Proceedings of the Fourth Copper Mountain Conference on Multigrid Methods, J. Mandel,
S. F. McCormick, J. E. Dendy, Jr., C. Farhat, G. Lonsdale, S. V. Parter, J. W. Ruge, and
K. Stuben, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989,
pp. 161-170.

[17] T. DUPONT, R. KENDALL, AND H. H. RACHFORD, An approximate factorization procedure for
solving selfadjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp. 559-
573.

[18] S. C. EISENSTAT, H. C. ELMAN, M. H. SCHULTZ, AND A. H. SHERMAN, The (new) Yale sparse
matrix package, Tech. Report 265, Department of Computer Science, Yale University, New
Haven, CT, April 1983.

[19] R. E. EWING, R. D. LAZAROV, AND P. S. VASSILEVSKI, Local refinement techniques for elliptic
problems on cell-centered grids, I. Error analysis, Math. Comp., 56 (1991), pp. 437-461.

[20] J. E. FLAHERTY, P. J. PASLOW, M. S. SHEPARD, AND J. D. VASILAKIS, EDS., Adaptive Meth-
ods for Partial Differential Equations, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1989.

[21] R. W. FREUND AND N. M. NACHTIGAL, QMR: A quasi-minimum residual method for non-
Hermitian linear systems, Tech. Report 90.51, Research Institute for Advanced Computer
Science, NASA Ames Research Center, Moffett Field, CA, 1990.

[22] A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345-363.

[23] W. D. GROPP, Local uniform mesh refinement for elliptic partial differential equations, Tech.
Report YALE/DCS/RR-278, Department of Computer Science, Yale University, New
Haven, CT, July 1983.

[24] W. D. GROPP AND D. E. KEYES, Domain decomposition on parallel computers, Impact Com-
put. Sci. Engrg., 1 (1989), pp. 421-439.

[25] , Domain decomposition with local mesh refinement, Tech. Report RR-726, Department
of Computer Science, Yale University, New Haven, CT, August 1989.

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT 993

[26] W. D. GROPP AND D. E. KEYES, Parallel domain decomposition and the solution of nonlin-
ear systems of equations, in Fourth International Symposium on Domain Decomposition
Methods, R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Priaux, and O. B. Widlund,
eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1991, pp. 373-381.

[27] , Parallel performance of domain-decomposed preconditioned Krylov methods for PDEs
with locally uniform refinement, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 128-145.

[28] , Domain decomposition methods in computational fluid dynamics, Internat. J. Numer.
Methods Fluids, 14 (1992), pp. 147-165.

[29] E. N. HOUSTIS, R. E. LYNCH, J. R. RICE, AND T. S. PAPATHEODOROU, Evaluation of
numerical methods for elliptic partial differential equations, J. Comput. Phys., 27 (1978),
pp. 323-350.

[30] H. JARAUSCH, On an adaptive grid refining technique for finite element approximations, SIAM
J. Sci. Statist. Comput., 7 (1986), pp. 1105-1120.

[31] D. E. KEYES AND W. D. (ROPP, A comparison of domain decomposition techniques for el-
liptic partial dierential equations and their parallel implementation, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. s166-s202.

[32] , Domain decomposition techniques for nonsymmetric systems of elliptic boundary value
problems: Examples from CFD, in Second International Symposium on Domain Decom-
position Methods, T. F. Chan, R. Glowinski, J. Priaux, and O. Widlund, eds., Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1989, pp. 321-339.

[33] , Domain-decomposable preconditioners for second-order upwind discretizations of multi-
component systems, in Fourth International Symposium on Domain Decomposition Meth-
ods, R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Priaux, and O. B. Widlund, eds.,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1991, pp. 129-139.

[34] Domain decomposition techniques for the parallel solution of nonsymmetric systems of
elliptic boundary value problems, Appl. Numer. Math., 6 (1990), pp. 281-301.

[35] Y. MADAY, C. MAVRIPLIS, AND A. W. PATERA, Nonconforming mortar element methods:
Application to spectral discretizations, in Second International Symposium on Domain
Decomposition Methods, T. F. Chan, R. Glowinski, J. Priaux, and O. Widlund, eds.,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1989, pp. 392-418.

[36] T. A. MANTEUFFEL AND S. V. PARTER, Preconditioning and boundary conditions, SIAM J.
Numer. Anal., 27 (1990), pp. 656-694.

[37] S. McCORMICK AND D. QUINLAN, Asynchronous multilevel adaptive methods for solving par-
tial differential equations on multiprocessors: Performance results, Parallel Comput., 12
(1989), pp. 145-156.

[38] S. F. MCCORMICK, Multilevel Adaptive Methods For Partial Differential Equations, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[39] J. A. MEIERINK AND H. A. VAN DER VORST, Guidelines for the usage of incomplete decompo-
sitions in solving sets of linear equations as they occur in practical problems, J. Comput.
Phys., 44 (1981), pp. 134-155.

[40] W. PROSKUROWSKI, Remarks on the spectral equivalence of certain discrete operators, in Sec-
ond International Symposium on Domain Decomposition Methods, T. F. Chan, R. Glowin-
ski, J. Priaux, and O. Widlund, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1989, pp. 103-113.

[41] J. R. RICE, E. N. HOUSTIS, AND W. R. DYKSEN, A population of linear second order,
elliptic partial dierential equations on rectangular domains--Part I, Tech. Report 2078,
Mathematics Research Center, University of Wisconsin, Madison, WI, May 1980.

[42] , A population of linear second order, elliptic partial dierential equations on rectan-
gular domains--Part II, Tech. Report 2079, Mathematics Research Center, University of
Wisconsin, Madison, WI, May 1980.

[43] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[44] B. F. SMITH, Domain decomposition algorithms for the partial differential equations of linear
elasticity, Tech. Report 517, Courant Institute, New York, September 1990.

[45] B. SWARTZ, Courant-like conditions limit reasonable mesh refinement to order h2, SIAM J.
Sci. Statist. Comput., 8 (1987), pp. 924-933.

[46] J. W. WATTS, III, A conjugate gradient-truncated direct method for the iterative solution of
the reservoir simulation pressure equation, Soc. Petrol. Engrg. J., 21 (1981), pp. 345-353.

[47] H. YSERENTANT, On the multi-level splitting of finite element spaces for indefinite elliptic
boundary value problems, SIAM J. Numer. Anal., 23 (1986), pp. 581-595.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 994-1008, July 1992

1992 Society for Industrial and Applied Mathematics
0O9

AN O(n21ogn) TIME ALGORITHM FOR THE
MINMAX ANGLE TRIANGULATION*

HERBERT EDELSBRUNNERt, TIOW SENG TANt$, AND ROMAN WAUPOTITSCH
Abstract. It is shown that a triangulation of a set of n points in the plane that minimizes

the maximum angle can be computed in time O(n2 log n) and space O(n). The algorithm is fairly
easy to implement and is based on the edge-insertion scheme that iteratively improves an arbitrary
initial triangulation. It can be extended to the case where edges are prescribed, and, within the same
time- and space-bounds, it can lexicographically minimize the sorted angle vector if the point set is
in general position. Experimental results on the efficiency of the algorithm and the quality of the
triangulations obtained are included.

Key words, computational geometry, two dimensions, triangulations, minmax angle criterion,
iterative improvement, edge insertion

AMS(MOS) subject classifications. 68C05, 65M50

1. Introduction. Let S be a finite set of points in the Euclidean plane. A
triangulation of S is a maximally connected straight-line plane graph whose vertices
are the points of S. By maximality, each face is a triangle except for the exterior
face, which is the complement of the convex hull of S. Occasionally, we will call a
triangulation of a finite point set a general triangulation in order to distinguish it from
a constrained triangulation, which is a triangulation of a finite point set where some
edges are prescribed. A special case of a constrained triangulation is the so-called
polygon triangulation, where S is the set of vertices of a simple polygon and the edges
of the polygon are prescribed. In this paper only the triangles inside the polygon will
be of interest.

For a given set of n points there are, in general, exponentially many triangula-
tions. Among them one can choose those that satisfy certain requirements or optimize
certain objective functions. Different properties are desirable for different applications
in areas such as finite element analysis [i], [3], [23], computational geometry [21], and
surface approximation [12], [18]. The following are some important types of triangu-
lations that optimize certain objective functions.

(i) The Delaunay triangulation has the property that the circumcircle of any
triangle does not enclose any vertex [5].

(ii) The constrained Delaunay triangulation has the same property except that
visibility constraints depending on the enforced edges are introduced [13].

(iii) The minimum weight triangulation minimizes the total edge length over all
possible triangulations of the same set of points and prescribed edges [10], [17].

It is known that the Delaunay triangulation maximizes the minimum angle over
all triangulations of the same point set [22]. This result can be extended to a similar
statement about the sorted angle vector of the Delaunay triangulation [6] and to the
constrained case [13]. The Delaunay triangulation of n points in the plane can be
constructed in time O(n log n) [6], [19], and even if some edges are prescribed, its
constrained version can be constructed in the same amount of time [20]. There is no
polynomial time algorithm known for the minimum weight triangulation if the input

Received by the editors May 16, 1990; accepted for publication (in revised form) June 14, 1991.
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois

61801. The research of the first author was supported by National Science Foundation grants CCR-
8714565 and CCR-8921421.

This author is on study leave from the National University of Singapore, Republic of Singapore.

994

MINMAX ANGLE TRIANGULATION 995

is a finite point set, but dynamic programming leads to a cubic algorithm [10] if the
input is a simple polygon.

In this paper, we study the problem of constructing a triangulation that minimizes
the maximum angle, over all triangulations of a finite point set, with or without pre-
scribed edges. We call such a triangulation a minmax angle triangulation. Although
avoiding small angles is related to avoiding large angles, the Delaunay triangulation
does not minimize the maximum angle--four points are sufficient to give an example
to this effect. Triangulations that minimize the maximum angle have potential appli-
cations in the area of finite element and surface approximation [1], [2], [8]. Our main
result is summarized in the following statement.

MAIN THEOREM. A minmax angle triangulation of a set of n points in the plane,
with or without prescribed edges, can be computed in time O(n2 log n) and space O(n).

Curiously, our algorithm has the same complexity for point sets and for simple
polygons. Prior to this paper no polynomial time algorithm for constructing a minmax
angle triangulation for a finite point set was known. On the other hand, if the input
is a simple n-gon, then a cubic time and quadratic space solution can be derived
simply by substituting the angle criterion for the edge-length criterion in the dynamic
programming algorithm of [10]. Thus, it seemed that the problem for simple polygons
is much simpler than for point sets. Indeed, our attempts to apply popular techniques
such as local edge-flipping [11], [9], divide-and-conquer [21] and plane-sweep [7] to
construct a minmax angle triangulation for a point set were not successful; see also

Instead, we solve the problem by an iterative improvement method based on what
we call the edge-insertion scheme. An edge-insertion step adds some new edge qs to
the current triangulation, deletes edges that cross qs, and retriangulates the resulting
polygonal regions to the left and the right of qs. The difference from the simpler
edge-flip operation is that qs can cross up to a fraction of the current edges, whereas
an edge added in an edge-flip crosses only one edge. This difference turns out to
be crucial in the case of minimizing the maximum angle: the edge-flip scheme can
get stuck in a nonglobal optimum [15], whereas the edge-insertion scheme is powerful
enough to always reach the optimum. A proof of the latter property is sufficient
to design a polynomial time implementation of the edge-insertion scheme. Clever
strategies to find an edge qs that leads to an improvement of the current triangulation
and to retriangulate the created polygonal regions are needed to obtain the claimed
O(n2 log n) time bound.

Section 2 presents the algorithm to construct a minmax angle triangulation, and
3 proves the crucial piece needed to show that the algorithm is correct. Section 4
gives the algorithmic details that lead to an efficient implementation of the algorithm.
Section 5 discusses the extensions to the constrained case and to the problem of
lexicographically minimizing the sorted angle vector. Finally, 6 presents experimental
results, and 7 mentions some related open problems.

2. The global algorithm. In general, there is more than one minmax angle
triangulation for a given set of points. Below we outline an algorithm that constructs
one such triangulation for a set S of n points in the plane. The maximum angle of a
given triangulation jt is denoted by

Construct an arbitrary triangulation j(of S.
repeat
(M1) Find a largest angle /pqr of 4.

996 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

(M2) Apply the ear-cutting procedure (4) to modify ,4 by
adding a "suitable" edge qs to .4, where s E S- {p, q, r and pr C qs 7 ,
removing edges that intersect qs (this step creates polygons P and R
which have qs as a common edge), and

constructing triangulations P of P and 7 of R so that #(:P), it(7) < /pqr.
until the ear-cutting procedure fails to find such a qs.

To show that this algorithm is correct, we need the following two lemmas and some
forward references to the cake-cutting lemma of 3 and the ear-cutting procedure of
4. We define/xsy 0 if any two of the three points are identical.

LEMMA 2.1. If xy is an edge in a triangulation fit of a point set S, then #(4) >_
maxss/xsy.

Proof. Let t be a point so that Zxty maxses xsy. Thus no points of S lie inside
the triangle xty. Clearly, if xty is a triangle in 4 then there is nothing to be proved.
Otherwise, there exists a triangle utv in 4 so that either u x, v e S-{y, t}, and uv
intersects ty or u, v S- {x, y, t}, and uv intersects both xt and ty. In both cases,
it(A) >_/utv > Zxty.

The proof of the next lemma makes use of the cake-cutting lemma to be presented
in 3. We suggest that the reader read the statement of that lemma (Lemma 3.1) and
then return to the current discussion leading to Lemma 2.2. We call a triangulation
B of S an improvement of Jt if

(i) it(B) < #(A), or

(ii) it(B) it(A), every triangle abc in B with/abc it(B) is also a triangle in
,4, and B has at least one fewer maximum angle than

The next lemma asserts that the algorithm makes progress as long as the current
triangulation is not yet a minmax angle triangulation. It does this by proving that
there is at least one suitable edge qs. In its current version, the algorithm can be
thought of as trying all possible edges going out of q, so if there exist edges qs that
lead to an improvement of .4, then the algorithm finds one such edge.

LEMMA 2.2. Assume that A is not yet a minmax angle triangulation. Then an
iteration of the repeat-loop constructs an improvement of .4.

Proof. Step (M1) of the repeat-loop finds a triangle pqr in 4 so that/pqr it(A).
The main observation is that there is some edge qs that intersects pr and belongs to a
minmax angle triangulation T of S. This is because it(T) < it(4) implies that /pqr
cannot exist in 2r, and consequently, pr f 2/" (by the previous lemma). Therefore,
there exists a point s e S- {p,q,r} such that qs C pr 7 and qs is an edge of
T. With this edge qs, the cake-cutting lemma (3) ensures that there are polygon
triangulations of P and R such that the largest angle of any triangle within P and
R is still smaller than Zpqr. Section 4 shows that the ear-cutting procedure of step
(M2) indeed finds such a point s and produces triangulations P and T of P and R
such that it(P), it(n) < /pqr.

The above two lemmas can now be used to analyze the running time of the
algorithm. First, we address the number of iterations of the repeat-loop, which is one
plus the number of successful iterations of step (M2).

LEMMA 2.3. The above algorithm reaches a minmax triangulation after at most
O(n2) iterations of the repeat-loop.

Proof. Each iteration produces a triangulation with a smaller maximum angle
than before, or with fewer maximum angles of the same size. Since the number of
different triangulations is finite, an optimum must be reached. To get an upper bound
on the number of iterations, notice that the edge pr removed from 4 during some

MINMAX ANGLE TRIANGULATION 997

iteration will not reappear in the future. The claim follows because S allows only ()
different edges. [:]

We are now ready to argue that the above algorithm runs in time O(n2 log n)
and space O(n). There are two data structures needed for the algorithm. First,
the quad-edge structure of Guibas and Stolfi [9] is used to represent jr; it permits
common operations, such as removing an edge, adding an edge, and walking from
one edge to the next, in constant time each. Second, the angles of 4 are stored in a

priority queue that admits insertions, deletions, and finding the maximum. Standard
implementations support each such operation in time O(logn); see, e.g., [4]. The
space needed for both data structures is O(n).

With these preliminaries we can give the analysis of the algorithm. By Lemma
2.3, the number of times the priority queue is consulted to get a largest angle is O(n2),
which implies that step (M1) takes total time O(n2 log n). Section 4 will show that
the ear-cutting procedure performs only a total of O(n2) operations on the quad-edge
structure, each in constant time, and only O(n2) insertions into and deletions from
the priority queue, each in time O(log n). We conclude that the running time of the
algorithm is O(n2 log n), as claimed.

3. The cake-cutting lemma. The result of this section is a technical lemma,
which is nevertheless the heart of this paper. It ensures that for some edge qs the
generated regions, P and R, can be triangulated without angles that are too large.
We first discuss the shape of these regions and then state and prove the lemma.

The regions P and R are generated in step (M2) of the algorithm by adding an
edge qs and removing all edges that intersect qs. It follows that P (and by symmetry
R) is very similar to a simple polygon; that is, it is simply connected and bounded
by straight-line edges. The only difference is that there can be edges surrounded by
P on both sides; these are the edges contained in the interior of the closure of P (see
Fig. 1). To simplify the forthcoming discussion (and also in the implementation of
the algorithm) we treat each such edge as if it consisted of two edges, one for each
side. Effectively, this means that we can talk about P and R as if they were simple
polygons.

q

FIG. 1. Regions P and R.

With this note we now state and prove the cake-cutting lemma. The intuition
behind the proof is that we look at a piece of an optimal triangulation T and argue
about its edges. Keep in mind, however, that during the algorithm we have no way
of knowing what T really is; we only know that it exists.

998 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

LEMMA 3.1. Let T be a minmax angle triangulation of S, ai a triangulation of
S with it(A) > it(T), par a triangle in j[so that Lpqr it(A), and as an edge in
T that intersects pr. Let P and R be the polygons generated by adding qs to .4 and
removing all edges that intersect qs. Then there are triangulations 7 and T of P and
R so that it(t)), it(n) < it(A).

Proof. We prove the claim for P; it follows for R by symmetry. Imagine we have
jt and T on separate pieces of transparent paper that we lay on top of each other so
that the points match. Following step (M2) of the algorithm, we add qs to ,4 and
remove intersecting edges from ,4, thus creating P and R. Next, we clip everything
outside P. In J[only P without intersecting edges is left, and in T there will generally
be edges that cut through P. By assumption, qs is also in T, which implies that none
of these edges meets qs. We define a clipped edge as a connected component of such
an edge of T intersected with P. Since P is not necessarily convex, some clipped
edges can belong to the same edge of T. Given a point x on the boundary of P, let
the path from x to q (or x to s) be the part of the boundary between x and q (or x
and s) that does not contain qs. We have four classes of clipped edges xy; see Fig. 2.

I. Both endpoints, x and y, are not vertices of P and thus lie on edges of P.
II. Both endpoints are vertices of P.

III. Endpoint x is a vertex of P, y is not, and y lies on the path from x to s.
IV. The same as class III except that y lies on the path from x to q.

c

FIG. 2. The class edges in this example are eg and my; the class II edges are cj, ck, cz, and
sp; the class III edges are cl and cw; and the class IV edges are jh, jd, un, zb, and sa.

At any vertex x of P, the clipped edges with one endpoint at x define angles at x that
are all smaller than it(4), because the clipped edges come from T and it(T) < it(A)
holds by assumption. The only disadvantage of the partition of P defined by the
clipped edges is that some of their endpoints lie on edges of P rather than at the
vertices. We will now construct a triangulation of P based on the clipped edges. It
proceeds step by step, where each step either removes or rotates a clipped edge or
introduces a new edge.

1. All class I edges are removed. This does not harm any angle.
2. All class II edges remain where they are.
3. Let xy be a class III edge with y on the edge a/ of P, where c precedes

MINMAX ANGLE TRIANGULATION 999

on the path from x to s. We replace xy by x.
Note first that x is indeed a diagonal of P. Otherwise, it intersects the boundary

of P, which implies that either x or/ is not visible from qs. This is a contradiction
to the way P is constructed. Note second that the angle at x that precedes xy in the
counterclockwise order increases in step 3. Still, the angle formed by x is strictly
contained in an angle at x in jt because all edges of jt that intersect P also intersect
qs. It follows that the angle formed by x is smaller than #(Jr). Another issue that
comes up is that there can be class IV edges xPy with y on the same edge a of P--
these edges now intersect x. To remedy this situation we replace xy by xx. By the
same argument as above, xx is a diagonal of P, and the angle at x that precedes xy
in the clockwise order and that increases as we replace xy by xx remains smaller
than It(A).

4. If xy is a class IV edge with y on the edge a of P, where a precedes on
the path from x to q, then we replace xy by x.

5. After steps 1-4 we have a partial triangulation of P, which we complete by
adding edges arbitrarily. This finishes the construction of P.

We have It(P) < It(A) since we started out with all angles smaller than It(A);
each time an angle increases it remains smaller than It(A) as argued above, and step
5 decomposes angles, thus creating only smaller angles. D

Remark. Note that the only property of 7" used in the proof of the cake-cutting
lemma is that It(T) < It(A). The lemma thus also holds if we replace T by an
arbitrary triangulation B of S that satisfies It(B) < It(A). In fact, it suffices if B is an
improvement of ,4 and pqr is not a triangle in B.

4. The ear-cutting procedure. The cake-cutting lemma in 3 shows that if
,4 is not yet a minmax angle triangulation and qs is an edge in T, chosen by the
algorithm to improve ,4, then there are triangulations of the generated polygons P
and R with all angles smaller than Lpqr. The two questions that remain are how to
find such an edge qs and how to quickly triangulate P and R. One obvious way to
find qs (not necessarily in T but in an improvement of .4) is to try all possible points
s with qs Npr :fi O. For each such s we add qs to Jt and remove all edges that intersect
qs. The thus-created polygons P and R are triangulated with minimum largest new
angle using dynamic programming. If the largest new angle is smaller than /pqr we
have an improvement of ,4 and thus a desired qs.

Apparently, the implementation of an iterative step sketched in the above para-
graph is rather inefficient. We improve the performance with a more clever way to
search for an appropriate point s and with a fast procedure for triangulating P and
R. The two tasks are woven together to the extent that it is not advisable to look
at them as separate steps. For a chosen point s we attempt to triangulate P and
R with all angles smaller than Apqr. If this fails we get some guidance on where to
look for a better point s. Following this guidance, a next point s is chosen so that we
can reuse part of the work done during the unsuccessful triangulation attempt. The
fundamental notion in all of this is that of an ear of a polygon triangulation.

4.1. Ears. An ear in a polygon triangulation is a triangle bounded by two poly-
gon edges and one diagonal. It is easy to show that any triangulation of a simple
polygon with more than three vertices has at least two ears [14].

In order to efficiently triangulate P and R, with all angles smaller than It
It(A) =/pqr, we need two properties. The first guarantees that no expensive testing
is necessary to recognize when an edge is a diagonal.

1000 H. EDELSBRUNNER, T. S. TAN, AND It. WAUPOTITSCH

LEMMA 4.1. Let P’ be a polygon obtained from P by repeatedly removing ears
not incident to qs. If a, b, c are three consecutive vertices of P’ with (q, s}

_
(a, b, c}

and/abc < r, then ac is a diagonal of
Proof. By construction of P each of its vertices can be connected by a straight-

line segment within P to a point on qs. This property is maintained whenever we
remove an ear not incident to qs, so it also holds for P’. In particular, it holds for the
vertices a, b, and c of P’. The edge ac can avoid being a diagonal only if it intersects
the boundary of P’ (it cannot lie outside P’ because/abc < 7r). But this contradicts
the above property for either a or c or for both.

By symmetry, Lemma 4.1 also holds for R. It is now easy to identify ears because
only one angle has to be checked. This is because the angles at a and c inside abc are
always smaller than # as they are properly contained in angles of Jr. Thus, all three
angles of abc are smaller than # if and only if/abc < #.

The second property we need is that it does not matter which ears we remove,
and in what sequence we remove them, as long as their angles are small enough.
This property is implied by the following lemma whose proof is omitted because it is
identical to that of the cake-cutting lemma.

LEMMA 4.2. Let P’ be a polygon obtained from P by repeatedly removing ears not
incident to qs. If qs is an edge of T then there exists a triangulation of P’ without
angles larger than or equal to .

The two lemmas suggest that we triangulate P and R simply by repeatedly finding
consecutive vertices a, b, c, with/abc < #, and removing the ear abc. We remark that
this strategy can also be used to get an inductive proof of the cake-cutting lemma.
The next two subsections show how ear cutting and the search for an appropriate
point s can be combined to yield an efficient implementation of an iterative step.

4.2. How to cut. The way we search for a point s (4.3) guarantees a certain
property of the polygons P and R that simplifies their triangulation by ear cutting.
To be accurate we should mention that at the time we start the triangulation process
for P and R, some ears will already have been removed as a result of earlier attempts
to triangulate polygons generated for other points s. Consistent with our earlier
notation, we therefore denote the two polygons that we attempt to triangulate by
P’ and R’. We state the mentioned property as an invariant of the algorithm after
introducing some notation.

As justified above we pretend that P’ and R’ are simple polygons; by construction
they share the edge qs. Let k + 2 be the number of vertices of P’ and m + 2 the
number of vertices of R’, and label them consecutively as q P0, Pl,""", Pk, Pk+l 8

and q- ro, rl,’" ,rm,rm+l s (see Fig. 3). Define i /Pi-lPiPi+l for 1 _< <_ k
and pj =/rj_irjrj+ for 1 _< j <_ m.

We can now state the property of P’ and
Invariant. i >_ u for all 1 <_ i < k and pj >_ p for all 1 <_ j < m.
This implies that Pk-, Pk, s are the only three vertices that possibly define an

ear of P’ that is not incident to qs (provided k > 1) and has all three angles smaller
than #. Symmetrically, rm-1, rm, 8 are the only such three vertices of
then Pk-pks is indeed such an ear and we can remove it from P’. This operation
decreases k-1, the angle at Pk-, and leaves all other i unchanged. Thus, P’ still
satisfies the invariant after setting k :- k- 1. Similarly, the invariant is maintained
if we remove rm-rmS from R’ and set m :- m 1.

We now describe this process more formally as a procedure that alternates be-
tween removing an ear from P’ and removing an ear from R’. It either completes its

MINMAX ANGLE TRIANGULATION 1001

q

p

P

FIG. 3. The circular arcs indicate angles that are known to be at least as large as

task of triangulating P and R or it stops because it encounters a situation where
Ck

_
/t or Pm

_ . To avoid repetition we separate out the code that tests an angle
and removes an ear if the angle is small enough.

procedure CUTEARP.
if Ck < # then

if k > 1 then add the edge Pk-18 to the triangulation endif;
remove the triangle Pk-lpk8 from P and set k := k- 1

else set stop :- true
endif.

Similarly, we define a procedure CUTEARR, which either removes rm-lrm8 from
R or raises the ilag by setting stop :- true. The attempt to triangulate P and R first
alternates between the two polygons and, if one polygon is successfully triangulated,
attempts to complete the polygon that remains.

stop := false;
while k > 0 and m > 0 and not stop do
CUTEARP; if not stop then CUTEARR endif

endwhile;
while k > 0 and not stop do CUTEARP endwhile;
while m > 0 and not stop do CUTEARR endwhile.

If the procedure finishes without raising the iiag (stop false) then we must
have k m 0 and the triangulation is complete. Otherwise, the flag is raised either
while testing P or while testing R (so we should really have used two flags to be able
to distinguish the two cases--and we pretend we did).

Assume the flag was raised because of Ck >_ #. Let q be the half-line that starts
at q and goes through s, and let p be the point among Pl,’",Pk so that /pqs is a
minimum. Note that p is not necessarily equal to Pk, but p Pk if P is convex. We
have the following lemma, which will be useful in searching for a new point s.

LEMMA 4.3. Assuming Ck >_ t, there is no point t E S so that qt is an edge in a
minmax angle triangulation T of S, qt N pk8 O, and qt ps O.

Proof. Suppose there is a point t that contradicts the assertion. Because qtNpks
q), this edge qt generates a polygon P so that q P0, Pl,’", Pk is a contiguous subse-
quence of its vertices (after removing appropriate ears). Let Pk+l,’’’,Pk",Pk"+l t

1002 H. EDELSBI=tUNNER, T. S. TAN, AND R. WAUPOTITSCH

be the other vertices of P. By assumption we have Lpi-1Pip,+1 >_ # for i _< i _< k- 1.
Furthermore, /Pk-lPkPj

_
for all k q- 1 <_ j <_ k -b 1 because all these angles are

larger than Ck, the angle at pk in P. Hence, any attempt to triangulate P by re-
moving ears (not incident to qs with angles all smaller than #) must fail to cut off
ears at pi for all 1

Remark. As in the remark after the cake-cutting lemma, we can argue that Lemma
4.3 is also true if we replace T by an arbitrary triangulation that is an improvement
of A.

Lemma 4.3 suggests that the search for a new s continue between qr and q if
the flag is raised while testing P, where r is the counterpart of p in R and s is
the old s. Thus, all ears removed from P are safe and do not have to be considered
again. However, all ears removed from R have to be added back because they will
intersect any future edge qs. Simultaneously, the value of m has to be adjusted. The
amount of time needed to add these ears back in is proportional to the number of ears
removed from P, because the ear cutting alternates between P and R. Symmetric
actions are in order when the flag is raised while testing R.

4.3. How to search. Let us go back to the triangulation Jt of S that is not
yet a minmax angle triangulation, and as usual let p, q, r be the points so that pqr
is a triangle in ,4 and/pqr # #(,4). The first vertex s that we test is the third
vertex of the other triangle of pr (if no such triangle exists, then pr is an edge of
the convex hull of S and no appropriate point s exists). Thus we add qs and remove
pr. If the new angles at p and r are both smaller than #, then we are done. If
Aqps < # and/qrs >_ #, then, by Lemma 4.3, the edges we should test must intersect
ps. Symmetrically, if Aqps >_ # and Lqrs < /z, then we must search for edges that
intersect sr. If both angles are at least #, then no appropriate edge exists.

We now generalize and formalize this idea. For given polygons P and R we
define vertices p and r as above, and we denote the open wedge between qp and
qr by W. This wedge will get progressively smaller as we proceed with the search,
and only points s within the wedge will be considered as endpoints of new edges qs.
Initially, p p and r r. We are now ready to describe the algorithm that searches
for an appropriate point s.

Input. A triangulation ,4 of S with maximum angle/pqr # #(4).
Output. An improved triangulation or a message that the maximum angle cannot be
decreased. In the latter case, the input triangulation is a minmax angle triangulation
of S.
Define. THIRD(a, b) is the vertex c of the triangle abc so that q and c lie on opposite
sides of the line through a and b. If such a vertex does not exist, which is the case
if ab is an edge of the convex hull of S, then THIRD(a, b) is undefined. As before, W
denotes the open wedge defined by p, q, and r.
Initialize k 1, pl :--p :--p, m 1, and r :--r :-r.
loop
if WnIRD(pk, rm) is not defined then

return the message that the maximum angle cannot be decreased and stop.
else
set s :-- THIPD(pk, rm) and remove pkrm from ,4.
if s E W then

add qs to ,4 and attempt the triangulation of Pt and R as described in 4.2.
case 1. The attempt succeeds. Return the new triangulation and stop.

MINMAX ANGLE TRIANGULATION 1003

case 2. The flag was raised while testing P. Set k :- k + 1 & Pk :-- P :-- s.
case 3. The flag was raised while testing R. Set m :-- m + 1 & rm :-- r :- s.

else (i.e., s W)
if Srm intersects W then

set stop :--false; while not stop do CUTEARP endwhile;
set k :-- k / 1 and Pk :---- 8.

else (i.e., spk intersects W)
set stop :--false; while not stop do CUTEARR endwhile;
set m :- m + 1 and rm :- 8.

endif
endif

endif
forever.

We would like to point out a subtlety of the algorithm needed to prove its cor-
rectness. That is, the polygons P and R defined by any edge qs are obtained from ,4
by removing only edges that intersect qs. Of course, some edges not in ,4 have been
added already to remove some ears. In other words, P is the polygon P (as defined
in 2) with some ears removed, and the same is true for R and R.

4.4. The final analysis. The running time of an iterative step (the above al-
gorithm) is proportional to the number of removed ears. Because of the alternation
between removing an ear from P and one from R, at most only one more than half
of the removed ears are added back to the polygon. This is also true if one polygon is
completely triangulated while ears are still removed from the other polygon, because
in this case only the ears of the former polygons need to be added back in, and their
number is smaller than the number of ears cut off from the other polygon. It follows
that the total number of removed ears is O(n). A single iteration therefore takes
only O(n) time. Together with Lemma 2.3, which states that there are only O(n2)
iterations, this implies a cubic upper bound on the time complexity of our algorithm
(if implemented without priority queue).

Below we argue that its running time is actually O(n2 log n). To achieve this
bound it is necessary to store the angles of the current triangulation in a priority queue,
for otherwise finding all maximum angles costs time (n3). The crucial observation is
that the time spent in an iterative step is proportional to the number of edges in the
input triangulation that intersect the new edge qs. Each such edge has been removed
and we argue that it will never be added again because every future triangulation will
have an edge qt that intersects pkrm, the last edge before s. First note that every
future triangulation is an improvement of j[. By Lemma 4.3 and the remark following
it, every improvement of 4 has an edge qt in the final wedge W as maintained by the
algorithm. Both Pk and rm lie outside W (possibly on its boundary) and the edge
Pkrm intersects W. The claim follows because all points of W N S lie beyond Pkrm as
seen from q. This implies the O(n2 log n) bound because we have only () O(n2)
edges to work with. It should be noted that the maintenance of the priority queue
storing the angles is the sole reason for the log n term in the O(n2 log n) bound; all
other operations take total time O(n2).

5. Extensions. We address two types of extensions of our algorithm for con-
structing minmax angle triangulations. The first extension is to the constrained case
where the input consists of a set of n points plus some pairwise disjoint edges defined
by the points that are required to be in the triangulation. The second extension

1004 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

discusses the optimization of the entire angle vector rather than just the maximum
angle.

Only minor changes are necessary to adapt the algorithm presented in 2 and 4
to the constrained case. The most important change is that no prescribed edge will
be removed to give way to searching for a new point s. This modification takes no
extra time, which implies the part of the Main Theorem that deals with prescribed
edges.

Before we introduce angle vectors, note that for a given point set S all triangula-
tions (whether constrained or not) have the same number of triangles and therefore
the same number of angles. By Euler’s formula for planar graphs the number of trian-
gles is t 2n- h- 2, where n ISI and h is the number of points of S that lie on the
boundary of its convex hull. For any triangulation ,4 of S we define its angle vector
VA (al,a2,’-" ,a3t), with c1 _> a2 >_ >_ O3t the 3t angles of the t triangles.
If B is another triangulation of S with angle vector V (, 2,’", 3t) we define
V < VA if there is an index l <_j <_ 3t so that =a for 1 <_i<j andj <aj.
For example, V < Vt if B is an improvement of ,4, but the reverse is not necessarily
true.

The problem of finding a triangulation with minimum angle vector is at least
as difficult as finding a minmax angle triangulation. If any two angles defined by
three points of S each are different we can construct the minimum angle vector
triangulationmwhich is unique in this casemas follows.

First, construct a minmax angle triangulation :Y1 and declare the
three edges of the triangle that contains the maximum angle as pre-
scribed. Second, construct a minmax angle triangulation :Y2 for the
thus constrained input and introduce new constraints to enforce the
second largest angle in future triangulations. Continue this way and
construct triangulations T3, T4, and so on until the prescribed edges
add up to a triangulation themselves. This triangulation minimizes
the angle vector.

An O(n3 log n) time-bound for this algorithm is obvious because it just iterates
the minmax angle triangulation algorithm a linear number of times. Even better,
we have an O(n2 log n) time-bound if we use as the input triangulation for the
construction of +1. The improved bound follows because an edge once removed
cannot appear in any future triangulation. We thus get the following result by the
same argument as in 4.4.

THEOREM 5.1. Given a set of n points in the plane so that no angles defined by
three points each are equally large, the triangulation that lexicographically minimizes
the angle vector can be constructed in time O(n2 log n) and space O(n).

Remark. In the presence of multiple angles it is not clear how to adapt the ap-
proach of this paper without requiring an exponential amount of time in the worst
case. We pose the existence of a polynomial algorithm for minimizing the angle vector
in the presence of multiple angles as an open problem. A case where multiple angles
can be handled relatively easily is that of a simple polygon. The straightforward cubic
time algorithm for minimizing the maximum angle, derived from the dynamic pro-
gramming algorithm of Klincsek [10], can be extended to an O(n4) time algorithm for
minimizing the angle vector as follows. Instead of characterizing a (partial) triangu-
lation by its maximum angle we store its sorted angle vector. The best triangulation
of a sequence of vertices is then selected on the basis of these vectors. The cubic time

MINMAX ANGLE TRIANGULATION 1005

increases to O(n4) because comparing two angle vectors takes O(n) time in the worst
case, in contrast to constant time for comparing maximum angles.

6. Experimental results. To demonstrate that the results of the preceding sec-

tions, which we believe are of theoretical interest, are significant also from a practical
viewpoint, we implement the algorithm along with a few other triangulation algo-
rithms from the literature. Using these implementations, we perform a small-scale
comparative study of the triangulations they produce. A more extensive study and
complete description of the findings will soon be available as the master’s thesis of
Waupotitsch. The difference between two triangulations is expressed in terms of their
angles and edges (as in [16]).

The experimental study is based on implementations of four different triangula-
tion algorithms. Three work by iterative improvement, and to construct an initial
triangulation we use a plane-sweep strategy (see, e.g., [6, 8.3.1]). Triangulations
constructed by plane-sweep are denoted by PS. The implementation of the edge-
insertion algorithm of this paper minimizes the angle vector as discussed in 5. Its
triangulations are referred to as MV. To avoid the difficulty that arises when two
angles are equally large (see the remark at the end of 5), we use a heuristic that
breaks ties in a consistent manner. Delaunay triangulations, DEL, are constructed by
flipping the diagonals of convex quadrilaterals as long as the smallest angle involved
increases (see, e.g., [11]). The third incremental improvement algorithm flips the di-
agonal of a convex quadrilateral if the largest of the six involved angles decreases.
As shown in [15], this heuristic typically gets stuck in a local optimum depending on
the initial triangulation as well as on the way the flips are scheduled. We use this
algorithm to construct triangulations FPD, FPN, FDD, and FDN, where the middle
letter distinguishes between PS and DEL as the initial triangulation and the final
letter distinguishes between deterministic (largest angle first) and "nondeterministic"
(first in first serve) scheduling.

The point sets chosen for our experimental study are drawn uniformly either
inside a square or near a circle (see Fig. 4). To allow for exact arithmetic all points
are chosen on the integer grid. For each of various point set sizes, 30 experiments are
carried out and average statistics are compiled.

Table 1 compares triangulations and their quality. More specifically, it compares
each triangulation X E {PL, DEL, FPD, FPN, FDD, FDN} with MV, the optimum
triangulation. The parameter Ae gives the number of edges in X that are not in
MV. The angle vectors of X and MV are compared using parameters /eq,/sm, and

(///MV)" This means that the /eq largest angles of X and MV are the same and
that the next Lsm largest angles are smaller for MV. (///MV) is the ratio between
the /q + 1 largest angle of each triangulation. The statistics show that for points
uniformly distributed in a square the edge-flip heuristic produces triangulations that
come close to the optimum. Consistent with the findings reported in [16], DEL differs
from MV by slightly less than 10 percent of its edges. This is in sharp contrast to
the relative performance of the algorithms for points chosen on or close to a circle. In
this case, DEL and MV share very few nonconvex hull edges. The edge-flip heuristic
produces triangulations that are superior in terms of angles to DEL, but they hardly
share any more edges with MV.

It is interesting to note that the amount of work needed to construct MV is far less
for points in a square than for points near a circle. Table 2 shows the number of edges
removed during the construction of MV. While the difference between the two point
distributions is striking, the choice of the initial triangulation seems to have far less

1006 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

square

circle

DEL FDD MV

FIG. 4. The Delaunay triangulation, DEL, a locally optimal triangulation, FDD, and the
globally optimal triangulation, MV, for two small point sets.

influence on the running time of the edge-insertion algorithm. In general, we observe
that the edge-insertion algorithm is much faster on the average than expressed by the
worst-case analysis in 4. We would also like to remark that there are no polynomial
time-bounds known for the edge-flip heuristic used in our experimental study.

7. Conclusions. The main result of this paper is an O(n2 log n) time algorithm
for constructing a minmax angle triangulation of a set of n points in the plane, with
or without prescribed edges. This seems fairly efficient considering that it is the first
polynomial time algorithm for the problem and that it somehow avoids looking at all
the () angles defined by the n points. On the other hand, our algorithm is a factor n
slower than the best algorithms for constructing Delaunay triangulations, at least in
the worst case. We thus pose the question of whether a minmax angle triangulation
can be constructed in o(n2 log n) time.

In the nondegenerate case where no two angles defined by three points each are
equal, the algorithm can be extended to compute the triangulation that lexicograph-
ically minimizes the sorted vector of angles. The running time is still O(n2 log n) in
the worst case, and our experiments indicate that the average run time is significantly
less.

A problem related to minimizing the maximum angle is to construct a triangu-
lation that minimizes the number of obtuse angles. It seems that the edge-insertion
scheme does not work for this criterion. The problem thus remains open for point
sets, although dynamic programming yields a cubic time algorithm if the input is a
simple polygon. Still, the authors of this paper believe that the edge-insertion scheme
is more generally applicable and plan to further investigate this paradigm.

MINMAX ANGLE TRIANGULATION 1007

TABLE 1
Comparison of MV with other triangulations.

50 points (in square)
Ae /

(%) Leq Lsm LMV
PS 51.9 0 91 1.020
DEL 7.3 7 29 1.033
FPD 1.5 97 5 1.011
FPN 1.6 89 6 1.012
ROD 2.4 54 7 1.015
FDN 2.6 29 7 1.017

500 points (in square)
PS 79.0 0 995 1.002
DEL 8.8 17 185 1.005
FPD 3.3 40 195 1.005
FPN 3.3 41 151 1.006
FDD 2.7 45 92 1.009
FDN 3.0 43 91 1.008

100 points (near circle)
PS 43.5 4 79 1.003
DEL 38.6 5 28 1.001
FPD 39.4 16 34 1.005
FPN 39.3 16 34 1.005
FDD 38.2 18 28 1.004
FDN 39.8 18 17 1.005

100 points (in square)
Ae L
(%) L L. LMY
62.5 0 190 1.012
8.0 8 53 1.018
3.1 36 42 1.022
3.2 35 32 1.022
2.2 74 13 1.017
2.5 91 15 1.022

200 points (in square)
Ae
(%) /eq L

70.8 0 391
8.8 11 66
3.3 24 66
3.2 26 68
2.5 28 30
2.9 28 34

L
LMV
1.006
1.008
1.011
1.012
1.010
1.010

1000 points (in square)
84.0 0 2001 1.001
9.1 21 231 1.002
3.0 55 438 1.003
3.2 57 454 1.003
2.7 62 200 1.007
3.0 60 201 1.006

50 points (near circle)
45.7 0 33 1.058
46.5 0 47 1.072
43.1 1 26 1.046
43.7 1 26 1.045
42.0 2 24 1.039
40.6 2 22 1.035

200 points (near circle)
47.1 7 104 1.001
46.5 7 209 1.001
46.4 15 94 1.004
46.6 15 93 1.004
46.1 16 88 1.004
46.8 16 85 1.006

500 points (near circle)
44.5 2 176 1.00006
43.4 24 358 1.00003
43.4 77 215 1.00018
43.4 76 242 1.00018
43.3 80 335 1.00024
43.3 80 202 1.00011

TABLE 2
The number of edges removed by the edge-insertion algorithm when it computes MVfrom either

PS or DEL.

Square
50 pts 100 pts 200 pts 500 pts 1000 pts

PS 240 647 1607 5067 11847
DEL 153 390 946 2887 6658

50 pts
1301
1303

Circle
100 pts 20(] pts

2340 11’136
2276 1(;660

500 pts
63003
58934

Acknowledgment. The second author thanks Professor C. L. Liu for his con-
stant support and encouragement.

REFERENCES

[1] I. BABUKA AND A. K. AzIz, On the angle condition in the finite element method, SIAM J.
Numer. Anal., 13 (1976), pp. 214-226.

[2] R. E. BARNHILL AND F. F. LITTLE, Three- and four-dimensional surfaces, Rocky Mountain
J. Math., 14 (1984), pp. 77-102.

[3] J. CAVENDISH, Automatic triangulation of arbitrary planar domains for the finite element
method, Internat. J. Numer. Methods Engrg., 8 (1974), pp. 679-696.

[4] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[5] B. DELAUNAY, Sur la sphere vide, Izv. Akad. Nauk SSSR, Otdel. Mat. Estest. Nauk, 7 (1934),
pp. 793-800.

[6] n. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, Ger-
many, 1987.

[7] S. J. FORTUNE, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), pp. 153-
174.

[8] J. A. GREGORY, Error bounds for linear interpolation on triangles, in The Mathematics of
Finite Element and Applications II, J. R. Whiteman, ed., Academic Press, New York,
1975, pp. 163-170.

1008 H. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH

[9] L. J. GUIBAS AND Z. STOLFI, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graphics, 4 (1985), pp. 74-123.

[10] G. T. KLINCSEK, Minimal triangulations of polygonal domains, Ann. Discrete Math., 9 (1980),
pp. 121-123.

[11] C. L. LAWSON, Generation of a triangular grid with applications to contour plotting, Jet
Propulsion Laboratory Tech. Memo. 299, Jet Propulsion Laboratory, California Institute
of Technology Pasadena, CA, 1972.

[12] , Software for C surface interpolation, in Mathematical Software III, J. R. Rice, ed.,
Academic Press, New York, 1977, pp. 161-194.

[13] D. T. LEE AND A. K. LIN, Generalized Delaunay triangulations for planar graphs, Discrete
&: Comput. Geom., 1 (1986), pp. 201-217.

[14] G. H. MEISTEPS, Polygons have ears, Amer. Math. Monthly, 82 (1975), pp. 648-651.
[15] (. M. NIELSON, An example with a local minimum for the minmax ordering of triangulations,

manuscript, Lawrence Livermore National Laboratory, Livermore, CA, 1987.
[16] G. M. NIELSON AND R. FRANKE, Surface construction based upon triangulations, in Surfaces

in Computer Aided Geometric Design, R. E. Barnhill and W. Boehm, eds., North-Holland,
Amsterdam, 1983, pp. 163-177.

[17] D. A. PLAISTED AND J. HONG, A heuristic triangulation algorithm, J. Algorithms, 8 (1987),
pp. 405-437.

[18] M. J. D. POWELL AND M. A. SABIN, Pairwise quadratic approximation on triangles, ACM
Trans. Math. Software, 3 (1977), pp. 316-325.

[19] F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry--an Introduction, Springer-
Verlag, New York, 1985.

[20] R. SEIDEL, Constrained Delaunay triangulations and Voronoi diagrams with obstacles, in 1978-
1988, 10-Years IIG, Report of the Institute for Information Processing, Technical University
of Graz, Austria, 1988, pp. 178-191.

[21] M. I. SHAMOS AND D. HOEY, Closest point problems, in Proc. 16th Annual IEEE Symposium
on the Foundations of Computer Science, Berkeley, CA, 1975, pp. 151-162.

[22] R. SIBSON, Locally equiangular triangulations, Comput. J., 21 (1978), pp. 243-245.
[23] G. STRANG AND G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood

Cliffs, NJ, 1973.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 1009-1024, July 1992

1992 Society for Industrial and Applied Mathematics
010

WHICH CUBIC SPLINE SHOULD ONE USE?*

R. K. BEATSONt AND E. CHACKOt

Abstract. The aim of this paper is to provide a quantitative comparison of eight different C
and C2 cubic spline interpolation schemes. The C schemes discussed are local while the C2 ones
are global.

In practice cubic splines are often used when the smoothness of the function being interpo-
lated/approximated is unknown. Also, it is often necessary, or advantageous, to use a nonuniform
mesh. Therefore performance over a variety of smoothness classes, using uniform and also several
thousand random meshes, is compared. The performance criteria used are the quantitative ones of
exact operator and derived operator norms and best possible pointwise error estimates.

Key words, cubic splines, end conditions, operator norms, error estimates

AMS(MOS) subject classifications. 65D07, 65D10, 41A15

1. Introduction. Our aim is to find an interpolant that will give good results
when used to interpolate functions of unknown smoothness on a possibly nonuniform
mesh. We consider eight different C or C2 cubic spline interpolation schemes and
compare their operator and derived operator norms as well as the pointwise error

sup I(f s)(x)l

for uniform knot distributions, several thousand random knot distributions, and sev-
eral smoothness classes -. It is worth emphasizing that we do not seek the best
interpolation method for a fixed smoothness class ’--the problem of optimal inter-
polation.

All the schemes considered fit cubic splines with knots at the nodes of interpola-
tion t

s(ti) i O, 1,...,n.

1.1. C2 methodsnot strictly local. In the first six methods the spline is
chosen to be C2, so that each scheme corresponds to a different choice of two end
conditions. Such schemes are not suitable for certain applications as they are not
strictly local. Thus data far away from x can influence the value of s(x). However,
they are semilocal, meaning that the influence of data at point ti on s(x) falls off
geometrically with the number of knots between x and ti (see the discussion in 2.1
below).

Method A:

(1) 8(3)(tl -) 8(3)(t1-[-) and 8(3)(tn_l -) 8(3)(tn_l-[-),

the well-known not-a-knot end condition. (See Kershaw [7] and de Boor [2].) This
end condition forces the restrictions of the spline to the first two and the last two
intervals to be single cubics. The maximum convergence rate, meaning the rate for a
general C function, is O(4), where is the mesh size. Of course the limiting rate
is actually achieved for C3 functions with Lipschitz third derivative.

Received by the editors October 31, 1988; accepted for publication June 25, 1991.
Mathematics Department, University of Canterbury, Private Bag, Christchurch 1, New Zealand

(rkb@math.canterbury.ac.nz and pec@math.canterbury.ac.nz).
1009

1010 R.K. BEATSON AND E. CHACKO

Method B"

(2) s’(to) c(to) and s’(tn) c(tn),

where cz and cr are cubic polynomials with

ct(ti) f(ti) and cr(tn-i) f(tn-i), 0 <_ i <_ 3.

Thus this spline is chosen to have the same first derivative as the local cubic interpolant
through the first (last) four knots, at the first (last) knot. The maximum convergence
rate is (.9(4).

Method C"

(3) s"(to) c’(to) and s"(tn) c(t)

with ct and cr as above. Thus this spline is chosen to have the same second derivative
as the local cubic interpolant through the first (last) four knots, at the first (last)
knot. The maximum convergence rate is (9(4).

Method D"

(4) dl d2 and d,-2 d_l,

where

d s(3) (t+) s(3) (t-).

Here the jump discontinuities in the third derivative at the second and third knots
are forced to be the same, and similarly for the second and third to last knots. This
method is known to minimize Ill- s[[o when the knots are equispaced and f is a
quartic polynomial. The maximum convergence rate is (9(4), and the method is not
recommended for use with nonuniform meshes.

Method E:

(5) s"(to) 0 and s"(tn) O,

the so-called natural cubic spline end condition. This should not generally be used
for approximation purposes, as it throws away any second derivative information in
the data and, as a consequence, the order of approximation near the endpoints is
restricted to O(52).

Method F:

(6) s’(to) q(to) and s’(tn) q(t),

where qt and qr are quadratic polynomials with

qt(t) f(t) and qr(tn-) f(tn--i), 0 <_ i <_ 2.

Thus, this spline is chosen to have the same first derivative as the local quadratic
interpolant through the first (last) three knots, at the first (last) knot. The maximum
convergence rate is

WHICH CUBIC SPLINE SHOULD ONE USE? 1011

1.2. Cx methods--strictly local. The last two schemes are simple strictly local
methods. This property allows easy modification of previously obtained fits, and is
essential for some applications, such as CAD. However, there is a cost, namely, that the
error estimates for smooth functions away from the ends of the interval are generally
somewhat worse. The local methods we consider are Cx rather than C2.

Method G: s agrees with the derivative of a local quadratic at every knot. Thus
defining qi as the quadratic that interpolates to f at ti, ti+, and ti+2,

q(t0), j O,
(7) s’(tj) q_(tj), 0 < j < n,

q_2(tn), j =n.

The maximum convergence rate is 0(53).
Method H: s’ agrees with the derivative of a local cubic at every knot. Thus

defining ci as the cubic that interpolates to f at ti, ti+l, ti+2, and ti+3,

(8) C}-l(tj),
j’--0
0 < j <_ n/2,
n/2 < j < n,
j--n.

The maximum convergence rate is 0(54).
1.3. Outline of criteria used. The present work is an extension of that in [1],

where it was shown that, for methods A, B, and C,

(9) I]f sl] < KSJw(f(), 5), 1 <_ j <_ 3,

where w(f(), 5) is the modulus of continuity for f(J). For j 2, 3, K is an absolute
constant independent of the mesh t. For j 1 it depends on the spacing of the first
few and last few knots. Estimate (9) implies, in particular, (9(54) approximation to C4

functions. However, [1] does not give any grounds for choosing a particular interpolant
from amongst those methods with (9(54 error estimates, and no information about
strictly local methods, or those methods with maximum convergence rates less than

Our present aim was therefore to make a quantitative comparison of various com-
monly used cubic spline interpolants. Comparisons are made using uniform meshes
and also several thousand nonuniform meshes. For each of these cases we computed
the operator norms of the spline projector itself, and also of the first derived projectors
L f ---, s. For the C2 methods we also computed the norm of the second derived
projector L" f" - s’. These norms give a quantitative measure of the tendency
of the particular spline operator to introduce extraneous bumps and wiggles. We also
compute the pointwise error multiplier

K(j, x) sup If(x) 8(x)l,
few, iif()lloo<

1 _< j _< 4. The utility of these functions lies in the associated "tight" bounds

If(x)- s(x)l <_

and

where Cj supz K(j, x).

1012 R.K. BEATSON AND E. CHACKO

1.4. Summary of results. The results are presented in detail in 2, and the
mathematics underlying the calculations, in 3. While we do reach a conclusion
and recommend one method, namely, Method B, for general purpose use, the reader
can use the results to analyze the pros and cons of other choices. For example,
the results show the cost of using the strictly local Method H, rather than a more
conventional cubic spline interpolant, when approximating C4 functions in the middle
of the interval. For uniform meshes this is a worsening of the error bound by a factor
of approximately 1.8, which may be quite acceptable. They also show that giving up
fourth-order convergence to smooth enough functions can result in better convergence
to functions with fewer derivatives.

When a simple strictly local method is required we would recommend instead
Method H. Clearly the norm of the latter interpolation operator can be bounded in
terms of the local mesh ratio, mn max{hi/hi li- Jl 1}, and independently
of the number of knots. Marsden [8] has shown that this property fails to hold for
several of the C2 cubic spline interpolants we consider. We remind the reader that
in an adaptive curve fitting setting the local mesh ratio may get very large, and
the norm of all of the interpolation operators discussed here, including the strictly
local ones, gets large with it. However, the norm of the interpolation operator can be
kept bounded if one chooses the nodes of interpolation after the knots of the spline, or
replaces interpolation by quasi interpolation. (See de Boor [2, pp. 191-196; 208-213].)

Method B fits a C2 function and has fourth-order convergence when the data
comes from a sufficiently smooth function. Define

Wj,[a, b] {f e cJ-l[a, b] f(j-1) absolutely continuous andf(j) e Lo[a, b]

{f E CJ-[a,b] with f(j-1)Lipshitz}.

1.2

0.8

0.6

0.4

0.2

0

-0.2

Method B

8 10 12 14 16 18 20 22

FIG. 1. Different cubic spline fits to RPN-14 data.

Method B’s performance for W4,c functions is on average very slightly worse than
the best of the other methods. However, it performs significantly better than the other
C2 fourth-order methods on functions of lower smoothness. Of course, the various C2

cubic interpolatory splines will differ greatly only in the first and last few intervals.
Figure 1 illustrates this. However, our contention is that the differences in these few
intervals are important. This is particularly so since adapting a standard cubic spline

WHICH CUBIC SPLINE SHOULD ONE USE? 1013

code to end conditions of Method B is trivial, and the extra computational expense
is at worst five or six flops.

2. Detailed results. In this section we present the results of our computations
of exact error estimates and operator norms.

2.1. Differences between the C2 and C methods in the middle inter-
vals. We wish to emphasize the point made at the end of the previous section, that
the differences between the various C2 interpolants are generally only significant in
the first and last few intervals. For example, Kershaw [6] gives matrix estimates that,
for a reasonably general set of end conditions, can be used to show the geometric
decay of the influence of the end conditions, on the value of s(x), as the number of
knots between x and the endpoints grows.

To give a particular instance, if one considers the middle two intervals of a 30
subinterval uniform mesh, then the calculated least constant C4 for which

sup If(x)-
14h<x<16h

for each of the C2 methods, agrees to eight significant digits with the value 5/384
appropriate for cardinal interpolation on an infinite mesh. (For the infinite problem,
see, for example, Powell [9].) Interestingly, 5/384 is also the optimal constant in the
bound Ill- sll < Ch411f(4) for the error in complete cubic spline interpolation where
one has extra first derivative information at the end points (see Hall [4] and Hall and
Meyer [5]). In contrast, the strictly local methods can vary in their behavior in the
middle intervals. Results are shown in Table 1 below. The values under the optimal
column are values that can be achieved by a, possibly noncubic, spline interpolation
method. That these values are lower bounds can be seen from the behavior of the
Euler splines Sk (see Schoenberg [10]).

TABLE 1
Error constant in middle of a 30 interval uniform mesh.

Derivative Optimal C2 methods Method G Method H

1/2 .5 .7745 .6250 .6875
1/8 .125 .1623 .1406 .1517

1/24 .0416 .0431 .0468 .0468
5/384 .0130 .0130 undefined .0234

It is apparent that the C2 methods do somewhat better than the strictly local
methods when f is smooth.

2.2. Results for pseudorandom meshes. Fix for the moment the mesh t
and the smoothness class CJ[to, tn], 1 < j < 4. Then for each x E [to, tn], and
each method a that reproduces Try_l, we can compute the pointwise error multiplier
K(a;j,x), which is the smallest number for which the bound

}f(x)- s(x)[_<

holds for all f E Cj [to, tn]. For the interpolants considered here the same bound holds
for Wj,o[to, tn]. Then the error constant C,j is defined to be the smallest number
for which the relationship

IlY- 11 vf e C[to,t]

1014 R.K. BEATSON AND E. CHACKO

holds. Clearly C,j supxe[to,t K(a; j, x). We can compare interpolation methods
by comparing the error constants C,j. Using Method A as a standard, we compute
for each fixed mesh, and method (, the relative error constant

The performance of the interpolants on nonuniform meshes was compared by
conducting 5000 pseudorandom trials. In each trial nine numbers were generated
uniformly at random in [0, 1], then sorted and scaled to obtain a mesh t 0 to <
t < < ts 1. Then relative error constants were computed numerically. The
resulting 5000 relative error constants were then sorted and the 1 percentile, mean,
and 99 percentile points displayed in a bar graph. A logarithmic scale was used so
that relative error constants of a and 1/a have the same visual impact.

2.2.1. Comparison of the overall error bounds. In the first two graphs
of Fig. 2, we observe that the O(5a) methods do not do as well as the lower-order
methods for these not very smooth functions. This is perhaps a consequence of the
reproduction of cubics. Method A does particularly badly. Intuitively, lacking knots
at tl and t_, it cannot be as flexible, or local, as the other methods.

In the last two graphs of Fig. 2, we note that the global methods do better than
the strictly local methods for these smoother functions. Method A, the not-a-knot
spline, does the best of any of the methods on W4, functions.

2.2.2. Comparison of the first interval error bounds. In this section we
compare the error bounds for the first interval only. Thus the first interval error
constant Ca,y is defined as the smallest number for which the bound

sup If(x) s(x)l < C’.,jllf()ll, vf e CJ[tO, tn],
[to,tx]

holds. Clearly

C,j sup K(c; j, x).

We first compute these first interval error constants, and then the corresponding
relative error constant e,j CA,j/Ca,. The results from numerical experiments
were graphed as in the last section. For the first and second derivative bounds the first
interval results were very much like the overall results. These graphs were therefore
omitted. The first interval results for third and fourth derivative bounds are more
extreme than the overall results and appear in Fig. 3.

2.3. Comparison of operator norms. We also calculated the norm of L, and
of the derived projector L, for each of the methods and eight random interval meshes.
Bar graphs showing the 1 percentile, mean, and 99 percentile points over 20,000 trials
are shown in Fig. 4. We remind the reader that the norm of L cannot be bounded
independently of the mesh ratio (see de Boor [2, pp. 209-214] and the references
therein); that the norm of L (at least for Methods A, B, and C) can be bounded in
terms of the mesh ratio in the first and last two intervals (see [1]); and that the norm
of L" can be bounded independently of the mesh. Table 2 shows the extreme values
of IIL"II seen over 20,000 random trials with 28 interval meshes.

These norms represent a quantitative measure of the tendency of the various
methods to introduce spurious bumps and wiggles in the fitted curve. We emphasize

WHICH CUBIC SPLINE SHOULD ONE USE? 1015

Ratio of error bounds: Type A/Various Types
10 Bounded First Derivative Random Mesh

7 -- 1Percentile
5 1 Mean ratio [i] tt 1t

3

:i;i! 99 Percentile

0.8 B C E F G

Ratio of error bounds: Type A/Various Types
Bounded Second Derivative-Random MeSh

3"0I III Percentile
2"5 1 Meanratio

21.07} N! 99 Percentile [1

1"0
08. B C E F 13 H

,,I

Ratio of error bounds: Type A/Various Types

1.8["Bunled Third D;rivative-landom MeSh

i.5 PeCreanttii
’!;:: 99 Percentile

1,0

Ratio of error bounds:, Type A/Various. Tyl,
1.8 Bunded lourth Drivativ- RandOm Mesh

1.5 I Percentile
1.3 Mean ratio

.." 99 Percentile

FIG. 2. Error bounds: Type A/Various types; Overall.

5.0

3.0

2.0

1.5
1.2

0.8

0.6

Fir,s.t Interval Ratio of error bounds: Type A/Various Types
Bounded Third Drivative Random MeSh

Percentile
Mean ratio

:!.".:!!i
i 99 Percentile

..:././..:i

B IIF

First Interval Ratio of error bounds: Type A/Various Ty]es
10.13 Bu’nded l:/ourth D’erivativ- Random
7.t3

5.0

3.0

2.0
1.5
1.2

0.8. IB C
Percentile0.6. I Mean ratio

0.4. 99 Percentile

FIG. 3. Error bounds: Type A/Various types; First interval.

1016 R.K. BEATSON AND E. CHACKO

TABLE 2
Norm of second derived projector, random mesh. Maximum value observed over 20,000 trials.

Method A Method B Method C Method E
7"8919 4"9699 4.9652] 2.6599

1000
500
250

100
50
25

10

2.5

Norm of Interpolation Operator- Random:Mesh

A B C

Ill Percentile
[] Mean
i!: 99 Percentile

E F G H

100

513
25

2.5

Norm of Interpolation Operator- Random Mesh
Two intervals excluded at each end.

[] Percentile

A B C

[] Mean
i 99 Percentile

F G H

40
30

20

12

Derived Operator Norms Random Mesh

i] [] Mean
t III Percentile

3.0
2.7

2.3

2.0

1.7

1.4

1.2

Derived Operator Norms Random Mesh
One interval excluded at each end.

[] Percentile
[] Mean
:: 99 Percentile

A B C E F G H

FIG. 4. Operator norms; Random meshes.

that, for the C2 methods, the fitted curves will differ very little in the middle intervals,
so that any large difference in operator norms corresponds to differing behavior in the
first few or last few intervals.

2.4. Results for a uniform mesh. The graphs in Figs. 5 and 6 show the
pointwise error multipliers K(j, x) in the first three intervals of a uniform mesh of
30 intervals for each of the methods and the four smoothness classes. We do not
show the plot for the interior subintervals where all the C2 methods are practically
indistinguishable. This is to be expected because of the semilocal nature of cubic
splines.

We also calculated the norms of s and the derived projectors s’ and s" for uniform
meshes of various sizes, with end intervals included and excluded. The results are
shown in Tables 3-8.

WHICH CUBIC SPLINE SHOULD ONE USE? 1017

Comparison of error bounds Types A,B,C, and D
Bounded first derivative uniform mesh

1.4

1.2 TYPE A
TYPE B

A TYPE C

o.8p .P.,
:/i ’t\’, ;, /-X

I:// \\’, ,"/ \ I \

l V0
0 0.5 1.5 2 2.5

Comparison of error bounds Types A,B,C, and D
Bounded second derivative uniform mesh

0351 ,P,
0.3 TYPE A

TYPE B
0.25 TYPE CA

TYPE D

0.15 ,"’",,
o.I ,i \ / \

0.0510
0 0.5 1.5 2 2.5 3

Comparison of error bounds- Types A,B,C, and D
Bounded third derivative uniform mesh

0.12.

-TYPE A0.1
TYPE B
TYPE C

0.081 A
//-..\
/ TYPED

o.o6 // ’,

0.04. ,,’ ",

0.02 "’ ’"’0
0 0.5 1.5 2 2.5

Comparison of error bounds Types A,E,F,G and H
Bounded first derivative uniform mesh

TYPE A

1"21 TYPE E
A TYPE F

’r / TYPEG

0.6

0.4

0.2

O’ v v
0 0.5 1.5 2 2.5

0.35

0.3

Comparison of error bounds Types A,E,F,G and H
Bounded second derivative uniform mesh

0.25

0.2

0.15l

0.1

0.05

0.12.

0.1

0.08

TYPE A
TYPE E

A TYPE F
TYPE O

0.5 1.5 2 2.5

Comparison oferror bounds Types A,F,G and H
Bounded third derivative uniform mesh

TYPE A
TYPE F
TYPE G

A TYPE H

0.5 1.5 2 2.5

0.02

0
3 0

FIG. 5. Pointwise error multipliers K(j,x).

1018 R.K. BEATSON AND E. CHACKO

Comparison of errors- Types A,B,C,D and H
Bounded fourth derivative uniform mesh

0.045

004[/’.i\’D,
"’.’:. TYPE A
A "’,v0.035 i! TYPE B

:’.,’.’; TYPE C

II I /

..X

0 0.5 1.5 2 2.5 3

FiG. 6. Pointwise error multipliers K(4, x).

TABLE 3
Norm of spline operator, end intervals included.

I, e,.ll A B C D E F G ,H,,,
s 1.ros 1.rs 1.rlr1: :.7’=o .r 1.z 1.=ooo 1.11

12 1.97164 1.67843 1.71725 2.73294 1.54808 1.54793 1.25000 1.63113
16 1.97164 1.67843 1.71725 2.73296 1.54897 1.54896 1.25000 1.63113
20 1.97164 1.67843 1.71725 2.73296 1.54903 1.54903 1.25000 1.63113

TABLE 4
Norm of spline operator, end intervals excluded.

ll A u c i9 r 0 u
8 1.51768 1.52a16 1.5224a 1.54745 1.5a579 1.5aa45 1.25000 1.a8490
12 1.54666 1.54719 1.54712 1.5490a 1.54808 1.5479a 1.25000 1.38490
16 1.54887 1.54890 1.54890 1.54904 1.54897 1.54896 1.25000 1.384’0
0 .a0 .0Z .0 .0 .0S .0 .000 .840

TABLE 5
Norm of first derived projector, end intervals included.

8 4.30769
12 4.30939
16 4.30940
20 4.30940

a.aaaaa a.aa= .rsrs8 1.7a196 2.00000 2.00000 a.aaaaa
a.aaaaa a.46410 .rgra8 1.raos =.00000 .00000 a.aaaaa
a.aaaaa 3.46410 .rgraa 1.rag.0s .00000 .00000 a.aaaaa
a.aaaaa a.46410 .7974a .razo .00000 z.ooooo a.aaaaa

WHICH CUBIC SPLINE SHOULD ONE USE? 1019

TABLE 6
Norm of first derived projector, end intervals excluded.

12 1.73205 1.72958 1.72949 2.27669 1.73077 1.73057 1.50000 1.58333
16 1.73205 1.73187 1.73187 2.27671 1.73196 1.73194 1.50000 1.58333
20 1.73205 1.73204 1.73204 2.27671 1.73204 1.73204 1.50000 1.58333

TABLE 7
Norm of second derived projector, end intervals included.

n II Method A
8 3.05846
12 3.05920
16 3.05921
20 3.05921

Method B [Method C Method D Method E
2.31680 2.33333 5.53712 1.99244
2.31689 2.33333 5.54195 1.99946
2.31689 2.33333 5.54198 1.99996
2.31689 2.33333 5.54198 2.00000

TABLE 8
Norm of second derived projector, end intervals excluded.

n [1 MethodA

8 1.97675
12 1.99838
16 1.99988
20 1.99999

Method B Method C Method D Method E

1.98322 1.98235 1.96058 1.99244
1.99879 1.99874 1.99735 1.99946
1.99991 1.99990 1.99981 1.99996
1.99999 1.99999 1.99999 2.00000

The entries in the first of each pair of tables are the usual operator norms,

I[L[I sup

while for those in the second, the end intervals are excluded in the numerator. Thus,

IIL]I’ sup

Our interpretation of these results is as follows. For these uniform meshes the
various C2 methods differ very little when the end intervals are excluded. Thus once
again we see that the end conditions make a difference only near the end points. Also,
as expected, the operator norms for a particular method hardly change as the number
of intervals in the uniform mesh is increased beyond eight. The error curves for W4,
functions show the C2 methods doing better than the strictly local Method H in the
interior subintervals.

3. Mathematics underlying the computations.

3.1. Calculation of the optimal error bounds. Fix for the moment the mesh
t, the cubic spline interpolant L, and E [to, tn]--[a, b]. Let

E(f) f() L(f,).

In fact the end intervals deleted operator norm rapidly approaches the value (1 - 3x/)/4
1.549038-.. valid for C2 cubic spline interpolation on an infinite uniform mesh (see Powell [9]).

1020 R.K. BEATSON AND E. CHACKO

Suppose that this error functional annihilates rj for some 0 <_ j <_ 3. The application
of the Peano kernel theorem (Davis [3], Powell [9]) shows that if f e CJ+l[a, b], then

(10)

where

b

E(f,) f(j+l) (t)K(t)dt

(11) K(t) Ex((x. t)J+,)

and the notation Ex((x-t)+,) means that the functional E(.,) is applied to (x-t)+
considered as a function of x. Because in the case we are considering, K will have
only a finite number of sign changes, it follows easily from (10), (11), and smoothing
arguments that

sup
{/’c/x [a,b]: II.f(/x)IIo <1}

IE(f,)I--IIKIIx,

or the equivalent" that the least value of C for which the relationship

holds for all f e CJ+[a, b] is C IIKII. These conclusions also hold when CJ+l[a, b]
is replaced by Wj+I,.

It only remains to discuss how one can calculate g and Ilglll numerically. First
we let { }=0 be the cardinal splines corresponding to the interpolant L. That is, g
is the cubic spline interpolant, L(f), when f(tk) 5k. Then for any f, ,

N

L(f,) E
i=0

and

n

i--0

Substituting from (11) it follows that

(12)
n

j!K(t) (- t)J+ E(t
i--0

Hence for each 0 _< j _< 3, K(t) is a spline of degree j with possible knots at
and the t’s, whose coefficients we can easily calculate. IIKII can then be calculated
numerically by using a cubic root finder to find the zeroes of K and Simpson’s rule
to integrate IK(t)l exactly over each subinterval within which it reduces to a cubic
polynomial.

3.2. Computation of IILII and IIL’II. The methods of computing IILIIo and
IIL’II are essentially the same, so we will only give the details of the computation of

WHICH CUBIC SPLINE SHOULD ONE USE? 1021

Let Lf denote one of the cubic spline interpolants under consideration applied to
the function f at the nodes t to < t < < t,. Then assuming the map L is exact
for polynomials of degree j 1, the derived projector L(J) given by

L() (D f) D (Lf)

is well defined. We define, as is usual, the operator norm

For convenience, denote (Lf)(x) by s(x). Assume L is exact for constants. Then
considering the matrix system expressing the first derivatives of s at the knots in
terms of the data, we see that the linear map from g to L(g) may be expressed as
the composition of three linear maps

(13) L’ E o P o S,

where S C[to, tn] --* t is the map taking g f’ to the n-vector with ith component

1 /t+lf[ti’ ti+l]
tit --ti

p]pn
_

]p2n+l is the map taking the vector c to the 2n + 1 vector f with ith
component

s’(t_), i > n,

and finally,

E"]R2n+l C[0, n]

is the map taking f to the piecewise quadratic s, with specified end point and average
values on each subinterval.

Because L receives only the information about g given to it by the map S, we
can rewrite (13) in a form more useful for computation. More precisely, as g ranges
over

{g e C[to, t.] IIg{]oo <_ 1},

S(g) ranges over a set in]Rn whose closure is the closed g unit ball in]Rn. Hence
(13) implies

(14) IIL’II sup II(E o P)()II.
={o:llolloo_<l}

Finally, since E o P(.) is a linear function and II. convex function, the function
whose supremum is taken on the right-hand side of (14) is convex. Hence it achieves
its supremum at an extreme point of the closed, bounded, convex set t. This shows
that for each fixed mesh t, IIL’II can be found by a process of exhaustive search
over the 2n extreme points of t, computing for each extreme point the corresponding
value of IIs’{[. Indeed, since the sign of the first slope can be fixed, without loss of
generality, the search can be restricted to 2n-1 extreme points. We note that it is

1022 R.K. BEATSON AND E. CHACKO

known [1] that if L reproduces cubics, then IIL’II cannot be bounded independently
of t.

The computation of IILIIo is analogous to that of IIL’II. In this case 2 is
the o unit ball in IRn+l, extreme points of which correspond to function values
If(t0),..., f(tn)]T to be interpolated. IILII is computed by computing Ilsll for 2
of these 2’+1 extreme points.

3.3. Computation of [[L"[[oo. When L is exact for linear polynomials the map
L", from f" to L"(f"), is a well-defined linear map. It can be written as the compo-
sition of three linear maps

L" E o P o S.

Here S maps f" to the n- 1 vector of second divided differences b with

bi f[ti, ti+, ti+2] N,2(x)f"(x)dx.

P maps b to the vector of second derivatives r (s"(ti))=o and therefore has the
form er Db for some (n + 1) x (n- 1) matrix D. Finally, E maps the vector of
second derivative values r to the piecewise linear interpolant s".2

Since s" is piecewise linear, IIs"ll corresponds to a value of s" at one of the
knots. Hence

O<i<n (f:fEL2 and
Z df[tj, t+, t+2]

Since values of f" in one interval can affect two of the second differences bi, we cannot
simply choose the differences in a bang-bang way as we did in computing IIL[I and
[[5’[1. However, fixing i and writing ej for di,j,

s"(y; t) ef[t, t+l, t+2]
j=o

tj+ tj
Nj,2(x) (x)dx

ej
tj+ tj xy"(tj + (tj+l tj)x)dx

j=o
tj+ tj

+ (tj__+2_ _--_ t_j+ (1 x)f"(tj+l + (tj+2 tj+l)x)dx
\ t+ t
n2

(M0,2/0,2 -[- -((Mj,1/j,1 -[- (Mj,2,j,2) -[- 0)n--l,1/n--l,1,
j=l

2 For the C2 methods considered here the system for a takes the form Aa Bb, with A-1

and B bounded in the infinity norm (see, for example, [1, pp. 905-906] for explicit formulations).
Hence D A-1B is bounded and the relationship between second divided differences and second
derivatives implies immediately that [[L’[[oo _< [[D[[oo < c. This simple analysis provides, for
example, the (not tight) upper bounds [[L[[o _< 8 and [[L[[oo _< 3.

WHICH CUBIC SPLINE SHOULD ONE USE? 1023

where

and

(tj+l tj)
a, e (t+ t)’

(tj+l
wj,1 ej-1 (tj+l tj-1)’

and

together with the points A- (-.,
Proof. The proof is omitted.

boundary curves

"yl- .- 2 "0<c<1
2c 1/2 c2

iraz2]2c-

OZ2 2 "I>c>0}
B

Having defined A, we see that for each nonzero w, (dT, is maximized at a unique
point on the boundary of A. One can easily calculate that point. For example, when
Wl > 0, w2 < 0, the maximum corresponds to the unique point in the interior of the
lower boundary where w is perpendicular to the tangent. Hence this maximum occurs
at the point with parameter a COl/((.o -co2). Other sign patterns for w are dealt
with similarly. This leads to a procedure for solving the two-dimensional subproblems
and hence, with extra code, for computing IIL"II.

fo xf"(tj + (tj+l tj)x)dx f xgj(x)dx

Hence defining A as the closed, convex set in]R2,

A2 f xg(x)dx
Ilgll <- 1

the maximum of s"(ti) over functions f with IIf"ll-< 1 equals

(15) xmaxEA c00’2)0’2 -- k--==l
(coj’l’j’l nt- j,2j,2) + n-l,ln-l,1.

Here the numbers wj,k depend only on the mesh t and the matrix D. Hence the
problem (15) separates into the sum of n twdimensional subproblems

mwo,2A2W(m(wj,lA1Wwj,2A2))Wmwn_l,lAl.xeAkj=l
AA AA

Since A is a closed, bounded, convex set the mima in the subproblems occur at
extreme points of A. Indeed the following lemma shows that the twdimensional
subproblems are trivial to solve.

LEMMA 3.1. The set A defined above is the closed, bounded, convex set with

1024 R.K. BEATSON AND E. CHACKO

REFERENCES

[1] R. K. BEATSON, On the convergence of some cubic spline interpolation schemes, SIAM J.
Numer. Anal., 23 (1986), pp. 903-912.

[2] C. DE BOOR, A Practical Guide to Splines, Springer-Verlag, New York, 1978.
[3] P. J. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1963.
[4] C. A. HALL, On error bounds for cubic spline interpolation, J. Approx. Theory, 1 (1968),

pp. 209-218.
[5] C. A HALL AND W. W. MEYER, Optimal error bounds for cubic spline interpolation, J.

Approx. Theory, 16 (1976), pp. 105-122.
[6] D. KERSHAW, Inequalities on the elements of a certain tridiagonal matrix, Math. Comp., 24

(o), . -s.
[7] , Two interpolatory cubic splines, J. Inst. Math. Appl., 11 (1973), pp. 329-333.
[8] M. J. MARSDEN, Cubic spline interpolation of continuous functions, J. Approx. Theory,

10 (1974), pp. 103-111.
[9] M. J. D. POWELL, Approximation theory and methods, Cambridge University Press, Cam-

bridge, 1981.
[10] I. J. SCHOENBERG, The elementary cases of Landau’s problem of inequalities between deriva-

tives, Amer. Math. Monthly, 80 (1973), pp. 121-158.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 1025-1038, July 1992

() 1992 Society for Industrial and Applied Mathematics
011

INTEGRATING PRODUCTS OF B-SPLINES*

A. H. VERMEULENt, R. H. BARTELSt, AND C. R. HEPPLERt

Abstract. This paper outlines several ways to evaluate the integral of the product of two B-
spline functions, followed by a detailed description of an algorithm that is based on integration by
parts. The algorithm reduces the integral to a sum of evaluations of a higher-order spline. This
reduction involves differentiating one spline by differencing its coefficients, and integrating the other
by summing its coefficients.

Key words. B-splines, integration, inner product, finite element method

AMS(MOS) subject classifications. 65D07, 65D30, 65N30

1. Introduction. In this paper we consider the evaluation of integrals of the
forms:

(1) E EiBi,k,(t) E FB,,,(t) dt,

(2) f(t) E EiBi,k,(t) dt,

where Bi,k,x is the ith B-spline of order k defined over the knots xi, xi+l,..., x+k.
We will consider B-splines normalized so that their integral is one. The splines may
be of different orders and defined on different knot sequences x and y. Often the
limits of integration will be the entire real line, -c to +cx. Note that (1) is a special
case of (2) where f(t) is a spline.

Integrals of these forms arise in applications such as the finite element method [1]
and least squares function fitting [2], [3], [4] when B-splines are used as basis functions.
In some problems, the function f(t) in (2) may be nonpolynomial; for example, it may
be a sinusoid [5]. It will be seen that the method we propose can be used to integrate
such functions, provided that a sufficient number of antiderivatives of f(t) are known.

There are five different methods for calculating (1) that will be considered:
1. Use Gauss quadrature on each interval.
2. Convert the integral to a linear combination of integrals of products of B-

splines and provide a recurrence for integrating the product of a pair of B-splines.
3. Convert the sums of B-splines to piecewise B6zier format and integrate seg-

ment by segment using the properties of the Bernstein polynomials.
4. Express the product of a pair of B-splines as a linear combination of B-

splines. Use this to reformulate the integrand as a linear combination of B-splines,
and integrate term by term.

5. Integrate by parts.
Of these five, only methods 1 and 5 are suitable for calculating (2). The first four
methods will be touched on and the last will be discussed at length.

Received by the editors May 16, 1991; accepted for publication (in revised form) August 14,
1991.

Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L3G1,
Canada (rhbartel@uwaterloo.ca, ahvermenuwaterloo.ca, and heppler@dial.uwaterloo.ca).

1025

1026 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

2. Gauss quadrature. The integral (1) can be broken into a sum of integrals,
where each integrand is a polynomial:

E EiBi,k,(t) E FjB,t,(t) dt

where t1,.-., t, is the union of the breakpoints of the two splines. Each integrand is
polynomial, therefore the integrals can be computed exactly using Gauss quadrature:

(3) e(t)f(t)dt EHe()f().
Jtr s

The numbers s and Hs are the Gauss points and weights. Gauss quadrature can be
used to approximate integrals of form (2), for general f(t).

A different application of Gauss quadrature is to evaluate integrals of the form (2)
by moving the summation out of the integral and integrating each term using Gauss
quadrature, treating the B-spline as a weight function. If f(t) is a polynomial,

(4) Bi,k,(t)f(t)dt EHf().

The numbers 8 and H8 are Gauss points and weights for the particular weighting
function B,k,x(t). Values for uniformly spaced B-splines are given in [6]. The Gauss
points and weights must be recalculated for each different B-spline; if the basis is
uniform this is not difficult, but if the basis is arbitrary then it may present a problem.
This method is only capable of calculating integrals of form (1) approximately.

3. Integrating products of B-splines. The summations in (1) can be moved
outside the integral to yield a linear combination of terms of the form:

b

Bi,k,x(t)B,t,v(t)dt.

In the case where integration is over the entire real line this quantity can be calculated
using a recurrence [7]. If the limits are not -cxz and +cx the procedure can still be
used as follows. Insert enough knots [8], [9], [10] at a and b into the splines in the
integrand so that no B-spline’s support crosses the integration limits. Now consider
only the B-splines in the integration region and integrate these over the entire real
line.

The recurrence described in [7] to evaluate (5) proceeds as follows. Define the
number Tk’t

i,j as

(6) T.k,.l k+/+l, := (--1)k[x,x+, ,xi+k t][yg,yg+,... ,y9+t s](s t)+
where [x,x+l,...,x+ t] is the divided difference operator with respect to the
sequence x,..., xi+k acting on the variable t, and similarly for [yj, yj+l,.-., Yy+t s].
It can be shown that

/5 k!l! T.k:B’k’(t)B’’u(t)dt (k +l- 1)! ’J"

INTEGRATING PRODUCTS OF B-SPLINES 1027

The quantities T.k’.,a can be calculated using the definition of the divided difference
and equation (6); however, this can lead to loss of significance if the knot spacing is
uneven. A stable method of doing the calculation is to use the following recurrence.
The recurrence begins by noting, from (6) and the divided difference definition of a

B-spline, that for terms where one of yj yj+ or xi xi+k holds, T.k’. is a scalar
,3

multiple of the value of a B-spline:

(k + 1)!
B,k,x(Yj) yj yj+ > 0

T.k,. k!l!(8) "a
(k + 1)!

Bj,,u(xi) xi xi+k k > O.
k!l!

Terms with higher numbers in the top indices can be calculated from terms of lower
degree. The recurrence is

(9)
T.k,.l-1 q-,k,l-1(Xi+k yj,-,, + (Yj+l Xi+kj-’-i,j+l

(X yj)T.k’.-1
yy+, y

,Tk,l--1+ (yj+ xj._,+
y+g yy

T.k-71,1 "l,l-,k- l,1+

x+ _< y+,, y _< y+g

Tk- ,l+ +,, y <_ x, y <_ yj+

Tk,l-1+ i,j+l Xi <_ yj, xi <_ xi+k

XiTk xi
yj+ < xi+k, xi <_ Xi+k.

Thus the steps in the evaluation of (1) by this method are:
1. If necessary, insert enough knots into the two splines at the integration limits

a and b, so that the support of no basis function extends past a or b.
2. Evaluate each of the splines Bi,k,x at the points yj and evaluate each of the

splines Bj,t,y at the points x.
3. Calculate the values Tk’l recursively. The values obtained in step 2 providei,j

an end to the recursion.
4. Evaluate the integral (1) by moving the summations and coefficients outside

Tk,of the integral, replacing the integrals with scaled versions of ,j according to (7),
and summing over all pairs of B-splines.

4. Converting to Bzier form and integrating. The B-splines in the in-
tegrand of (1) can be converted to piecewise B6zier format and the result can be
integrated segment by segment. On each segment, the B-spline combinations can be
represented in B6zier form:

(10) F-,iBi,k,z , GiPi,k,

(11) FjBj,z,y y HjPj,z

Pi,k is the ith Bernstein polynomial of degree k- 1 on the segment. The B6zier
coefficients Gi and Hj can be calculated via knot insertion [8], [9], blossoming [11], or

1028 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

the tetrahedral algorithm of Sablonnire [12]. On each segment, the integral (1) can
be expressed as a linear combination of inner products of Bernstein polynomials:

The integrals can be evaluated using the formulae for products and integrals of Bern-
stein polynomials given by Farin [13]. For a segment of length L that lies in the
interval (a, b), the integrM evaluates to

I [(k+l-2),i,j,(k-i-l),(1-j-l),](13) P+e(t)P,(t)dt (i + j)l(k + : : j 2)(k 1)(/- 1)l(k + l)
L.

5. Explicit multiplication of the integrand. The product of B-splines can
be expressed a linear combination of B-splines [14]:

(14) (EiBi,k,x(t)) (FjBj,,y(t))j h

The order of the product spline is p k + 1; the knot vector z must contain
sufficient knots to represent the product spline. Since the order of the product is
higher than the order of the factors, yet the continuity is the same, the multiplicity
of knots in the product spline is generally much higher than in the original splines.
This means that there will, in general, be many more splines in the product than in
either of the factors.

The procedure for constructing the knot vector z with the minimum possible
number of knots will now be described. Begin by setting a single knot zi at each
point for which zi x, a knot in x, or zi y, a knot in y. Assign multiplicity mi
to zi as follows:

m(k+mz-l,l+m-l), m>0 and mz>0,
(15) mi= k+m-l, m=0 and m>0,

l+ma-1, m>0 and mz-0,

where m is the multiplicity of x and m is the multiplicity of yz. Note that, if
there is no knot in x at zi or no knot in y at zi, then either m or m will be zero.

The coefficients of the product spline are related to the coefficients of the factors
via the following linear relationship [14]:

i,j

The coefficients F can be calculated using the following recurrence:

(k
r,,,(h) p(z+_ z) x+ x

xi)i,j,k-l,l(h)

+ (x+ z+_)r+,,_,]

+ (h)
y+ y

(y+ z+_l)r,+,,_]).
/

INTEGRATING PRODUCTS OF B-SPLINES 1029

The recursion is initiated by specifying the values of F for k 1:

(17)
(Xi-{-1 Xi)(Yj+l yj)

r,j,l,1 (h) Zh+l zh
0,

Xi <_ Zh < Xi+l and yj <_ Zh < Yj+I,

otherwise.

We can rewrite the integral (1) as:

b

(18) E ri,j,k,t(h)EiFj Bh,p,z(t)dt.
i,j,h

The integral of a B-spline over its entire support is one; we use this for cases where
the entire B-spline support is within the limits of integration. This can be arranged
by inserting knots at a and b as described previously. If the entire B-spline is not
within the region of integration, the recurrence given to calculate definite integrals of
B-splines described in [7] can be used, or the integrand can be converted to B6zier
form and integrated as described previously.

6. Integration by parts. The final method of evaluating (1) is integration by
parts.

(19) e(t)f(t)dt f(-)(b)e(b)- f(-1)(a)e(a)- e(1)(t)f(-1)(t)dt,

where.f(-)(t) is the antiderivative of f(t) and e(1)(t) is the derivative of e(t). Inte-
gration by parts can be applied repeatedly to the integrand. After n applications:

(20) e(t)I(t)dt (-1)’ e(’I(-’l(t)dt + constant terms.

If e(t) and J’(t) are splines, then the degree of e(t) will be lowered while the degree
of f(t) is raised. If we apply this enough times, e(t) will be reduced to a simple enough
form that its product with f(t) can be integrated directly.

To apply this principle we need to recall some results relating the integration and
differentiation of B-splines to Dirac delta functions.

6.1. Dfferentatng B-splnes. The following two-term derivative formula for
B-splines is well known:

d k
(21) -Bi,k(t) [Bi,k-l (t) Bi+l,k-l (t)]

i+k i

We will only concern ourselves with the case where ui+k > ; thus the right side
always has a nonero denominator. When +k-1 > i and ui+k > i+1 the B-
splines on the right side are defined in the normal way. Under the assumption that

ui+k > ui, the only special cases that can arise are: (a) tti+k_ 1 U but ti+k > i+1,
for which Bi,k-(t) has zero support, and (b) ui+k- > ui but ui+k ui+, for which
Bi+l,k-(t) has zero support.

Consider the case where

(22) Ui Ui+l ti+k-1 tiTk.

1030 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

FIG. 1. A cubic B-spline with a discontinuity.

This situation is depicted for a cubic B-spline in Fig. 1. The spline Bi,k is discon-
tinuous at the point ui. Specifically, with the convention that segment intervals are
closed on the left,

(23) B,k(U)l=<=, 0,

k
Bi,k(u)lu=u,

Ui+k Ui

Since the function is discontinuous at ui, the derivative does not exist in the normal
sense. One option is to consider only right-sided derivatives [15], [16]. With this
approach splines with zero support are taken as zero. As pointed out in [16, p. 88],
the problem with this option is that the Fundamental Theorem of Calculus does not
hold. To see this, note that if the first Fundamental Theorem held, we would expect
that

(4) ,() -B,(t)dt.
Substituting from (21) into the above integral, and using the definition that ero-
support B-splines are to be interpreted ero, yields

() Bi k() [0 Bi+l,k_ (t)] dr.
i+k i

Yet at the point u ui+k the left side of the equation evaluates to

(26) LS Bi,k (ui+k) O,

while the right side yields (since the integral of a B-spline over its support is one)
+ k k

(27) RS [0- Bi+,,k- (t)l dt # O.-- i+k Ui i+k Ui

This means that, if B-splines with zero support are taken as zero, we cannot use
integration by parts to solve (1), because integration by parts is based on the nda-
mental Theorem. Therefore, we will look at one of the alternative ways that B-splines
with zero support have been defined.

INTEGRATING PRODUCTS OF B-SPLINES 1031

We begin by recalling a result attributed to Curry and Schoenberg [7] that a kth
order B-spline on the knots u,..., u+k can be defined as the function B,k, which
satisfies

(28) Bi,k(t)g(k) (t)dt k! [ui, ui+l, ui+ t] g(t)

for any function g(t) with k continuous derivatives. Consider Bi,k where ui

u+ . In this case the right side of (28) becomes the kth derivative of g(t) at .
To be consistent, the left side must yield

(29) Bi,k(t)g(k) (t)dt g(k)().

Distribution theory [17], [18] provides an entity that behaves precisely as Bi,k(t) must
in this circumstance: the Dirac delta function 5(t-). This function has the property
that

(30) S(t)f(t)dt
undefined,

fi<a or fi>b,
=a or fi-b

for any function f(t)integrable on (a, b). Accordingly,

(31) Bi,k(t) 5(t), ui Ui+l ui+k ,
which is consistent with the Fundamental Theorem. Consider again the spline Bi,k
with knots as in (22). Using this definition, the two-term differentiation formula now
yields

d k
(32) d-Bi,k(t) Ui+k Ui

[((t ’g) Bi+l,k-l(t)].

The revised version of (25) is

(33) Bi,k(u) f’__ k

oo Ui+k ui
[6(t u,) Bi+l,k-l(t)].

For u < ui or u > ui+k both left and right sides are zero. For ui < u < ui+k we first
note that the left side of (33) has polynomial form

(34)
k

LS B,,k(u) (ui+k ,/,)k-1.(,+ ui)

The right side yields:

(35) RS-
Ui+k Ui

5(t ui)dt
(ui+k ui)k-1

(Ui+k t)-edt

Since u > ui the first integral has the value one. Expanding the second integral and
simplifying yields

k
(36) RS (tti+k u)k-1

Ui-t-k Ui

1032 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

Hence, the left side of (33) is equal to the right side.
The definition (31) is reasonable from another point of view as well. B-splines

have been normalized to integrate to one:

(37) Bi,k(t)dt 1.

This, too, is consistent with (30) for f(t)= 1.

6.1.1. Derivatives of B-spline combinations. The derivative of a linear com-
bination of B-splines is a linear combination of B-splines of next lower order:

(38) d- E VBi,k,u(t) E V(1)Bi,k-l,u(t)’
i=0 i=0

where the coefficients can be obtained by substituting the two-term differentiation
formula into the left-hand side and shifting the summation:

(39) y/(1 k
V/-

k
Y/-1.

UiTk ui tiTk-1 Ui-1

V_I and gm+l are defined to be zero.

6.2. Integrating B-splines. To obtain a formula for the indefinite integral of a
B-spline combination, we integrate (38). This leads to this description of the indefinite
integral of a B-spline combination

m m

(40) /E ViBi,k(t) E Vi(-1)Bi,k+l(t)’ -oc <_ t < Urn+l,
i=0 i=0

where the coefficients are obtained by inverting (39):

(41) Vi(-1) ui+k+l -ui [k + l vi(--l) + vi]+ 1 ui+k Ui-1

V(1)_ is defined to be zero.
The integral spline requires the existence of a new knot, Um/k+l. The value of

this new knot is arbitrary subject to Um+k+l

_
Um+k. Adopting the convention that

knots with indices past the end of the given knot vector are equal to the last given
knot can simplify implementation.

Also note that the integral spline in (40) is only valid on the interval [-cx, u,+l).
This condition is necessary because the integral of a B-spline combination will, in
general, have unbounded support. Such a function is not representable as a linear
combination of a finite number of B-splines, but the portion to the left of Um+l is
representable in this way; hence the condition. An alternative method is to define
B-spline-like basis functions that have unbounded support on one side. Suitable basis
functions for this alternative are described in Barry and Goldman [19] and in de Boor,
Lyche, and Schumaker [7].

6.3. The integration by parts algorithm. In this section the integration by
parts algorithm will be described.

INTEGRATING PRODUCTS OF B-SPLINES 1033

Begin by defining two splines

m

i--0
n

(43/ f(t) FjBj,z,u(t).
j=0

The integral we wish to compute is

(44) e(t)f(t)dt.

Informally, the approach will be to use integration by parts to reduce the order
of e(t) while increasing the order of f(t). This will reduce the support length of e’s
B-splines. When the support length of one of e’s B-splines reaches ero, the B-spline
becomes a Dirac delta function and thus the part of the integral on this basis function
reduces to an evaluation of f. Eventually, all of e’s B-splines will have ero support
and the integral will be reduced to a sum of evaluations.

A detailed description of the algorithm is presented below. Step 0 serves to
bring the integrand into a canonical form; steps 1-4 constitute the substance of the
algorithm.

0. If the lower limit of integration, a, lies exactly on a knot, shift it an infinites-
imal amount to the right. Similarly, if b lies exactly on a knot, shift it an
infinitesimal amount to the left. This will not affect the value of the integral
since the integral of a product of splines of order 1 or more varies continu-
ously as the limits of integration are changed. The shifting of the limits is
necessary to avoid the undefined condition in definition (30). In practical
terms, however, such infinitesimal shifts correspond to consistently using one
index ordering in making comparisons.
Due to the formula chosen for spline integration, it is necessary that b _< +1.
If this is not the case, let be the index such that

(45) y < b <_ y+l.

Now add -n+ 1 knots into y, such that each of the new knots is larger than
or equal to Yn+z. Correspondingly, increase the value of n by - n + 1. This
increases the number of basis splines used to represent f(t). Since the new
knots are outside the nonzero part of the spline, set the coefficients for each
of the new basis splines to zero. Note that the function f(t) is unchanged,
but the new representation satisfies the condition that b

_
Yn+l.

If b- oc, then first replace b by min(yn+Z,Xm+k). Since either e(t) or f(t) is
zero past this point, this will not affect the value of the integral. Now adjust
the representation of f(t) as described above, if necessary.
It is also required that y contain sufficient knots so that B,,k+l,y is defined.
As previously mentioned, an easy way to implement this is to adopt the
convention that added knots past the end of the given knot vector are equal
to the last given knot.
Calculate the coefficients of f(-1)(t) using (41). We can now discard the coef-
ficients of f itself and can calculate the two constant terms in the integration

1034 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

(46)

(47)
(as)

by parts formula

e(t)f(t)dt e(b)f(-1) (b) e(a)f(-1) (a) e(1) (t)f(-1) (t)dt,

leaving the integral term to be dealt with.
2. Calculate the coefficients of e(1)(t) using (39), and discard the coefficients

3. Separate the basis splines of e(1)(t) into two categories: those with finite
length support and those with zero length support. Let A and B be sets of
integers such that:

iEA if0_<i_<m and

iEB if0_<i_<m and xi<xi+k_l.

(49)

(50)

The B-splines whose indices are in A are those whose support length is zero;
they correspond to Dirac delta functions. We can write the spline e(1)(t) as

e(1) (t) E El)5(t- xi) -- E El)Bi,k-l,x(t)"
lEA iEB

4. Substitute (49) into the integral term in (46), noting that the integrals with
delta terms reduce to function evaluations

b

e(1) f(-1)(t)dt E E}l) f(-1)(xi) + E E}l)Bi,k-l,x(t)f(-1)(t)dt"
iA iB

The first set of terms require evaluations of the spline f(-1)(t). These terms
can be calculated and added to the sum of terms calculated so far. If the set
B is empty we are finished. If B is not empty then the integral term in (50)
is the integral of a product of two splines. The first spline is the function
e(1)(t) with the basis splines of zero support removed. The second is the
spline f(-1)(t). Apply steps 1-4 recursively to this term, until all the splines
in e(t) are accounted for and B is reduced to the empty set.

Note that the same approach can be used to evaluate integrals of the form (2),
provided that the first k antiderivatives of the function f(t) can be calculated.

6.4. Computational cost. We will consider for simplicity problems of the form
(1) where both splines are of order k. There are three computational components in
the integration by parts algorithm:

1. Repeated differentiation of the spline e(t). This step must be done k times.
Each invocation takes one subtraction and one division per interval so the time spent
on differentiation is on the order of k operations per segment.

2. Repeated integration of the spline f(t). This step must be done k times.
Each invocation takes one addition and one multiplication per interval so the time
spent on antidifferentiation is also on the order of k operations per segment.

3. Evaluation of antiderivatives of the spline f(t). One evaluation of an an-
tiderivative of f(t) must be done per segment; each evaluation takes on the order of
k2 operations.

The cost of the spline evaluations dominates the total computational cost. Thus
the total cost is O(k2) operations per segment.

INTEGRATING PRODUCTS OF B-SPLINES 1035

TABLE 1
Stability for order-4 B-splines.

Exact Gauss Quadrature Divided Differencing Parts Method
41194444444444440 4.19444444444444

1 4.06649773598049
2 4.04010964362323
3 4.03734554112486
4 4.03706789985594
5 4.03704012344300
6 4.03703734567887
7 4.03703706790123
8 4.03703704012346
9 4.03703703734568
10 4.03703703706790
11 4.03703703704012
12 4.03703703703735
13 4.03703703703707
14 4.03703703703704
15 4.03703703703704

4.19444444444444
4.06649773598049
4.04010964362322
4.03734554112486
4.03706789985594
4.03704012344300
4.03703734567887
4.03703706790123
4.03703704012346
4.03703703734568
4.03703703706790
4.03703703704012
4.03703703703735
4.03703703703707
4.03703703703704
4.03703703703704

4.19444444444444
4.06649773598050
4.04010964362323
4.03734554112671
4.03706789987676
4.0370401232_6651
4.03703734571633
4.03703707070117
4.03703703882036
4.03703618402446
4.03705093396563
4.03707198835796
4.03832729958782
4.02124815634075
4.17366372053858
3.95746527777776

4.06649773598050
4.04010964362322
4.03734554112486
4.03706789985593
4.03704012344251
4.03703734568062
4.03703706789959
4.03703703977985
4.03703703693127
4.03703705312282
4.03703672714926
4.03703333713402
4.03709174968579
4.03745891429760
4.03398753978588

TABLE 2
Stability for order-6 B-splines.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Exact Gauss Quadrature Divided Differencing Parts Method
30.332268518518530.3322685185185

28.8504734229846
28.6816125192285
28.6645841566786
28.6628799571565
28.6627095236305
28.6626924801422
28.6626907757920
28.6626906053570
28.6626905883135
28.6626905866091
28.6626905864387
28.6626905864216
28.6626905864199
28.6626905864198
28.6626905864198

30.3322685185185
28.8504734229846
28.6816125192285
28.6645841566786
28.6628799571565
28.6627095236305
28.6626924801422
28.6626907757920
28.6626906053570
28.6626905883135
28.6626905866091
28.6626905864387
28.6626905864216
28.6626905864199
28.6626905864198
28.6626905864197

30.3322685185185
28.8504734229846
28.6816125192211
28.6645841567912
28.6628799578620
28.6627095075280
28.6626923729591
28.6626892195090
28.6626979434700
28.6627689710028
28.6635029574743
28.6575636537495
28.7488702056990
28.6558351597237
20.9915637713911
94.3609932303722

28.8504734229845
28.6816125192286
28.6645841566787
28.6628799571566
28.6627095236304
28.6626924801421
28.6626907757921
28.6626906053572
28.6626905883125
28.6626905865784
28.6626905852876
28.6626905950749
28.6626906802310
28.6626918634761
28.6626955924918

6.5. Stability. Of the three steps in the algorithm, only the third, evaluation, is
unconditionally stable for all knot sequences. The other two steps, differentiation and
antidifferentiation, may lead to numerical problems. It is also possible that forming
the weighted sum of the evaluations may lead to loss of significance. To address
these issues, a numerical comparison was made between integration by parts, Gauss
quadrature, and direct evaluation of the divided difference formula (6). A similar
comparison between Gauss quadrature and direct evaluation of (6) was made in [7].

The sample problem chosen was to evaluate the integral of the square of the order-
k B-spline defined on the knot sequence [5, 6, 6 / 10-, 8,..., 5 + k]. In Tables 1-3,
values of T,k’k0,0 are shown for r ranging from 0 to 15 for several different orders. The
exact values were obtained symbolically using Maple [20]; the algorithmic results were
calculated using double precision arithmetic on a DEC 5400 running Ultrix. In each
result, the first significant digit in error is indicated using an underline. Note that the
integration by parts algorithm is accurate to machine precision in the test case for all
orders when the ratio of largest to smallest segment length is less than 10000:1; in

1036 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

TABLE 3
Stability for order-lO B-splines.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Exact Gauss Quadrature Divided Differencing Parts Method
2833.16953523513
2752.86392636369
2744.44592708222
2743.60112105862
2743.51661119805
2743.50815992021
2743.50731478951
2743.50723027641
2743.50722182510
2743.50722097996
2743.50722089545
2743.50722088700
2743.50722088616
2743.50722088607
2743.50722088606
2743.50722088606

2833.16953523514
2752.86392636369
2744.44592708222
2743.60112105862
2743.51661119805
2743.50815992021
2743.50731478950
2743.50723027641
2743.50722182509
2743.50722097996
2743.50722089545
2743.50722088700
2743.50722088616
2743.50722088607
2743.50722088606
2743.50722088606

2833.16953523513
2752.86392636290
2744.44592709179
2743.60111969566
2743.51660988489
2743.50813576840
2743.50587880024
2743.49088954013
2743.34218803890
2743.66538821758
2745.21802630369
2561.13229702871
2860.62453767450
17477.0284871979
-159288.60966869
1969830.68552676

2833.16953523517
2752.86392636372
2744.44592708226
2743.60112105872
2743.51661119820
2743.50815992031
2743.50731478967
2743.50723027654
2743.50722182512
2743.50722098001
2743.50722089536
2743.50722088701
2743.50722088613
2743.50722088603
2743.50722088613
2743.50722088608

practical circumstances (e.g., finite elements) it is rare to see ratios this extreme. As
r increases, the knots become less uniformly spaced and loss of significance becomes
more pronounced in the integration by parts and divided difference algorithms. The
accuracy of the divided difference scheme decreases as the order increases; it is inter-
esting that the accuracy of the integration by parts algorithm increases as the order
increases.

7. Comparison of the algorithms. In this section we present a brief compar-
ison of the five methods considered for evaluation of the integral (1). We will consider
for simplicity problems of the form (1) where both splines are of order k. Only rough
estimates of the number of operations needed for each method are given.

The first method considered is the use of Gauss quadrature. To do the integration
exactly requires evaluating each spline k times per interval. The cost of a B-spline
evaluation is O(k2) operations, thus the total cost will be O(k3) operations per seg-
ment. The method exhibits no loss of significance for any order or knot sequence.
Gauss quadrature extends to problems of the type given in (2).

The second method formulated the integrand as a linear combination of products
of B-splines and used the recurrence given by de Boor, Lyche, and Schumaker [7] to
calculate the integral of each B-spline pair. Each invocation of this recurrence requires
O(k3) operations [7], and the recurrence must be carried out k times per segment, so
the total cost is on the order of O(k4) operations per segment. The chief advantage
of this approach is that it is very stable numerically. The disadvantages are that the
recurrence is complicated, the approach does not extend to problems of the type given
in (2), and this is the most expensive approach considered. It is worth noting that
if a large number of integrations needs to be done using splines with the same bases
but different coefficients, the inner products of the B-splines could be precalculated,
thus reducing the computational expense.

The third method converted the splines to piecewise Bzier format and integrated
segment by segment. To convert to B(zier format, we must compute the k Bezier co-
efficients on each segment. The calculation of these coefficients carries approximately
the same price as the evaluation of a B-spline value, which is k(k- 1)/2 linear com-
bination operations. Thus the cost of converting both splines is about k(k- 1) linear

INTEGRATING PRODUCTS OF B-SPLINES 1037

combinations per segment. After the coefficients are obtained, we must calculate
weighted sum of all possible inner products of Bernstein polynomials on each interval.
There are k2 such inner products for two splines of order k. Thus the total cost of
this method is of order O(k2). This algorithm cannot be extended to problems of the
form (2).

The fourth method represented the integrand as a linear combination of B-splines.
This involved the computation of numbers relating the coefficients of the factor splines
to the coefficients of the product spline. It can be shown that these coefficients, F, are
a generalization of the discrete B-splines. In fact, the computation of the F implicitly
computes the discrete B-splines necessary to convert the splines to B6zier form. Thus
we conclude that this method is at least as expensive as method 2. This algorithm
also cannot be extended to problems of the form (2).

The final method is the integration by parts algorithm. Although it is not as
stable as the other methods, good accuracy is obtained for reasonable knot vectors.
The integration by parts method, in our implementation, is less expensive than the
other methods; approximately three times as fast as Gauss quadrature for cubics, and
about eight times as fast for degree 10 splines. In terms of order of operations, the
method requires O(k2) operations, the same as the conversion to B6zier method and
less than the other methods. In addition, this algorithm is extensible to problems of
the form (2), provided that a sufficient number of antiderivatives of the function
can be calculated.

In conclusion, the integration by parts method is less expensive than the other
methods considered, provides accurate results for reasonably uniform knot vectors,
and generalizes to problems of the form (2).

Acknowledgment. The authors gratefully acknowledge the helpful comments
of one of the referees.

REFERENCES

[1] O. C. ZIENKIEWICZ, The Finite Element Method in Engineering Science, Fourth Edition,
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[2] S. D. CONTE AND C. DE BOOR, Elementary Numerical Analysis, Second Edition, McGraw
Hill, New York, 1972.

[3] (. DAHLQUIST AND A. BJSRK, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[4] P. DAVIS, Interpolation and Approximation, Blaidsell, New York, 1963.
[5] (. R. HEPPLER AND J. S. HANSEN, A mindlin element for thick and deep shells, Comput.

Methods Appl. Mech. Engrg., 54 (1986), pp. 21-47.
[6] J. L. PHILLIPS AND R. J. HANSON, Gauss quadrature rules with B-spline weight functions,

Math. Comp., 28 (1978), p. 666.
[7] C. DE BOOR, L. LYCHE, AND L. L. SCHUMAKER, On calculating with B-splines ii: Integra-

tion, in Numerische Methoden der Approximationstheorie, L. Collatz, H. Werner, and
G. Meinardus, eds., Birkhiiuser, Basel, 1976, pp. 123-146.

[8] W. BOEHM, Inserting new knots into B-spline curves, Computer Aided Design, 12 (1980),
pp. 199-201.

[9] E. COHEN, T. LYCItE, AND R. RIESENFELD, Discrete B-splines and subdivision techniques in
computer-aided geometric design and computer graphics, Computer Graphics and Image
Processing, 14 (1980), pp. 87-111.

[10] R. GOLDMAN, Blossoming and knot insertion algorithms for B-spline curves, Con]put. Aided
Geom. Design, 7 (1990), pp. 69-82.

[11] L. RAMSHAW, Blossoms are polar forms, Comput. Aided Geom. Design, 6 (1989), pp. 323-358.
[12] P. SABLONNIRE, Spline and Bdzier polygons associated with a polynomial spline curve, Com-

puter Aided Design, 10 (1978), pp. 257-261.
[13] G. FARIN, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, New

York, 1988.

1038 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

[14] K. MORKEN, Products of splines as linear combinations of B-splines, manuscript.
[15] R. H. BARTELS, J. C. BEATTY, AND B. A. BARSKY, An Introduction to Splines for Use in

Computer Graphics and Geometric Modeling, Morgan Kaufmann, San Mateo, CA, 1987.
[16] C. DE BOOl, A Practical Guide to Splines, Springer-Verlag, Berlin, New York, 1978.
[17] L. SCHWARTZ, Mathematics for the Physical Sciences, Addison-Wesley, New York, 1966.
[18] A. H. ZEMANIAN, Distribution Theory and Transform Analysis, McGraw Hill, New York,

1965.
[19] P. J. BARRY AND R. i. GOLDMAN, Algorithms for progressive curves: Extending B-spline and

blossoming techniques to the monomial, power and Newton dual bases, in Knot Insertion
and Deletion Algorithms for BoSpline Modeling, R. Goldman and T. Lyche, eds., Society
for Industrial and Applied Mathematics, Philadelphia, PA, to appear.

[20] B. W. CHAR, K. O. (EDDES, G. H. (ONNET, M. B. MONOGAN, AND S. M. WATT, Maple
Reference Manual, Watcom Publications Limited, Waterloo, Ontario, Canada, 1988.

SIAM J. Sci. STAT. COMPUT.
Vol. 13, No. 5, pp. 1039-1061, September 1992

1992 Society for Industrial and Applied Mathematics
001

ONE-STAGE PARALLEL METHODS FOR THE NUMERICAL SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS*

H. W. TAM

Abstract. This paper studies one-stage block methods for solving the numerical solution of ordinary
differential equations (ODEs) in parallel, and a new family of one-stage methods is introduced. Each member
in this family has a stability region equal to the interior of that of the Euler method, together with the origin.
Thus the stability regions remain unchanged as the order is increased. These methods lead to the discovery
of a specific approach in deriving parallel ODE methods with good stability regions; zero-stable block
methods with perfect power stability polynomials are considered. It is also found that the coupling between
the equations of individual time points for block methods must be taken into account. The coupling between
time points restricts the use of the new one-stage parallel methods. By a modification of the method
parameters, this coupling effect is eliminated. The resulting one-stage parallel methods outperform the
Adams-Bashforth methods in both stability and accuracy.

Key words, one-stage, block methods, parallel processing, ordinary differential equations (ODEs)

AMS(MOS) subject classification. 65L05

1. Introduction. We study parallel methods for the numerical solution of the
ordinary differential equation (ODE)

y(to)

y’(t) =f(y(t)), to<= t<= tout,

where y andf n. A nonautonomous ODE of the form z’(t)=f(t, z(t)) can always
be written in the above autonomous form. Hence the above form involves no loss of
generality.

Depending on the nature of the applications, existing ODE methods can be
classified into stiff and nonstiff categories. A method suitable for stiff ODEs is usually
implicit, which means that systems of linear equations of the form [I-hoJn]x=y
must be solved. Since the time spent on these linear systems usually dominates the
overall computing time, a good speedup for stiff ODE problems can be achieved by
performing the linear algebra in parallel. For nonstiff ODEs, we can exploit parallelism
by evaluating function values simultaneously. The research for parallel methods in
this category is still in its infancy. In this paper we focus on parallel nonstiff methods.

Stability and accuracy are the main considerations in deriving good ODE methods.
It is fairly easy to derive sequential methods of good accuracy, e.g., in multistep
methods we merely interpolate enough previous information to obtain the desired
order. The same approach can be applied to parallel ODE methods. It is, however,
the relatively small stability regions of many methods that constrain their usefulness.
The main concern of this paper is to obtain parallel methods with good stability.

A detailed study on the effect of stability on the potential for parallelism for ODEs
has been done in [17]. We give a brief review here on some of the key ideas in that
paper, starting with the following definitions.

* Received by the editors July 28, 1989; accepted for publication November 14, 1991. This research
was supported in part by U.S. Department of Energy grant DEF G02-87ER25026 and National Science
Foundation grant NSF DMS 8703226.

? Department of Computer Science, University of Illinois, Urbana, Illinois 61801. Present address,
Research and Development, Wolfram Research, Inc., 701 Budd Court, Campbell, California 95008.

1039

1040 n.w. TAM

DEFINITION 1.1. A stage of a method is a set of function evaluations performed
in parallel (assuming there is an unlimited number of processors).

DEFINITION 1.2. The stage number m of a (parallel or serial) method is defined
to be the number of stages (parallel or serial function evaluations) per step in the
method.

DEFINITION 1.3. The scaled stability region of a method is defined to be

where S is the stability region of the method and m is the stage number.
Since different methods have different numbers of stages, it is the scaled stability

region that is appropriate for the comparison of stability properties of different methods.
DEFINITION 1.4. An optimal scaled stability region is one that cannot be properly

contained in that of another method.
Optimality [12] is a desired condition for a method because there always exists

a problem for which the method performs best due to its superior stability.
Roughly speaking, optimality theory [17] for parallel methods shows that if the

scaled stability region of a serial method is optimal, it is still optimal among parallel
and serial methods combined. Thus in the sense of optimal scaled stability regions,
parallelism does not give any improvement. Due to the existence of optimal scaled
stability regions among many ODE methods, numerous authors have proposed [12],
[14], [5], [6] using instead the largest disk passing through the origin that can be
inscribed into the scaled stability region of a method. Jeltsch and Nevanlinna [12]
have demonstrated that such a measure is reasonable because the disks appear in an
important way in the theory of error propagation for nonlinear problems. Again using
optimality theory, we can prove that the largest disk that can be inscribed into a scaled
stability region is the unit circle, for both parallel and serial methods. In this sense,
the Euler method (the simplest serial method) has the best stability region. Unless
otherwise noted, we will use the radius of the largest disk as a measure of how good
the scaled stability region of a method is.

Although the above summary states that the largest scaled stability region a parallel
ODE method can possibly have is the unit circle, there is no restriction on the order
of such a method. The hope for success in finding good parallel methods is to find
parallel methods with scaled stability regions that approach those of good (optimal)
serial methods, such as the Euler method, but with higher order (or with significantly
smaller error constants than serial methods of the same order). Alternatively, for a
parallel and a serial ODE method of the same order, we would like to have a larger
scaled stability region for the parallel method.

Existing work on finding parallel ODE methods with good stability properties has
been unsatisfactory. In fact, many proposed parallel methods have smaller scaled
stability regions than the Adams PECE method of the same order [17]. In this paper
we study one-stage parallel ODE methods with good stability properties. In 2 we
introduce a two-processor, one-stage block method whose stability region is essentially
that of the Euler method: the theoretical limit discussed above for a one-stage method,
but now with an order equal to 2. This two-processor method can be generalized to
higher orders. This new family of one-stage methods illustrates an important approach
in deriving parallel methods with outstanding stability regions; we consider zero-stable
block methods with perfect power stability polynomials. Methods with this property have
an unchanged stability region as the order increases. This is an unconventional charac-
teristic because the stability regions of existing methods all shrink as one raises the

ONE-STAGE PARALLEL ODE METHODS 1041

order. Although this family of one-stage methods is of restricted usage due to a
phenomenon in block methods not seen before, the above specific approach neverthe-
less leads to the development of a successful family of two-stage methods that outper-
forms the Adams PECE methods by a sizeable margin. This two-stage family is
described in an associated paper [18].

We show that conventional local error analysis is inadequate to predict the
performance of the new one-stage parallel methods. For block methods we also need
to take into account the coupling between time points, the effect of which appears in
global errors. Although the local errors of these new parallel methods look reasonable
in the sense of traditional multistep methods, global error analysis indicates that there
is an accelerated error growth for eigenvalues along the imaginary axis of the hA-plane.
The details of the global error analysis will be studied in 3. Despite the accelerated
error growth, the new methods are the starting point from which useful one-stage
parallel methods can be derived. In 4 we will show that a slight variati’.on of the
above-mentioned methods yields one-stage parallel methods that outperformlone-stage
serial methods like the Adams-Bashforth methods. In 5 we consider the effect of
varying the spacing between time points within a block. It turns out that a nonuniform
spacing has no benefit. Finally, numerical results are presented in 6.

2. Derivation of a new one-stage method. The discussion in 1 states that the
largest disk passing through the origin that can be inscribed into the scaled stability
region of a (parallel or sequential) method is the unit circle centered at (-1, 0). Any
m-stage one-step method having the stability polynomial

possesses this scaled stability region. Such a stability polynomial may come from any
variety of Runge-Kutta methods, e.g., a sequence of m identical Euler steps, each of

hlength 10], or from a one-step method using higher derivatives 10]. The polynomial
can also be realized by a method consisting of a predictor and m- 1 correctors [12].
However, all these methods are of order one. Jeltsch and Nevanlinna 12] have shown
that there exist explicit linear multistep methods of any order whose scaled stability
regions can be made arbitrarily close to the unit circle, but the error coefficients also
grow arbitrarily large, rendering these methods useless. Since the scaled stability regions
of parallel methods are also limited by the unit circle, a natural question arises" "Can
one obtain a parallel method of order-2 or higher with scaled stability region equal to
(or close to) the unit circle?" Our goal is to find an order-2 or higher parallel method
whose scaled stability region is close to that of Euler’s method. In this paper we
consider candidate methods with multiple saved values. Perhaps the simplest method
of this nature is a one-stage block method that computes two new solution vMues from
two previous solution values and their derivatives.

Let h be the stepsize (by which we mean the length of a block) for a block of
two saved values y,, and Yn+l/2. In each computation step new values Yn+l and Yn+3/2
are calculated from yn, Y,/1/2, fm =f(tm, Ym), and m n, n +1/2, as shown in Fig. 1. The
stepsize h is the actual distance in advanced per parallel function evaluation. (When
we compare the performance of a block method to that of a serial method, the maximum
allowable stepsize of the block method and the maximum allowable stepsize of the
serial method per work unit for a fixed tolerance are the correct comparison quantities.)
There are numerous ways to compute Yn+l and Yn+3/2 from Yn, Yn+l/2, fn, and fn+l/2
while maintaining second-order accuracy.

1042 H.W. TAM

tn tn 1/2 tn tn 3/2

FIG. 1. A simple block method.

An example of an integration-based formula is given by

tn+
(2.1) Y+I Y + f,+1/2+ (t- t+/2)f+/2, dt= y + hf+/2,

tn

where f+l/2, is the backward divided difference involving f/l/2 and f. Alternatively,
we can compute Y+I from Y+1/2, f, and f+l/, and similarly in two ways for Yn+3/2.
Taking a linear combination of the two equations for Y+I and another linear combina-
tion ofthe two equations for Yn+3/2, we obtain a block method with two free parameters:

k Y,+, 3 1-a a k Y, +a14 -+al4. L f,

Equation (2.2) is the general second-order block method one obtained from the given
previous values. Equation (2.2) can, of course, be derived from, e.g., the method of
undetermined coefficients. However, an integration-based derivation paves the way for
a variable stepsize extension.

We can manipulate free parameters a and b in (2.2) to obtain a good stability
region. Of paicular interest is the case a 1, b 0, giving

1

After applying (2.3) to the test problem y’= y, standard techniques give the stability
polynomial

[-(1+)],
where hA. Conversely, the stability polynomial of (2.2) is such a perfect square
only when a 1 and b =0. Conventionally, we do not consider methods having a
perfect power stability polynomial because of the possible lack of zero stability. The
lack of zero stability means that roundoff errors are amplified for the degenerate
integration problem y’(t) =f(t). However, (2.3) shows that when applied to the problem
y’= 0, the solution values remain unchanged.

In order to study the stability region of (2.4), we apply (2.3) to the test problem
y’= Ay, y(0) 1 with exact initial values Yo 1, Yl/2 ehM2, getting

Y d 1 k Y0

(2.4)
1 1+ 1+ 1 1+ y/

1 0 1+ 1 Yo d

r(1 +), + n/(1 +
L n/(1 +)"-

-n/z(1 +/z) "-1] [Y,/2]
(l+/)"-n(l+/)"-1

[. Yo_l"

ONE-STAGE PARALLEL ODE METHODS 1043

Equation (2.4) shows that any point on the boundary of the unit disk other than the
origin is unstable. Therefore the stability region of (2.3) contains the interior of the
unit disk {’11 + 1 <- 1} together with the origin.

With nh, (2.4) gives

y. (1 +/)" yo+
(1 +/.) (Yl/2-Yo)

At eh;/2]enlg(l+) 1 +
(1 + p,)

1)

--e

--e

hA2t]At, e(--hA2t/2+(h2A3t)) 1++(h2A3t)
2

1---+...2 1+--+...2
A similar expansion can be obtained for Yn+l/2. This demonstrates how the method
(2.3) achieves second order. In essence, the term n(1 +),-1 is being used to remove
the dominant error term in (1 +/,)" as an approximation to (e) ".

The algebraic order Pa of an ODE method is defined by the largest real number
pa such that

pl(/)- e C]Jpa+l + (/-Pa+2), c#O,

for some principal branch Pl() of the algebraic function satisfying the stability
polynomial of the method. Classical methods such as linear, multistep, multiderivative
methods, and Runge-Kutta methods have the property that p =<p, where p is the
consistency order of the method. The algebraic order of (2.3) (here Pl(/*) 1 +/,) is
only 1, but local error analysis indicates that (2.3) is of consistency order-2. This
unusual phenomenon is possible because the stability matrix of (2.4) is defective. We
believe that p >p is possible only when the stability matrix of the underlying method
is defective.

The parallel method (2.3) falls just short of our goal of finding a second-order
method whose stability region is the unit disk {:11 +/*1 =< 1}, although only the arc
: =-1 + ei, 0< 0 <2rr is unstable. We do not know whether one can improve the
stability region of a second-order parallel method beyond that of (2.3).

We can generalize (2.3) to higher-order methods while retaining the same stability
properties. By using polynomials interpolating f,, f,+1/3, f.+2/3, and the appropriate
Y,,, Yn+l/3, Yn+2/3, we obtain the third-order method

(2.5)

Y.+4/3 1 b b2 b2 bl Y.+l/3

Y.+I 1 a a2 a2 al y.

+cl/9+5c2/36 -6+4c/9+2c2/9
+ h +b/9+5b2/36 -+4bl/9+Zb2/9

23gg+al/9+5a2/36 -+4al/9+2a2/9

]+Cl/9-c2/36][fn+2/317+ bl/9- b2/36 |/f./1/3
6+ al/9 a2/36 J[f.

(2.6) Y,+4/3 0 1 0 Y,+l/3 + h -2

Y.+l 0 0 1 y, 0

lrfn+2/3 1||L+1/3
-JL f-

For a -1, a2 --0, b -0, b2 1, cl--0, and c2 =0, (2.5) becomes

1044 I4. w. TAM

whose stability polynomial is

[:- (1 +/x)]
The stability region of (2.6) is again the interior of the unit disk together with the
origin. It is now obvious that the same procedure can lead to a qth-order method
whose stability polynomial is [s- (1 //z)] q. Note that the qth-order method requires
q processors in parallel. Henceforth we call the extension of (2.5) to q processors a
q-processor block method and denote it by

(2.7) Yn+l--AqYn+hBqFn.
Although (2.3) and (2.6) have the same stability region, the method (2.3) is

nonetheless more stable in the following sense. Equation (2.4) shows that, when applied
to the problem y’= Ay, the solution values yn and Yn+l/2 of (2.3) consist of terms (1 +/z)
and n/z(1 //x) n-1 multiplied by the initial values Yo and yl/2. The term (1 +/z) behaves
nicely for I(1 //x)l _-< 1. For /x -2 / e, e > 0, the term n/x(1 +/x) n-1 increases slowly
before the effect of n/z is being annihilated by (1 +/z) n-1 as n increases. The correspond-
ing propagation matrix of (2.6) involves a term n22(1 //z) n-2 with even larger magnify-
ing power than n/z(1+/x) n-1 near the boundary of the unit circle. It is in this sense
that the two-processor method is more stable than the three-processor method.

The above family of one-stage methods illustrates a simple but important approach
in deriving parallel ODE methods with good stability properties; we consider zero-stable
block methods with perfect power stability polynomials. Many proposed block methods
contain arbitrary parameters with which we can manipulate the stability polynomials
[15], [1], [4]. However, it is not usually possible to manipulate the method parameters
so that the resulting stability polynomials are in the form of perfect powers of simple
polynomials. As an example, let us consider a two-processor, two-block method (see
Fig. 2), where the values Yn+3/2 and y,+ of a new block are computed from the y and

f values in two previous blocks. Using a derivation similar to that of (2.2), we can
obtain the following fourth-order method with two free parameters.

Example 2.1. It holds that

y,+l .I 1-a a [. Yn L +3a/16 -4+ 19a/48 L In]
(2.8)

+h[_5a/48 -+a/48 Lfn-1
There is no way to make the stability polynomial of (2.8) a perfect square for any

choice of a and b. For the set a 1, b =0, the stability region is rather small (Fig. 3),
with a stability interval equal to -0.18. Equation (2.8) is a simple method in the class
of the multiblock methods of Chu and Hamilton [4]. Equation (2.8) is an example of
a badly designed parallel method with a very small stability region (compared to the
Adams-Bashforth method of the same order). Many existing parallel methods suffer
from the weakness of having small stability regions [15], [7], [4], [1], so that their use

tn- tn_ I/2 t. t.+ /2 t.+ t.+ 3/2

FIG. 2. A two-block two-processor method.

ONE-STAGE PARALLEL ODE METHODS 1045

b=O

Oo 0.05

-0.15 -0.1 -0.05

0

"’-0.05

FIG. 3. Stability region of Example 2.1.

is limited to accuracy-bound applications. We believe, however, that the right combina-
tion of order, number of stored values, and method parameters will yield a parallel
method with a good stability region. By choosing an appropriate order and number
of stored values for the formula, we can derive useful zero-stable multiblock methods
with stability polynomials equal to perfect powers of simple ones (see [17, Chap. 5]).

The one-stage block methods suggested in this section unfortunately have a
drawback: due to coupling between time points, they are not accurate enough for
eigenvalues along the imaginary axis of the hA-plane. This drawback is significant for
problems with natural frequencies on the imaginary axis that demand fairly high
accuracy. An alternate approach is to have a different choice of the method parameters
a, b,.... The abnormal error behavior will be discussed in 3 and the alternate
approach in 4.

3. Global error analysis of the block method. The local truncation error of the
q-processor block method (2.7) is defined to be

d,+l AqY(t,)+ hBqf(Y(t,))- Y(t,+l),

where Y(t,) is the exact solution [Y(tn+(q-1/q)),’’’, y(t)] T of the given ODE. For
the two-processor case,

[b 628 h3y’"(,1)1
For comparison, the Euler method and the second-order Adams-Bashforth method
have local errors -1/2h2y"() and -h3y’"(), respectively. Even though the individual
components of (3.1) for a 1 and b 0 are smaller than that of the second-order
Adams-Bashforth method, we should not be deceived by the behavior of (3.1). There
is a classical theory in linear multistep methods (at least in the case of nonstitt ODEs)
that relates the local error and global error. For the test problem y’ Ay, y(0)= 1, the
second-order Adams-Bashforth method has a global error

(3.2) y,-y(t,)=-h2 e(t"-t)Xy’"(t) dt+(h3),

1046 ia. w. TAM

where y(t) is the exact solution of the ODE. Note that the coefficient -2 of the local
error is also that of the global error. For a block method, the individual equations for
different time points may interact in a strange way so that the resulting global error
has an unexpected growth. In this section we study the global error behavior of the
method (2.3).

In linear multistep methods it is well known that an order-q method has a global
error behaving like ((hq). This relationship between the local error and global error
extends to block methods. (See [9, Thm. 9.1].) Since the stability polynomial of (2.3)
has no extraneous root at/z 0, if the given ODE has enough derivatives, (2.3) satisfies

k Y,+l y(t,+l) h e(t,+,) hg2(t,+l)

where e(t), ez(t), g(t), and gz(t) are differentiable.
It is possible to explicitly determine the principal error functions e(t) and e2(t).

We first substitute (3.3) into the difference equation (2.3) and subtract both sides from
the Taylor series

y(tn+3/2) y(t+/)] + hy’(t+/2) +
h

+
h

+(h4)
y(t,+l) y(t,) J hy’(t,) l [y"(t.) y’"(t.)

Now expand every term in powers of h at the point t.. The (1), (h), and (h2)
terms on both sides of the resulting equation cancel each other. Dividing by h yields

(3.4) e(t.) y’"(t.) +(y(t.))[2el(t.) e(t)] + (h)

and

(3.5) e’2(t,):-y’"(t,)+fy(y(t,)) el(tn)+(h).

By assumption, (3.4) and (3.5) are true for any fixed value of t, as h -* 0. Therefore
one can drop the subscript n so that each of these equations holds for all values of t.
Thus we have arrived at a set of ODEs from which el(t) and e2(t) can be determined
as follows:

e(t) =L(Y(t))
0 e2(t) -a (t).

(Note that the coefficient matrix of the method (2.3), together with its local error (3.1),
reappears in (3.6).)

If we use exact initial values for Y/2 and Yo, set n+ 1 =0 in (3.3), express
every term in Taylor series at to, and equate coefficients of 6(h), we obtain el(to)=
e2(t0) 0.

By making the transformation

t)Yz(t)] =[01 -1 e2(t)]
equation (3.6) becomes

(t)
:f(y(t)) 1] [l(t) -u4114]1 2(t)] +[-3 y’’’(t)’

ONE-STAGE PARALLEL ODE METHODS 1047

which, together with the initial condition l(to)= 2(to)= 0, determines the solution

62(t) -1/4 G(t, s)y’"(s) as,
to

l(t) - G(t, s)y’"(s) ds + G(t, S)fy(y(s)).(s) as,
to to

where G(t, s) satisfies

OG(t,s)
=fy(y(t))G(t, s), G(t, t) I.

Ot

When applied to the test problem y’= Ay, y(0)= 1, A =constant, we have G(t, s)=
e(t-s)x, so that

(=- e(’-"’"(s s,

which is similar to the global error function (3.2) of the second-order Adams-Bashfoh
method. However,

l(t) e(-
1 ([-- S) 3 es ds e ’" t1

13.
24 4 24 8

If I=-1, then (t)=-e-[-(t/24)+ t/8] and the growth of is damped by e-’.
When I i,

l()=eit[24 ii38
and the growth of is undamped. The above global error analysis demonstrates that
(2.3) has good accuracy for eigenvalues on the negative real axis. For eigenvalues
along the imaginary axis, the effective error constant is of order ff(t), as compared
to a customary if(t) for a normal serial method. The corresponding global error
expression for the q-processor block method with stability polynomial [-(1 +)]q
contains a leading term of order (tq). e".

We can demonstrate that the global error of the method (2.3), when applied to
the model problem y’= ly, y(0)= 1, can be expressed in the form

y-y(t) ea{h[-4 3 63 [n+4n]+,,- l+ha +a’
For comparison, the Euler method has a global error of the form

42 63

__
52

__
while that of the second-order Adams-Bashfoh method is given by

Thus (2.3) is indeed more accurate than the Euler method by considering the if(h)
and ff(h) terms in the global errors. The ff(h) term in the global error of (2.3) is
worse than that of the second-order Adams-Bashfoh methods. However, when
It < 1, the method (2.3) has a global error comparable to that of the second-order
Adams-Bashfoh method, but with much better stability propeies. Therefore the
consequence of the accelerated error growth of (2.3) is a restriction on the length of
the integration interval.

The previous paragraph suggests that a remedy to the accelerated error growth is
to resta the method (2.3) every n steps for some n. As n, the scaled stability

1048 H.W. TAM

region of this restarted method approaches the unit circle, but the accuracy gets worse.
We believe there is an appropriate value of ns for a reasonable balance between stability
and accuracy. The value of ns may be problem dependent. An algorithm to find the
appropriate n is left for further research.

Although (2.3) and its higher-order analogs are of restricted usage, they still
enlighten us to consider zero-stable parallel methods with perfect power stability
polynomials. Using this approach one can derive two-stage block methods that outper-
form the Adams PECE methods by a sizeable margin. These two-stage methods are
described in a separate paper [18]. In the remainder of this paper we study useful
one-stage parallel methods based on (2.3) and its higher-order analogs.

4. Methods without accelerated error growth. The growth of the error of the
one-stage, two-processor block method is due to the coefficient matrix

2+ b/4 -1 + b/4"
]+ a/4 -+ a/4_

a l, b=O,

being defective. By a different choice of the parameters a and b we can make the
above matrix diagonalizable. This choice of parameters at the same time reduces the
stability region of the method (2.2). This reduction in stability is tolerable, so long as
the resulting stability region is still comparable to those of existing widely used methods
that are less accurate. (Recall that we compare two scaled stability regions by using
the largest disks passing through the origin that can be inscribed into each of them.)
Our goal is to manipulate a and b such that the stability region of the resulting method
is comparable to that of the second-order Adams-Bashforth method (the reference
method), while at the same time the accuracy of this new method exceeds that of the
reference method. Note that the stability polynomial is not a perfect square any more
after this order enhancement.

It is possible to choose a and b so that the method (2.2) is of order 3. This order
enhancement can be achieved by an analysis of the global error of (2.2). However, for
arbitrary a and b the stability polynomial of (2.2) has an extraneous root equal to
a b at/z 0. The consequence ofthis extraneous root is that the global error expression
(3.3) is not valid anymore. We need to make use of a result in Skeel [16].

LEMMA 4.1. Let

Uo- tr(r/; h),
(4.1)

un Sun-1 + hIt(tn_l, un-1 h), 1 -< n _-< N,

denote an ODE method with starting procedure tr(; h), where the vector un-1 contains
the stored values that the method requires. Assume that S has a simple eigenvalue equal
to 1 and that all other eigenvalues are less than 1 in modulus. Let

rio tr(r/; h) +to,
(4.2)

fin Sfin-1 + hIt(tn_, fin-1 h) +
be a perturbed solution based on (4.1) with perturbations to, r,..., rN. If vT is a left
eigenvector of S corresponding to the eigenvalue 1, then

N

(4.3) max II-ull , Y IIvrll / c max
O--nN n----1 OnN

for some constants C1, C2. In particular, if maxlnN Ilvrrnll=(h q/l) and
maxo_ns Ilrnll- (hq), then maxon___s Ilfin -unll-- (hq).

Proof. Lemma 4.1 is a direct consequence of Theorem 3.6 in Skeel [16].

ONE-STAGE PARALLEL ODE METHODS 1049

We can treat the true solution Y(t,) of the ODE as a perturbed approximation
to the numerical solution (2.2) with perturbations d,+l. Therefore, by Lemma 4.1, if

(4.4) vTd,+l (h4

and Ilyl/-y(t/)ll and Ilyo-y(to)ll are of order t(h3) where VT=(1--a, b) is a left
eigenvector of A2 corresponding to the eigenvalue 1, then y,-y(t,) and Y,+I/2-
y(t,+l/2)=((h3). Condition (4.4) holds if

b-28 a-5
(4.5) 0=(1-a)+b b--7(a-1).

96 96

Thus if we use ((h3) accurate starting values, the method (2.2) is of third order when
b=7(a-1), al.

We are still left with one free parameter to ensure a good stability region. With
the relationship (4.5), the stability polynomial of the method (2.2) becomes

(4.6) 2+ (-8 + 6a 2a/x) : + [(2 a)tzz + (6 4a)/x + (7 6a)].

To ensure that the extraneous root of (4.6) at/x 0 is bounded by 1, we also need to
require that

(4.7) 17-6a1-<_1 <::> 1-<a_-<.

.."’a 1.01

0.25

FIG. 4. Stability region of (2.2) for different values of a.

1050 H.w. "rAM

The stability regions of the method (2.2) for different choices of a’s within the range
(4.7) are shown in Fig. 4. The stability region of the reference method (second-order
Adams-Bashforth method) is also sketched for comparison. The case a 1 gives the
stability region with the largest inscribed circle. As a deviates from 1, the size of the
inscribed circle shrinks. For a 1, the stability region of the method (2.2) includes the
boundary curves, like that of a conventional ODE method.

We must still ensure that the global error of (2.2) with b 7(a 1), a 1, behaves
well. The following lemma shows that this is indeed the case.

LEMMA 4.2. If b 7(a 1), la bl -< 1, a 1 in method (2.2), and Yo Y(to) +
(h3), then

h-(h4)
k Y. y(t.) g2(t.) t2

where 61=7(a-5)/576(1-a), 62=(a-5)/576(1-a), and

(4.9)

g,(t)=-lG(t, to)y"’(to)

ft [9a_37tv+ G(t, s)
576(a 1)

y s) +
to

a-5
y’"(t).g2(t)= gl(t)

96(a-1)

5-a]576(a_l)fy(y(s))y’"(s ds,

Proof We can consider

z,,= Y(t.)+ h3[gl(t"+l/2)] + h3(7-6a)"y’"(to) [tl]g2(t. t2
as a perturbed approximation to the solution of the method (2.2). It can be shown that

g2(to) t2 0

If we define

then

d.+ Az. + hBf(z.) z.+l,
+1

,+3/2 =7(a-5) h3y’"(t,+l/2)+
96

-7a-1

384
haylV(t,+l/2)+ h36ly’"(to)(7-6a)

I(h)+7(a- 1) h gz(t.+l/2)-- g(tn+l/2)--gl(tn+l/2)

(4.10) 7a+l

-k- h3(t2 tl)y’"(to)(7 -6a)"]
hfy(y(t,+l/))[h3gl(t,+l/2)+ h381y’"(to)(7-6a)

7a-ll
hfy(y(t,+l/2))[h3gz(t,+l/2) + h362y’"(to)(7-6a)

-h4g(t,+l/)-h3tl y’"(to) (7 6a) "+1 +(h

ONE-STAGE PARALLEL ODE METHODS 1051

and

a___5- a 9 iv h [h]h3y’"(t,)+ h4y t)+(a 1) g2(t,)-gl(t,)-- g’l(t)a+
96 384

+ ah3()y’"(to)(7 6a) + h316- 6(7- 6a)]y’"(to)(7 -6a)
(4.11) 3+a

+ hfy(y(t))[h3g(t)+ h3ly’"(to)(7-6a)
4

-l+a
+

4
hfy(y(t"))[h3g2(t")+h36Y’"(t)(Y-6a)"]-h4g’2(t)"

As n becomes large, terms involving (7-6a)" become negligible. This argument and
the second part of (4.9) imply that the (h3) terms in (4.10) and (4.11) cancel out.
Hence ,+1 (h4) We can also use the fact that N (7--6a)" if(l) and thatn=l

7
(1-a)g(t)+7(a-1)g(t)

7a2-38a+31 IV(t)+ (1-a)2(g’(t) (t))
192 Y -g

5(1 a)fy(y(t))gl(t) -(1 a)fy(y(t))g2(t)

to show that YN V
T

=1 aoll-- (h4) Hence by Lemma 4.1,

Y, -z, Y.- Y(tn)-h3[gl(tn+/2)] -h3(7-6a)"y’"(to)[1] (h4),
g2(t.) 62

and the lemma follows, fi
Lemma 4.2 shows that with b 7(a-1), a 1, the leading term for the global

error is given by h eXt[c1Ant + C2A3] for some constants C1 and C2, when applied to
the model problem y’ Ay. This is comparable to the global error behavior of a regular
ODE method.

With the order enhanced, we can vary a to get a stability region with an inscribed
disk that is comparable to that of the reference method. The choice a 1.07, b 0.49
appears to give an appropriate method. We have run some numerical tests comparing
this choice with the reference method. Test results for a--1, b 0 are also presented
simultaneously to demonstrate the accelerated error growth mentioned at the end of

3. The results show that the choice a 1, b 0 has good speedup over the reference
method on the negative real axis (a speedup of almost 2 for the problem y’=-y for
an accuracy of two digits), while it performs poorly on the imaginary axis (consider
the orbit problem). The new choice a--1.07, b =0.49 regains a speedup over the
reference method on the imaginary axis.

We can enhance the order of the three-processor method (2.6) in a way analogous
to the two-processor case. Let

F(C2/1944- 26)YIV(1)]
,+1 h4 I(b2/1944-2)y’V(2)l

[(a2/1944 2-)yIV (sa)J
denote the local truncation error of the three-processor method (2.5). By Lemma 4.1,
if we use (h4) initial values and choose parameters to make

Tin+l= (hS),(4.12)
where

re= [3 a2c1+ c2-- alc

")/ C1- b2Cl + bl c2

1052 I-I. w. aAM

is a left eigenvector of A corresponding to the eigenvalue 1, then (2.5) becomes order
4. The condition (4.12) is satisfied when

(4.13) 25c +7/3 + 7 =0.

However, we have not been able to get a fourth-order method with a good stability
region for (2.5). We do obtain a third-order method using parameters

(4.14) a1=0.9, a2=0.1, bl=0, b2=l, c=0, c2=0.1,

with stability region shown in Fig. 5. This stability region is much larger than those
of the second- or third-order Adams-Bashforth methods. Numerical experiments for
this third-order variation are given in 6. The numerical results show that this third-
order variation is an improvement over the third-order Adams-Bashforth method in
both accuracy and stability.

5. Nonuniformly distributed time points. Thus far, the time points within each
individual block of the q-processor block method have been equally spaced. The
decision to use equally spaced time points has been based on simplicity and con-
venience. We have given no analysis on what kind of spacing yields the best stability
or accuracy. In light of the order enhancement of one-step collocation methods, we
might suspect a similar phenomenon in block methods. In this section we investigate
whether a nonuniform spacing between the time points of the two-processor block
method has any benefit.

-0.25

FIG. 5. Stability region of (2.5) with parameters (4.14).

tn tn+r tn+l tn+l+r
FIG. 6. Variable spacing two-processor block method.

ONE-STAGE PARALLEL ODE METHODS 1053

Let the points of the variable spacing two-processor block method be represented
by the diagram shown in Fig. 6. The two points tn and tn+r within a block are separated
by the distance rh. The quantity r is assumed to be positive without loss of generality.
We want to examine what the effect of the extra parameter r is on the stability or
accuracy of the method. The quantity r can be either greater than or less than one. A
value of r- 1 makes the block method essentially a frontal method 13], [8]. The case
r > 1 represents a premature prediction of a block further ahead.

Equation (2.2) is a special case r- 1/2 of the nonuniform time point two-processor
block method

(5.1)
[Y"+’+rl =[IYn+l d --a L Y, _l

l+l/2r+br/2+ h
1/2r- r/2 + ar/2

-1/2r+br/2] I o+q
1 1/2r- r/2 + ar/2_] [f. J"

Equation (5.1) shows that the method coefficients grow large as the two time points
approach one another. This indicates that allowing the time points to get too close
together may have a negative effect on roundoff error.

The method (5.1) has a stability polynomial

(5.2)

2"qt- -1- a + b 21. + rl 2 2
r

2

+a-b,+/ l+a b r
2

which, for a- 1 and b =0, is equal to [-(1+)]2. Thus the choice of r does not
affect whether (5.2) can be made a perfect square. Conversely, the stability polynomial
(5.2) is equal to [s (1 +)]2 only when a 1 and b 0.

The local truncation error of (5.1) is given by

(--r/4+br3/12)h3y’"(l) 1
+ r/4- r3/12 + ar3/12) h3y’"(sc2) J"

Again, since (5.1) has a second-order local truncation error, the global error for the
case a- 1, b 0 satisfies (by [9, Thm. 9.1]),

(5.3) Yn+l+r y(tn+,+r) + + + G(h
1 Yn+l .I y(t.+l) h2e2(t.+l) h3g2(t.+l)

As in 3, we can verify that el(t) and e2(t) can be determined from

(5.4) [e(t)] [l+l/2re(t)
=fy(y(t))

1/2r 1-1/2rJLe(t) -+ r/4.

If we make the transformation

2(t) 1/2r
.1/2r l[e,(t)]-1/2rJ e2(t)

1054 H.W. TAM

then (5.4) becomes

Recall that in 3, it is the defective error propagation matrix [-] in (3.6) that leads
to an accelerated error growth on the imaginary axis. The error propagation matrix

1+ 1/2r -1/2r]1/2r 1-1/2r

in (5.4) is always defective for any choice of r # 0. The defective error propagation
matrix makes Yl(t) explicitly dependent on Yz(t). It is this explicit dependence of Yl(t)
on Y2(t) that generates an (t2) term in Yl(t) (when (5.1) is applied to the model
problem y’--Ay). Because Y2(t)# 0 for any value of r, we cannot eliminate the (t2)
term in the solution of Yl(t). Hence it is impossible to avoid the accelerated error
growth for eigenvalues along the imaginary axis for the case a 1, b 0 by varying
the spacing between time points.

As in 4, we can avoid the accelerated error growth on the imaginary axis by a
different choice of the parameters a and b. When

0=
6 r

and a 1, b 0 does not hold simultaneously, the method (5.1) becomes third order.
By a proof analogous to that of Lemma 4.2, it can be shown that the global error of
the third-order method has leading terms

()n(2+3r)(-2+3r-r3+ar3) -2-3r+6ra
y,,,(

72r(a- 1) ; to)

and

g2(t)
(2- 3r)(-2 + 3r- r + ar3) -2- 3r+6ra] y,,,(ri: 1) _--.]

to),

where

gl(t)
(2 + 3 r)(-2 + 3r- r + ar3)

72r(a- 1)
G(t, to)y"’(to)

+ G(t,s)
-4+(a-1)r+9r2+(1-a)r3+(3a-3)r4

to 72r(a 1)
ytV(s)

1 3 r)(-2 + 3r- r + ar3)
72r(a- 1) fy(y(s))y’"(s)] ds

and

g2(t)--gl(t)-- -+ r/4- r3/12 + ar3/12
(a-l)

ONE-STAGE PARALLEL ODE METHODS 1055

Thus the best we can do with varying r is to eliminate one of the component functions
within the leading terms of the global error. Hence varying r does not improve the
order of the variable time point two-processor block method. Based on this result, we
believe that it is sufficient to consider uniformly spaced time points within a block.

6. Numerical results. We have tested the two-processor and three-processor block
methods on selected problems ofthe standard test set DETEST[11]. These test problems
are representative in demonstrating the stability and accuracy characteristics of the
proposed methods on both the real and imaginary axes. The test problems, together
with their analytic solutions, are listed below"

1.

y’: -y, y(0)= 1, tout-- 20, y(t)=

y3 1
Y’= 2

y(O) 1 tout=20, y(t) ,
y’= y cos t, y(0) 1, tou 20, y(t) esint,

= 1- y(O)= 1, tout-- 20, y(t):
1 + 19e-t/4,

Y’ Yl Y:z y3/ r |,
Y’3 Yl/ r J

3 (2 + cos t) cos

y(0) 0 y(t) (2+cos t) sin

0 sin

tout--- 20, r /yl +y,

Y] [Y2 1

y’21 [-yl/ r 0

Y;/ [Y4
y(O)= O, y(t)=

Y’4 J --Y3/ r3 1

tout 25, r 4y+ y3,

cos

-sin

sin

cos

y !_y/2(1 + t)+2tyl.l’ sin 2

tout=6.

The test problems include both linear and nonlinear examples. Problems 1-4 have
eigenvalues on the real axis, while problems 5-7 contain eigenvalues with imaginary
parts. The integration interval in each test problem is long enough to indicate any
deficiency in the long-term behavior of each method.

1056 H.W. TAM

The two-processor and three-processor methods are compared to the second- and
third-order Adams-Bashforth methods. For the two-processor case, we use parameters
a 1 and b =0 (with unit circle stability region) and the alternate choice a 1.07,
b 0.49. For the three-processor case, we use parameters al 1, a2 0, bl 0, b_ 1,
and c ca=0 (with unit circle stability region) and the alternate choice a =0.9,
a2 0.1, b 0, b2 1, c 0, and c2 0.1. A constant stepsize test is enough to compare
the accuracy and stability properties of these methods. We believe that if a parallel
method is inferior to existing serial methods for constant stepsizes, this method has
no hope in a variable stepsize implementation. Also, we do not want to obscure the
performance of the new methods by a crude error estimator. Therefore all numerical
tests are done using constant stepsizes.

Because the proposed and the reference methods all require more than one starting
point, we need to specify a starting criterion for each method. We believe that a fair
start for all methods is the provision of sufficient information for each of them to
compute the solution value at h. Thus for a stepsize h and initial time to, the
second-order and third-order Adams-Bashforth methods are given exact values at t_
and t_l, t_2, respectively. For the two-processor block method, we give exact starting
values at to and t/. For the three-processor case, exact values at to, tl/3, and t2/3 are
provided.

As the block methods generate more intermediate points than the Adams method,
a fair comparison is to sample only the errors at gridpoints h, t2,’" of the block
methods. (Incidentally, we know from global error analysis that within a block, the
error is smallest at the first point, e.g., the error at tn is smaller than that at tn+/3 or

in+2 for the three-processor case.) We measure the error of each method by err=
maxn [lY, Y(t)[[2.

Since the test examples are of small scale, when run on a parallel computer, the
communication time between different processors in the parallel methods will be a
significant portion of the run time. Moreover, the usual consensus in measuring the
performance of nonstiff ODE methods on a particular problem is to count the number
of function evaluations required by each of them. In practice, when the problem size
is large, the interprocessor communication time becomes relatively insignificant. There-
fore, in the subsequent performance plots, we show the number of function evaluations
per processor for each method. Because the new methods are conventional in nature
(they belong to Butcher’s [2], [3] class of general linear methods) and do not exploit
special properties of the ODE system, it is reasonable to expect that their performance
on small systems is indicative of their performance on large systems.

We run each method on a particular test problem using different constant values
of h to complete the given integration interval. Dividing the integration interval by
the stepsize gives the number of function evaluations per processor. The decimal places
of accuracy in each plot are computed by -lOgl0 err. The tests are run on an Alliant
FX/8 using double precision arithmetic, although it is obvious that the tests do not
require the actual use of a parallel computer. The plots of accuracy versus number of
function evaluations per processor for the test problems are shown in Figs. 7-13.

The results of problem 1 clearly indicates the improved stability of the two- and
three-processor block methods with unit circle stability regions over the second- and
third-order Adams-Bashforth methods. The stability properties of the two-processor
case with a different parameter choice still match those of the second-order Adams-
Bashforth method, while the stability characteristics of the three-processor block
method with modified parameters are even better. In all test examples except problem
5, the modified parameter three-processor method has better accuracy than the

ONE-STAGE PARALLEL ODE METHODS 1057

8,,,

5-

3-

2-

NUMBER 0-
OF

DECIMAL
PLACES -1-

-6-

3-Proc (B)

3-Proc

/ 2-Proc (B)

II1"
1/111

AB2

AB3

20 100 130 200

NUMBER OF FUNCTION EVALUATIONS

FIG. 7. Problem 1. AB2, AB3" Adams-Bashforth method (second- and third-order)" 2- or 3-Proc (A)"
two- or three-processor method with unit circle stability region" 2- or 3-Proc (B): two- or three-processor method
with modified parameters.

NUMBER

2--DECIMAL
PLACES

-0.5

3-Proc (B)

AB2/./"
AB3

/I

’, 20 20 ’o I00 1.20

NUMBER OF FUNCTION EVALUATIONS

FIG. 8. Problem 2.

1058 H.W. TAM

1.5-

NUMBER
OF

DECIMAL 1-

PLACES

0.5-

0-

AB3

3-Proc (A)

3-Proc (B) /
/

2-Proc (B)

/

2-Proc (A)

lOO 13o 16o 200

NUMBER OF FUNCTION EVALUATIONS

FIG. 9. Problem 3.

NlnvER
OF

DECIMAL2.5
PLACES

2-

NUMBER OF FUNCTION EVALUATIONS

FIG. 10. Problem 4.

ONE-STAGE PARALLEL ODE METHODS 1059

NUMBER
OF

DECIMAL 0-

PLACES

-1

100 150 200 400 800 18

NUMBER OF FUNCTION EVALUATIONS

FIG. 11. Problem 5.

3-Proc (A)

NUMBER
OF

DECIMAL
PLACES

2-

40 120 200 400 800 16 12800

NUMBER OF FUNCTION EVALUATIONS

FIG. 12. Problem 6.

1060 H.W. TAM

B3

ER
DEC
PLACES -I

-2

12S
EROF FCTION EVUATIONS

FIG. 13. Problem 7.

third-order Adams-Bashforth method, with a speedup of up to 3 in some cases (e.g.,
in problem 2 for an accuracy of two digits). Problem 6 shows the effect of imaginary
eigenvalues on the two- and three-processor methods with unit circle stability regions.
Both methods perform poorly on the imaginary axis. However, with a different choice
of the parameters, both methods regain good accuracy.

7. Summary. In this paper we have derived a new family of one-stage q-processor
parallel methods. The q-processor element has order q. This family of methods contains
free parameters, which are at our disposal. For any number of processors q, there
exists a unique set of parameters so that the stability region of the resulting method
is essentially that of the Euler method. We discover that besides stability and local
error analysis, we must also consider the coupling between time points for a block
method. The effect of this coupling on the above methods with unit circle stability
regions leads to an accelerated error growth on the imaginary axis of the hA-plane.
This accelerated error growth restricts the length of the integration interval for a given
problem. Although the methods with unit circle stability regions are of restricted
practical usage, the unique set of parameters is the starting point from which we obtain
good one-stage parallel methods. By making modifications of the parameters around
the unique set, we are able to obtain methods with relatively large stability regions,
compared to the Adams-Bashforth methods, but now of better accuracy. The modified
parameter methods of the two- and three-processor cases outperform the second- and
third-order Adams-Bashforth methods, respectively, in both accuracy and stability.
However, we have not been able to generalize this parameter modification to higher-
order cases.

This paper also illustrates an important approach to obtaining parallel methods
with good stability properties; we study zero-stable parallel methods with perfect power
stability polynomials. Although the methods with unit circle stability regions studied
in this paper are of restricted usage, they allow us to consider two-stage block methods

ONE-STAGE PARALLEL ODE METHODS 1061

with very little accelerated error growth. These two-stage methods also have unchanged
stability regions as the order increases. They outperform the Adams PECE methods
in both stability and accuracy by a sizeable margin. These methods are presented in 18].

REFERENCES

1] L. G. BIRTA AND O. ABOU-RABIA, Parallel block predictor-corrector methods for ODEs, IEEE Trans.
Comput., C36 (1987), pp. 299-311.

[2] J. C. BUTCHER, On the convergence of numerical solutions to ordinary differential equations, Math.
Comp., 20 (1966), pp. 1-10.

[3] , The numerical analysis of ordinary differential equations--Runge-Kutta and general linear
methods, John Wiley, New York, 1987.

[4] M. CHU AND H. HAMILTON, Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. 342-353.

[5] G. DAHLQUIST, G-stability is equivalent to A-stability, BIT, 18 (1978), pp. 384-401.
[6] G. DAHLQUISTAND R. JELTSCH, Generalized disks ofcontractivityfor explicit and implicit Runge-Kutta

methods, Computer Science Report TRITA-NA-7906, Royal Institute of Technology, Stockholm,
Sweden, 1979.

[7] M.A. FRANKLIN, Parallel solution ofordinary differential equations, IEEE Trans. Comput., C-27 (1978),
pp. 413-420.

[8] C. W. GEAR, Parallel methods for ordinary differential equations, Report No. UIUCDCS-R-87-1369,
University of Illinois, Urbana, IL, 1987.

[9] E. HAIRER, S. P. NORSETT, AND G. WANNER, Solving Ordinary Differential Equations I--Nonstiff
Problems, Springer-Verlag, Berlin, New York, 1987.

10] P.J. VAN DER HOUWEN, Construction ofIntegration Formulasfor Initial Value Problems, North-Holland,
Amsterdam, 1977.

[11] T. E. HULL, W. n. ENRIGHT, B. M. FELLEN, AND A. E. SEDGWICK, Comparing numerical methods
for ordinary differential equations, SIAM J. Numer. Anal., 9 (1972), pp. 603-637.

[12] R. JELTSCH AND O. NEVANLINNA, Stability of explicit time discretizations for solving initial value
problems, Numer. Math., 37 (1981), pp. 61-91.

13 W.L. MIRANKERAND W. LINIGER, Parallel methodsfor the numerical integration ofordinary differential
equations, Math. Comp., 21 (1967), pp. 303-320.

[14] O. NEVANLINNA, On the numerical integration of nonlinear initial value problems by linear multistep
methods, BIT, 17 (1977), pp. 58-71.

[15] L. F. SHAMPINE AND H. W. WATTS, Block implicit one-step methods, Math. Comp., 23 (1969),
pp. 731-740.

[16] R. D. SKEEL, Analysis offixed-stepsize methods, SIAM J. Numer. Anal., 13 (1976), pp. 664-685.
17] H. W. TAM, Parallel methods for the numerical solution of ordinary differential equations, Report No.

UIUCDCS-R-89-1516, University of Illinois, Urbana, IL, 1989.
[18] ., Two-stage parallel methods for ordinary differential equations, SIAM J. Sci. Statist. Comput.,

this issue, pp. 1062-1084.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1062-1084, September 1992

1992 Society for Industrial and Applied Mathematics

002

TWO-STAGE PARALLEL METHODS FOR THE NUMERICAL SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS*

H. W. TAM-

Abstract. This is a continuation of a previous work on finding parallel ODE methods with good stability
regions. Based on the approach of zero-stable methods with perfect power stability polynomials, a family
of two-stage block methods with stability regions essentially equal to that of the second-order Taylor series
method is derived. The stability regions of these methods remain unchanged as the order increases. These
methods also have very low interprocessor communication cost compared to existing PECE block methods.

Key words, two-stage, block methods, parallel processing, ordinary differential equations

AMS(MOS) subject classification. 65L05

1. Introduction. This is a continuation of the work on parallel ordinary differential
equation (ODE) methods in [10]. We would like to study parallel methods for the
numerical solution of the ODE

y(to)

y’(t)=f(y(t)), to<= t<= tout,

where y andf n. A nonautonomous ODE of the form z’(t)=f(t, z(t)) can always
be written in the above autonomous form. Hence the above form involves no loss of
generality.

A family of one-stage block methods, the two-processor element of which is
given by

1 01][yn+(1/2)] +h [2 -10][fn+(1/2)lk Yn+ Y, _!

has been studied in [10]. Equation (1.1) has the special property that its stability
polynomial is equal to [:-(1 +/z)]2 while the method remains zero-stable. (Usually a
method .whose stability polynomial is the power of another lacks zero-stability.) The
stability region of (1.1) is equal to the interior of the unit circle centered at (-1, 0) of
the hA-plane, together with the origin. This family of one-stage block methods has the
peculiarity that the stability regions do not change with order. It has been shown in
[9] that the best scaled stability region one can achieve for explicit ODE methods is
the unit circle. Therefore this upper bound is almost achieved by the above family of
methods.

However, the coupling between each component of (1.1) renders the use of the
method rather restrictive. If the global error of (1.1) satisfies

(1.2) Yn+(3/2) [y(tn+(3/2)) +
h2 +r(h3

k Y,+, _1 L y(t,+) e_(t,+)

Received by the editors July 28, 1989; accepted for publication (in revised form) November 11, 1991.
This research was supported in part by U.S. Department of Energy grant DEFG02-87ER25026 and National
Science Foundation grant DMS 8703226.

? Department of Computer Science, University of Illinois, Urbana, Illinois 61801. Present address,
Research and Development, Wolfram Research, Inc., 701 Budd Court, Campbell, California 95008.

The scaled stability region of a method is defined to be its stability region divided by m, where rn is

the number of stages per step of the method. Scaled stability regions are the fair entities for the comparison
of stability properties of different methods.

1062

TWO-STAGE PARALLEL ODE METHODS 1063

where el(t), e2(t) are ditterentiable, it is possible to show that, after a linear transfor-
mation

el

The solutions of el(t) and e2(t), when applied to y’=Ay, y(0)= 1, contain the
component

etX[24t t2A]A3.8
(For comparison, the leading term in the global error of a conventional ODE method
is of the form (t)eXt). If A =-1, the growth of - is damped by e-. When A i,
leit 1 and the growth of e is undamped. We call this phenomenon an accelerated
error growth. The above global error analysis demonstrates that (1.1) has good accuracy
for eigenvalues on the negative real axis of the hA-plane, but not for eigenvalues along
the imaginary axis.

Method (1.1), nevertheless, is an example of a member of a broad class of formulas
having stability polynomials that are perfect powers of simple ones and possessing
good stability properties. Since two-stage methods have been proved to be useful in
the sequential case (as in the Adams PECE methods), we would like to consider
two-stage parallel methods. In this paper we show that there exists a family ofzero-stable
two-stage block methods that satisfies the aforementioned perfect power stability
polynomial property. In 2 we show that by using a one-stage method of the type
discussed in [10] as the predictor, and by choosing an appropriate corrector, we are
able to derive a family of zero-stable methods with stability polynomials equal to
perfect powers of

These methods have stability regions essentially identical to that of the second-order
Taylor series method. However, the stability regions remain unchanged for all orders.
(Stability regions of conventional ODE methods usually shrink as the order increases.)
These methods also have the advantage of requiring much less interprocessor communi-
cation than existing predictor-corrector block methods. In 3 we use global error
analysis to show that the error functions of this new family of methods do not have
as much accelerated growth as the family of (1.1). The global error analysis also
suggests a unique way to calculate the predictor parameters leading to the above
stability polynomials. In 4 we discuss variants ofthe new family oftwo-stage methods.
In 5 we demonstrate how to enhance the accuracy of the methods by doing post-
processing at the end of the integration. Numerical simulations in 6 show that the
new parallel methods outperform the Adams PECE family in both accuracy and
stability by a sizable margin.

2. The corrector formula. In this section we would like to derive a family of
two-stage formulas whose stability polynomials are perfect powers of simple ones. We
believe that the derivation of the lowest-order formula serves as a pattern for the
generalization to higher orders. Let us use the two-processor, one-stage block method

1064 n.W. TAM

of [10] as the predictor of our (as yet to be described) two-stage method"

(2.1) [YPn+(3/2)I [l-b b][Yn+(1/2)] +h [2+ --1+][fn+(1/2)1L Y+I]= 1--a a L Y. I+ -I+] f.]"

As in the Adams-Moulton methods, we can use the now available values fn+(3/2)--
Pf(ln+(3/2), Yn+(3/2)) andf+ =f(t.+, Y+I), as well as the stored quantities

f., f.+/) to compute the corrected values y.+ and Yn+(3/2). We find that making the
corrector one order higher than the predictor is a good decision. Since the predictor
(2.1) is second order, we would like to make the corrector formula third order. We
will use f+ in the computation of y.+, and f+(3/) in the computation of Yn+(3/2).
The third-order formula to calculate Yn+l from Yn, f+l, fn+(1/2), fn is given by

tn+l
y+ y. + f+ + t.+)f+1,.+1/

(2.2) + (t- t.+)(t t.+/)f+,.+/, dt
2p +fn+(1/2)y. + h[f+

where the divided differences f+l,+(/ are evaluated from f+l, f,+(/2,’".
Similarly, we obtain third-order formulas

[fn+l +gfn+(1/2)--fn],(2.3) Yn+l Yn+(1/2) + h p

[gfn+(3/)(2.4) Y+(3/ Y, + h p +f+ /]

(2.5) Yn+(3/2) Y,+(/2)+ h 7 p[f,+(3/=) +fn+(1/2)--L]"
Linear combinations of (2.2) and (2.3), and of (2.4) and (2.5) yield the corrector formula

Yn+(3/) l-b* b* Yn+(/) +h 7 0 [fn+(3/)
k Y.+, l-a* a* y. 0 k f+,

(2.6)

with a*, b* as free parameters. The coecient matrix for the fP’s is specifically chosen
to be diagonal to reduce the communication costs associate4 with a parallel implementa-
tion of this formula.

We need to choose the parameters a, 8, a*, 8" so that the stailit polynomial of
(2.6) is a perfect power. Since the largest power of f in the stabilit polynomial
of (2.6) is f, we would like to make this stability polynomial of the form

f (+ + 1)]. The choice [f (+ + 1)] gives a method of high formal order
[8]. It turns out that for

a*=l, b*=0, a=5, b=g

or

a*=17, b*=16, a=5, b=28,

the stability polynomial of (2.6) is indeed [:-(1/2/z2+/x+ 1)]2. There are also some
other uninteresting parameter choices such that the stability polynomial of (2.6) is also
a perfect square. These cases are not discussed in this paper.

TWO-STAGE PARALLEL ODE METHODS 1065

If we apply our two-processor, two-stage block method to the simple test problem
y’(t) 0, we get

If a*= 17 and b*= 16,

(2.7)

so that

Yn+l _1 l-a* a* L Y,,

l-a* a* -b* l+b*

becomes unbounded as n increases. Therefore the only possibly useful set of parameters
is a 5, b=, a*= 1, b* =0.

The corresponding three-processor, two-stage block method, where the second
stage is derived in such a way that Yn+(i/3) depends on fPn+(i/3), 3, 4, 5, is given by

(2.8)

(2.9)

Y Pn+(5/3) 1 C 2 C2 Cl Yn+(9/3)

YPn+(4/3) 1- bl b2 b2 bl Yn+(/3)

ynP+l 1--al--a2 aa al y,

I --’ 1 5C2 4Cl 2c2 cl+-- -6+---+--q-]+- lPf,,+=/3,
bl 562 20 4hi 262 bl /92+ h +-+ 36 -w+----+--q- -+-q-- /3)

23 al 5a2 4al 2a2 al a2+ff+ 36 +--q-+--if- + --q-

Yn+(4/3) 1-b-b b b
y,+, 1-al*-a* a2* al*

c P "l
2 b 0 fnP+(4/3)+ h 0 9 288

.j[f.+0 0 8 7

_+4r 9--nt-- 8-- 9 360||Jn+(2/3)

4 4b’ 7b2 .a_ b 5b||--+-q-+--(.l/j+(1/3)
47 3

+h
b* 23

144
19 a’ 13ay++-y

As in the two-processor case, we now want to choose the parameters to make the
stability polynomial of the form [sc-(1/2/x2+/z+ 1)]3. Due to the large number of
parameters and the complexity of the stability polynomial, we believe that the choice
of the parameters requires some intuition. The two-processor, two-stage method sug-
gests that an appropriate partial choice is al* 1, a*=0, b* =0, b*= 1, Cl* c* =0,
which it is. However, this time more than a unique set of predictor parameters satisfy
our requirement. For example, both

45 18 27
a 19, a2 =-27, bl- 7 b2 =--8, Cl- 5 C2 =----

1066 H.W. TAM

and

3
=7, a2.=-3, bl= 7

make the stability polynomial equal to

40 6 21
b2=---, c,=-, c2- 5

We do not know yet how many more possible choices of the a’s, b’s, and c’s there are.
It turns out that the stability regions of the proposed family of two-stage block

methods are equal to the interior of that of the second-order Taylor series method
(also the lowest-order Adams PECE method), together with the origin. What is
interesting is that the stability regions do not shrink as we increase the order. Thus
the new two-stage block methods have stability properties essentially identical to those
of the lowest-order Adams PECE method. This is a significant improvement over the
family of Adams PECE methods because the stability regions of the Adams PECE
methods shrink by a large amount as one increases the order [6].

We will study the error growth of this two-stage family of methods in the next
section. This will assist us in finding the right predictor parameters, the number of
which is enormous as one increases the number of processors.

3. Global error analysis of the two-stage block method. In 1 we have demonstrated
that the one-stage block methods with stability polynomials equal to [- (1 +/z)]q are
not practical because of accelerated error growth. In this section we use global error
analysis to show that accelerated error growth no longer plays a significant role in the
two-stage case. This analysis also gives us a clue to compute the method parameters.

As in the previous section, we want to investigate the behavior of the two-processor
case (with the hope that the conclusions generalize). The derivation of (2.6) indicates
that the corrector formula for the two-processor, two-stage method is of the third order.
Based on global error theory for ODE methods [3], it is reasonable to assume that,
since the stability polynomial has no extraneous root at/x 0,

] [h3el(tn+(3/2))] [h4gl(tn+(3/2))](3.1) [Y,+(3/2, [y(t,+(3/2,)] + + + (h5),
k Yn+l [. y(t,+l) J h3e2(t.+) h4g2(t+a)

where the error functions e(t), e2(t) as well as g(t), gz(t) are differentiable, and e(t),
ez(t) are different from those of the one-stage methods in 1. With the parameters
a 5, b , a* 1, b*= 0, if we substitute (3.1) into the corrector (2.6), subtract the
Taylor series

h2y.(y(t,+) y(t,) hy’(t,)

+ y’"(t,+,/2)) h IV

y,,, + +(h

from both sides of the resulting equation, and express all solution and function values
at the point tn, then the error functions el(t) and e2(t) satisfy

h4e(t.)=h4ytV(tn)+ h4(-)fy(y(tn))y’"(t.)
(3.2) + hafy(y(t,))[el(tn)+e2(t,)]

+ h4-fy(y(t))el(t,) h4fy(y(t))e2(tn) + ((hS),

TWO-STAGE PARALLEL ODE METHODS 1067

and

h4e’(tn)-- h4fy(y(tn))[5e2(tn)-4el(tn)]+ h4fy(y(tn))el(t)
(3.3) + h4fy(y(t,))e2(t)+(hS).
Not surprisingly, the local errors of (2.1) and (2.6),

[-h3y’’’(’rl)] and [-6h4yIv(r2)]0 0

are embedded in (3.2) and (3.3).
If we fix t in (3.2) and (3.3) and let h->0, we can drop the subscript n and obtain

(3.4)
+L(Y(t)) [O][;]Y’"(t)+[]Y’V(t)

For comparison, the corresponding corrector formula (2.6) is given by

(3.5)
L Y,+I L Y, L f+l

The analogous error function equation for the second-order Adams-Bashforth-
third-order Adams-Moulton PECE method has the form

(3.6) e’(t) fy (y(t))e(t) 3’*3 y,V(t) + #*3,o’:f(Y(t))y’"(t)],

where 3’3"---2q,/33*,0 2, 3’2=. Notice the similarity between the arrangements of
the coefficients of (3.4) and (3.6). It is obvious that (3.4) can be easily generalized to
error functions of the higher-order two-stage block methods.

We are concerned that the propagation matrix

of the error functions e(t), e2(t) in (3.4) may be defective and lead to an accelerated
error growth on the imaginary axis similar to that of the one-stage method (1.1).
Surprisingly, (3.7) is actually the identity matrix. Recall that the defective error
propagation matrix of the one-stage method (1.1) leads to the failure of that method.
Such a defectiveness is absent in the current two-stage methods.

At this point there appears to be a natural choice of parameters for our q-processor,
two-stage block method. This natural set of parameters simultaneously makes the
stability polynomial equal to - +/.+ 1

and the propagation matrix of the error function equation equal to an identity matrix.
Although the number of these parameters increases tremendously as q increases, we
will see shortly that the task of computing them is not very difficult.

For the natural set of parameters, the error function equation (3.4) becomes

[e(t)] [10 01][el(t)] [-fy(y(t))y’"(t)+6yIV(t)](3.8)
e(t) =fY(Y(t)) e2(t)

+
0

1068 H.w. TAM

The initial conditions are given by el(to)= 0 and e2(to)--0. Hence the component e2(t)
is identically zero. Thus there is superconvergence for our two-processor, two-stage
method at the gridpoints tl, t2,..., tn,’". At the gridpoints, the two-processor
method becomes fourth-order.

The error function equation provides us with a clue to calculate the natural choice
of parameters for the family of two-stage block methods. Let us denote the predictor
and corrector of the q-processor, two-stage block method by, respectively,

(3.9) Yn+lP A Y,, + B. hF,,

and

(3.10) =A* B* C* PY,,+ Y, + hF,, + hF ,+ 1,

where A, B, A*, B*, and C* are q x q matrices. Previous experience suggests that we
should choose A*-Iqq, the q x q identity matrix, and C* a diagonal matrix. By
making the corrector order q / 1 we automatically fix B*. The error analysis suggests
that we compute the parameters al, a2,..., bl, bg_,’" ", Cl, C2,’’" by setting the
propagation matrix

(3.11) C* A + B* Iqq.
Thus we can solve for the a’s, b’s, whenever C* is nonsingular. (See Theorem 4.1.)

As an example, let us look at the three-processor, two-stage block method (2.8)-
(2.9). Making A*= I3x3 transforms the second stage, (2.9), into

Equating

Yn+(5/3) 1 0 0 1 0 0 pfn+(5/3)

Yn+(4/3) --0 1 0 Yn+(1/3) +h 0 3 0 P

0 0 1 0 0 [fP+l

0 0 1--1--2 C2 1 --15 -0 1-bl-b2 b2 b + 0 1 0

0 1--al--a2 a2 al 0 0 1

gives al=7, a2=-3, bl=-73-, b2=-, Cl=-, c2=t. The corresponding stability
polynomial is indeed

3.
We also mentioned in 2 that al 19, a= 27, b =--, b:---8, c =!, c2 =---s-? is an
alternative set of parameters leading to the same stability polynomial. This alternative
set makes the error propagation matrix

-3
C*’A+B*= -2

-3

with eigenvalues also equal to {1, 1, 1}. However, this alternative error propagation
matrix is defective, with a consequence of the error functions having an accelerated
growth. In a straightforward way, one can now easily compute the predictor parameters

TWO-STAGE PARALLEL ODE METHODS 1069

for the four-processor, two-stage block method to be
_

32 12 32 255 160
al a2 ----, a b b2 b37 -ff, 67 67

1728 4185 dl 2560 d2 11060 17472
c2 277 c3- 277 817 m--ffi--ff- d3- g

380
c1277,

With the natural choice of parameters for the two-stage block methods determined,
one can show that the global error functions (for q-processors) satisfy

(3.12) =fy(y(t)) + C*vfy(y(t))yq+l)(t)+v*yq+2)(t),
e’q(t) eqit

where v and v* are the coefficient vectors of the local errors of the predictor and
corrector, respectively. For q 3 and 4, the driving terms in (3.12) are given by- fy(y(t))yIV(t) + yV(t)

and

yVl(t),

respectively. In general, it is possible to show that the order ofthe q-processor, two-stage
block method at gridpoints t,, t.+l," is given by

q/l, q odd,
q+2, qeven.

When q is even, the last component eq(t) in (3.12) turns out to be zero. We will
investigate the form of the dominating term in the global error in this situation. As
usual, the two-processor case may give us an idea of the general behavior. Therefore,
we will compare the global error of the two-processor method, when expanded in a
power series of h, to that of the Adams PECE method of comparable order. In this
way we can be certain that there is no hidden error growth.

One can extend (3.1) to (for a 5 and b =)

Yn+l _! L Y(tn+l) 0 h4g2(/n+l)
(3.13)

[h5w1(t.+t3/2))] 6)+ L h5w2(t,+l) +(h

with Wl(t) and w2(t) being differentiable. By a tedious generalization of the derivations
of (3.2) and (3.3), and making use of the now available function el(t), one can prove
that gl(t) and g2(t) in (3.13) satisfy

[(t)]__f(y(t))[l(t)] [9-] [-- 3-1gi(t) g2(t) +t.-80a yv(t)+ 5-. fy(y(t))ylv(t)

+ f,(y(llf,(y(le(

+ y(y(t))y’(t)(-y’"(t)+-el(t))-sel(t)
-f.,(y(t))y’(t)el(t)

1070 H.W. TAM

We would like to compare the global error expansion of the two-processor,
two-stage method in power series form to those of the Adams PECE methods when
applied to a linear test problem y’(t)-Ay. From the knowledge of the ei(t)’s and
gi(t)’s, the two-processor, two-stage method has an error expansion of the form

(3.14)
Yn+l y(tn+l)

h3 cAt"+(3/2)Clt4tn+(3/2)]O
h eXt"+3/2)[C2A6t2n+(3/2 + c3AStn+(3/2) d- C4A4]]

+
h4 eXt,,+l[6 J "’-C2A 2 + 3Astn+l]tn+l

The fouh-order Adams PECE method has a global error expansion of the form

y+l= y(t,+l)+ h4 eat.+,lASt+l +
The second component of (3.14) shows that even though the new two-processor,
two-stage method is of order 4 at gridpoints, its global error is worse than that of the
Adams PECE method with a fouh-order corrector, at least when [At[> 1. (One could
think of the order of the two-processor, two-stage method as being 4-.) This new
method, however, outperforms the third-order Adams PECE method in accuracy
because the h eat(A4t) term in the global error of the block method is eliminated.
Thus in general, the q-processor, two-stage method is more accurate than the
(q + 1)th-order Adams PECE method. (For the case when q is odd, the block method
has a smaller error constant for the leading term of the global error.) Moreover, as q
increases, the stability regions of the new methods do not shrink, while the stability
regions of the Adams PECE methods shrink by a large amount. The stability regions
for the first few elements of the Adams PECE family are plotted against that of the
new two-stage block methods in Fig. 1. Based on the above discussion, we believe that
the proposed family of two-stage parallel methods outperforms the Adams PECE

second-order Taylor .. 1.5
o

AB4AM5 0.5

_0

FIG. 1. Stability regions ofAdams PECE methods.

TWO-STAGE PARALLEL ODE METHODS 1071

family (a widely used class of serial methods) with a good speedup when executed on
a parallel computer. Numerical simulations in 6 appear to agree with this claim.

We would also like to discuss the implementation issues of the new family of
two-stage block methods for a parallel computer. Existing two-stage parallel ODE
methods, such as the predictor-corrector block methods in Shampine and Watts [7]
or the predictor-corrector multiblock methods in Chu and Hamilton [2], all require
two broadcasts per step. In these methods one has to share the function values of the
predicted values computed in each processor. In the two-stage block methods in this
paper, each processor uses only the function value of the predicted value computed
by itself. Thus the number of broadcasts is cut by one-half. One should be aware that
the amount of data to be communicated after the prediction, should it be necessary,
and the amount of data communicated after the correction are not the same. In other
existing parallel methods where one needs to communicate after the prediction, one
broadcasts the function values of the intermediate solution values only. After the
correction, however, one broadcasts both the solution values and their derivatives.
Thus the amount of data broadcasted after the correction is twice that after the
prediction. However, it takes startup overhead to initiate a broadcast in a parallel
computer. Therefore the interprocessor communication time of the two-stage block
methods in this paper is less than two-thirds of that of existing PECE parallel methods
with the same number of saved values.

The way the new two-stage block methods are derived makes it easily transformable
to a variable-step fashion. In a variable-step implementation of an ODE method, one
needs to compute new method coefficients as the stepsize is changed. Shampine and
Gordon [6] have derived an efficient way to evaluate the coefficients of the Adams
PECE methods. One can derive a similar algorithm for the new two-stage block
methods. To share this computational overhead, each processor can evaluate its own
set of coefficients. Thus for the same number of previous time points, the amount of
work each processor incurs is approximately equal to that ofthe Adams PECE methods.
Since this load can be evenly distributed, the computational overhead of the new block
methods is not much more than that of the Adams PECE methods. If we compare the
two methods by order, the new block methods even have a smaller computational
overhead per processor than the Adams PECE methods of the same order. Moreover,
there are fewer step ratios in the block methods.

4. Variants of the two-stage block methods. We have abbreviated the q-processor,
two-stage block method studied in 3 by

(4.1) YnP+I A" Y + B" hF,

A* * C*(4.2) Y,,+I Y + B hF,, + hFP+l.

Equations (4.1) and (4.2) represent, in fact, a whole class of methods of which the
two-stage family of methods in the previous section are only some. It is interesting to
study whether there exists any other element in the class of (4.1) and (4.2) that possesses
a similar stability property, namely, that its stability polynomial is the perfect power
of that of a simple method.

As in 2, the complexity of the stability polynomial of (4.1) and (4.2) indicates
that some insight is necessary. Previous experience in both the one-stage and two-stage
methods suggests that A* Iqq may be required. The condition (3.11) also turns out
to be crucial. With these criteria it is possible to prove the following.

1072 H.W. TAM

THEOREM 4.1. Given an order q + 1, q >-0 correctorfor the two-stage block method
(4.1)-(4.2) such that A* Iqq and C* is nonsingular, irA solves C* A/ B* Iqq, then

(1) the predictor (4.1) satisfies the zeroth order-condition, i.e., Awl wl, where
Wl= [1, ", 1]r;

(2) if (4.1) is of order q, then B is uniquely determined, and the resulting stability
polynomial is of the form

Proof. The first order-condition for the corrector requires that (B* + C*)wl w,
which can be rewritten as C*-(I-B*)w Aw wl.

Since A satisfies the zeroth order-condition, if the predictor is of order q, B is
uniquely determined by classical results on linear multistep methods.

The two-stage method, when applied to y’= Ay, is equivalent to

Y,+, [I + p,B* + p,C*. (A +/xB)] Y,.

A necessary and sufficient condition for the stability polynomial of the two-stage
method to equal

is that A and B make

(4.3) l+/x+ I-(I+/(B*+C*. A)+/x2C*. B)

equal to the zero matrix. The necessary condition is readily seen by the Cayley-Hamilton
theorem. Conversely, if A and B make (4.3) equal to zero, then

2

----+/x + 1
2

is the only eigenvalue of I +/xB*+/xC*. (A +/xB). Hence the stability polynomial of
the two-stage method must be

by counting the number of eigenvalues.
Let

e((q-1)/ q)tx 1 -" (/L)/. _..... _+_ q/)q--1 /_t.q

W(/x) e(1/q)" 1 + ()/x + + ()q-1 (q-1),"q-’ + ’(/xq)"

1 1

Since C*. A+ B*= Iqq, (4.3) becomes

(1/21 C*. B)/z2] q.

TWO-STAGE PARALLEL ODE METHODS 1073

If the predictor is of order q, the (q + 1)th order-condition of the two-stage pair implies
that

eW(/.e) [(1 + lx)I + t.e:ZC *. B]W(tz) ff-e(t.tq+2)

::=>(1/2I- C* B)W(/.e) O(/x) W(tz)+ e(i.e q)

(1/2I- C* B)qW(tz) O(/zq),

which, after equating coefficients of powers of/x, gives

(1/2I-C*. B)qw,(tx)=O,

where

Since the wi’s are linearly independent, (1/21 C* B)q 0. Thus the stability polynomial
of the two-stage method is equal to

:- +/x+l F1

Example 4.1. With predictor parameters

(4.4) a1=7, a2=-3, b1=-21, b2=16, c1=42, c=-39

for (2.8), the coefficient matrices of the following corrector formula

(4.5)

Yn+(4/3) 0 1 0 Yn+(1/3) +h 0 fPn+(4/3)
Yn+l 0 0 1 y, 0 0 fP,+l

+h- 0 f, /3)

satisfy

0 1-bi-b2 b2 bl + 0 0 1 0

0 0 - 1-al-a2 a2 al 0 0 1

Equation (4.5) is simply the three-eighths rule in a repeated mode. The stability
polynomial of this two-stage method is indeed

By a global error analysis similar to the one given in 3, one can verify that the
propagation matrix of the error function of this two-stage method is the identity
matrix I33.

1074 H.w. TAM

Theorem 4.1 gives a constructive way to determine the predictor of a two-stage
method with stability polynomial

once the corrector is fixed. The criterion that C* be nonsingular seems to be essential
in obtaining a perfect power stability polynomial. A fourth-order corrector example
is given in [9] where no third-order predictor can be found to make the stability
polynomial a perfect power. In that example C* is singular.

Since there are numerous extensions to the two-stage block methods in 3, we
are led to question of which is the best and in what sense. It can be verified that when
applied to the test problem y’= Ay, the error functions of both Example 4.1 and the
pair (2.8), (2.9) with natural choice of parameters are equal. This is, incidentally, not
surprising because both of them have the same stability polynomial. The following
shows three two-processor, two-stage methods and their corresponding error function
equations.

4Example 4.2. The corrector (3.5) with the natural choice of parameters a 5, b =7
in the predictor (2.1), has an error function satisfying (3.8).

Example 4.3. The corrector

Yn+l 0

+h

L f+l _i

11 44with a =f, b =-x in (2.1), has an error function equation

e(t) =fY(Y(t)) 0

Example 4.4. The corrector

+h

e2(t)
-fy(y(t))y’"(t)

6fy(y(t))Y’"(t) -6y’V(t)

k L

L

with a 5, b =-20 in (2.1), has an error function equation

[e(t)]e(t) =fy(y(t)) [10 01] [el(t)
t)

+ [-fy(y(t))y’"(t)]o
For the test problem y’(t)-Ay, the driving term in each of the above three error
functions is equal to -fy(y(t))y’"(t). Hence, at least for the test problem, all these
methods perform equally accurately.

Formula (2.9) and its higher-order extensions do give the lowest communication
cost as compared to the other cases. Therefore we believe that (2.9) and its higher-order
analogs are the most interesting ones.

There is only one minor drawback in the two-stage block methods. The magnitude
of the coefficients increases as the order gets higher. The four-processor analog of

TWO-STAGE PARALLEL ODE METHODS 1075

(2.8), (2.9) is given by

Y Pn +(7/4)"
Y Pn+(6/4)
Y Pn+(5/4)
YP.+I

11 1748______2

2560]5
277
38O
67 7
32

_---
+h

21840
817
2835
277
120
67
6
7

11060
817
1728
277

255
67
32
7

16590
817
2160
277
195
67
24

28-70 [Y + 4]
386 lYn+(2/4)[

/y.+1/4[
L Yn _1

-1[f,,+,4
fn+(1/4)

Yn+(7/4)

Yn+(6/4)

Yn+(5/4)

Yn+l

1 0 0

0 1 0

0 0

+h

323
90
256

+h
16
45

|Y-+,/4)
L Y- J

0 0 0 rfPn+(7/4)
27700o Ifpn+(6/41350

o "fn+(5/4)

0 0 L fP.+l
416 158 256"
7545 331851[fn+(3/4)12__..!_1
lO

32
25

16 13- 3o

16 .L f. J15 45

with largest corrector coefficient _6= 5.5 and largest predictor coefficient 21840
-iv- 26.7.

For the five-processor analog, the largest corrector coefficient has magnitude 21.5. The
four-processor, two-stage method is still acceptable on a single precision machine, but
the five-processor method may amplify noise in the derivative values. The corrector
formula (4.5) and its higher-order analogs do have small enough coefficients, but the
corresponding predictor coefficients are even larger than those of (2.9). For example,
the corresponding predictor for (4.5) is given by

Yn+(513) -2-39 42 4 4 8]rfn+(2/3)
PYn+(4/3) 6 16 -21 Yn+(ll3) + h 2 -8 -2 f,, /3)

y.e+l -3 -3 7 y. 1 2 1

the largest coefficient of which is 42. Thus there is always a tradeotI between the
magnitudes of the predictor and corrector coefficients. At this point it is not known
how high one can push the order of case (4.5) without introducing intolerable noise
amplification.

The problem of large formula coefficients is the nature of one-block parallel
methods. It is the relatively large distance from in+ to tn+l+((q_l)lq), compared to hiq,
that causes this drawback. To clarify this statement, let us look at the higher-order
analogs of (2.9). The first component, with equation

Yn+l+((q-1)/q) Yn+((q-1)/q) +
tn+l+((q_l)/q

tn+((q--1)/q)

polynomial interpolating

1076 H.w. TAM

{fP.+,+((q-l)/q, f., fn+(,/q, ,f.+(q-,)/} dt,

is essentially a variable-stepsize Adams-Moulton formula having the stepsize changed
abruptly from h/q to h. Hence it is not surprising that this equation will cause trouble
(i.e., large coefficients) as q gets larger. A similar argument is valid for the predictor
coefficients. One can, of course, manipulate the method parameters to keep the
coefficients small (as is done in Shampine and Watts [7]), but the stability region will
simultaneously diminish 1]. A better cure is simply to generalize the current one-block,
q-processor, two-stage methods to multiblock methods.

$. Order enhancement by postproeessing. As the numerical integration of the ODE
reaches the given output point tout, where tN -< tout tN+l, We need to generate an
output value Yout at tout. Usually tou does not coincide with the gridpoints
tN,..., t+((a_/a. There are q values y, Y+(1/a,""", Y+((a-l/a at our disposal.
These values have global errors of the form

/ hq+l

y y(ts) eq(t)
(5.1)

gl(tN+((q-1)/q)) 1/ h q+2 /....

gq(tN)

We would like to obtain Yout as accurately as possible by interpolating these q values
of y. Recall that yn is of order q + 2 when q is even and order q + 1 when q is odd,
and the other y’s are only of order q / 1. It turns out that if we are willing to use the
f(Yn)," ",f(YN+((q-l/a) needed for the next step, we can make Yout of order q + 2 at
any point tou for any q. The interpolation procedure can be illustrated by the case
q 3. Let tou --tN+ --tN / rh. When q 3, we have from (5.1) that

YN+(1/3) 1 y(ts+r) + h 1/2 y’(tN+r) /
y 1

(5.2)
h4 1 (i-r)41 Iel(tN+r)l+-.I (--r)4 Y’V(tN+r)+h4 e(t+r) +(h5)

--r)4 e3(tN+r)

and

(5.3)

f(YN+(/3) 1h f(YN+(1/3)) h

f(Y)

f(y(tN+(2/3)) / h4e,(t+(/31) + t?(h 5))]
f(y(tN+(1/3) + h4el(trv+(1/3) + (hS))

f(y(tN)+ h4el(tN)+(hS))

h 1 Y’(tN+r)/ h 2 1/2 r y"(tN+r)/’’"

h4 I(- r)31+--(1/2-r) y’v(tN+r)/C(h5).
3v (_r)

TWO-STAGE PARALLEL ODE METHODS 1077

Let

1 -r .,(r)2

M 1 1__
3-r .,(r)2

then (5.3) implies that

I hy’(tN+r)I I If(YN+(2/3))I h4I(!hY"(ts+r) =M-# h f(Yrv+(1/3)) -.
hay’"(tN+r) f(yN)

so that from (5.2),
1 YN+(2/3) f(YN+(2/3)) e(ts+r)
1 y(t+) YN+(1/3) -MM-(lh f(YN+(1/3)) -h4 e2(tN+r)
1 y f(YN) e3(tN+)

| +/-[1_ r4 iv(+ MM- .,(-r) -/4t h4y tN+r)--((hS),
’-(-- r)3 L -’(-- r)4

where - r .(r)
M:z 1/2-r .,(-;)

Using (3.12), if uT satisfies

u MM-

-’(-- r)31.,(1/2-- r)
fi(-r)

.I(/)3 2__(/.)4 68

.,(1/2 r)3 17.,(--r)4
4

r) y tv+) +7(h5),
r)

=0,

then

ill I1 y(tN+r)=UT

1

YN+(:Z/3) f(YN+(:Z/3))
YN+(/3) -uTM:zM-(lh f(YN+(1/3)) +t(hS)
Ys f(Y)

The choice for uT is not uniquely determined.
It is, however, impossible to further increase the order because it turns out that

the gi’s in (5.1) cannot be annihilated.
The above procedure can be applied to any number of processors. The requirement

to solve for M-1, a q q matrix, is insignificant since q is relatively small.
As a result of postprocessing, our two-stage block methods have order q +2 for

q-processors.

6. Numerical results. The two-processor and four-processor two-stage methods
are compared to the Adams PECE methods with third- and fifth-order correctors. We
have done a number of experiments using selected test problems from [5] and [4].
The test problems and their analytic solutions are listed below"

1.

y’: -y, y(0) 1, tou 20, y(t) e-t,

1078 H.W. TAM

2’
y(O)= 1, tout 20,

1
y

lx/]--+-i’

Y Yl-y2Y3/r/’ y(O) 0 y(t)
Y; yl/r J 0

tout 20, r x/y2l+y2,

(2+cost) sin

sin

Y Y2] 1

Y -Yl/ r3 0

Y’3 Y4
y(O)=

0
y(t)=

Ytr --Y3/ r3 J 1

tout 25, r=x/y+y,

cos

-sin

sin

cos

Y0J

y(t)

Yl

".. -1
y(O)=

1 0 Yl0

1

0

e-t
te -t

8e

1-(l+t+.- .+)e-t

tou 20,

y -2 1 Yl y
y. 1 "’" "’" Y. TAT-1 Y2

"’. ’. 1

Yo 1 -2 Yo Yo

tinit O, tou 20, y(t) Teat,

y’=y, y(O)= 1 tout 10, y(t)=e

tout 20,

y(O) y(t) e_at sin tot

A=l, to x/-,

y’=t(1-y)+(1-t)e-t, y(O)=l,

y(t) e-(t2/2)- e-t + 1.

tou 1 O,

TWO-STAGE PARALLEL ODE METHODS 1079

Problem 7 is an accuracy-bound example, while the rest are stability bound. These
problems include tests on both the real and imaginary axes of the hA-plane. Problems
5 and 6 show the behavior of the new methods on moderately large systems. The
integration interval in each test problem is long enough to indicate any deficiency in
the long-term behavior of each method. The problems are run using constant stepsizes
on an Alliant FX/8. Exact starting information for each method is provided to compute
the solution value at 1. The number of decimal places of accuracy is computed by

-loglo [max][y. -y(t.)l]2].

Due to the small scale of the examples, we do not calculate the total run time, since
the interprocessor communication time would have been a dominating portion of the
overall timing.

The number of decimal places versus the number of functional evaluations per
processor for various values of h are plotted in Figs. 2-10. These figures are sufficient
to demonstrate the improvement of the block methods over the Adams PECE methods.
In almost all cases, the four-processor block method outperforms the Adams PECE
method with fifth-order corrector in both stability and accuracy. The average speedup
is about 2.5 at an accuracy of four decimal places. This speedup does not include the
effect of improved stability of the block method. A more conclusive speedup can be
obtained by comparing the block methods against Adams PECE methods of all orders.
As mentioned in the previous paragraph, we have not taken into account the delay in
interprocessor communication. One has also to consider the overhead ofthe intrinsically
sequential stepsize and order control in an ODE solver. These factors will degrade the
performance of the block methods in practice. The current examples only indicate the

10

9-

8-

7-

8-

5-

4--

3--

2--

NUMBER 1-

OF
DECB&L
PLACES -I-

-2--

-3--

-4--

-8-

-8-

-9-

100 15D 200 300 400

NUMBER OF FUNCTION EVALUATIONS

FIG. 2. Problem 1. AB2AM3: Second-order Adams-Bashforth-third-order Adams-Moulton PECE;
AB4AMS" Fourth-order Adams-Bashforth-fifth-order Adams-Moulton PECE; Block-2 or Block-4: two- or

four-processor two-stage block.

1080 H.W. TAM

NUMBER
OF

DECIMAL
PLACES AB2AM

///// ///
//

/"
/" ABRAMS

120 180 200 240

NUMBER OF FUNCTION EVALUATIONS

FIG. 3. Problem 2.

NUMBER
OF

DECIMAL
PLACES

AB4AM5

Block-2

,/// /
// Block-4

..- AB2AM3

100 150 200 400 800 16 32

NUMBER OF FUNCTION EVALUATIONS

FIG. 4. Problem 3.

TWO-STAGE PARALLEL ODE METHODS 1081

12-

11--

10--

9-

8-

7-

6-

NUMBER ,5-
OF

DECIMAL
PLACES

3-

2-

1-

0-

-1-

-3-

-4

Bloc
/ //AB4AM5
/ // Block-?

80100 150200 400 800 16 64 20000 40000

NUMBER OF FUNCTION EVALUATIONS

FIG. 5. Problem 4.

9-

8-

7-

8-

5-

4-

3-

2-

NUMBER
OF

DECIMAL 0-

PLACES -1

-2-

-3-

-5-

-6-

-7-

-8-

-9-

1o o ,o oo
NUMBER OF FUNCTION EVALUATIONS

FIG. 6. Problem 5.

1082 H.W. TAM

I0

9-

8-

7-

6-

5-

4-

3-

2-

NUMBER
1-OF

DECIMAL 0-
PLACES

-I-

-2-

-3-

-4-

-5-

-6-

-7-

-8-

-9

/!

810 12180160 320 840 1600

NUMBER OF FUNCTION EVALUATIONS

FIG. 7. Problem 6.

10

NUMBER 4-

DECIMAL
PLACES

-3

200 400 800 11}00 200

NUMBER OF FUNCTION EVALUATIONS

FIG. 8. Problem 7.

TWO-STAGE PARALLEL ODE METHODS 1083

10-

9-

8-

7-

6-

5-

4-

3-

2-

1-

NUMBER 0-
OF

DECIMAL -1

PLACES -2

-3-

-5-

-6-

-7-

-8-

-9-

-10

-11

-12

-13

Block-

20 160 320 640 10

NUMBER OF FUNCTION EVALUATIONS

FIG. 9. Problem 8.

11

10-

9-

8-

7--

8--

5--

4--

3-

NUMBER 2-

OF
1-DECIMAL

PLACES

-I-

-2-

-5-

-7-

-8-

,’

120 160 200 300 40040 610 80

NUMBER OF FUNCTION EVALUATIONS

FIG. 10. Problem 9.

1084 H.W. TAM

potential of the new methods. A more detailed comparison would take considerable
effort and is not performed here.

7. Summary. In this paper we have discussed a useful family of parallel methods
based on the approach of zero-stable methods with perfect power stability polynomials.
These parallel methods have stability polynomials equal to

and stability regions essentially that of the second-order Taylor series method. Unlike
conventional ODE methods, the stability regions of this new family remain unchanged
as the order increases. While the one-stage methods in 10] with stability polynomials
: (1 +/x)]q suffer from accelerated error growth due to coupling between time points,

this family of two-stage methods has tolerable error growth. Numerical experiments
show that the q-processor, two-stage block method outperforms the (q+ 1)th-order
Adams PECE method in both stability and accuracy. The new family of methods also
has a significantly lower interprocessor communication cost than other proposed
parallel PECE methods. Extensions of this family of two-stage block methods to
multiblock methods will be studied in a forthcoming paper.

REFERENCES

1] L. G. BIRTA AND O. ABOU-RABIA, Parallel block predictor-corrector methods for ODE’s, IEEE Trans.
Comput., C36 (1987), pp. 299-311.

[2] M. CHU AND H. HAMILTON, Parallel solution of ODE’s by multi-block methods, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. 342-353.

[3] E. HAIRER, S. P. NORSETT, AND G. WANNER, Solving Ordinary Differential Equations I--Nonstiff
Problems, Springer-Verlag, Berlin, New York, 1987.

[4] Z. E. HULL, W. H. ENRIGHT, B. M. FELLEN, AND A. E. SEDGWICK, Comparing numerical methods

for ordinary differential equations, SIAM J. Numer. Anal., 9, No. 4, (1972), pp. 603-637.
[5] F. T. KROGH, On testing a subroutine for the numerical integration of ordinary differential equations, J.

Assoc. Comput. Mach., 20 (1973), pp. 545-562.
[6] L. F. SHAMPINE AND M. K. GORDON, Computer Solution of Ordinary Differential Equations,

W. H. Freeman and Co., San Francisco, CA, 1975.
[7] L. F. SHAMPINE AND H. W. WATTS, Block implicit one-step methods, Math. Comp., 23 (1969),

pp. 731-740.
[8] R. D. SKEEL, Equivalent forms of multistep formulas, Math. Comp., 33 (1979), pp. 1229-1250.
[9] H. W. TAM, Parallel methods for the numerical solution of ordinary differential equations, Report

UIUCDCS-R-89-1516, Department of Computer Science, University of Illinois, Urbana, IL, 1989.
[10] H. W. TAM, One-stage parallel methods for the numerical solution of ordinary differential equations,

SIAM J. Sci. Statist. Comput., this issue, pp. 1039-1061.

SlAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1085-1096, September 1992

1992 Society for Industrial and Applied Mathematics

003

SIMULATION AND APPROXIMATION OF STOCHASTIC PROCESSES BY
SPLINE FUNCTIONS*

MICHAEL WEBA’

Abstract. Error bounds for simultaneous approximation of stochastic processes by means of spline
functions are derived. As opposed to conventional methods, conditions such as regularity of covariances,
stationarity, continuity of sample paths, etc. can be dropped, and the error bounds are valid with respect
to arbitrary norms. Several applications are indicated: simulating solutions of some stochastic differential
equations, computing distributions ofcontinuous functionals by simulation as well as interpolation, numerical
differentiation, and numerical integration of stochastic processes by splines.

Key words, stochastic processes, spline functions

AMS(MOS) subject classifications. 60G, 60H, 62E, 62M, 65C, 65D, 65U

1. Introduction. Let X be a stochastic process in continuous time that has been
simulated or observed at distinct timepoints tl, , tn [a, b]. Many problems require
"good" approximations of X on the whole interval [a, b]. The following may serve
as examples:

mSimulate the output process

Y(s)=F(s,X(’)), s

of a possibly nonlinear filter F depending on s and a complete trajectory of X on
[a, b]. (In particular, solutions of certain stochastic differential or integral equations
admit the above representation.) To this end the input process X has to be simulated
at designoints ti [a, b]. The simulated values must be used to define an approximate
version X of X; finally,

Y(s)=F(s,X(.)), sen

will be regarded as the simulated output process.
mSimulate the distribution of a continuous functional p X by using p " where

the approximation " of X is based on a finite number of simulated observations from
X. For Gaussian processes this method has been studied by Eplett [9] and it can be
applied to obtain the asymptotic distribution of rank test statistics.

reProduce a "smooth" representation of a time series X that has been recorded
at distinct timepoints. If necessary, reconstruct missing data.

mCompute Stieltjes integrals and derivatives of stochastic processes and specify
error bounds for the numerical calculations.

Spline functions are known to yield high-order approximations for differentiable
nonrandom functions, and it is the purpose of this paper to examine the rate of
convergence if random functions are considered instead. In certain cases splines can
be interpreted as minimum variance unbiased linear (MVUL) predictors [14].

Hitherto, splines have frequently been used in nonparametric regression analysis
where a nonrandom function f(t) must be estimated if observations

Y(ti) f(ti)-I- ei

* Received by the editors March 1, 1989; accepted for publication (in revised form) November 12, 1991.
t Institut fiir Mathematische Stochastik, Universit/it Hamburg, Bundesstral3e 55, 2000 Hamburg 13,

Germany.

1085

1086 MICHAEL WEBA

are available. The quantities ei are random errors and spline estimators h(t) of f(t)
are minimizing functionals such as

A. (h"(t))2dt+ (Y(t,)-h(t,))
/’/ i=1

with smoothing parameter A > 0. (See Rice and Rosenblatt 19] and Wahba [28], [29].)
The topics of this paper are completely different from this curve-fitting problem: the
process itself is to be approximated rather than deterministic residuals, and the
approximation is based on correct simulations or observations. For various applications
of spline functions in stochastics, see also Karlin, Micchelli, and Rinott 12]; Miller
and Wegman [17]; Wegman [31]; and Wegman and Wright [32]. Convergence of
order-preserving splines is treated in Weba [30].

2. Basic definitions. X X(t), [a, b], always denotes a stochastic process on
the probability space (/, , P) with real state space and the closed interval [a, b] c ,
a < b, as index set. Consider the linear space Lo of Borel measurable mappings from
[/into R. It will be assumed that each random variable X(t) lies in the normed vector
space (Lll’ll) where L is a linear subspace of Lo containing the constant mapping
Zo(to)= 1, to [l, and []. stands for an arbitrary norm. (As usual, equivalent elements
of L with respect to P will be identified. For simplicity, Zo is required to satisfy
[IZol[1.) For example, L may be the space L= LP(, 5if, P), l<-p<=o, of random
variables with finite pth moments being equipped with the LP-norm, or L may be some
Orlicz space.

Spline approximations are known to be efficient for differentiable functions
f: In, b]- R; therefore, some smoothness conditions must be imposed on X. Theorems
on stochastic splines will be based on the space C[a, b] ofprocesses having continuous
derivatives up to order m _-> 0. Formally, C[a, b] is defined as

C’[a, b] ={X: X() C([a, b],L) for O=</x=< m},

where [a, b] is endowed with the natural metric and C([a, b], L) denotes the space
of continuous mappings from [a, b] into L. Under pointwise addition and scalar
multiplication, Ca[a, b] becomes a normed linear space by setting

]]X[[o= max sup [[X(’)(t)l[.
O<l<rn t[a, b]

By an obvious embedding, the space Cm[a, b] of ordinary nonrandom functions with
continuous derivatives up to order rn can be viewed as a linear subspace of C[a, b].

In what follows, A always stands for a partition a to < tl <" < tn b, n ->_ 1, of
In, b] with fineness

I l- max h.,
0<--j

where

hj+l tj+,- t, O<--j <= n -1.

Spline approximations Sf which depend on A andf6 cm[a, b], are usually expressible
as finite linear combinations

(Sf)(t)=do(t)+YY d,i(t) f()(t), t[a, b]

Derivatives are taken with respect to the norm on L.

APPROXIMATING STOCHASTIC PROCESSES BY SPLINES 1087

with prescribed real-valued functions do and dui and fixed knots tug A. Then the
corresponding spline approximation SaX of a process X C[a, b] is defined by

(SaX)(t) do(t)+ dui(t
U

t[a,b].

Finally, the stochastic modulus of continuity (X; e) of a process X C[a, b]
is the function

"q(X; e)= sup [Ix(t,) x(t2)ll,
tl,t2[a,b]

Note that, for f C[a, b], 7(f; e) coincides with the ordinary modulus of continuity
because of IIZoll 1.

3. Convergence of stochastic splines. Error bounds for spline approximations of
nonrandom functions f Cm[a, b] can be established without additional conditions
such as "regularity" or "stationarity"; therefore, it seems quite natural to pin one’s
hopes on the well-known procedures being applied to the paths of a stochastic process
X C[a, b]. Actually, an extension argument shows that the convergence properties
can be carried over.

THEOREM. Let tui [a, b] be given knots and consider prescribed natural numbers
I(tz), real numbers ao and aui and nonnegative real numbers bu, cu,and du. Suppose the
inequality

ao + atzi
U:0 i=1 U=0 t[a,b]

is valid for each f Cm[a, b]. Then each process X C[a, b] satisfies

ao" Zo + Y. aui bu sup IIx’)(t)ll + c, (x’) d,)
u:O i=1 u:O t[a,b]

Proof Let X C[a, b] be a fixed process and consider

= ao Zo + E aui" X(U)(tui)
U=0 i=1

lies in L; without loss of generality, one can assume 0. By the Hahn-Banach
therorem there exists a bounded linear functional " L- having the properties 1
and I111- (). (See Corollary (14.13) in Hewitt and Stromberg [11].) Suppose ao >= O.
Since the function X lies in Cm[a, b] with

we obtain

(x)((x()), 0--</x--<_ m,

I1 11 ao. p(zo)+ y aui" (q9 (tui)
u=O i=1

--<-- 2 bu" sup I(x)(")(t)l+
=0 t[a,b]

b.. sup
=0

The case ao < 0 is treated analogously if we make use of the relations 1(-)1 1 and

1088 MICHAEL WEBA

The above theorem will now be used to establish error bounds for simultaneous
approximation of stochastic processes by piecewise cubic splines.

Let f: [a, b]- R be a given function. A cubic interpolating spline function
with respect to a partition h of [a, b] is a real function with the properties: Saf is
twice continuously differentiable on [a, hi, SAf coincides on every subinterval Itj, tj+l]
with a polynomial of maximal degree three, and (S/f)(tj)=f(tj) holds for each j. In
order to ensure uniqueness, the additional requirement

(Saf)’(a) =if(a), (SAf)’(b) =f’(b)

is considered. (It is, of course, assumed that if(a) and f’(b) exist.)
In the following corollary the symbols (SAf)(3(t) and (SAX)(3(t) stand for

left-hand or right-hand limits. For any partition A of a, b the quantity/3 (A) is defined
by

/3(A)= max .
O<=jn--1 hj+

In part (ii) of the corollary the space Lp (’, ’, P), 1 _<-- p < c, of random variables with
finite pth moments is endowed with the usual LP-norm

II211. (Elzlv) Iz(o)I"P(dw)

COROLLARY. Suppose X C[a, b].
(i) For each partition A of [a, b] and each k {0, 1, 2, 3} the spline approximation

SaX fulfills

sup I[x(k)(t)--(Sx)(k)(t)ll <-- ilk" fl(A) IAI4-k. sup
t[a, b] t[a,b]

with

(ii) Let L be the space L LP(12, sg, P), 1 <= p <. If Aj, j >= 1, is a sequence of
partitions satisfying the condition

E < oo
j=l

for some fixed k {0, 1, 2, 3}, then the relation

lim (S,X)(k)(t)= x(k)(t) (P almost surely)

holds for all a, b].
Proof Hold t* [a, b] and k 6 {0, 1, 2, 3} fixed. For eachf6 C4[a, b], the approxi-

mation error f(k)(t*)--(SAf)(k)(t*) is expressible as linear combination of f(to),
f(tl),"’", f(t,), and f’(to), f’(t,), f(k)(t,), where coefficients depend on t* but not on

f Moreover, we have

]f(k)(t*)--(Saf)k)(t*)l<=k" /3(A)" IAI-k" sup If4)(t)l
t[a,b]

(see, e.g., [26, pp. 97-106]).

APPROXIMATING STOCHASTIC PROCESSES BY SPLINES 1089

Therefore, part (i) of the corollary is an immediate consequence of the theorem.
Part (ii) follows from (i) and the inequality

ElX)(t) ()Sa) (t)lp <oo.
j=l

Remarks. Let us note the following.
(1) By definition, the paths of the process SaX are obtained by formal application

of the spline operator Sa on the paths of X. For numerical calculations, we
may therefore use standard algorithms for spline approximations. Note that
the above error bounds hold with respect to the norm I1"1[of L; no explicit
assumptions are made about the sample paths of X and nothing is said about
the sample path behavior of SaX. However, if L is the space L= LP(-, , P),
then the pathwise approximation will be good "on the average," and under
the mild summability condition of part (ii) convergence also occurs with
probability 1.

(2) The corollary treats piecewise cubic splines with the boundary condition
(SaX)’(a)=X’(a), (SaX)’(b)=X’(b). Analogously, error bounds can be
carried over if the boundary conditions are changed or if splines are considered
being defined by means ofnoncubic functions. Error bounds in the nonrandom
case may be found in [4], [5], [24], or [27].

4. Applications. In the following, SaX always denotes a fixed spline approxima-
tion of the process X, and rk)(x), k_->O, stands for the error

r)(X) sup
t[a,b]

For piecewise cubic splines, upper bounds for rak)(x) have been derived in the
preceding section.

4.1. Interpolation of stochastic processes. A classic approach to the problem of
interpolating random functions, particularly in the field of time series analysis, is the

following: given observations X(to), , X(tn), specification of a good approximation
X(t) of X(t), to, tn], is viewed as a special prediction problem. Typically, X(t)
is chosen to be the linear combination of the observations, which minimizes the mean
square error EIX(t) (t)[2.

Then X(t) may be calculated by using filtering techniques or by solving Yule-
Walker equations (see [18] and [20]). To this end, however, assumptions about
stationarity or the behavior of the spectrum have to be made. Also, the quantities
involved such as autocovariances, spectral densities, etc. are usually unknown and
must be estimated from the data. Unlike these methods, spline interpolation works for
stationary and nonstationary processes. No information on spectral properties is needed
and it is unnecessary to cope with estimation problems. Moreover, the derivatives of
the process are approximated as well.

4.2. Numerical integration of stochastic processes. Similar to procedures in
"ordinary" numerical analysis, splines can be utilized to compute integrals such as

’b

g(t) X(t) dt.

Here g:[a, b]- is a given weight function, and the integral is an abstract Riemann
integral; since this notion requires completeness, L is now assumed to be a Banach
space.

1090 MICHAEL WEBA

If S(g" X) is integrated instead of g. X one at least obtains the error bound

(Sa(g" X))(t) at- g(t) X(t) at <-(b-a). r)(g X),

provided g. X is sufficiently smooth.
In the literature, the problem of estimating the above integral is usually treated

as a problem of statistical design or as a special regression problem. Conventional
methods offer the following advantages: the sampling designs may be random designs,
and within small classes of processes specific sampling designs such as median sampling
(quantile sampling, respectively) are shown to yield asymptotically optimal estimates,
and exact error rates including constants, rather than bounds are obtained. However,
there are serious drawbacks. In addition to differentiability, regularity conditions have
to be imposed on the covariance structure ofthe underlying process. It is also postulated
that the process has exactly K derivatives; if the process has derivatives of arbitrary
order, the theory gives no information. In particular, stationary processes with band-
limited spectra cannot be treated. Furthermore, the whole theory deals exclusively with
L2-processes. For details, see [2], [3], [6], [8], [10], [21], [22], and [23].

Trapezoidal Monte Carlo integration of random processes is discussed in [16].
No regularity conditions are assumed, and for processes that are once mean-square
continuously differentiable, it is shown that the rate of convergence of the mean-square
approximation error is precisely n -4 (n is the sample size). The rate n -5 can be achieved
for processes being twice mean-square continuously differentiable, provided stratified
Monte Carlo integration is performed [7].

We now consider numerical integration by means of splines. No regularity condi-
tions are required and the error bounds are valid with respect to an arbitrary Banach
space L c Lo. The above rates of convergence may be substantially improved for smooth
processes. For example, if piecewise cubic splines are used with equidistant knots
tj=a+j, h, O<=j<-n, h=(b-a)/n, then g. X C[a, b] already guarantees

E (Sa(g’X))(t)dt- g(t).X(t)dt =O(n-8)

for L= L2(12, 1, P).
4.3. Simulating solutions of ordinary stochastic differential equations. Assume L

L2(fl, , P). Consider the stochastic differential equation

X’(t) -a. X(t) + Y’(t), [0, T]

with initial condition

x(0) z,
where re >0 is a given constant, Z a random variable with finite variance, and
Y C[O, T] a stochastic process. If the random fluctuations of X are to be studied
by simulation we have to simulate Z and the forcing function Y at timepoints ti of a
prescribed partition A of [a, b] [0, T]. However, calculation of the unique solution

x(= g(+e-’. (z- r(ol-, e-’-. g(sl as, e[O, rl

requires knowledge of Y on the whole interval. Using Sa Y, which is based on the
simulated values Y(0),. , Y(T), and computing the approximate solution

zx(t)=(SaY)(t)+e-’. (Z- Y(O))- re e-’-s (SaY)(s) as,

APPROXIMATING STOCHASTIC PROCESSES BY SPLINES 1091

the discretization error satisfies

IIX(t)-a(t)ll2<= (2- e-"’) ra)(Y)
for each t [0, T]. (Recall that I111= stands for the L2-norm.) For simplicity, the
discussion has been restricted to the above equation. Analogously, any functional
equation in terms of the forcing function yields an approximation Xa. Representations
for more complicated equations can be found, e.g., in [1] and [13].

4.4. Simulating distributions of continuous functionals. Let L be the space L
L2(O, , P). Some topics in statistics require the distribution of X where is a
continuous functional on a set of stochastic processes. Since it is often difficult to
derive an explicit formula, this distribution must be computed by simulations. If X is
a Gaussian process this problem has been studied by Eplett [9]. For certain functionals
related to LP-norms, a result is given by Weba [30] that holds for non-Gaussian
processes as well. The idea is to simulate X by computing ; is based on
a finite number of simulated observations from X. For a smooth process X, spline
approximations may be used, and there is the additional advantage that is also
allowed to depend on derivatives of X. For example, assume X C[a, b] and consider

ox= x(t).x’(t)

(Since both X and X’ are L2-continuous, the integrand is Ll-continuous. Hence X
is a well-defined random variable with finite expectation being the Ll-limit of Riemann
sums.) Set

(.p SaX= (SaX)(t) (S+/-X)’(t) dt

on condition that (SaX)’ is piecewise L2-continuous. Then

Elox-oSXl
<-_(b-a). sup ElX(t) X’(t)-(SaX)(t) (SaX)’(t)l

t[a,b]

<-(b-a). sup EIX(t (X’(t)-(S,,X)’(t))l
t[a,b]

+(b-a). sup EI(SaX)’(t)’(X(t)-(SaX)(t)) I,
t[a,b]

and the inequality of Cauchy-Schwarz gives

Elqgo X-qgo SaXl<=(b-a)

(ra’)(X) sup [[X(t)ll_4-ra)(X)’sup II(sx)’(t)ll).t[a,b] t[a,b]

Furthermore, arbitrary a R and e > 0 satisfy

p(sx <-) P(lo x sxl >-_)
<_ p(p X <-_ a) <-_ P(p SaX <- a + e) + P(l x saxI >=).

By Markov’s inequality,

P(I, x- Sax[>-_e)<=e-’. EI oX- Sxl.

1092 MICHAEL WEBA

The distance between two distribution functions F and G is often expressed in terms
of the L6vy distance

D(F, G)=inf{6>0:F(x-6)-6<-G(x)<-F(x+6)+6 for each xeN}.

Consequently, the L6vy distance D(q X, q S/,X) between the distribution functions
of (p X and tO SAX fulfills

X, o SaX)N(b-a) (r’)(X) sup IIx(/)llD2(o
tE[a,b]

+ r(a)(X) sup IIx’(,)ll _ +
tE[a,b]

Under the assumptions of the above corollary one obtains

D(o X, # SzxX)= O(IAI3/)
for piecewise cubic splines, provided that flzx 0(1) holds.

5. A numerical example. Stochastic differential equations of the type

X’(t) F(t, X(t), Y(t))

are frequently used to describe phenomena in electrodynamics, population genetics,
economics, etc., where random perturbations are involved. The stochastic properties
of the forcing function Y may lead to substantial stochastic fluctuations of the solution
X.

The probabilistic behavior of X(t) can be studied by means of simulations.
Consider, e.g., the assumptions of 4.3, where the equation

X’(t) -a X(t)+ Y’(t), [0, T],

with a >0 and initial condition X(0)--Z, has been treated. This equation can be
regarded as a model for a population that is dying out where the constant rate of
"growth" is given by -a.

As indicated above, we may simulate Y at timepoints ti and compute the approxi-
mate solution Xa by means of some spline function SaY; the discretization error
depends on Y and satisfies

IIx(,) 2 (t)112 --< (2- e-S’) r(a)(Y)
for each e [0, T].

The numerical calculations are based on the following assumptions:
mT= 5, a (ln 2)/5, X(0) const. 100.
__A { to, tl, tn}, ti ih, h=0.2, n=25.
raThe random variables Y(t0),..., Y(tn) are given by

Y(to)=O, Y(t)=Y(t_,)+ti, l=<i<_-n,

where 81,’", 6n are independent and normally distributed with mean value zero and
standard deviation cr > 0.

roSA Y is the piecewise linear spline function with

(SaY)(t,)= Y(t,), O<-i<-_n.

(In other words, SY is a linear polynomial on each subinterval ti, t+l] and interpolates
Y. The theorem of the third section may be applied to derive upper bounds for r()(Y);
for instance, Y6 C2a[a, b] implies r)(Y)= O(IAI2).)

APPROXIMATING STOCHASTIC PROCESSES BY SPLINES 1093

TABLE
Values ofa (tr).

(t,) f(t,) (t,)
fo(ti) (First sample) (Second sample) (Third sample)

0 100.00 100.00 100.00 100.00
97.27 97.26 95.61 95.13

2 94.61 93.99 90.63 93.09
3 92.02 90.90 89.28 91.87
4 89.50 89.38 87.95 88.04
5 87.06 86.24 85.76 84.31
6 84.67 83.42 83.95 81.21
7 82.36 81.35 83.03 79.46
8 80.11 79.00 80.60 75.42
9 77.92 78.03 78.55 74.80
10 75.79 76.25 76.10 74.06
11 73.71 75.45 72.67 72.90
12 71.70 72.82 69.36 69.62
13 69.74 69.65 67.91 67.38
14 67.83 67.95 65.78 66.15
15 65.98 66.93 63.02 64.70
16 64.17 66.31 63.13 61.33
17 62.42 64.93 62.15 60.19
18 60.71 63.19 60.12 58.01
19 59.05 61.73 56.60 57.03
20 57.43 60.63 55.68 55.21
21 55.86 59.55 55.70 53.70
22 54.34 56.50 54.48 52.56
23 52.85 55.52 52.76 50.98
24 51.41 54.88 51.52 49.96
25 50.00 54.35 50.67 49.04

TABLE 2
Values of ffa tr 2).

fo(ti)
f(A(ti)

(First sample) (Second sample)
f(A(ti)

(Third sample)

0

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

100.00
97.27
94.61
92.02
89.50
87.06
84.67
82.36
80.11
77.92
75.79
73.71
71.70
69.74
67.83
65.98
64.17
62.42
60.71
59.05
57.43
55.86
54.34
52.95
51.41
50.00

100.00
95.11
95.19
94.55
92.12
90.82
89.90
86.99
82.30
81.16
78.72
73.38
71.30
72.15
69.20
70.38
65.43
63.98
58.61
59.14
59.15
56.74
54.45
52.55
50.89
52.34

100.00
95.50
91.65
91.40
88.90
88.92
84.40
84.83
79.34
78.39
78.28
74.41
72.10
72.06
71.67
69.73
71.45
70.26
70.59
68.28
66.33
66.46
63.11
64.31
65.54
62.15

100.00
98.22
92.39
90.30
90.97
88.49
83.52
81.61
76.69
74.96
73.74
69.01
71.50
68.43
65.16
64.66
61.66
64.59
59.77
56.09
53.38
51.77
48.20
46.22
45.47
43.71

1094 MICHAEL WEBA

TABLE 3
Values ofa (tr 3).

fo(ti)
f(A(ti)

(First sample) (Second sample) (Third sample)

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

00.00
97.27
94.61
92.02
89.50
87.06
84.67
82.36
80.11
77.92
75.79
73.71
71.70
69.74
67.83
65.98
64.17
62.42
60.71
59.05
57.43
55.86
54.34
52.85
51.41
50.00

100.00
97.40
93.79
93.65
85.73
91.44
84.56
76.65
70.66
62.55
59.33
52.84
52.47
52.37
51.86
46.80
48.40
47.80
41.73
45.88
44.00
40.44
40.50
36.96
36.47
35.62

100.00
97.39
90.63
83.53
84.29
84.23
80.20
79.46
72.99
71.58
72.77
71.27
64.92
58.38
56.79
51.50
52.59
51.75
46.83
44.96
47.42
40.77
33.51
32.25
30.50
29.79

100.00
101.80
97.30
95.79
98.42
96.69
93.17
90.08
91.59
92.73
93.49
87.66
82.62
80.59
78.69
79.08
79.30
75.20
68.94
72.46
70.32
70.39
68.91
69.71
70.76
65.09

TABLE 4
Values of2a (tr 5).

fo(t,)
A(ti)

(First sample)
Ja(ti)

(Second sample) (Third sample)

0

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

100.00
97.27
94.61
92.03
89.50
87.06
84.67
82.36
80.11
77.92
75.79
73.71
71.70
69.74
67.83
65.98
64.17
62.42
60.71
59.05
57.43
55.86
54.34
52.85
51.41
50.00

100.00
93.63
91.58
93.68
78.30
71.21
76.56
74.67
72.17
74.36
74.96
75.61
79.98
83.29
81.31
76.23
76.02
77.91
75.17
78.98
83.74
88.48
82.81
79.68
76.14
80.84

100.00
97.36
103.99
109.43
101.51
102.54
109.73
105.41
103.48
99.52
99.97
99.90
93.75
91.90
81.69
70.80
67.77
65.84
59.84
56.42
53.55
49.21
46.56
39.66
36.97
35.26

00.00
96.46
95.91
95.54
86.89
82.23
89.03
87.09
85.05
76.97
60.42
56.48
50.67
43.51
45.92
43.50
44.90
53.30
50.60
59.61
51.58
48.73
40.18
34.52
30.58
31.40

APPROXIMATING STOCHASTIC PROCESSES BY SPLINES 1095

First, three different (independent) samples from 61, 2, (n have been gener-
ated; in each case (SAY)(t) has been used to compute XA(t) at times to, tl,"" ", t,.
The results for tr 1 can be found in Table 1. In order to show that the influence of
the perturbation process Y is substantial the procedure has been repeated with cr 2,
tr 3, and tr 5; see Tables 2-4. In addition, the values of the function

f(t) 100 exp(ln2)=5

are also given where fo is the solution of the differential equation in the absence of
random perturbation.

Acknowledgment. The author wishes to express his gratitude to an unknown referee
for numerous suggestions and improvements.

REFERENCES

[1] R. B. ASH AND M. F. GARDNER, Topics in Stochastic Processes, Academic Press, New York, San
Francisco, London, 1975.

[2] K. BENHENNI AND S. CAMBANIS, Sampling designs for estimating integrals of stochastic processes,
Tech. Report No. 265, Department of Statistics, University of North Carolina, Chapel Hill, NC,
1989.

[3] K. BENHENNI AND S. CAMBANIS, Sampling designs for estimating integrals of stochastic processes
using quadratic mean derivatives, Tech. Report No. 293, Department of Statistics, University of
North Carolina, Chapel Hill, NC, 1990.

[4] K. BOHMER, Spline-Funktionen, Teubner, Stuttgart, 1974.
[5] C. DE BOOR, A practical guide to splines, Springer-Verlag, New York, 1978.
[6] S. CAMBANIS, Sampling designs for time series, Handbook of Statistics, Vol. 5, Elsevier, Amsterdam,

1985, pp. 337-362.
[7] S. CAMBANIS AND E. MASRY, Trapezoidal stratified Monte Carlo integration, Tech. Report No. 286,

Department of Statistics, University of North Carolina, Chapel Hill, NC, 1990.
[8] N. CRESSIE, Estimation of the integral of a stochastic process, Bull. Austral. Math. Soc., 18 (1978),

pp. 83-93.
[9] W. J. R. EPLETT, Approximation theory for the simulation of continuous Gaussian processes, Probab.

Theory Related Fields, 73 (1986), pp. 159-181.
[10] R. L. EUBANK, P. L. SMITH, AND P. W. SMITH, A note on optimal and asymptotically optimal designs

for certain time series models, Ann. Statist., 10 (1982), pp. 1295-1301.
[11] E. HEWITT AND K. STROMBERG, Real and abstract analysis, Springer-Verlag, Berlin, 1975.
[12] S. KARLIN, C. A. MICCHELLI, AND Y. RINOTT, Multivariate splines: A probabilistic perspective, J.

Multivariate Anal., 20 (1986), pp. 69-90.
[13] S. KARLIN AND H. M. TAYLOR, A second course in stochastic processes, Academic Press, Orlando,

FL, 1981.
[14] G. S. KIMELDORF AND G. WAHBA, Splinefunctions and stochastic processes, Sankhy A, 32 (1970),

pp. 173-180.
[15] M. LOVE, Probability Theory II, Springer-Verlag, New York, 1978.
16] E. MASRY AND S. CAMBANIS, Trapezoidal Monte Carlo integration, SIAM J. Numer. Anal., 27 (1990),

pp. 225-246.
[17] J. J. MILLER AND E. J. WEGMAN, Vectorfunction estimation using splines, J. Statist. Planning Inf., 17

(1987), pp. 173-180.
[18] M. B. PRIESTLEY, Spectral analysis and time series, Academic Press, London, 1981.
[19] J. RICE AND M. ROSENBLATT, Smoothing splines: Regression, derivatives and deconvolution, Ann.

Statist., 11 (1983), pp. 141-156.
[20] Y. A. ROZANOV, Stationary random processes, Holden-Day, San Francisco, 1967.
[21] J. SACKS AND D. YLVISAKER, Statistical designs and integral approximation, in Proc. 12th Biennial

Seminar of the Canad. Math. Congress, 1970, pp. 115-136.
[22] F. J. SAMANIEGO, The optimal sampling design for estimating the integral of a process with stationary

independent increments, IEEE Trans. Inform. Theory, IT-22 (1976), pp. 375-376.

1096 MICHAEL WEBA

[23] C. SCHOENFELDER AND S. CAMBANIS, Random designsfor estimating integrals ofstochastic processes,
Ann. Statist., 10 (1982), pp. 526-538.

[24] L. L. SCHUMAKER, Spline functions. Basic theory, John Wiley, New York, 1981.
[25] B. W. SILVERMAN, Spline smoothing: The equivalent variable kernel method, Ann. Statist., 12, (1984),

pp. 898-916.
[26] J. STOER AND R. BULIRSCH, Introduction to numerical analysis, Springer-Verlag, New York, 1983.
[27] B. K. SWARTZ AND R. S. VARGA, Error boundsfor spline and L-spline interpolation, J. Approx. Theory,

6 (1972), pp. 6-49.
[28] G. WAHBA, Smoothing noisy data with spline functions, Numer. Math, 24 (1975), pp. 383-393.
[29] A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline

smoothing problem, Ann. Statist., 13 (1985), pp. 1378-1402.
[30] M. WEBA, Quantitative results on monotone approximation ofstochastic processes, Probab. Math. Statist.,

11 (1990), pp. 109-120.
31 E.J. WEGMAN, Vector splines and the estimation offilterfunctions, Technometrics 14 1981), pp. 533-546.
[32] E.J. WEGMAN AND 1. W. WRIGHT, Splines in statistics, J. Amer. Statist. Assoc., 78 (1983), pp. 351-365.

[33] E. WONG AND B. HAJEK, Stochastic Processes in Engineering Systems, Springer-Verlag, New York, 1985.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1097-1122, September 1992

() 1992 Society for Industrial and Applied Mathematics
OO4

A COMPARISON OF THREE MIXED METHODS FOR THE
TIME-DEPENDENT MAXWELL’S EQUATIONS*

PETER MONK?

Abstract. Three mixed finite-element methods for approximating Maxwell’s equations are
compared. A dispersion analysis provides a Courant-Friedrichs-Lewy (CFL) bound that is necessary
for convergence when a uniform mesh is used. The dispersion analysis also allows a comparison of
the stability properties of the methods. Superconvergence at the interpolation points is proved for
uniform grids, and demonstrated by three numerical examples. All three methods are shown to be
able to handle discontinuous media without modification of the finite-element spaces. Since all three
methods have three-dimensional counterparts, this study suggests that all three methods could be
the basis of a successful three-dimensional code.

Key words. Maxwell’s equations, finite elements, mixed methods

AMS(MOS) subject classifications. 65N30, 78-08

1. Introduction. In a recent paper, Lee and Madsen [9] present numerical re-
sults for a novel mixed finite-element method for approximating the time-dependent
Maxwell’s equations. Applying the method to two-dimensional problems, they show,
by numerical examples, that their method has good dispersion properties and can
handle discontinuous dielectric constants without special modification of the finite-
element spaces. The purpose of this paper is to investigate the dispersion properties
of the Lee-Madsen method analytically, and to compare the algorithm to two other
mixed finite-element methods due (in three dimensions) to Ndlec [131 and Monk [12].
The Ndlec scheme is of particular interest since it uses a special space of piecewise
linear polynomials to approximate the electric field, yet does not need modification
where the dielectric constant is discontinuous. This is in contrast to methods based
on standard continuous piecewise linear elements (cf. [9]). Our analysis will also show
the connection between the mixed finite-element methods analyzed in this paper and
the standard Yee finite-difference method for Maxwell’s equations [18].

Our study is limited to Maxwell’s equations in two space dimensions. Of course
this is not the setting of real physical interest; however, the two-dimensional case
makes a convenient test problem for rapid comparison of methods. Unfortunately,
some features of Maxwell’s equations, such as the divergence-free nature of the mag-
netic flux density, are lost in the two-dimensional case.

Besides the paper of Lee and Madsen [9], Adam, Serveniere, Ndlec, and Raviart
[1] have also examined the use of mixed methods to discretize Maxwell’s equations.
The method of Adam et al. [1] is closely related to the two-dimensional analogue of
the method of Monk [12], but does not allow for discontinuous dielectric constant or
conductivity. Adam et al. [1] present a dispersion and error analysis for their method
in the case when the mass matrix is lumped. In this paper we deal with the full mass
matrix and allow discontinuous coefficients.

The method of Lee and Madsen is also related to a prior method suggested by
Cangellaris, Lin, and Mei [3]. They proposed and discussed a point-matching (or
collocation) method based on the use of continuous bilinear finite-element spaces for

Received by the editors September 24, 1990; accepted for publication (in revised form) June 28,
1991. This research was supported in part by grants from the Air Force Office of Scientific Research
and the National Science Foundation.

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
(monklath. udel. edu).

1097

1098 PETER MONK

both the electric and magnetic fields, but on staggered grids. For other references
concerning the use of finite-element methods in discretizing Maxwell’s equations, see
[9], and for a discussion of developments in finite-difference methods, see [16].

The plan of the paper is as follows. In 2 we discuss two general classes of
variational principles for the time-dependent Maxwell system. Then in 3 we give
details of the three finite-element methods examined in this paper. We discuss error
estimates and derive the discrete equations in the special case of a uniform grid. These
equations show the connections between the methods in this paper and standard finite-
difference methods (cf. [18]). In 4, we use the discrete equations on a uniform grid to
compare the three methods via a dispersion analysis. Section 5 is devoted to numerical
experiments with the three methods. For ease of comparison, we have used examples
from [9] as test problems.

2. Variational principles for Maxwells equations. We begin by deriving
two general classes of methods for Maxwell’s equations [9], [13], [12], [11]. Since our
numerical examples are all in two space dimensions, we consider Maxwell’s equations
for a linear isotropic material in which the magnetic field H is z-polarized. Thus if
E (E(1)(,t),E(2)(a,t)) and H H(,t) where - (x,y), we have that

OE
(1) e / hE-- V H- J,

OH
(2) # Ot

=-V x E’

where e, a, and # are known functions of a giving the dielectric constant (e), perme-
ability (#), and conductivity (a), respectively. J (j(1), j(2)) is a function of space
and time giving the current density. The vector curl (V) is defined by

(3) Vx/= Oy’ Ox

and the scalar curl (V x) by

(4) V v= ---v()- ---v(1)

(we use v(J) to refer to the jth component of a vector v). Equations (1) and (2) are
solved in a plane polygonal region fl with boundary F and we assume the boundary
condition

(5) n x E ,
where n is the unit outward normal to f, n x E E(1)n(2) E(2)n(1) and 3’ is a
specified function. If 3’ 0, this boundary condition models a perfect conducting
boundary. In addition, initial data must be specified so that we assume that

(6) E(0) E0 and H(0) H0,

where E0 and H0 are given functions. Equations (1), (2), (5), and (6) are a well-posed
system of equations (cf. [5], [1], [10]) provided e, #, 3", a, and g are sufficiently smooth
and satisfy standard positivity and boundedness assumptions.

To derive a weak or variational formulation of (1)-(6), we proceed formally (for
details of the function space setting, see [5], [12]). Multiplying (1) by a test function

MIXED METHODS FOR MAXWELL’S EQUATIONS 1099

(ib(e) and (2) by (e) and integrating over gt, we obtain the following equations where
(u, v) fa u(1)v(1) + u(2)v(2) dA and (u, v) fa uv dA,
(7) (eEt + (rE, 49) (x H,) g,),
(8) (, Ht,) -(V x E,).

This pair of equations is not suitable for discretization since, in general, it would not
result in an energy-conserving discrete problem. Instead we choose to integrate one
of the curl terms in (7) or (8) by parts. One choice will lead to the method of Lee
and Madsen, the other to the method of N6d61ec.

Let

H(curl; f)= {u e (LZ(f))u V u e L2(ft)},
H0(curl; f) {u e H(curl; f) In u 0 on F},

and let E(t) E(., t) and H(t) H(., t) (see [6] for a complete discussion of the curl
spaces). If we integrate (7) by parts, then provided b e H0(curl; f) we are led to the
conclusion that E(t) e H(curl; gt),H(t) e n2(ft) satisfies

(9) (eEt +
(10) (#Ht,)= -(V E,) V e n2(ft),

(11) nxE=7 onF,

together with the initial condition (6). Note that in this case the test function b must
have a well-defined scalar curl and must satisfy the boundary condition n q 0.
In this formulation the boundary conditions are essential. N6d61ec’s method is based
on (9)-(11).

Alternatively, we may integrate (8) by parts to obtain that E(t) E (L2(gt))2 and
g(t) e H(cffrl; a) {v e L2(gt)[x v e (n2(ft))2} satisfy

(12) (,Et + (rE,) (9 x H,) (g,) V e (n2(a))2,
(13) (ttHt,

together with the initial condition (6). Note that in this case neither trial nor test
functions need to satisfy any boundary conditions, and the boundary condition n
E 7 is imposed naturally. The system (12)-(13) is the basis for the method of
Lee-Madsen [9] and the method of Monk [12].

Next we discretize in space to produce an approximate method of lines for Max-
well’s equations. Later we shall detail discretization in time. To discretize (9)-(11) we
let Uv c H(curl; ft), U Uv fq H0(curl; gt), and VhN C n2() be finite-dimensional
spaces indexed by h. In this paper each space will be a finite-element space, but at
this stage we could allow other possibilities, such as spectral method spaces. The
semidiscrete problem corresponding to (9)-(11) is to find (Eh(t),Hh(t)) e U x V
such that

(14) (eEht +hEh ch) (Hh v x ch) (J,h) vch e uN
(15) (#Hth, h) --(V X Eh, 2h) V2h e YhN,
(16) n x Eh h on F,

1100 PETER MONK

and

(17) Eh(o) Eho and Hh(o) H,
where Vh E -- Uv approximates V, E0 C Uv approximates E0, and H0 C V
approximates H0. Note that Uv need only be a subspace of H(curl;) and need
not be in (H()). Standard continuous linear finite elements are in (HI()) and
thus are too smooth. This manifests itself in the complex way that standard elements
must be adapted to handle interfaces where e is discontinuous (cf. [] and .3 of this
paper). Ndlec’s construction gives elements in H(curl; f) but not in (H(f)).

To discretize (12)-(1:]) we take finite-dimensional spaces U c (L(f)) and

VhL C H(ctrl;). Then seek (Eh(t),Hh(t)) e U x V such that

(18) (eEh + aEh, h) (x Hh, h) (j, h) V e U,
(19) (#Hh, eh) -(Eh, x bh) + (V, h) veh e V,Lh,

and

(20) Eh(O) Eho and Hh(O) Hho,
where E0h c Uai and H0h C V,L, respectively, approximate E0 and H0.

In this case, the boundary condition need not be imposed on the finite-element
functions. Note that Vhi C H(crl;) and so, in this two-dimensional problem,
we need Vhi C H: (). Thus in this case, standard finite elements can be used to
construct Vi. In fact, Lee and Madsen [9] use standard isoparametric piecewise
bilinear functions on quadrilateral elements. The space U c (L2())2, and thus a
candidate space, is the space of piecewise constant vectors, which is the choice used
by Lee and Madsen [9]. Monk [12] uses a slightly augmented space.

One final remark is that the general methods (14)-(17) and (18)-(20) both con-
serve energy (before time discretization). To see this, consider the case when a 0,
J --- 0, V 0. Then taking)h Uh and (h Eh in (14)-(17) or (18)-(19) and
adding (14)-(15) or (18)-(19) we obtain

(21) (eEh, Eh) q-- (#Hh, Hh) O.

Thus

ld
2 dt

{(eEh’ Eh + (#Hh’ Hh } O,

and so,

(22) (eEh(t), Eh(t)) + (#Hh(t), Hh(t)) (eEh(o), Eh(o)) + (Hh(o), Hh(o)),

which states that the energy in the discrete system is independent of time. This
energy conservation is the reason for integrating by parts in (7) and (8) to ensure
that the curl terms cancel. The above energy equality can be used to derive error
estimates for the finite-element methods (see [11] and 3 of this paper).

3. Discretization in space and time. In this section we give details of each
of the methods to be analyzed. We start by subdividing using a collection of
quadrilateral elements Th (Ki}g1.= with maximum diameter h, which obey the
usual finite-element mesh restrictions [4]. The basis functions for each finite-element

MIXED METHODS FOR MAXWELL’S EQUATIONS 1101

space are obtained using the isoparametric method by mapping basis functions on a
reference element to the target element. Let the domain of the reference element be

(23) -- ((x,y) 10 _< & _< 1, 0 _<) _< 1},

then let F/(be the bilinear map from/ to Ki. If Ki has vertices with coordinates

(a)}=l and - (&,), then

(24) FK, () ai) (1)(1) + a(2i)k(1) + a(3i)& + a(4/) (1 &).

We denote the Jacobian of Tg by Jg, (c).
In general,

NE NH
(25) Eh (t) Ej (t)bj (x) and Hh (t) Hyy (x),

where NE and NH are the number of degrees of freedom for Eh and Hh, respectively,
and (bj(x)}1 and (by(x)}7 are suitable basis functions.

In the remainder of the paper we use the notation that Qij is the set of all
polynomials of degree at most i in x and at most j in y. Thus Q00 is the space of
constant functions and

3.1. Lee and Madsens method. This method has the simplest spaces. The
electric field space is just the space of piecewise constant vectors. Thus

(26) U {uh uhIg e QO0 QO0 VK e Th}.

A suitable basis for this space is the set of piecewise constant vector functions in
which one component is nonzero on exactly one element in the grid. The space VhL
is the standard continuous piecewise bilinear isoparametric space. Thus to construct
V,hL, we define the reference element (/, PR, ER) [4] by taking/ to be the reference
domain in (23) with vertices 4{ai}i=l, the local space PR to be the standard space of
bilinear polynomials so that PR Qll, and the local degrees of freedom to be

(27) {p(a) 1 < i < 4}.

Then on each element K E Th we have that the jth basis function is given by
:)IK(X) (FI(x)) for some E PR" Thus

(28) UhL={vhcC()lvhIg=oKoF for some KCQll VKeh}.

Following the isoparametric philosophy, all integrations are performed on/ by map-
ping from a given element K to K using the mappingF1. We use four-point Gaussian
quadrature on/ to compute integrals. This is exact if FK is affine and of precision
three in general.

In summary, the degrees of freedom for the discontinuous electric field space U
are the values of the electric field at the centroid of each element. The degrees of
freedom for the magnetic field space VhL are the values of the field at the vertices of
the mesh. In keeping with Lee and Madson [9], we refer to this method as ECHL (E
constant, H linear).

We now apply the ECHL algorithm on a uniform mesh and consider the equations
satisfied by the degrees of freedom. Figure 1 shows a portion of the mesh for the

1102 PETER MONK

H_+ Ho+

E(2)

Hoo

/E

(2)

’].(1)
-,++

/-/++

Electric degrees

Magnetic degrees

Ax
FIG. 1. A portion of a uniform quadrilateral grid showing the positions of the degrees offreedom

for Lee’s method. The equations for the indicated degrees of freedom are given in (29)-(31).

method with the degrees of freedom labeled. If we consider the very special case of
(18)-(19) with g 0, a 0, e # 1, and (UhL, VhL) given by (26) and (28), we
obtain the following equations for the degrees of freedom:

d .(1)((Ho++H++)-(Hoo+H+o))=O,(29) d- "++ 2Ax
d () ((H+o+H++)-(Ho++Hoo))(30) d- "-%+ + 2Ax

0,

d- [H+_ + H++ + H__ + H_+]

1
[/-/o- + H-o + H+o +/-/o+] ++g

(31)
1 { [(E)+ + E)_) (E(_2)+ + E(_2)_+2--x)]

-[(E(+I)+ + E(_I)+) (E(+) + E(J)_)1 } 0.

Clearly (29)-(31) are a centered difference approximation to (1)-(2) and thus have
local truncation error O((Ax)2) provided E and H are smooth enough. Given the
stability result (21), this implies that on a uniform mesh, ECHL converges with error

O((Ax)2) at the points indicated in Fig. 1 (convergence is in the discrete L2 norm at
each timestep [11]). More precisely, let us define the norms

(32) Ilull0, v/(eu, u) and []u]]0,, v/(#u, u),

and let the 6 U interpolate E at the interpolation points shown in Fig. 1. Let
rhH 6 V be the interpolant for the magnetic field space. Then the stability estimate

MIXED METHODS FOR MAXWELL’S EQUATIONS 1103

(22) and the second-order local truncation error of the method imply that

(33) II(rhE- .h)(t)ll,0 + II(rhH- Hh)()[l,,o O((Ax)2),

provided the initial data is chosen to satisfy (33) at t 0.
In trying to prove convergence on more general domains, we see that ECHL

suffers from a big theoretical drawback in that the spaces (U, VhL) do not satisfy an
appropriate inf-sup condition and hence ECHL is not included in the general theory of
Brezzi [2]. In this context, the inf-sup condition would state that for every nonconstant
gh e V (i.e., a function such that f 1THhl2 dx 0) there should exist a function

)h E UhL such that (Hh,)h) O. However, at least for some meshes, it is easy
to construct a function H*h Y such that

(34) (H*)=0 VeUL
h

so that the inf-sup condition does not hold. To see this, consider first the reference
element/ [0, 1] x [0, 1]. Let/:/* e Qll be the bilinear function such that/-/* (0, 0)
/:/* (1, 1) 1 and/2/* (1, 0) =/:/* (0, 1) -1. Direct computation shows that x/:/*
(2-45,-2+4))T and hence fR x/2/* . 0 for any constant vector . For a general
mesh, copies of this function can often be used to construct a function H*h

_
Y that

satisfies (34). For example, on a square domain, meshed with a uniform grid of
squares, H*h is the piecewise bilinear function that interpolates =t=1 at the vertices
with the values of +1 and -1 arranged in a checkerboard configuration. We can use
H*h to show nonphysical behavior in ECHL. Suppose we solve (21)-(25) with J 0
and _-- 0 and with initial data

o,

Then we see that the solution at later times is given by

Eh (t) O, Hh (t) H*h.

Given the perfect conducting boundary condition, this solution is nonphysical. Of
course, H*h oscillates on a wavelength of order h and thus it is not surprising that
the numerical method propagates this high frequency solution poorly. In 4, we use
a dispersion analysis to investigate the accuracy of wave propagation as a function of
frequency and wavelength for each of the methods discussed in this paper. The lack
of an inf-sup condition makes general error estimation difficult and it is not proven, to
our knowledge, that ECHL is convergent on general grids. Nevertheless, for smooth
data it is possible for the method to converge and work well in practice, as we shall
see.

The next method is based on the same variational formulation as ECHL, but the
space for the electric field has been modified so that the inf-sup condition holds.

3.2. The MECI-IL method. This method is based on (18)-(20) and is obtained
by restricting the three-dimensional method of [12] to two dimensions by assuming H
is z-polarized and independent of z. Let us denote the spaces for the method by UhM
and VhM. The method has the same space for the magnetic field as is used by Lee
and Madsen, thus VhM VhL. The electric field space UhM is the space U of ECHL
augmented by some linear terms. Therefore, we refer to this method as the MECHL
(modified ECHL).

1104 PETER MONK

To define the electric field space, denoted U4, we first give the reference element
(, PR, R)" Again/ is given by (23), and

PR {PIP Q10 Q0l},

(p. (bi) 1 _< i _< 4 ,, where bi
ai +2ai+1 (a5 ix)).

In these definitions is the unit outward normal to/. This choice of PR is made
since Q c Q0 Qo, and we want to construct UhM such that V VhM C U.
Since VhM is an isoparametric space, this implies some care with the way that UhM is

obtained from the reference element. By computing for VhM, we find that
the correct choice is

VI {uh uhlK ((det JK)-IJKI.K) o F for some

(35) /KeQ0Q01 VKeTh).

This space has as degrees of freedom uh. n at the midpoint of each edge of each
element. However, since we wish to allow e, the permittivity, to be discontinuous, we
do not require continuity of uh. n across element boundaries. So the actual degrees
of freedom on element K are

lim uh(x) nK(b),
x-b
Ir, K

where nK is the outward normal to K and b is the midpoint of an edge. If we know
that e is continuous, we can decrease the dimension of U by enforcing continuity
of normal components across element boundaries. In that case, U becomes the
lowest-order Raviart-Thomas divergence-conforming space [14] and MECHL becomes
essentially the method of Adam et al. [1] (but without mass lumping and with different
boundary conditions).

The transformation used in (35) to obtain uhlg from implies that

(36) V VhM C U
so that the analysis of Monk [12] holds and we can be sure that, on a general mesh,
the method converges with error

(37) ll(E- Eh)(t)llo, + II(H- Hh)(t)llo,, O(h),

provided the standard assumptions on isoparametric meshes hold [4], the exact so-
lution is sufficiently smooth, and the initial data for the discrete problem satisfies
(37). This is an optimal global estimate since U does not contain all vector linear
polynomials on the reference element.

Note also that in the special case when e # 1 (or constant) and a _= 0, J
0, the fact that V VhM C UhM implies that (1) is satisfied pointwise exactly. In
particular, we have that

Eht Hh,

and hence V. Eh 0. Thus if the initial data Eoh is chosen so that V. Eoh is defined
and V. E0h 0 in , then we can be sure that

V.Eh--o

MIXED METHODS FOR MAXWELL’S EQUATIONS 1105

Magnetic degrees

Ax
FIG. 2. The degrees of freedom for MECHL on a uniform square grid. In this case we assume

that the electric field has continuous normal component across the edge of each element. Thus the
electric field degrees of freedom are the normal component of the field at the midpoint of each edge
marked x. The magnetic degrees of freedom (marked ,) are the same as for ECHL (see Fig. 1).

for all time. Thus in some cases, MECHL allows the exact satisfaction of the equations
for the electric field. We remark that V. Eoh is defined if E0h is chosen so that the
normal components of E0h are continuous across each edge of the mesh [13].

We can also analyze MECHL on a uniform grid. We assume, as before, that
e # 1, a _= 0, J 0, and since e is continuous we assume that Eh has continuous
normal component across each edge of the mesh. The arrangement of degrees of
freedom is shown in Fig. 2. On the uniform mesh, we can derive the following equations
for the degrees of freedom.

Zo(_ o+--oo =o(38) d- Ax
d m(2) H+o Hoo 0(39) d- +o + Ax

(40)

d--- [H++ + H__ + H+_ + H_+]

1
[H-0 + H0- + H+0 + H0+] + H00+

1 [Am(2) E(+2)_ 4E(20) + E(2)+6--x [(E)+ +=+o +)-(E(-2)+ + --)]

[(E(-1)+ + 4Eo(+--++)- +)l 0.

We see that this is another centered finite-difference analogue of (1)-(2) and hence
has local truncation error O((Ax)2). Again the stability of the method implies that

1106 PETER MONK

in the weighted discrete L2 norm (cf. (32) and (33)), the order of convergence for the
method is O((Ax)2) at the points shown in Fig. ,2. The precise form of the estimate is
exactly as given in (33), provided rh and rh are taken to be the interpolation operators
for UhM and VhM, respectively. This is a superconvergence result since the order at
selected points is one greater than the global error expected using Ut.

By comparison, a Yee-type [18] finite-difference scheme for this problem, with the
grid and degrees of freedom shown in Fig. 2, would be

d E0(H0+ H00 0,(41) d- Ax
d .(2) H+0 H00 0(42) d- +0 + Ax

(43) dHOo + L+0 -[E0(E0(] 0.

Thus we see that the MECHL finite-element method on a uniform grid is just an
averaged version of the Yee method.

3.3. Ndlec’s method. This method is based on (14)-(17) and was first pro-
posed in [13] (in three dimensions). The version presented here is modified to allow a
discontinuity in #. The magnetic field space is simple, but the electric field space is a
subspace of H(curl;). N6d61ec [13] shows that for a finite-element space Uv to be
a subspace of H(curl;) it suffices that functions in Uv have continuous tangential
component across edges in the mesh (i.e., n x uh continuous across each internal
edge in the mesh for each uh E Uhg). Following N6d61ec [13] we define the reference
element as follows:

/ unit square (see (23)),
P/ (01 X Q10,

ER _= ((/t.)(i) bi
&i + &i+l 1 < i < 4,

where a5 a and is the unit tangent to 0}.
N6dlec [13] shows that a finite-element space constructed from this reference element
is H(curl;)-conforming (strictly speaking, Ndlec’s results are for 3 but can be
eily reinterpreted for 2). Care must be taken in the isoparametric method to
ensure continuity of tangential components. Thus Ndlec shows that

(44)
V {uh e H(curl; (JTK)o F;1,

g Q01 x Q10 VK Th}.

Using the above space we define

e 0 on r},

which can be constructed by enforcing a zero tangential component (zero degree of
freedom) on each edge on F. The function ,h required in (16) is the piecewise constant
function interpolating - at the midpoint of each boundary edge. Having defined Uv,
we can essentially take VhN to be the space of piecewise constants. However, we would
like V Uv c VhN and thus use an isoparametric mapping of the constant space:

(45) YhN {Vh vhlg ((det gg)-l)g) 0 F1,)g e Qoo VK e Th}.

MIXED METHODS FOR MAXWELL’S EQUATIONS 1107

E(_i)+ E(1)
++

E(__2)_

E(i)

E(i)
+0

(++

X Electric degrees

Magnetic degrees

/kx

FIG. 3. The degrees offreedom for ELNHC. Electric field degrees of freedom are the tangential
components of the electric field at the midpoint of each edge of the mesh, marked (the nearby
arrows show the direction of the degree of freedom at the interpolation point). The magnetic field
has degrees of freedom marked o.

Since V x Uv E VhN, we know that, provided # is constant (as it is in all the examples
here),

#Hth w z Eh=o

pointwise in gt, and the magnetic field equation is satisfied exactly. Since the electric
field is approximated by N6d61ec’s linear elements, we refer to this method ELNHC.
We emphize that this is a different method than the method ELHC in [9], which is
bed on standard continuous linear elements.

This method is analyzed in [11] for the full Mwell system in three space dimen-
sions. In general, the method h global L2 error at let O(h) (see (37) for a more
precise statement). Also in [11], we prove higher-order convergence rates at special
points when the mesh is uniform. This is done follows. If we use the notation in
Fig. 3, we can derive the equations satisfied by the degrees of freedom follows:

d 1 {(1) (i) E} H++ H+_(46)
dt 6 ++ ++o + Ax 0,

d 1 E2 H++ H_+
++ + O,

+ 0.

Again, we see that the method h local truncation error 0(()) and the stabil-
ity result (22) implies convergence in a suitable weighted discrete L norm at the
mesh points in the same sense for the two previous methods discussed in this
section [11].

1108 PETER MONK

For this grid the Yee finite-difference scheme [18] is

d .(1) H++ H+_
d -+0 Ax 0,

d-- Ax 0,

d-H+++xx k++ -’++-+0) =0,

which we see is just (41)-(43) with a renaming of nodes. Thus, on a uniform grid,
both MECHL and ELNHC are essentially averaged Yee schemes.

3.4. Timestepping. In contrast to the rather unusual finite-element spaces used
in the spatial discretization, we use the standard leapfrog method to discretize in time
[18]. Each of the methods outlined above gives rise to a matrix problem of the following
type. Let (/(t),/(t)) be the vectors of free degrees of freedom for the electric and
magnetic field, respectively. Then using either (14)-(17) or (18)-(20), (/(t),/(t))
satisfies a matrix problem of the form

(49) M
dE- + MuE- CuvH G,

dH T(50) Mv

where G and F are vectors taking into account boundary data and the applied cur-
rents. For example, in the ECHL (respectively, MECHL) methods (see (25))

I(_i,j<_NE,

I(_i,j(_NE,

I(_j<_NH,

I (_i<_NE,

1 <_ i,j <_ NH,

I (_i<_NE,

where (i}/g__ is a basis for U (respectively, U) and (i)/N__= is a basis for VhL
(respectively, VhM). Similar definitions hold for the N6d61ec method after allowing
for the fact that boundary degrees of freedom for Uhg are specified via the boundary
data (16). The fully discrete scheme is to compute a sequence (/n,/n+l/2)n__ that
approximates {(tn),(tn+l/2)}n=l, where tn nat and t+1/2 (n + 1/2)At.
Given (/, +1/2), we compute (/+1,/n+3/2) by solving the system

(51)

where n+1/2 (tn+l/2), then solving

(52) Mv (In+3/2 In+l/2)At + [CuvlTn+l n+l.

MIXED METHODS FOR MAXWELL’S EQUATIONS 1109

For ECHL, Mu and Muau are diagonal, while for MECHL they are block diagonal
(with 4 4 diagonal blocks) and thus (51) may be solved rapidly. Mv is sparse
(and identical for ECHL and MECHL) and we solve (52) using the preconditioned
conjugate gradient method [7], using the mass-lumped matrix as a preconditioner.
Precisely, we define the diagonal matrix Mvv with diagonal entry [M..]i by

NH
[Mvv],

j--1

and then solve

(Mv,) ffn+l Tn+

where C (-w)-/2(M,)(-v)-/2, and hence compute

This method converges rapidly and we always iterate to completion (i.e., so that
successive conjugate gradient iterates differ by less than 10-6 in the L2 norm). In
practice, a coarser error tolerance would produce good results.

In the case of the ELNHC or N(d(lec method, Mv is diagonal and hence easily
inverted. Then (51) must be solved by conjugate gradients, and we also precondition
with the mass-lumped matrix, although on a regular grid this is not necessary. The
number of conjugate gradient iterations per step for the preconditioned ELNHC ma-
trix is usually less than for the preconditioned ECHL or MECHL methods. However,
for ELNHC, the dimension of Mu is approximately the number of edges in the mesh,
while for ECHL/MECHL the dimension of Mvv is the number of nodes in the mesh.
Thus we must solve a larger system when timestepping ELNHC than ECHL/MECHL.

To obtain//2, we use a Runge-Kutta-type method. First, we predict a value
for//4 by solving

M (At)/4 + Muo Curio fo,

where/0 and/0 are obtained by interpolating the initial data. Then we compute
/1/2 by solving

{

This procedure produces an O((At)2) approximation to (t12). The timestepping
scheme (51)-(52) is an O((At)2) scheme locally, and we expect that if At/h is suffi-
ciently small (a standard CFL condition [15]) the overall method will be stable and
second order. On uniform grids, this condition is discussed further in 4. For more
general grids and problems, convergence has been confirmed numerically, but has not
yet been proven for the methods used in this paper.

4. Dispersion analysis. In this section, we assume that e and # are constants
(which for simplicity we take to be unity), a _= 0, J -= 0. In this case, if is an infinite

1110 PETER MONK

domain (or if fl is finite and 7 chosen appropriately), (1) and (2) have solutions of
the form

(53) E(x, t) E0 exp (i(wt k. x)),
(54) H(x, t) Ho exp (i(wt k)),

where k is a constant vector. Substituting these solutions into (1) and (2) (recalling
e # 1) shows that w and k are related by the dispersion relation

() Ikl,

where Ikl is the Euclidean norm of k (other solutions are w 0 or w -Ikl). The
group velocity C is given [17] by

k
() c v ,
and hence regardless of the wave number Ikl all plane waves move with the same group
speed ICI. We can also analyze the dispersion relation for each of the numerical
methods under consideration. Such an analysis describes how waves propagate in
the numerical method far from boundaries, and gives information on the expected
accuracy of the methods [17].

For a dispersion analysis, we assume a uniform grid of square elements of dimen-
sion Ax x Ax (see Figs. 1-3). We assume an infinite grid, and seek solutions of the
discrete equations of the form (53)-(54). First we consider the case of exact inte-
gration in time, and start with the ECHL method. Substituting (53) and (54) into

(29)-(31) we find that, if E0 (E0(1) E0(2)), 1 k(1)Ax, 2 k(2)Ax, r] wax, and

4 :
() (1,) + (cos() + cos()) + (cos(l) + cos(+)),

then

sin(2"’1)2 +sin(1+@)2
0

(58)

sin (:) sin (+2)
0

E.(2) 0

H0 0

sin()+ sin (2+)
-sin (12) sin (+22)

For (58) to have a nontrivial solution, the determinant of the matrix must be zero.
This defines ? as a function of (1 2). If denotes the positive solution, weECHL
find that

(59) 61sin2 (:) + sin2 (+)2 2

I]ECHL (1, 2)
V/8 + 4 cos(2) + cos(l 2) -- 4 cos(l) -- cos(l + 2)

(other solutions are ? 0 or v] is the negative of the above expression). Hence,
depending on the magnitude and direction of k, the numerically computed wave

MIXED METHODS FOR MAXWELL’S EQUATIONS 1111

possesses an erroneous phase. This implies that a plane wave of the form (53) and
(54) generally moves in the wrong direction at the wrong speed. Of course if [t:l is
small, the frequency WECHL for ECHL with exact time integration is

o o (1) / +
WECHL(1, 2, nx) ECHL .

so that waves with a sufficiently long wavelenh compared to the grid move with es-
sentially the correct phe. To derive the frequency w for the fully discrete scheme, we
see that discretization in time corresponds to replacing in (58) by 2 sin (), and
thus if we denote the frequency for the fully discrete scheme by WHL(4, 2,
and let A At/Ax, we find that

(60) t (l,,,At)=
2 (o)WECHL sin- AECHL(,2 2)

and the group velocity

(61) t 2
CECHL(, 2, A) V sin-1

2

In Fig. 4 we show a plot of[CECHLA --C] a function of e [0,] X [0, r] (higher values
of are alined onto the grid [17]). Cgn depends only on A At/Ax, not At or
Ax individually, and we choose A 0.25 in accordance with later numerical results
(graphs for smaller A are similar). The shaded area is where [CECHL- C] < 0.1, so
that for a given k, if we choose Ax such that kAx lies in the shaded region, we can
be sure that the wave will move with a wave speed and direction in error by less than
10 percent. A diagram like Fig. 4 can be invaluable for choosing step sizes.

Note also that A must be chosen sufficiently small that

(62) A(max
(,)e[0,] x [0,]

so that WECHLt is real. This implies the condition that

2
() < 0.....

With ms lumping, an examination of the stencil for ECHL suggests a CFL condition
A 1, but this CFL condition is not correct when the full finite-element ms matrix
is used. Thus for the split-step, mixed, finite-element methods considered here some
extra care is needed to ensure stability (the condition A 0.577..- has been checked
numerically, and gives an accurate picture of stability for ECHL applied to boundary
value problems on a uniform grid (see 5.1)).

We can perform the same dispersion analysis on ELNHC and MECHL. Not sur-
prisingly, these methods have identical dispersion relations (when e 1) since
both methods are restrictions of three-dimensional methods bed on the same spaces
(cf. [13] and [11]). Hence we need only analyze ELNHC. In this ce the matrix
corresponding to (58) is

1112 PETER MONK

CONTOUR FROM .2 TO 3.8 BY .2
(a)

(b)
CONTOUR FROM .05 TO .95 BY .05

FIG. 4. Graphs of the error in the group velocity for kAx E [0, ’] [0, -]. We show contours of
ICx -C where CA is the numerical group velocity and C is the exact group velocity. The shaded
region is the region in which ICA -C < 0.1. All three methods have the same dispersion behavior
for waves oriented along grid lines, and this implies that the worst-case error for a particular Ikl/kx
is the same for each method. (a) The group velocity error for ECHL. For values of Ikl/kx r
the group velocity can be in error by up to about 400 percent. (b) The group velocity error for
MECHL and ELNHC. In this case the maximum error is less than/or ECHL. The error contours
for MECHL/ELNHC are more nearly circular than for ECHL, implying less grid anisotropy.

MIXED METHODS FOR MAXWELL’S EQUATIONS 1113

and thus

2v/- 2sin2 ()+ cs(2) sin2 ()+ 2sin2 (2) + cos(l) sin2 ()
4 / 2 cos(1) + 2 cos(2) + cos(1) cos(2)

The condition corresponding to (63) is

AtFor the fully discrete method wAt and CELNHC are given by the analoguesELNHC
of (60) and (61). In Fig. 4(5) we show ICELNHcAt C against (, 2) and again
shade the region with less than 10 percent error. Notice that the ELNHC, ECHL,
and MECHL methods have the same dispersion behavior for waves with k (k, 0)
or k (0, k2) (i.e., parallel to grid lines). This is because MECHL and ECHL are
identical schemes in these cases (see (29)-(31), (38)-(40)), and MECHL and ELNHC
are based on the same spaces (but used in different ways) in three dimensions.

Clearly, from Fig. 4, the area in the (, 2) plane for which the numerical group
velocity is in error by less than 10 percent is larger for ECHL than MECHL or ELNHC.
On the other hand, the error contours for MECHL/ELNHC are more nearly circular
than for ECHL, implying less grid anisotropy. Furthermore, the maximum error for
MECHL and ELNHC is approximately 100 percent, whereas that for ECHL is 400
percent. Thus ECHL will cause much worse dispersion for very high frequency waves
than either MECHL or ELNHC. In general, we must choose a grid on the basis of the
worst-case behavior of the method. This occurs in all three methods for waves along
the coordinate axis, and is identical for the three methods.

Since the worst case for plane wave propagation is for waves along a grid line,
we can gain useful information on error by considering a one-dimensional plot of
group velocity error, as shown in Fig. 5. Here we consider waves with wave number
k (k, 0) moving along the x-axis. We plot group velocity error against number of
grid cells per half wave length defined by Np r/(kiAx). This graph implies that
for an error of 10 percent in the group velocity, we need about eight grid cells per
wavelength. For more complex waves (i.e., wave consisting of a superposition of plane
waves), we can still use Fig. 5 by considering the plane wave components separately.

On the basis of dispersion, it is difficult to choose between the three methods.
In addition, in real problems the mesh is not uniform, the coefficients not constant,
and boundary conditions are important. We investigate these problems in 5 using
essentially the same numerical examples as [9].

All algebra in the preceding section was manipulated using Mathematica.

5. Numerical results. In this section, we further compare the three finite-
element methods described in 3 by applying them to selected numerical examples.
The examples are all taken from [9].

5.1. Plane wave propagation. We shall compare the numerical solution of a
simple wave propagation problem with the exact solution. We choose the functions in
Maxwell’s equations as follows: e # 1, a 0, and J 0. Then an exact solution
of Maxwell’s equations (on the entire plane) is

E(, t) (-k)k g(t- k x),

He(, t) g(t k),

1114 PETER MONK

34

30

.o

lo

04

10

FIG. 5. A graph of the error in the group velocity for a wave traveling along the x-axis with
wave number k (kl, 0). The error is plotted against number of grid blocks per half wave length
defined as Np r/(klAx). The CFL number A 0.25. A wave parallel to a grid direction is the
worst case for all three methods. This graph can be used to select the grid size.

where we take k (cos(l), sin(l)) and

exp(_lO(s_l)=)_exp(_ i0
l_exp(_i0i 0

_
8

_
2,(64) g(s)--

0, s > 2 or s < 0.

We choose a finite domain fl [0, 2] [0, 2] and take E0 0, H0 0, and J0 0. The
boundary data is chosen consistent with the above exact solution so that
We discretize the problem using a uniform grid on fl [0, 2] [0, 2] with N subintervals
on each edge (thus N2 quadrilaterals). In this case Ax 2IN, h x/Ax, and we
choose the CFL parameter A At/Ax 0.25. For each method, and a variety of N,
we integrate until t 2, and then compute the relative discrete L2 norm error in the
magnetic field H (for simplicity). Thus we compute

II(Hc H)(t)ll:, IH(xi,t) Hh(xi,t)[2

i--1

at t 2 where xi is the ith node if using ECHL or MECHL, or the centroid of the
ith quadrilateral if using ELNHC. Then we define

(65)]}H shiirel-

A plot of error against N and error against CPU time (on a SUN SparcStation 1) is
shown in Fig. 6. The plot of error against N confirms that on a uniform grid all three

MIXED METHODS FOR MAXWELL’S EQUATIONS 1115

lO

10-1

10-2

10

10-1

10-2

10-3 10-3
10 101 10 10-1 10 101 10 10

NLTMBER OF SUBINTERVALS, N CPU TIE (SECONDS)

(a) (b)

FIG. 6. Plots of error against grid parameter N and CPU time .for the example in 5.1.
A plane wave moves across a uniform grid at an angle to the grid lines. The error reported is
the relative discrete L2 error given by (65). In each case --A-- denotes ECHL, --B-- denotes

ELNHC, and --C-- denotes MECHL. (a) A plot of error against N. Here h 2V//N. This

graph suggests second-order convergence in the norm of (65) for all three methods. ELNHC is
notably more accurate for coarse meshes. (b) A graph of error against CPU time (on a SUN
SparcStation 1). Except possibly for very fine grids, ELNHC produces a given error in least time

(but see 5.3). For this example the conjugate gradient method in ELNHC was not preconditioned,
since satisfactory convergence was seen without preconditioning.

methods are ultimately second-order convergent at the degrees of freedom (the slope
of the graphs is 2). For a given N, ELNHC is always the most accurate and ECHL
the least accurate. The disparity is particularly obvious for small N. In view of the
dispersion analysis, the difference between MECHL and ELNHC must be due to the
way that the boundary data is imposed. A slightly different picture emerges when we
view error against CPU time. For a given error, ELNHC is the most rapid method,
but for a very low error (a fine mesh), it appears that ECHL may become the fastest
method. Most time is spent in the conjugate gradient solver. ECHL and MECHL
solve the same matrix problem, which has about half as many unknowns as ELNHC.
However, despite preconditioning, the ECHL/MECHL takes approximately twice as
many iterations to solve the matrix problem to comparable accuracy.

Using this example, we have also checked the validity of the stability estimates

(62) and (63) in the case of a boundary value problem. For the ELNHC, scheme
(63) implies that

_
2/x/ is necessary for stability (for the pure initial value

problem). When N 30 this implies that At _< 0.0272-.-. We find divergence when
At 0.029, but find satisfactory results with At 0.027 (at least up to time t 4).
For ECHL, A _< 2/vf, and hence if N 30, At <_ 0.0385.... When At 0.04 the
method is unstable, but converges satisfactorily until t 4 when At 0.038. These

1116 PETER MONK

results indicate that (62) and (63) are pertinent to the stability of the boundary value
problem.

5.2. Simple scattering. In the previous example we used a uniform grid and
a plane wave. Our next example uses a nonuniform grid (which is uniform in polar
coordinates) and more complex wave motion. Again following [9], we consider an
infinite domain problem of scattering of a plane wave off a circular perfect conductor.
We consider a plane wave

(66)

(67)
(0)Ei(x, t) v/#O]e0 g((t (x 0.1)x/eo#o)lO9)

Hi(x,t) g((t- (x- 0.1)x/eo#o)lO9)

(where g is given by (64)) incident on a perfectly conducting circular cylinder of radius
0.1m centered at the origin. We choose

e eo 8.85 x lO-12F/m2, # #0 1.2566 x IO-6N/A2.

Using special function theory, an exact solution is available for this problem [8].
For the numerical problem we take an annular domain with inner radius 0.1m

and an outer radius of 1.1m. Since the problem is symmetric about the x-axis we use
the half-domain

ft {(x,y) lO.1 < V/"2+y2 < 1.1, y > 0}.
On y 0 we impose the symmetry condition n x E 0, and on r 1.1 we impose the
perfect reflecting boundary condition n x E =- 0. On r 0.1 we impose n x E
",/=_ n x Ei, which describes how the incident field scatters off a perfect conductor.
The boundary condition n x E 0 on r 1.1 generates spurious reflections for times
greater than about time t 4 nanoseconds (ns), so the exact solution is not useful
beyond that time. The grid used has mesh points distributed uniformly in the (r, 0)
plane, i.e., the mesh points are (ri, 0j), 0 <_ i <_ N,., 0 <_ j <_ No, where

i j

ri=0.1+- and 0j=r00.
In Fig. 7, we show the computed and exact solutions at two interpolation points when
Nr 30, No 15, and At 1 x 10-3. With the small timestep used here, most of
the error is due to spatial discretization. These results can be compared to [9, Fig. 3].
Clearly, all three methods compute reasonable solutions.

Table 1 shows the relative L2 error in space at various times (error defined by
(65)). The error ratios are consistent with second-order convergence (the ratios are
shown in parentheses in the table). The small timestep At 1 x 10-3 is chosen since
we wish to focus on spatial error, and numerical experiments show that, with this
timestep, the timestepping error is negligible compared to the spatial error. Thus the
second-order convergence shown in Table 1 is evidence of second-order convergence
in the spatial error. As yet, we have no theory to predict this rate of convergence.
However, the fact of second-order convergence at the mesh points is encouraging since
the mesh is slightly nonuniform.

MIXED METHODS FOR MAXWELL’S EQUATIONS 1117

MAGNETIC FIELD AT -0.100D+00, 0.567D-18

-’40"" .5 1.0 1.5" 2,0 2.5 3.0 3.5 4.0
TIME (NANOSECONDS)

.5

.4

.3

.t

-.
-.4

MAGNETIC FIELD AT -0,100D+00, 0,567D-16

.5 .o . .o . .o . .o
TIME (NANOSECONDS)

.’..M.9..N.,C...lE.,L).. AT -0,115D+00, 0.1ID-01

.3

.1

-,1

-,

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
TIME (NANOSECONDS)

16

.12

.08

04

I1.

-,06

12

-,16

MAGNETIC FIELD AT 0.270D/00, 0.196D+00

.5 1.0 1.5 2.0 9-.5 3.0 3.5 4.0 4.5
TmZ (NAOSZCOm)S)

MAGNETIC FIELD AT 0.Z70D+00 0,196D+00

04

-.0

.5 1.0 1.5 2.0 -.5 3.0 3.5 4.0 4.5
(NXOS.CONS)

.12
10
.06
.06
.04
.02

04
O

-,0

-o12!
14

-.1

MAGNETIC FIELD AT 0.P59D+00. 0.33D+00

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
zm (NANOS.CONDS)

FIG. 7. A comparison of exact and numerical solution for the simple scattering problem in 5.2
at selected spatial points. The exact solution is the solid line and the dashed line shows the computed
solution. Here Nr 30, NO 15, and At 1 x 10-3. The coordinates of the spatial points are
shown on each plot, and are chosen to be the interpolation point closest to the points A and B in
[9, Fig. 2]. Top row: Results for ECHL. Middle row: Results for MECHL. Bottom row: Results
for ELNHC.

5.3. Scattering by a dielectric cylinder. Our final example investigates a
very nonuniform mesh and a case in which e is discontinuous. Again the example is
taken from [9]. At a line of discontinuity L separating two regions 1 and 2 with
e el in and e e2 in 2, we have the continuity condition

(68) e (n. E) e2(n. E)2,

so there is a jump in the normal component of the electric field across L (cf. [9]). If
standard continuous finite elements are used to discretize E, a complex modification
must be made along L to ensure (68) [9]. This modification is not required with any
of the methods in this paper, although L must coincide with mesh lines.

To construct an exact solution, we consider the infinite domain-scattering problem

1118 PETER MONK

TABLE 1
Relative L2 error in the magnetic field (as defined by (65)) at various times for two different

discretizations of the example in 5.2 (see text for details of the domain and mesh). The numbers
in parentheses give the ratio of errors in the table with a ratio of 4 being exactly second-order
convergence. A ratio of 3.7 indicates O(h1"9) convergence. In this case At 1 x 10-3, thus the
second-order convergence suggested by this table is the result of second-order convergence of spatial
error and not due to the time discretization. By 4, the solution is polluted by reflections from
the artificial boundary.

Time (ns) ECHL MECHL ELNHC
Nr 30 1 0.0222 0.0125 0.0180
NO 15 2 0.0638 0.0623 0.0464

3 0.143 0.157 0.107
4 0.337 0.358 0.236

Nr =60
NO 30

1 o.ooav (a.)
0.0161 (4.0)
0.0366 (3.9)
0.124 (2.7)

0.00338 (3.7)
0.0164 (3.8)
0.0402 (3.9)
0.128 (2.8)

0.0048 (3.)
0.0124 (3.7)
0.0289 (3.7)
0.0982 (2.4)

in which a plane wave is incident on an inhomogeneous cylinder of radius 0.25m
centered at the origin. In this cylinder we assume that the dielectric constant e e0/16
and # #0 (see also Fig. 8). This problem can be solved by using special function
theory on the infinite domain [8].

To approximate the infinite domain problem, we use the domain shown in Fig. 8.
We use the half-domain y _> 0 since the problem is symmetric about the x-axis, and
use a symmetry boundary condition on the line y 0. Following [9], we take E0 0,
H0 0, a 0, J _= 0, and 0 on F\F. On F we take

(
A wave with the cross-section of - above has more slowly decaying harmonics than
the incident wave in 5.2. Thus dispersion is more severe for this example than for
the example in 5.2.

Using the finite domain shown in Fig. 8(a), we can compute an accurate approx-
imate solution to the infinite domain-scattering problem until reflections from the
artificial boundary are significant. We have not attempted to use absorbing bound-
ary conditions on this boundary and instead, to minimize spurious reflections in the
output shown in Fig. 9, we compute only up to t 6ns.

We use a mesh similar to the one in [9]. An example is shown in Fig. 8(5) when
N 16. In this case N refers to the number of subintervals along the line x -1.
Table 2 shows the relative L2 error on the subdomain {(x, y) lxl _< 0.5, 0 _< y _< 0.5}
at various times for N 16 and N 32 (N 32 corresponds to subdividing every
quadrilateral in the N 16 mesh into four subquadrilaterals). We compute the error
on a subdomain for two reasons: first, we want to investigate error behavior on the
nonuniform portion of the mesh; and second, we want to avoid errors due to spurious
reflections from the boundary. The timestep used gives an approximate CFL number
of 0.25 in the inner circle where e e0/16. The results in Table 2 are consistent
with an order convergence of at least O(h1"6) for all three methods. It thus appears
that three-halfs-order or possibly even second-order superconvergence is seen even on
nonuniform meshes and in the presence of material discontinuities. This is unexpected
and needs to be justified by further numerical and theoretical investigations. It is
possible that for finer meshes the order of convergence would approach first order.

MIXED METHODS FOR MAXWELL’S EQUATIONS 1119

(a)

-1,1)

Z
e -eo

(1,1)

(-1,0) (1,0)

(b)

FIG. 8. The domain for the example in 5.3. (a) We show the domain indicating the values
of the material parameters in each subdomain. marks the boundary edge on which inhomogeneous
boundary data is specified. (b) An example of the mesh. Here N 16 (N is number of subintervals
along x 1).

TABLE 2
Relative L2 error in the magnetic field (as defined by (65)) on the subdomain ((x,y) lxl <_

0.5 0

_
y <_ 1]. at various times for two different discretizations of the example in 5.3 (see text and

Fig. 8 for details of the domain and mesh). In this case the CFL number is approximately 0.25
in the inner domain. The numbers in parentheses give the ratio of errors in the table. Errors at all
times show faster than O(h) convergence (a decrease of error by a factor of 3 is O(hl’6)) which is
unexpected.

Time (ns) ECHL MECHL
2 0.234 0.235 0.263

N 16 3 0.226 0.268 0.215
At 0.001 4 0.243 0.291 0.245

5 0.406 0.447 0.407
6 0.551 0.545 0.383

N--32
At 0.0005

0.0748 (3.1)
0.077 (3.)
0.0891 (3.3)
0.163 (2.7)
0.208 (2.6)

0.0730 (3.2)
0.0635 (3.6)
0.0719 (3.4)
0.132 (3.1)
0.181 (3.0)

0.0762 (3.5)
0.0635 (3.4)
0.0756 (3.2)
0.140 (2.9)
0.135 (2.8)

1120 PETER MONK

]/GNETIC HELD AT -O.:I?D+O0, 0.21TD+O0

TIME (NANOSECONDS)

,;]GNETIC FIELD AT -0.217D+00. 0,2171)+00

1.0

.8

.6

-.4

-’6o

.6

TIME (NANOSECONDS)

,],,G.NETIC FIELD AT -0.244D+00, 0.224D+00

1.0

TIME (NANOSECONDS)

.55

.50

.45
40
.35

.lO

MAGNETIC FIELD AT -0.500D-15, 0.;,61D-00.65

o!

(NANOSECONDS)

.7 MAGNETIC FIELD AT -0.500D-15. O.;81D+O0

(NANOSECONDS)

FI(. 9. A comparison o] exact and numerical solution for the simple scattering problem in 5.3
at selected spatial points. The exact solution is the solid line and the dashed line shows the computed
solution. Here N 16 and the CFL number for the inhomogeneous cylinder is approximately 0.25.
The coordinates of the spatial points are shown on each plot, and are chosen to be the interpolation
point closest to the points A and B in [9, Fig. 4]. Dispersion is visible in all plots, particularly along
the leading edge o] the wave. Top row: Results for ECHL. Middle row: Results for MECHL. Bottom
row: Results for ELNHC.

Figure 9 shows the results of all three methods when N 16 at two points in the
domain. These are the interpolation points closest to the points A and B in [9, Fig. 4].
All three methods give qualitatively similar results. Significant dispersion occurs in
the coarsely meshed region above the cylinder shown in Fig. 8(b), but this tends not
to effect the solution at the points given in Fig. 9. Clearly, although dispersion is
evident, all three methods produce qualitatively similar and reasonable results. In
particular, all three methods can handle discontinuous media with no problem.

We have used a significantly smaller timestep in this example compared to that
used in [9], and we find that all three methods are unstable with the mesh and time
step parameters used in [9]. Note that our implementation of ECHL differs from

MIXED METHODS FOR MAXWELL’S EQUATIONS 1121

that in [9] in that we solve (49) and (50) by conjugate gradients with a stringent
stopping tolerance. If the iterative method is only allowed to perform a small number
of iterations per timestep, it is possible that this incomplete iteration will smooth the
solution and allow longer timesteps.

As a final remark on this example, we note that even with preconditioning, the
conjugate gradient scheme for ELNHC was very slowly convergent for this example
(particularly when N 32). In this example, ELNHC was much slower than ECHL
or MECHL.

6. Conclusions. The methods under consideration in this paper have quite sim-
ilar features. All are based on mixed finite-element spaces approximating the full
Maxwell system. Moreover, in the examples computed, none of the methods has a
decisive edge over the rest. The ECHL method has a larger stability boundary or
CFL condition, but is sometimes less accurate than the other methods and suffers
from greater grid anisotropy. Generally, the ELNHC method is most accurate, and
MECHL is either more accurate or approximately the same accuracy as ECHL. The
state of theory for ECHL is not as well developed as for MECHL or ELNHC, and in
all three cases an improved understanding of superconvergence is desirable.

Clearly, a second important area of research is to examine other timestepping
methods. The stability condition for these schemes should be better understood, and
less restrictive timestepping methods should be investigated (cf. [1]).

All three schemes have three-dimensional counterparts, and the results in this
paper and in [9] suggest they will be successful schemes. Given the ease of imple-
mentation of methods with natural boundary conditions, ECHL or MECHL may be
preferable to ELNHC when the perfectly conducting boundary condition is appropri-
ate. For more complex conditions, ELNHC may be preferable.

Acknowledgments. I would like to thank Professor F. Santosa for several useful
discussions regarding dispersion relations.

REFERENCES

[1] J. ADAM, A. SERVENIERE, J. NIDILEC, AND P. RAVIART, Study of an implicit scheme for
integrating Maxwell’s equations, Comput. Methods Appl. Mech. Engrg., 22 (1980), pp. 327-
346.

[2] F. BIEZZI, On the existence and uniqueness of saddle-point problems arising from Lagrange
multipliers, RAIRO Anal. Numr., 8-R2 (1974), pp. 129-151.

[3] A. CANGELLARIS, C.-C. LIN, AND K. MEI, Point-matched time domain finite element methods
for electromagnetic radiation and scattering, IEEE Trans. Antennas and Propagation, AP-
35 (1987), pp. 1160-1173.

[4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, Vol. 4, Studies In Mathe-
matics and Its Applications, Elsevier, North-Holland, New York, 1978.

[5] G. DUVAUT AND J.-L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, New
York, 1976.

[6] V. GIRAULT AND P. RAVIART, Finite Element Methods for Navier-Stokes Equations, Springer-
Verlag, New York, 1986.

[7] G. GOLUB AND C. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1983.

[8] D. S. JONES, The theory of electromagnetism, MacMillan, New York, 1964.
[9] R. L. LEE AND N. K. MADSEN, A mixed finite element formulation for Maxwell’s equations

in the time domain, J. Comput. Phys., 88 (1990), pp. 284-304.
R. LEIS, Initial Boundary Value Problems in Mathematical Physics, John Wiley, New York,

1988.
P. MONK, An analysis of Ndddlec’s method for the spatial discretization of Maxwell’s equations,

SIAM J. Numer. Anal., 28 (1991), pp. 1610-1634.

[10]

[11]

1122 PETER MONK

[12] P. MONK, A mixed method for approximating Maxwell’s equations, J. Comput. Appl. Math.,
to appear.

[13] J. NIDILEC, Mixed finite elements in/R3, Numer. Math., 35 (1980), pp. 315-341.
[14] P. A. RAVIART AND J. M. THOMAS, A mixed finite element method for 2nd order elliptic prob-

lems, in Mathematical Aspects of the Finite Element Method, A. Dold and B. Eckmann,
eds., Lecture Notes in Math. 606, Springer-Verlag, Berlin, 1977.

[15] R. RICHTMEYER AND K. MORTON, Dierence methods for initial value problems, Wiley-
Interscience, New York, 1976.

[16] A. TAFLOVE, K. R. UMASHANKAR, B. BEKER, F. HARFOUSH, AND K. S. YEE, Detailed FD-
TD analysis of electromagnetic]elds penetrating narrow slots and lapped joints in thick
conducting screens, IEEE Trans. Antennas and Propagation, 36 (1988), pp. 247-257.

[17] L. N. TREFETHEN, Group velocity in finite difference schemes, SIAM Rev., 24 (1982), pp. 113-
136.

[18] K. YEE, Numerical solution of initial boundary value problems involving Maxwell’s equations
in isotropic media, IEEE Trans. Antennas and Propagation, AP-16 (1966), pp. 302-307.

SIAM J. SCI. STAT. COMPUT. (C) 1992 Society for Industrial and Applied Mathematics
Vol. 13, No. 5, pp. 1123-1141, September 1992 005

ADAPTIVE APPROXIMATION BY PIECEWISE LINEAR
POLYNOMIALS ON TRIANGULATIONS OF SUBSETS OF

SCATTERED DATA*

SHMUEL RIPPAt

Abstract. Given a set V of data points in R2 with corresponding data values, the problem
of adaptive piecewise polynomial approximation is to choose a subset of points of V, to create a
triangulation of this subset, and to define a piecewise linear surface over the triangulation such that
the deviation of this surface from the data set is no more than a prescribed error tolerance. A
typical numerical scheme starts with some initial triangulation and adds more points (and triangles)
as necessary until the resulting piecewise linear surface satisfies the error bound. In this paper
two ingredients of such schemes are discussed. The first problem is that of constructing a suitable
triangulation of a subset of points. The use of data-dependent triangulations that depend on the
given function values at the data points is discussed, and some data-dependent criteria for optimizing
a triangulation are presented and compared to the Delaunay criterion leading to the well-known
Delaunay triangulation traditionally used for this purpose. The second problem addressed in this
paper is how to select a piecewise linear surface approximating the given data. A common approach
is to use an interpolating surface, i.e., to require that the surface interpolates the data at the nodes
of the triangulation. In this paper the least-square approximation to the data from the space of
piecewise linear polynomials defined over a triangulation of a subset of V is used. It is proved that
the matrix of the normal equations is always nonsingular and a bound for its condition number is
derived. This bound is relatively low, hence the least-square surface can be computed by solving the
normal equations, e.g., by the conjugate gradient scheme with no preconditioning. Various numerical
experiments demonstrate the improvement in the quality of the approximation when certain data-
dependent triangulations are used. Improvement is also reported when least-square surfaces are
compared to interpolating surfaces.

Key words, triangulation, data-dependent triangulation, piecewise linear interpolation, least-
squares fitting

AMS(MOS) subject classifications. 65D05, 65D10

1. Introduction. Scattered data interpolation in R2 consists of constructing a
function FI Fi(x, y) such that

1,--.,N,

where V {v (x, y) E R2 i 1, N} is a set of distinct and noncollinear data
points, and f- (fl,’", fN) is a (real) data vector.

The data vector f is regarded, in most cases, as being sampled from a (usually
unknown) surface F F(x, y), which we wish to approximate by the interpolating
surface FI. In many applications interpolation is not desired, e.g., when the data is
subject to errors or when there is much more data than is required to get a good ap-
proximation to the surface. In many cases, we would like to replace the interpolating
surface FI by an approximating function FA, which depends on far fewer parame-
ters than the number of data points. Interpolation and approximation methods are
reviewed by Barnhill [1], Franke [8], Powell [16], and Schumaker [19].

In this paper we discuss some methods of approximation using spaces of piecewise
polynomials defined on triangulations of subsets of V. Let be a polygonal domain

Received by the editors January 8, 1990; accepted for publication (in revised form) July 9, 1991.
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat

Aviv 69978, Tel Aviv, Israel. Present address, Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England.

1123

1124 SHMUEL RIPPA

such that V c f, and its boundary 0f is a polygon with vertices in V. We denote
by V(M) the set of all vertices of 012, M0 being the number of vertices.

DEFINITION 1.1. We call the set V(M) c V a proper subset of V if V(Mo) c
v(M).

When considering a proper subset V(M) of V that contains M points, we assume
for simplicity that the data points are numbered such that

V(M) {vi (xi, yi)}/M_- 1.

DEFINITION 1.2. Let V(M) be a proper subset of V. A set T {Ti} of nonde-
generate, open triangles is a v(M)-triangulation of 12 if:

V(M) is the set of all vertices of triangles in T;
Every edge of a triangle in T contains only two points from V(M), namely,

its endpoints;

T[Tj--, iTj.
When there is no risk of ambiguity, we use the term "triangulation" instead of

"v(M)-triangulation."
DEFINITION 1.3. The space S(T) is the space of piecewise polynomials of degree

d and smoothness r defined over T, i.e.,

S(T) {g e C() glT, e

where Hd is the space of all bivariate polynomials of total degree d. (See [20], [22],
and references therein for a comprehensive discussion of these spaces.)

In the present paper, we restrict ourselves to the approximation from the space
S (T) of piecewise linear functions defined on a v(M)-triangulation T of g/. Many of
the ideas are, however, applicable to more general spaces. As a basis to S(T), we
use the pyramidal functions

(1 (x, y, T), 2(x, y, T), CM(X, y, T)),

satisfying

(x, y, T) , 1Nj<_M.

The support of i is the cell fi, which is the union of all (closed) triangles in T having
v as a vertex.

The problem of adaptive approximation with piecewise linear polynomials is that
of selecting a proper subset V(M) of V and a v(M)-triangulation of Q such that
the deviation of the piecewise linear approximating surface, defined on that trian-
gulation, from the data set will be within a prescribed error tolerance e. A basic
scheme for adaptive approximation was proposed by various authors (see, e.g., Flo-
riani, Falcidieno, and Pienovi [5] and Lee and Schachter [11]). The algorithm begins
by constructing an initial proper subset V(M) consisting of the M0 points in 0f. In
the ith iteration a subset V(M) of M vertices, chosen during the previous iteration,
is given. The Delaunay v(M)-triangulation is constructed and the deviation of the
piecewise linear interpolator FT,I from the data points is computed. If the maximal
deviation is greater than e, then the point attaining the maximal deviation is added
to the subset V(M) resulting in a new proper subset V(M+I) of V. The iterations
continue until the maximal deviation is less than e. The output of the scheme is a

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1125

v(M)-triangulation T and an interpolating surface FT,f, which deviates from the data
set by no more than e.

In this paper we discuss and test two modifications of the basic scheme; namely,
the use of data-dependent triangulations instead of Delaunay triangulations, and the
use of least-square surfaces instead of interpolating surfaces.

One important question is how to select a proper v(M)-triangulation T of . The
standard approach is to use the constrained Delaunay triangulation [2], [5]. A different
approach, recently suggested in [3], is that of data-dependent triangulation. The basic
idea is to use triangulations that depend on the data vector f rather than triangula-
tions that are constructed by geometrical criteria that consider only the locations of
the data points. The numerical experiments presented in [3] demonstrate that inter-
polating surfaces defined over data-dependent triangulations provide a considerably
better approximation to the underlying surface F than interpolating surfaces defined
over the Delaunay triangulation. Further studies on this matter are presented in [14]
and [18]. In 2, two data-dependent criteria and the Delaunay criterion for optimizing
a v(M)-triangulation are presented together with an algorithm for the construction
of a locally optimal triangulation. We note that the LS criterion that is described in

2 was independently suggested and tested by Quak and Schumaker [15].
The interpolating surface FT,f is defined by

M

FT,f(X, y) fii(x, Y, T),
i--1

and it interpolates the data vector f at the nodes of V(M) i.e.,

F(x ,

The interpolating surface is easily constructed but it is obviously not the best ap-
proximation to the data set, since the values of F on the set V\V(M), are not used
in the definition of FT,f. A better alternative is to consider the least-square surface
UT,f(x, y), which minimizes the quantity

N

E(g) (fi g(xi, yi))2
i--1

among all functions g E S(T). In 3, we show that the above least-square problem
has a unique solution and that the matrix of the normal equations has a relatively low
condition number and a sparse structure, which can be exploited to develop efficient
schemes for the solution of the normal equations.

In 4, the basic adaptive scheme is reformulated and several variants are presented
and compared numerically to the basic scheme. The numerical comparisons, involving
various test functions, demonstrate that significant improvement in the performance
of the scheme is achieved when using data-dependent triangulations and/or least-
square approximation. This means that for a prescribed error tolerance e fewer points
are needed to represent the surface or, alternatively, for the same number of degrees of
freedom, many more accurate approximations of the underlying surface are obtained.

2. Data-dependent triangulation of a subset. Given a proper subset V(M)

of V, we construct a v(M)-triangulation of . There are many ways to triangulate a
set of data points, and we look for a triangulation that is optimal in some sense. The

1126 SHMUEL RIPPA

Delaunay triangulation has the property that it maximizes, over all possible triangu-
lations, the minimal angle in a triangulation [2], [5], [10], [11], [21], [24]. In [3] the
concept of data-dependent triangulation was introduced and it was shown, by various
numerical examples, that data-dependent triangulations are superior to the Delaunay
triangulation for piecewise linear interpolation schemes defined on triangulations.

In this section we discuss data-dependent (v(U)-)triangulation of 12. Data-
dependent triangulations are chosen to be optimal with respect to a given data-
dependent criterion. A given criterion selects a preferred triangulation from among
several alternatives, thus defining an ordering on the set of all triangulations, and we
use the notation T < T to denote that the criterion prefers T to T.

In the current investigation, we have considered two data-dependent criteria for
optimizing a v(U)-triangulation. The first criterion tries to minimize the sum of
square errors between the approximating function and the data vector f. The second
criterion is taken from [3] and is one of the more successful criteria discussed there.

To introduce these criteria we need some notations: Let T() be an initial V(u)-

triangulation, and let WT(O ,I E S01(T(0)) be an approximating function, e.g., WT(O ,f
might be the interpolating surface FT(O),I or the least-square surface UT(O),I (see the
Introduction). We define the coefficient vector as

where

Wi WT(o),f(Xi, Yi),

and on any other v(M)-triangulation T, we consider the function FT, interpolating
the vector w, i.e.,

FT,(Xi, yi) Wi

Of course, FT(O), WT(o),f.
The least-square (LS) criterion. By this criterion, triangulation T is pre-

ferred to T if E(FT,,) < E(FT,), where

N

E(FT,) (f FT,(x, y))2.
i--1

This criterion was also suggested by Quak and Schumaker [15].
The angle between normals (ABN) criterion. This is one of the more

successful criteria described in [3]. To each interior edge e of T, the ABN cost function
s s(FT,, e) is assigned, measuring the angle between the two normal vectors to the
planes defined in the two adjacent triangles having e as a common edge. The cost of
an entire triangulation T is then defined by

R(FT,,o) [s(FT,, e)l,
all interior edges e

and the ABN criterion prefers triangulation T’ to T if R(FT,,) < R(FT,w).
The third criterion considered here is a purely geometrical criterion, which yields

the Delaunay triangulation.

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1127

FIG. 1. Two triangulations of a convex quadrilateral.

The Delaunay criterion. For each triangle Ti E T a value ai, which is the
minimum of the three interior angles of Ti, is assigned. The vector NT is a vector
of length t (the number of triangles in a triangulation T) containing the values a.
Furthermore, suppose that NT is ordered in a nondecreasing manner. The Delaunay
criterion (or MaxMin angle criterion) imposes the following ordering on triangulations:
T < T means that NT, is lexicographically larger than NT.

The Delaunay triangulation, which is globally optimal according to the Delaunay
criterion, is a well-understood triangulation of a set of points and many efficient algo-
rithms for its construction exist (see, e.g., [10], [11], and [20] and references therein).
We do not know of any efficient schemes for the construction of triangulations that
are globally optimal according to the LS or ABN and, in this case, we are content
with locally optimal triangulations, a notion we now define. Let T be a triangulation
of , e an internal edge of T, and Q a quadrilateral formed from the two triangles
having e as a common edge. If Q is strictly convex, then there are two possible ways
of triangulating it (see Fig. 1).

DEFINITION 2.1. An edge e is called locally optimal if one of the following
conditions holds:

1. The quadrilateral Q is not strictly convex;
2. The quadrilateral Q is strictly convex and T _< T where T is obtained from

T by replacing e by the other diagonal of Q.
DEFINITION 2.2. A locally optimal triangulation of is a triangulation T in

which all edges are locally optimal.
The term "data-dependent triangulation" frequently replaces the term "locally

optimal triangulation of " in cases where the triangulation criterion is data depen-
dent.

Locally optimal triangulations are constructed by the local optimization proce-
dure (LOP)of Lawson [10].

ALGORITHM 2.1 (LOP).
1. Construct an initial v(M)-triangulation T of .
2. As long as T is not locally optimal:

choose an interior edge e that is not locally optimal and swap the
edge: Replace it by the other diagonal of Q.

Each time an edge swap occurs, the resulting triangulation is strictly better with
respect to the triangulation criterion. Since the number of triangulations of is
finite, the LOP converges, after a finite number of edge swaps, to a locally optimal
triangulation. The locally optimal triangulation obtained by the LOP may depend
on the specific order in which edges are swapped. Different ordering strategies are

1128 SHMUEL RIPPA

presented and compared in [4]. We note that in the case of the Delaunay criterion,
the LOP always converges to a globally optimal triangulation independently of the
order of edge swaps (see, e.g., [10]).

3. The least-square problem. In this section we discuss the least-square prob-
lem in the space SI(T) of piecewise linear functions defined over a v(M)-triangulation
T of f. The problem is to find a function

M

UT,f(x, y) uii(x, y, T) E S (T)
i----1

such that the sum of squares of the deviation from all data values

N

j----1

is minimized.
In matrix notations we look for a vector u (ul, u2,’", UM) such that

IIf Aull2 min IIf- Avllu,
vERM

where A is the N M rectangular matrix

A (aij} (j(xi,y)}, i--1,...,N, j=I,...,M.

An equivalent formulation is to find a solution vector u to the normal equations

(1) Bu=b,

where B ATA and b ATf. System (1) is known to have at least one solution.
We show that, in fact, the matrix B is of full rank.

THEOREM 3.1. The system of equations (1) is nonsingular for any configuration
of data points V and any selection of a proper subset V(M) of V.

Proof. We prove the theorem by using a lower bound for the minimal singular
value amin(A) of A (i.e., the minimal eigenvalue of (ATA)I/2). A convenient lower
bound is given by Johnson [9]:

1
M

rmin(A > min lal- (layl + lal)
I<_j<_M

i=1

Since the points of V were numbered such that

V(M) (vi, i 1,..., M},

we have, by the choice of the basis functions 1,"’, CM, that

aij 5, 1 < i,j < M,

and thus from (2) we conclude that

(3) (Ymin(A) >_ 1,

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1129

and the theorem is proved.
The solution of the normal equations is usually considered a bad alternative to

solving the least-square problem, as these equations very often tend to become ill
conditioned. It is interesting, therefore, to derive an upper bound for the condition
number of the matrix B of the normal equations.

The spectral condition number of B is given by

cond(B) [IBl[2. lIB-Ill2, where IIBII2 -amax(B)
and amax(B) is the largest singular value of B.

THEOREM 3.2. Let be the union of all (closed) triangles having a vertex at the
point v i 1,..., M, and let N be the number of data points from V in the interior

of then

cond(B) _< Nmax max N.
I<i<M

Proof. From the definition of B and (3) we conclude that

[[B_1112 1 =(1)1/2

amin(B) amin(A)
_< 1,

and thus

cond(B) _< IIBII2.
The estimation of liBII is done by using the well-known bound

IIBll2 _< ([]Bll- I[Blloo)/2

where

M

j=l

and

M

i=1

Since B is symmetric, IIBII1--IIBIIoo and IIBII. < IIBIIoo.
n the following, we prove that lBIIoo _< Nmax. We consider the ith row of B,

i.e.,

N

Bq (x8, ys, T)Oq(x, y, T),
s--1

Since a data point vs V contributes to the ith row only if it is inside the cell 12i, we
have that

Bq i(x, ys, T)Oq(X, y, T), q 1,..., M.
(xs,ys)Eg

1130 SHMUEL RIPPA

Let v8 fti, s = i be some point from V. We denote by vi, vj(8) and vk(s) the vertices
of the triangle from T containing v (if v lies on an edge of two triangles in ft, we
assign it arbitrarily to one of the triangles). The point v contributes only to the
elements Bi, Bj(s), and Bk(of B. We note also that i(xs, y, T), ()(xs, Ys, T),
and Ck(s)(x,y,T) are just the barycentric coordinates of vs with respect to the
triangle/vivj()vt(s); hence

(x8, y, T) + ()(x, y, T) + k(8)(x, y, T) 1,

and the contribution of v to the sum

M M

q--1 q--1

(x,ys,T) + i(x,y,T)y()(x,y,T)
+ i(xs, Ys, T)k()(xs, Ys, T) i(x, y, T).

Summing over all contributions of points inside the cell fi, we get that

M

q--1 (xs,ys)EFti

i(xs, y, T) <_ Ni,

and from the definition of IBII we obtain the required upper bound:

I[Bl[o <_ Nmax max N.
I<i<M

Using the above upper bound, we conclude that

cond(B) _< IIBll2 IIB[Ioo Nmax,

and the proof of the theorem is completed. [:]

The fact that, in the worst possible case, the condition number of B depends
linearly on the number of data points N, and is in fact much smaller in most cases,
suggests that the solution of the normal equation is a practical way of solving the least-
square problem. Of special interest are methods that take account of the sparsity and
the special structure of B.

The storage requirements for the matrix B are very modest, as it is a sparse
matrix that has a nice structure: any elements of Bi O, i j correspond to an
edge of the triangulation connecting the vertices v and vj. Thus the nonzero By’s
can be stored in an array of Me places where Me denotes the number of edges in
the v(M)-triangulation T. The diagonal elements Bi can be stored in an additional
array of M places. Since Me _< 3M, the total memory requirement for the storage
of the matrix B is 4M places at most. The structure of B can be used to derive
efficient numerical schemes for the solution of the normal equations. In our tests we
solved those equations with the conjugate gradient (CG) scheme [23, p. 572]. For its
computation, the CG algorithm uses only operations of multiplications of vectors in
RM by the matrix B and scalar products of vectors in RM. The sparsity of B is
exploited by writing an efficient code for multiplication of a vector in RM by B.

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1131

4. Numerical experiments with the COMPRESS scheme.

4.1. The COMPRESS scheme. The modified adaptive approximation scheme
COMPRESS, which is a slight generalization of the basic scheme presented in [5] and
[11], is formulated in the following algorithm.

ALGORITHM 4.1 (COMPRESS).
1. Let t be a region with a polygonal boundary 0gt consisting of M0 vertices

from V.
Set M -- M0 and let V(M) c V be the set of the M0 vertices of OFt.
Construct an initial v(M)-triangulation T of it.

2. Construct a locally optimal v(M)-triangulation T by the LOP scheme (Al-
gorithm 2.1) with respect to a chosen criterion starting from the given trian-
gulation T.
Set T - T.

3. Construct WT,f, an approximating surface to the data vector f from S(T).
Compute the errors E(WT,f --If WT,y(x, Y)I, i----- 1,’’., N and let

E max E(WT,I).
I<i<N

4. If E <_ e end the procedure; else go to step 5.
5. Select a point vk (xk,yk) E V\V(M) for which Ek(WT,y) is maximal and

add it to v(M):

6. Update the triangulation T to include the point vk in it, and attain a V(M+I)-

triangulation.
Set M - M + 1 and go to step 2.

The above algorithm in fact defines a family of schemes depending on the selec-
tion of the approximating function WT,I and on the triangulation criterion used for
optimizing a triangulation during the LOP step. In the basic scheme [5], [11], the
approximating surface was taken to be the interpolating surface FT,f, and the LOP
step was performed with the Delaunay criterion. In the following we describe the
testing procedure and review some variants of the scheme that we have tested.

4.2. The testing procedure. In the numerical experiments a set V of data
points, uniformly placed over the unit square, was constructed, i.e.,

,0 _< i,j <_ N,N- 30}.
The data vectors f (f1,"", fN) were obtained by evaluating five test functions

FI FI(x,y) at the data points. Our experiments were performed with several
data sets, including scattered data sets. These scattered test sets were generated
from regular uniform grids by randomly moving the points of the regular grid by a
distance not exceeding hi4, where h is the length of the grid cell. The results of those
experiments, obtained using the data set V, were similar to the results presented in
this section.

1132 SHMUEL RIPPA

FIG. 2. Perspective view and level curves of F2.

All of the test functions are defined on the unit square. The first two test functions
were taken from Franke [7]:

Fl "75exp (-(9x- 2)2 + (9y-

+’75exp(-(9x+1)2499y+l)10
+’5exp(-(9x-7)2+(9y-3)2)4

F2
tanh(9y 9x) + 1.

9

The function F1 is composed of two Gaussian peaks and a sharp Gaussian dip. The
function F2 simulates a sharp rise running diagonally across the unit square (Fig. 2).

The third test function is taken from Ritchie [17]:

1 ify- _> ,
12(y-) if0_<y-_< ,F3 (cos(4rr(, y)) + 1)/2 if r(, y) <_ ,

0 otherwise,

where

12(, u) () + (u)
2.1x- 0.1.

This function represents a "hill" on a plane and a ramp leading to another plane
(Fig. 3). It is a function with discontinuous first derivatives.

The last two test functions were taken from Lyche and Morken [12]:

F4 tanh(-3g(x, y)) + 1, g(x, y) 0.595576(y + 3.79762)2 x 10,

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1133

FIG. 3. Perspective view and level curves of F3.

FIG. 4. Perspective view and level curves of F5.

x= (1_) + 1000(1 x/x(1
x 6 y 6

/ (1-
Function F4 resembles F2. Its contour lines are the parabolas 3g(x, y) const, while
those of F2 are the straight lines y x const. Function F5 is a polynomial surface
of degree 12 (Fig. 4).

It is convenient, during the numerical experiments, to use the number of points
in the subset as a stopping criterion for the COMPRESS scheme, i.e., the iterations
stop when the subset contains a predetermined number of points (and not when the
deviation of the approximating surface at the data points is less than e). For each
of the five data sets we applied each variant of the COMPRESS algorithm twice for
generating the final subsets V(M), with M 25 and M 50.

On each of the resulting subsets, with its corresponding triangulation T, the

1134 SHMUEL RIPPA

TABLE 1
Mean errors using a subset of 25 points.

Trng. criterion Approximation
Delaunay Interpolation
Delaunay Least squares
LS Interpolation
LS Least squares
ABN Interpolation
ABN Least squares
Hybrid Interpolation
Hybrid Least squares

F1
0.02237
0.01890
0.03016
0.02509
0.04829
0.03750
0.02237
0.01890

F2
0.00544
0.00357
0.00106
0.00055
0.00139
0.00073
0.00107
0.00059

F3
0.03662
0.02737
0.05584
0.05022
0.05013
0.06127
0.03662
0.02737

TABLE 2
Max errors using a subset of 25 points.

F4
0.04311
0.01878
0.00939
0.00491
0.01072
0.00558
0.01326
0.00654

F5
0.02685
0.01331
0.02114
0.01321
0.02036
0.01509
0.02006
0.01203

Trng. criterion Approximation
Delaunay Interpolation
Delaunay Least squares
LS Interpolation
LS Least squares
ABN Interpolation
ABN Least squares
Hybrid Interpolation
Hybrid Least squares

F1 F2
0.12966 0.03870
0.10373 0.02920
0.19905 0.00757
0.21662 0.00630
0.23160 0.00938
0.20189 0.00668
0.12966 0.00757
0.10373 0.00659

F3
0.28225
0.26520
0.71336
0.71867
0.64746
0.54788
0.28225
0.26520

F4
0.30443
0.24924
0.09526
0.06533
0.20181
0.16919
0.20181
0.17597

F5
0.13794
0.08270
0.11527
0.10124
0.08931
0.07955
0.08359
0.06952

TABLE 3
Mean errors using a subset of 50 points.

Trng. criterion Approximation F1
Delaunay Interpolation 0.01343
Delaunay Least squares 0.01007
LS Interpolation 0.01784
LS Least squares 0.01390
ABN Interpolation 0.01798
ABN Least squares 0.01353
Hybrid Interpolation 0.01343
Hybrid Least squares 0.01007

F2
0.00238
0.00114
0.00028
0.00021
0.00035
0.00023
0.00044
0.00026

F3
0.01889
0.01560
0.04202
0.04106
0.02007
0.01737
0.01889
0.01560

F4
0.01567
0.00728
0.00225
0.00114
0.00239
0.00109
0.00273
0.00121

F5
0.01401
0.00675
0.00826
0.00547
0.00837
0.00589
0.00727
0.00500

piecewise linear approximating surface WT,f is constructed, and its deviation from
the test function FI (generating f) is computed on a grid of 33 33 nodes placed
uniformly over the unit square. The mean and the maximum values of these errors
are tabulated and serve as a primary criterion for evaluating the various variants of
the scheme. We note that this grid size was taken from the experiments in [7], and
we found it satisfactory compared to a finer set of points.

4.3. Review of the numerical results. There are basically two alternatives
for the use of least-square surfaces within the COMPRESS scheme. First, it is possible
to perform all steps of the scheme using the interpolating surface FT,j, and to compute
the least-square surface UT,f only once upon leaving the routine. This strategy has
the advantage of being economical in computer time and was found in our testing
to be the most reasonable strategy. Only variants of the COMPRESS scheme using
this strategy are presented in Tables 1-4. It is very clear from the tables that the
final least-square surfaces usually provide better approximation to the selected test
functions than the interpolating surfaces. The reduction of the errors is sometimes
very significant, e.g., function F4 in Tables 1 and 3. The solution to the normal
equations in our tests is computed by using conjugate gradient (CG) iterations with

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1135

TABLE 4
Max errors using a subset of 50 points.

Trng. criterion Approximation
Delaunay Interpolation
Delaunay Least squares
LS Interpolation
LS Least squares
ABN Interpolation
ABN Least squares
Hybrid Interpolation
Hybrid Least squares

F1
0.05936
0.04997
0.19905
0.21286
0.10004
0.11819
0.05936
0.04997

F2
0.01729
0.01303
0.00138
0.00116
0.00268
0.00262
0.00268
0.00267

F3
0.09281
0.08887
0.78815
0.77550
0.12464
0.12563
0.09281
0.08887

F4 F5
0.14981 0.05700
0.10151 0.03231
0.03800 0.08893
0.03892 0.09088
0.02407 0.03299
0.02609 0.02607
0.02407 0.03299
0.02435 0.02566

the values of the data vector flY(M) taken as an initial guess. Since the condition
number of the normal equations is relatively low, no preconditioning is required for
the CG scheme, and since the matrix of the normal equations is sparse and structured,
the CG code is very efficient. The condition number of the normal equations, for the
model problems displayed in the tables, was between 3 and 65, and the CG scheme
for the solution of these equations took between 3 and 13 iterations to converge.

A second alternative is to use the least-square surface as the approximating sur-
face WT,I in various stages of the COMPRESS algorithm. The use of the least-square
surface during the triangulation optimization (LOP) step resulted in slightly better
locally optimal triangulations when the triangulation criterion was data dependent.
The least-square surfaces may also be used to compute the deviation from the data
set. Since the least-square error E(UT,I) is usually smaller than the interpolation
error E(FT,I), a faster termination of the COMPRESS scheme results when using
the former error. These advantages are not, however, enough to justify the extra
computation needed for the generation of the least-square surfaces during interme-
diate stages of the COMPRESS scheme. We note that our numerical experiments
indicate that it is not advisable to select the new point to be inserted (step 5 of
the COMPRESS algorithm) using the errors Ei(UT,I). Therefore, the selection step
should always be carried out using the interpolation errors Ei(FT,f), even if other
steps of the COMPRESS scheme make use of the least-square surface. To conclude,
we do not recommend the use of the least-square surface in intermediate steps of the
COMPRESS algorithm when the data is exact.

If the data is subject to errors, it is recommended that all steps of the COMPRESS
algorithm using the least-square surface instead of the interpolating surface be carried
out. We note that the normal equations change only slightly when an edge swap occurs
during triangulation optimization (LOP). The updating of the matrix of the normal
equations is therefore efficient, and the least-square solution for the new triangulation
after an edge swap can be computed by using the CG scheme taking the previous
solution as an initial guess. We do not present experiments with noisy data in this
paper.

We have tested the COMPRESS scheme with the Delaunay, LS, and ABN criteria
(presented in 2) for optimizing a triangulation. The Delaunay criterion, used as the
only criterion for the basic scheme in [5] and [11], usually results in locally optimal
triangulations that are worse, i.e., the corresponding mean/max errors are larger, than
triangulations corresponding to the LS or ABN criteria. However, at least one case
was found, namely, test function F1, where the Delaunay criterion led to a better
triangulation than the LS and ABN criteria.

The LS criterion often leads to a very good locally optimal triangulation, i.e.,

1136 SHMUEL RIPPA

the interpolating/least-square surface defined over the corresponding locally optimal
triangulation provides a good approximation to the test functions. However, this cri-
terion has obvious limitations: Suppose that T and T are two triangulations that
differ only in the way a convex quadrilateral Q is triangulated. If no data point
from V lies inside Q, then no triangulation is preferred by the criterion. Thus it is
likely that the criterion performs well only when there are enough data points inside
each triangle of the triangulation. In the numerical experiments, the LS criterion
sometimes seems to produce locally optimal triangulations containing several "badly"
shaped triangles, i.e., they are long and thin and have their long side in the direction
of high curvature of the underlying test function. The number of these triangles is
small, but they effect the quality of approximation, especially when the errors are
measured in the max norm; see, e.g., functions F1 and F5 in Table 4. In Fig. 14,
the triangulation of a subset of 50 points generated by the COMPRESS scheme with
the LS criterion for data sampled from test function F5 is displayed. Figure 14 also
displays the level curves of the piecewise linear interpolating surface defined on this
triangulation. The effect of the long thin triangles on the quality of the approxima-
tion is clearly understood: The resulting locally optimal triangulation contains some
long thin triangles resulting in a very poor approximation to the test function in the
neighborhood of these triangles. The badly shaped triangles, once created, could not
be optimized in subsequent iterations since they did not contain any data point. This
behavior of the LS criterion is the reason we do not recommend, in general, the use
of the LS criterion for optimizing a triangulation in the LOP step of the COMPRESS
algorithm.

The ABN criterion performs nicely in most cases. Exceptions are some cases when
the number of points in the subset is too small to properly reflect the characteristics of
the data set; see, e.g., some cases in Tables 1 and 2. This phenomenon usually happens
in the first COMPRESS iterations, and is corrected as more points are added to the
subset.

An idea to improve the performance of the scheme is to use a hybrid scheme
that switches, in various stages of the COMPRESS iterations, between the Delaunay
triangulation TD and the ABN triangulations TA, selecting the one for which the
corresponding interpolating (or least-square) surface has the least deviation from the
data set (e.g., the ABN triangulation is selected if E(FTA,I’) is smaller than E(FTD,I’)).
The hybrid criterion was found to perform rather well overall and is thus recommended
for use in practical applications.

The results of the numerical experiments with the COMPRESS algorithm using
the Delaunay, LS, ABN, and hybrid triangulation criteria are displayed in Tables
1-4. The tables show, for each of these variants, the deviation of the interpolating
surface FT,I’ and the least-square surface UT,I’ (for the same final v(M)-triangulation
T) from the test function. The variants of the COMPRESS algorithm displayed in
the tables use the interpolating surface FT,I’ as the approximating surface WT,I’ in all
intermediate steps of the algorithm.

Figures 5-13 display the triangulations of subsets containing 50 points that were
generated by the COMPRESS scheme. The COMPRESS scheme was applied with
two triangulation criteria: (a) the Delaunay criterion, resulting in a Delaunay tri-
angulation TD of the subset; and (b) the hybrid criterion, resulting in the hybrid
triangulation TH. The figures clearly demonstrate the success of the COMPRESS
scheme in adapting to the behavior of the underlying test function, i.e., more points are
spread by the scheme in areas of high curvature of the test function. It is clear that the

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1137

hybrid triangulation results in a better approximation to the test functions than the
Delaunay triangulation. We note that the hybrid triangulations produce sometimes
long and thin triangles, which are traditionally considered bad for approximation.
Such triangles, which also appear in the experiments in [3], are very desirable if their
long side is positioned in the direction of low curvature of the underlying function [13],
[18]. The resulting triangulations provide better approximation to the test functions
than the nearly equiangular triangulations provided by the Delaunay triangulation.

FIG. 5. Subset triangulation: Delaunay TD (left) and hybrid TH (right), data vector f sampled
from test function F2.

FIG. 6. Level curves of FTD,S qeft) and FTH,S (right).

1138 SHMUEL RIPPA

FIG. 7. Level curves of UTD,f (left) and UTH,f (right).

FIG. 8. Subset triangulation: Delaunay TD (left) and hybrid TH (right), data vector f sampled
from test function F3.

FIG. 9. Level curves of FTD,f qeft) and FTH,I (right).

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1139

FIG. 10. Level curves of UTD,$ qeft) and UTH,$ (right).

FIG. 11. Subset triangulation: Delaunay TD (left) and hybrid TH (right), data vector f sampled
from test function F5.

FIG. 12. Level curves of FTD,f qeft) and FTH,f (right).

1140 SHMUEL RIPPA

FIG. 13. Level curves of UTD,f (left) and UTH,f (right).

FIG. 14. Subset triangulation TL and level curves of FTL,I, where f is sampled from test
function F5.

5. Conclusions. In this paper, we have considered a scheme for generating a
piecewise linear surface defined on a triangulation of a chosen subset of the set V
of data points. It is demonstrated by a variety of numerical examples that the basic
scheme, suggested in [5] and [11], can be improved significantly when the triangulation
is optimized using a data-dependent criterion, and when least-square surfaces are used
for approximation of the data values on the final triangulation. In practical terms, the
improved scheme uses less data points from the set V to construct an approximating
surface satisfying a prescribed error tolerance at all the data points. It is also proved
that the condition number of the normal equations for the solution of the least-square
problem is relatively low, so the solution of the normal equations can be considered
a practical way to obtain the least-square surface. The ideas presented in this paper
were formulated for piecewise linear surfaces but most of them can be extended to
piecewise polynomials of higher degree. The use of piecewise polynomial spaces for
the approximating surfaces in this scheme is currently under investigation.

ADAPTIVE PIECEWISE LINEAR APPROXIMATION 1141

Acknowledgments. I thank my advisors, Nira Dyn and David Levin of the
School of Mathematical Sciences, Tel Aviv University, for their useful discussions and
suggestions.

REFERENCES

[1] R. E. BARNHILL, Representation and approximation of surfaces, in Mathematical Software
III, J. R. Rice, ed., Academic Press, New York, 1977, pp. 68-119.

[2] L. P. CHEW, Constrained Delaunay triangulation, Algorithmica, 4 (1989), pp. 97-108.
[3] N. DYN, D. LEVIN, AND S. RIPPA, Data dependent triangulations for piecewise linear

interpolation, IMA J. Numer. Anal., 10 (1990), pp. 137-154.
[4] , Algorithms for the Construction of Data Dependent Triangulations, in Algorithms

for Approximation II, J. C. Mason and M. G. Cox, eds., Chapman and Hall, London,
1990, pp. 185-192.

[5] L. DE. FLORIANI, B. FALCIDIENO, AND C. PIENOVI, Delaunay-based representation of
surfaces defined over arbitrarily shaped domains, Comput. Vision, Graphics and Image
Process., 32 (1985), pp. 127-140.

[6] R. FRANKE, Scattered data interpolation: Tests of some methods, Math. Comp., 38 (1982),
pp. 181-200.

[7] , A critical comparison of some methods for interpolation of scattered data, Rep.
NPS-53-79-003, Naval Postgraduate School, Monterey, CA, 1979.

[8] , Recent advances in the approximation of surfaces from scattered data, in Topics
in Multivariate Approximation, C. K. Chui, L. L. Schumaker, and F. I. Utreras, eds.,
Academic Press, New York, 1987, pp. 79-98.

[9] C. R. JOHNSON, A Gersgorin-type lower bound for the smallest singular value, Linear
Algebra Appl., 112 (1989), pp. 1-7.

[10] C. L. LAWSON, Software for C interpolation, in Mathematical Software III, J. R. Rice,
ed., Academic Press, New York, 1977, pp. 161-194.

[11] D. T. LEE AND B. J. SCHACHTER, Two algorithms for constructing a Delaunay triangu-
lation, Internat. J. Comp. Inf. Sci., 9 (1980), pp. 219-242.

[12] T. LYCHE AND g. MORKEN, Knot removal for parametric B-spline curves and surfaces,
Comput. Aided Geom. Design, 4 (1987), pp. 217-230.

[13] E. J. NADLER, Piecewise linear approximation on triangulations of a planar region, Ph.D.
thesis, Division of Applied Mathematics, Brown University, Providence, RI, May 1985.

[14] E. QUAK AND L. L. SCHUMAKER, Cubic spline fitting using data dependent triangulations,
Comput. Aided Geom. Design, 7 (1990), pp. 293-301.

[15] , Least squares fitting by linear splines on data dependent triangulations, in Curves
and Surfaces, P. J. Laurent, A. Le Mhaut and L. L. Schumaker, eds., Academic
Press, Boston, 1991, pp. 387-390.

[16] M. J. D. POWELL, Radial basis functions for multivariable interpolation: A review, in
Algorithms for Approximation, J. C. Mason and M. G. Cox, eds., Clarendon Press,
Oxford, U.K., 1987, pp. 143-167.

[17] S. I. M. RITCHIE, Surface representation by finite elements, Master’s thesis, Department
of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, 1978.

[18] S. RIPPA, Piecewise linear interpolation and approximation schemes over data dependent
triangulations, Ph.D. thesis, School of Mathematical Sciences, Tel Aviv University,
Tel Aviv, Israel, 1990.

[19] L. L. SCHUMAKER, Fitting surfaces to scattered data, in Approximation Theory II, G. G.
Lorentz, C. K. Chui, and L. L. Schumaker, eds., Academic Press, New York, 1976,
pp. 203-268.

[20] , Numerical aspects of spaces of piecewise polynomials on triangulations, in Algo-
rithms for Approximation, J. C. Mason and M. G. Cox, eds., Clarendon Press, Oxford,
U.K., 1987, pp. 373-406.

[21] , Triangulation Methods, in Topics in Multivariate Approximation, C. K. Chui, L.
L. Schumaker, and F. I. Utreras, eds., Academic Press, New York, 1987, pp. 219-232.

[22] , Constructive aspects of spaces of bivariate piecewise polynomials, in The Mathe-
matics of Finite Elements and Application VI, J. H. Whiteman, ed., Academic Press,
London, 1988, pp. 513-520.

[23] J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, Springer-Verlag, New
York, Heidelberg, Berlin, 1980.

[24] D. F. WATSON AND G. M. PHILIP, Survey-systematic triangulation, Comput. Vision,
Graphics and Image Process., 26 (1984), pp. 217-223.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1142-1150, September 1992

() 1992 Society for Industrial and Applied Mathematics
006

THE MODIFIED TRUNCATED SVD METHOD
FOR REGULARIZATION IN GENERAL FORM*

PER CHRISTIAN HANSENt, TAKASHI SEKII:, AND HIROMOTO SHIBAHASHI

Abstract. The truncated singular value decomposition (SVD) method is useful for solving the
standard-form regularization problem: min Ilxl12 subject to min IIAx- bl12. This paper presents
a modification of the truncated SVD method, which solves the more general problem: min IlL xl12
subject to min IIA x-bl12 where L is a general matrix with full row rank. The extra work, associated
with the introduction of the matrix L, is dominated by a QR-factorization of a matrix with dimensions
smaller than those of L. In order to determine the optimal solution, it is often necessary to compute
a sequence of regularized solutions, and it is shown how this can be accomplished with little extra
computational effort. Finally, the new method is illustrated with an example from helioseismology.

Key words, truncated SVD, discrete ill-posed problems, regularization

AMS(MOS) subject classifications. 65F30, 65F20, 65R20

1. Introduction. A variety of problems in astronomy, geodesy, image and signal
processing, and statistics lead to so-called discrete ill-posed problems when they are
solved numerically. By a discrete ill-posed problem we mean either a square or an
overdetermined system of linear algebraic equations, i.e., A x b or min IIA x bl12
whose coefficient matrix A is very ill conditioned in such a way that its singular values
decay rapidly to zero. Such discrete ill-posed problems often arise when one wants
to solve an underlying, continuous, ill-posed problem, typically a Fredholm integral
equation of the first kind. See [1, 26] and [9] for surveys of numerical aspects of
discrete ill-posed problems.

Discrete ill-posed problems cannot be solved by standard methods in numerical
linear algebra such as LU- or QR-factorizations due to the large condition number of
the matrix A (note that the condition number is the ratio between the largest and
the smallest singular value). However, the large condition number does not imply
that the problem cannot be solved, it merely implies that the standard methods are
not suited for solving the problem. Instead, a regularization method must be used to
"filter out" the parts of the solution corresponding to all the small singular values.

A widely used regularization method is the truncated singular value decomposition
(TSVD). This method amounts to truncating the singular value expansion of the
coefficient matrix A in such a way that the smallest singular values of A are discarded,
and then solving this modified least squares problem. The major advantage of using
the TSVD method is that the singular value decomposition (SVD) itself provides
important information about, and insight into, the discrete ill-posed problem. TSVD
is equivalent to Wikhonov regularization in standard form, min {[[Ax-b[[+ A2[]x[[2},
in the sense that for any truncation parameter in TSVD there exists a A such that
the solutions obtained by the two methods are close. Hence TSVD implicitly seeks
to minimize the norm of the solution. See [7] for more details.

Received by the editors January 21, 1991; accepted for publication July 10, 1991.
UNIoC (Danish Computing Center for Research and Education), Building 305, Technical Uni-

versity of Denmark, DK-2800 Lyngby, Denmark (tm+/-pch@ruli.tmi-c.dk).
Institute of Astronomy, University of Cambridge, The Observatories, Madingley Road, Cam-

bridge CB3 0HA, United Kingdom (sekii@starlink. astronomy, cambridge, ac.uk).
Department of Astronomy, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113,

Japan (shibahashi@dept. astron, s. u-tokyo, ac. jp).

1142

MODIFIED TRUNCATED SVD METHOD 1143

Although TSVD works well in some applications, there are other applications
that explicitly require the minimization of a seminorm of the solution IlL xl12 instead
of minimization of Ilxl12. The matrix L E pn (with p <_ n and with full rank) is
usually a discrete approximation to some derivative operator. Since the SVD of the
matrix A reveals so much information about the underlying ill-posed problem, we
are interested in an SVD-based method for treating regularization problems with a
general matrix L.

In this paper, we describe a new modified TSVD (MTSVD) method. This method
is an extension of the TSVD method and, in addition to the computation of the SVD
of the coefficient matrix A, it only requires a standard QR-factorization of a matrix
that appears during the algorithm. The basic idea was originally outlined in [12].
Here we derive an efficient and numerically stable algorithm for implementing the
MTSVD method that relies solely on standard linear algebra computations.

Our paper is organized as follows. In 2 we briefly summarize the TSVD method
and define the new MTSVD method. Sections 3 and 4 give important computational
aspects of computing the MTSVD solution and determining of the optimal trunca-
tion parameter. Finally, in 5 we give a practical example from helioseismology in
astrophysics, which illustrates the use of the method.

2. The MTSVD method. Let us first briefly summarize the properties of the
SVD of an m n matrix A (we assume for simplicity that m _> n). The SVD consists
of the following decomposition:

n

A E ui ai vT,
i=1

where the singular vectors are orthonormal, u/Tuj vTvj 5ij for i,j 1,..., n,
and the singular values ai are nonnegative and appear in nonincreasing order: al >_
a2 >_ >_ an _> 0. The TSVD of A is then defined as the rank-k matrix

k

(1) A u a vT,, k < n
i--1

obtained from A by neglecting its n- k smallest singular values. The TSVD solution
xk is defined in terms of Ak as the solution with minimum two-norm to the least
squares problem min IIAkx- bl12. In other words, xk solves the problem

(2) min Ilxl12, S { x [llA x bile min }.

It is straightforward to show that the TSVD solution defined by (2) can be written
in terms of the SVD as

k
+ + 0-(a) A U,

i--1

Here Ak+ denotes the pseudo-inverse of the matrix Ak [1, 4]. The TSVD solution xk
is a regularized solution [7]. The integer k is usually called the truncation parameter,
and the larger k is the larger I[xkll2 will be.

Let us now introduce the MTSVD solution XL,k as the solution to (2) with I[xll2
replaced by [IL x[12 i.e., XL,k solves the problem

(4) rain
xES

8 { x I[[Ak x bile min }.

1144 P.C. HANSEN, T. SEKII, AND H. SHIBAHASHI

Equation (4) is a natural generalization of (2), and the MTSVD solution XL,k is
obviously also a regularized solution.

In order to derive a formal as well as a computational expression for the MTSVD
solution, we first need to define the following two matrices:

(5) _=

It is also convenient to define the (n- k)x (n- k) diagonal matrix

(6)

consisting of the n- k smallest singular values of A. Then the MTSVD solution XL,k
can be expressed as follows.

THEOREM 2.1. Let Ak denote the TSVD of A, given by (1), and let Vk be given
by (5). Then the MTSVD solution to (4) can be written as

(7) XL t: (In Vt: n Vt: +n +At: b xt: Vk (L Yk)+L Xk,

where xk is the ordinary TSVD solution (3).
Proof. Following Elden [4, Thm. 2.1], the MTSVD solution can be written for-

mally as

XL,k (In (L (In A+ At:))+L) A+ b.

If we insert (1), (5), and (6) into this equation, use the relation In A+kAk VkV[,
and also use the fact that (L VkV[)+ Vk (L Vk)+, then we arrive at (7). The latter
equation is proved by verifying the four Penrose conditions [1, Remark 4.1] and using
the fact that VkTVk In-k.

Remark. In (7), the matrix (I- Vk (L Vk)+L)A+ is the so-called L-weighted
pseudo-inverse of Ak (cf. [4]).

3. Computational aspects. We emphasize that (7) should not be used for
computational purposes. However, it gives insight into the MTSVD solution. We see
that XL,k consists of two components: the ordinary TSVD solution xt: (3) minus a
"correction" vector in the null space of Ak given by Vk zt: Vt: (L Vk)+L Xk. We also
see that the vector zt: (L Yt:)+LXk is the solution to the following least squares
problem:

(8) min

This problem is most conveniently solved by means of a QR-factorization of the matrix
L Vt:, which ensures that zt: is computed in a numerically stable manner.

As we shall see in the next section, it is sometimes necessary to compute the
MTSVD solution XL,t: for several values of k, in order to determine the optimal
k. It is therefore important to solve the least squares problem (8) efficiently when
stepping through several values of k. Note that decreasing k simply adds more columns
to the left of L Vk, while a QR-factorization is easier to update when columns are
appended to the right. Hence we want to operate with the matrix L Vk Et:, where
Ek =-- antidiag(1,..., 1) is the (n- k) x (n- k) exchange matrix that reverts the
columns of L Vt:. Now let kmin denote the smallest desired truncation parameter and
partition the QR-factorization of L Vkmin Ekmin such that for any k > kmin we have
that

(9) (Lgkgk / [Vt:,""" Vkmin__l])"--(Qt:) 02)(kl) R12)0 R22

MODIFIED TRUNCATED SVD METHOD 1145

where Qk) E p(n-k) and Rkl (n-k)(n-k).
QR-factorization of L Vk Ek for k > kmin is given by

Then it is easy to see that the

such that Zk is given by Zk Ek (Rkl))-l(Qk))Txk. Using this "trick," it is straight-
forward to step through a sequence of different truncation parameters k without hav-
ing to compute a new QR-factorization for each k.

The complete algorithm for computing the MTSVD solution, including determi-
nation of the optimal truncation parameter k via inspection of the residual norm and
the solution seminorm, thus takes the following form:

ALGORITHM MTSVD

1
2
3
3.1

3.2
3.3
3.4
4

Compute the SVD of A and store UTb, , and V.
Form L VkminEkmin and compute its QR-factorization.
For all the required values of k:

Compute Xk and L Xk.

(()-I(Qk))TL x:Compute zk E 11
Compute IlnxL,kll2 and IIAXL,k- bl12 (see 4).
Use this information to choose the optimal k.

Compute XL,k Xk Yk Zk.

The computational overhead associated with computation of the MTSVD so-
lution, compared to that of computing the TSVD solution, is dominated by the

2QR-factorization, which requires approximately 2 p (2 n2 3 n kmin - kmin) flops, in-
cluding formation of the matrix L Vmin. This overhead should be compared to the
computational effort of computing the SVD of A, which amounts to approximately
(2 m+ 11 n) n2 flops [6, 5.4.5]. Hence even for moderate values of m, the overhead as-
sociated with computing the MTSVD solution is only a fraction of that of computing
the SVD of A.

Whenever there is a distinct gap in the singular value spectrum of A, it is natural
to set the truncation parameter k in (1) equal to the numerical rank of A, i.e., such
that the gap appears between singular values ak and ak+l- In such situations a search
through several singular values of k is not required, and it is not even necessary to
compute the SVD of A. Instead, one can take advantage of the computationally much
less expensive rank-revealing QR-factorization of A, which is guaranteed to capture
the numerical rank k of A. By means of a rank-revealing QR-factorization, we can
easily compute a minimum-norm least squares solution as well as null-vectors of A
(analogous to the vectors in Vk). We will not pursue this aspect further here, but
instead refer to [2] and [3, 3] for theoretical and computational details.

4. Methods for choosing the regularization parameter. We now turn to
the determination of the appropriate truncation parameter k. Often the optimal value
of k is evident from a simple plot of the singular values ai and the corresponding
"Fourier coefficients u/Tb for 1,..., n. See [8] for more details on this approach
and why it works. If such a plot does not reveal the optimal truncation parameter,
we suggest two alternative methods. One is the generalized cross-validation method
discussed below, which requires computation of the norm of the residual vector cor-
responding to XL,k, i.e., IIA Xi,k bl12. In the other method, one plots the seminorm
of the solution IlL xi,kll2 versus the residual norm, and then chooses the k that corre-
sponds to a characteristic L-shaped "corner" of the (llAxi,k bl12 IlL x/,kll2)-curve.

1146 P. C. HANSEN, T. SEKII, AND H. SHIBAHASHI

For more details about this method for choosing k, as well as some alternative meth-
ods, we refer to [9, 6].

Both the solution seminorm IILXL,klI2 and the residual norm IIAxL,k 5112 can
be computed efficiently by means of the following expressions.

THEOREM 4.1. With the notation from (5), (6), and (9), the solution seminorm
and the residual norm are given by:

(10) IlL XL,ll I1(I, L Vk (L Vk)+)L

(11) IIAXL,k bll2 ([IU[b + k .ll + o)/,

where we have defined o-= (+ (uTb)2) 1/2.
Proof. It follows from (7) that IlL XL,kll2 is equal to the norm of the residual

vector in (8). Using the factorization (9) we then obtain (10). The residual norm
kis given by IIAxL,k bl12 IIAxk b- A Vk Zkll2. Since Xk -i=1 via-luTb =

k mAxk i= uub, we can write Axk b -UkU[b- i=+ uiub. Moreover,
A Vk Zk Uk z. The vector in+ uiub is obviously orthogonal to the vectors

UkU[b and Ukk Zk, and the residual norm is therefore given by []AXL,k- bl]

Since the seminorm of the MTSVD solution I]L XL,l[is simply the norm of the
residual vector in (8), it can be computed with little overhead. The quantities ub
are available from most SVD programs such that [A XL,k b][2 can be computed in
only O(m) flops. Both norms can therefore be computed very efficiently, so that it is
ey to monitor the (l[aXL,k --bll2, I[L xL,kll2)-curve during Algorithm MTSVD.

Next we consider the generalized cross-validation (GCV) method [5], [15]. To
summarize this method in general terms, let x A b denote the solution computed
by means of some regularization method with regularization parameter A. Then the
GCV method amounts to finding the regularization parameter A that minimizes the
GCV-function G(A), defined by

IIA x, bll
(trace (Im A A))2"

Here the matrix A AI is called the influence matrix. For MTSVD we obtain the
following simple expression.

THEOREM 4.2. The GCV-function for MTSVD is given by

(12) C(]) IIAXL,k bll
(.- k)

Proof. In the MTSVD solution the regularization parameter is A k, and from (7)
we see that A is the L-weighted pseudo-inverse of A, i.e., AI (In--Vk (L Vk)+L) A+k
Hence if we define k --: diag(a,..-, a), k --: Iv1,’" ,v], and rk :_ [u,..., u],
then the influence matrix for MTSVD is given by

A AI A (In Vk L Vk +L A+k A A+k A Vk L Vk +L A+

MODIFIED TRUNCATED SVD METHOD 1147

From this relation, it immediately follows that trace (Im A AI) m- k, and we
therefore obtain (12). [:]

We suggest that this easily computed function be used in the above Algorithm
MTSVD, in addition to monitoring the (llAxL,k-bll2, IlL XL,k 112)-curve as a criterion
for choosing the optimal k.

5. An application from helioseismology. In this final section, we illustrate
the use of the MTSVD method by applying it to an inverse problem from helioseis-
mology in astrophysics. The sun is oscillating in millions of global eigenmodes, and
by using information from these eigenmodes we are able to explore the internal struc-
ture of the sun. See [13] for an introductory review of helioseismology and [14] for
more details. The fundamental equation in helioseismology is the following Fredholm
integral equation of the first kind:

Knlm (r, O) gt(r, O) dO dr 5Wnl,.

Here the unknown function gt(r, 0) is the solar internal rotational frequency at the
spherical coordinate (r, 0). Moreover, the kernel Kntm (r, O) is a function that depends
on the solar internal structure and the modes n, l, and m, which are quantum numbers
that describe the eigenoscillations of the sun. Finally, the right-hand side quantities
Wnlm are the so-called frequency splittings, which are essentially observed quantities.
The number of observable modes is as many as a few thousand.

Since our purpose here is to illustrate the MTSVD method, rather than to discuss
the physical meaning of the computed results, we assume that the function)(r, 0)
is a function of only r, in order to make the following discussion simple. The full
two-dimensional inversion is discussed in other papers [10], [11]. In this numerical
experiment, we prepare first an artificial (but plausible) function (r) and calculate
the resultant frequency splittings 5Wnt,. We then treat them as observed values and
solve the integral equation (13) to see how well we can reproduce gt(r) as the solution
of the integral equation.

We discretize the radial coordinate into nonequidistant mesh points rj, which
become denser towards the surface of the sun. We then compute approximations tj
to t(rj) by substituting the integral in (13) with a simple summation. The integral
equation is thus transformed into a discrete ill-posed problem, where the right-hand
side is b {6wi}, the coefficient matrix A is given by A {Ki(ry)(rj rj-1)}, and
the solution is x {y}. The suffix i denotes the mode number, that is, the set
of the quantum numbers {nlm}, and the suffix j denotes the mesh number. In the
following examples, we use 250 mesh points and 1836 different modes. We impose
"smoothness" on the computed solution by choosing the regularization matrix L as
an approximation to the second derivative operator.

Figure 1 shows all the singular values a of the matrix A. We see that they
are clustered in two distinct groups with a narrow transition region between large
and small a. It is natural to choose the truncation parameter k somewhere in this
transition region and thus avoid a search through many values of k. We have chosen
k 82, which gives an effective condition number al/ak of Ak of the order 105. We
then solve the system for two different cases of the function t(r).

Example 1. First we deal with slightly differential rotation. The TSVD and
MTSVD solutions are shown in Fig. 2, and we see that the TSVD solution is unre-
alistically oscillatory. We also see that the MTSVD solution reproduces the original

1148 P. C. HANSEN, T. SEKII, AND H. SHIBAHASHI

104

l0

10

101

100

10-1

10-2

10-s

10-

lOS t10-
0 200 250

FIG. 1. The singular values of the 1836 x 250 matrix A obtained from discretization of the
integral equation (13).

1.6

1.4

1.2

0.8

0.6

0.4
0

J
I TSVD

;
MTSVD

0.1 0.2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

FIG. 2. The computed solutions to Example 1, where ft(r) varies slowly.

function ft(r) much better than the TSVD solution does, in fact, the MTSVD is
indistinguishable from the exact ft(r) in this plot.

Example 2. The second example features differential rotation with some steep
gradients and a discontinuity. Figure 3 shows the TSVD and the MTSVD solutions.
Again, the TSVD solution is unsatisfactory because it includes unrealistic oscillations.
The MTSVD solution is much better, although (as expected) it cannot completely
reproduce the step in ft(r) at r/R- 0.8.

6. Conclusion. We have presented an efficient algorithm for regularization of
discrete ill-posed problems in general form, i.e., for solving the problem min IlL xl12

MODIFIED TRUNCATED SVD METHOD 1149

1.2

0.S

0.6

0.4
0

TSVD

MTSVD

0:7 0:8 0:9

FIG. 3. The computed solutions to Example 2, where f(r) has steep gradients and a discontinuity.

subject to min IlAx- bl]2. The algorithm extends the well-known TSVD method
(which corresponds to L I) to the case with a general matrix L. The computational
overhead associated with an L I is dominated by a QR-factorization, and this
overhead is usually much smaller than the effort involved in computing the SVD of
the matrix A.

We have also shown how the norms IlL xl12 and IIAx- bl12 can be computed
efficiently. This is important in connection with methods such as generalized cross-

validation, which automatically seek to compute the optimal truncation parameter.
Finally, we have illustrated the use of our algorithm in connection with the nu-

merical treatment of the inverse helioseismic problem in astrophysics. Our examples
show the superiority of our new method with L I, as compared to the case L I,
for this particular problem.

REFERENCES

[1] A. BJRCK, Least Squares Methods, in Handbook of Numerical Analysis Vol. I, P. G. Ciarlet
and J. L. Lions, eds., Elsevier, Amsterdam, 1990.

[2] T. F. CHAN AND P. C. HANSEN, Computing truncated SVD least squares solutions by rank
revealing QR-factorizations, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 519-530.

[3] Some applications of the rank revealing QR-factorization, CAM Report 90-09, Depart-
ment of Mathematics, University of California, Los Angeles, CA, May 1990; SIAM J. Sci.
Statist. Comput., 13 (1992), pp. 727-741.

[4] L. ELDIN, A weighted pseudoinverse, generalized singular values, and constrained least squares
problems, BIT, 22 (1982), pp. 487-502.

[5] G. H. GOLUB, M. T. HEATH, AND G. WAHBA, Generalized cross validation as a method for
choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215-224.

[6] G.H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins
University Press, Baltimore, MD, 1989.

[7] P. C. HANSEN, Truncated SVD solutions to discrete ill-posed problems with ill-determined
numerical rank, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 503-518.

[8] , The discrete Picard condition for discrete ill-posed problems, BIT, 30 (1990), pp. 658-
672.

[9] , Analysis of discrete ill-posed problems by means of the L-curve, Report MCS-P157-0690,

1150 P. C. HANSEN, T. SEKII, AND H. SHIBAHASHI

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
July 1990; SIAM Review, to appear.

[10] T. SEKII, Two-dimensional inversion of rotational splitting data, in Progress of Seismology of
the Sun and Stars, Y. Osaki and H. Shibahashi, eds., Springer-Verlag, Berlin, New York,
1990, pp. 337-340.

[11] Two-dimensional inversion for solar internal rotation, Publ. Astron. Soc. Japan, 43
(1991), pp. 381-411.

[12] T. SEKII AND H. SHIBAHASHI, An inversion method based on the Moore-Penrose generalized
inverse matrix, in Seismology of the Sun and Sun-Like Stars, E. J. Rolfe, ed., ESA SP-
286, European Space Agency Publications Division, Noordwijk, the Netherlands, 1988,
pp. 521-523.

[13] H. SHIBAHASHI, Introductory review of solar and stellar oscillations, in Progress of Seismology
of the Sun and Stars, Y. Osaki and H. Shibahashi, eds., Springer-Verlag, Berlin, New York,
1990, pp. 3-19.

[14] W. UNNO, Y. OSAKI, H. ANDO, H. SAIO, AND H. SHIBAHASHI, Nonradial Oscillations of
Stars, Second Edition, University of Tokyo Press, Tokyo, 1989.

[15] G. WAHBA, Spline Models for Observational Data, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1990.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1151-1172, September 1992 007

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION*

JOHN R. GILBERTt AND ROBERT SCHREIBER$

Abstract. This paper develops and compares several fine-grained parallel algorithms to com-
pute the Cholesky factorization of a sparse matrix. The experimental implementations are on the
Connection Machine, a distributed-memory SIMD machine whose programming model conceptually
supplies one processor per data element. In contrast to special-purpose algorithms in which the
matrix structure conforms to the connection structure of the machine, this paper focuses on matrices
with arbitrary sparsity structure.

The most promising alternative is a supernodal, multifrontal algorithm whose inner loop per-
forms several dense factorizations simultaneously on a two-dimensional grid of processors. The key
subroutine is a fine-grained parallel, dense-factorization algorithm. The sparse code attains execu-
tion rates comparable to those of the dense subroutine. Although at present architectural limitations
prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular
data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems.

A performance model is also presented and used to analyze these algorithms. Asymptotic analysis
combined with experimental measurement of parameters is accurate enough to be useful in choosing
among alternative algorithms for a complicated problem.

Key words, sparse matrix algorithms, Cholesky factorization, supernodal factorization, mul-
tifrontal factorization, systems of linear equations, parallel computing, data parallel algorithms,
chordal graphs, clique trees, Connection Machine, performance analysis

AMS(MOS) subject classifications. 05C50, 15A23, 65F05, 65F50, 68M20

1. Introduction.

1.1. Data parallelism. Highly parallel, local-memory computer architectures
promise to achieve high performance inexpensively by assembling a large amount of
simple hardware in a way that scales without bottlenecks. A data parallel program-
ming model simplifies the programming of local memory parallel architectures by
associating a processor with every data element in a computation (at least conceptu-
ally), thus hiding from the programmer the details of distribution of data and work
to the processors.

Some major challenges accompany these promises. Communication is expensive
relative to computation, so an algorithm must minimize communication. Locality
is important in communication, so it pays to substitute communication with nearby
processors for more general patterns where possible. The sequential programmer
tunes the inner loop of an algorithm for high performance, but simple data parallel
algorithms tend to have "everything in the inner loop" because a sequential loop over
the data is typically replaced by a parallel operation. (From this point of view, the
advantage of the more complicated of our two algorithms, Grid Cholesky, is that it
removes the general-pattern communication from the inner loop.)

Received by the editors May 23, 1990; accepted for publication (in revised form) August 16,
1991.

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304. Copyright
() 1990, 1991 Xerox Corporation. All rights reserved.

Research Institute for Advanced Computer Science, MS T045-1, National Aeronautics and Space
Administration Ames Research Center, Moffett Field, California 94035. This author’s work was sup-
ported by the Numerical Aerodynamic Simulation Systems Division of the National Aeronautics and
Space Administration and by the Advanced Research Projects Agency via Cooperative Agreement
NCC 2-387 between National Aeronautics and Space Administration and the Universities Space
Research Association.

1151

1152 JOHN R. GILBERT AND ROBERT SCHREIBER

Algorithms for data parallel architectures must make different trade-offs than
sequential algorithms: They must exploit regularity in the data. For efficiency on
single instruction, multiple data (SIMD) machines, they must also be highly regular
in the time dimension. In some cases entirely new approaches may be appropriate;
examples of experiments with such approaches include particle-in-box flow simulation,
knowledge-base maintenance [5], and the entire field of neural computation [20]. On
the other hand, the same kind of regularity in a problem or an algorithm can often
be exploited in a wide range of architectures; therefore, many ideas from sequential
computation turn out to be surprisingly applicable in the highly parallel domain.
For example, block-oriented matrix operations are useful in sequential machines with
hierarchical storage and conventional vector supercomputers [3]; we shall see that they
are also crucial to efficient data parallel matrix algorithms.

1.2. Goals of this study. Data parallel algorithms are natural for computa-
tions on matrices that are dense or have regular nonzero structures arising from, for
example, regular finite-difference discretizations. The main goal of this research is
to determine whether data parallelism is useful in dealing with irregular, arbitrarily
structured problems. Specifically, we consider computing the Cholesky factorization
of an arbitrary sparse, symmetric, positive definite matrix. We make no assumptions
about the nonzero structure of the matrix besides symmetry. We present evidence
that arbitrary sparse problems can be solved nearly as efficiently as dense problems
by carefully exploiting regularities in the nonzero structure of the triangular factor
that come from the clique structure of its chordal graph.

A second goal is to perform a case study in analysis of parallel algorithms. The
analysis of sequential algorithms and data structures is a mature and useful science
that has contributed to sparse matrix computation for many years. By contrast, the
study of complexity of parallel algorithms is in its infancy, and it remains to be seen
how useful parallel complexity theory will be in designing efficient algorithms for real
parallel machines. We argue by example that, at least within a particular class of
parallel architectures, asymptotic analysis combined with experimental measurement
of parameters is accurate enough to be useful in choosing among alternative algorithms
for a single fairly complicated problem.

1.3. Outline. The structure of the remainder of the paper is as follows. In 2
we review the definitions we need from numerical linear algebra and graph theory,
sketch the architecture of the Connection Machine, and present a timing model for a
generalized data parallel computer that abstracts that architecture.

In 3 we present the first of two parallel algorithms for sparse Cholesky factor-
ization. The algorithm, which we call Router Cholesky, is based on a theoretically
efficient algorithm in the parallel random access machine (PRAM) model of paral-
lel computation. We analyze the algorithm and point out two reasons that it fails
to be practical, one having to do with communication and the other with processor
utilization.

In 4 we present a second algorithm, which we call Grid Cholesky. Grid Cholesky
is a data parallel implementation of a supernodal, multifrontal method that draws on
the ideas of Duff and Reid [7] and Ashcraft et al. [1]. It improves on Router Cholesky
by using a two-dimensional grid of processors to operate on dense submatrices, thus
replacing most of the slow generally routed communication of Router Cholesky with
faster grid communication. It also solves the processor utilization problem by as-
signing different data elements to the working processors at different stages of the

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1153

computation. We present an analysis and experimental results for a pilot implemen-
tation of Grid Cholesky on the Connection Machine.

The pilot implementation of Grid Cholesky is approximately as efficient as a
dense Cholesky factorization algorithm, but is still slow compared to the theoretical
peak performance of the machine. Several steps necessary to improve the absolute
efficiency of the algorithm, most of which concern efficient Cholesky factorization of
dense matrices, are described. Finally, we draw some conclusions and discuss avenues
for further research.

2. Definitions. The first two subsections below summarize the linear algebra
and graph theory needed to study sparse Cholesky factorization. Most of this material
is covered in more detail by George and Liu [13], [23], [24]. The remainder of the
section outlines the data parallel programming model and its implementation on the
Connection Machine, and describes our parametric model of a data parallel computer.

2.1. Linear algebra. Let A (aij) be an n n real, symmetric, positive definite
sparse matrix. There is a unique n n lower triangular matrix L (lij) with positive
diagonal such that A LLT. This is the Cholesky factorization of A. We seek to
compute L; with it we solve the linear system Ax b by solving Ly b and LTx y.
We discuss algorithms for computing L below. In general, L is less sparse than A. The
nonzero positions of L that were zero in A are called Jill or fill-in. For any matrix X,
we write r(X) to denote the number of nonzero elements of X.

The rows and columns of A may be symmetrically reordered so that the system
solved is PAPT(Px) Pb, where P is a permutation matrix. We assume that such a
reordering, chosen to reduce r(L) and the number of operations required to compute
L, has been done. We further assume that the structure of L has been determined
by a symbolic factoring process. We ignore these preliminary computations in this
study because the cost of actually computing L typically dominates. (In many cases,
several identically structured matrices may be factored using the same ordering and
symbolic factorization.) A study of the implementation of appropriate reordering and
symbolic factorization procedures on data parallel architectures is in preparation [18].

If the matrix A is such that its Cholesky factor L has no more nonzeros than
the lower triangle of A, i.e., there is no fill, then A is a perfect elimination matrix.
If PAPT is a perfect elimination matrix for some permutation matrix P, we call the
ordering corresponding to P a perfect elimination ordering of A.

Let R and S be subsets of {1,..., n}. Then A(R, S) is the IR[ISI matrix whose
elements are ar,s for r E R and s E S. (For any set S, we write ISI to denote its
cardinality.)

2.2. Graph theory.

2.2.1. Vertex elimination. We associate two ordered, undirected graphs with
the sparse, symmetric matrix A. First, G(A), the graph of A, is the graph with
vertices {1,2,...,n} and edges E(A) {(i,j) aij 0}. (Note that E(A) is a set
of unordered pairs.) Next, we define the filled graph G* (A) with vertices { 1, 2,..., n}
and edges E* (A) {(i, j) I 0}, so that G* (A) is G(L/ LT). The edges in G* (A)
that are not edges of G(A) are called fill edges. The output of a symbolic factorization
of A is a representation of G* (A).

For every fill edge (i, j) in E* (A) there is a path in G(A) from vertex i to vertex j
whose vertices all have numbers lower than both i and j; moreover, for every such
path in G(A) there is an edge in G*(A) [28]. Consider renumbering the vertices of
G*(A). With another numbering, this last property may or may not hold. If it does,

1154 JOHN R. GILBERT AND ROBERT SCHREIBER

then the new ordering is a perfect elimination ordering of G*(A); Liu [24] calls it an
equivalent reordering of G* (A).

2.2.2. Chordal graphs. Every cycle of more than three vertices in G* (A) has
an edge between two nonconsecutive vertices (a chord). Such a graph is said to be
chordal. Not only is G*(A) chordal for every A, but every chordal graph is the filled
graph of some matrix [27].

Let G G(V, E) be any undirected graph. A clique is a subset X of V such
that for all u, v E X, (u, v) E E. A clique is maximal if it is not a proper subset
of any other clique. For any v V, the neighborhood of v, written adj(v), is the
set {u e V l(u, v) e E}. The monotone neighborhood of v, written madj(v), is the
smaller set {u e V u > v, (u, v) e E}. We extend adj and madj to sets of vertices
in the usual way.

A vertex v is simplicial if adj(v) is a clique. Two vertices, u and v, are indis-
tinguishable if {u} t3 adj(u) {v} t3 adj(v). Two vertices are independent if there is
no edge between them. A set of vertices is independent if every pair of vertices in it
is independent; two sets A and B are independent if no vertex of A is adjacent to a
vertex of B.

It is immediate that any two simplicial vertices are either independent or indis-
tinguishable. A set of indistinguishable simplicial vertices thus forms a clique, though
not generally a maximal clique. The equivalence relation of indistinguishability par-
titions the simplicial vertices into pairwise independent cliques. We call these the
simplicial cliques of the graph.

2.2.3. Elimination trees. A fundamental tool in studying sparse Gaussian
elimination is the elimination tree. This structure was defined by Schreiber [30];
Liu [24] gives a survey of its many uses. Let A have the Cholesky factor L. The elim-
ination tree T(A) is a rooted spanning forest of G* (A) defined as follows. If vertex u
has a higher-numbered neighbor v, then the parent p(u) of u in T(A) is the smallest
such neighbor; otherwise u is a root. In other words, the first off-diagonal nonzero
element in the uth column of L is in row p(u). It is easy to show that T(A) is a
forest consisting of one tree for each connected component of G(A). For simplicity we
assume in what follows that A is irreducible, so that vertex n is the only root, though
our algorithms do not assume this.

There is a monotone increasing path in T(A) from every vertex to the root. If
(u, v) is an edge of G*(A) with u < v (that is, if lw 0) then v is on this unique
path from u to the root. This means that when T(A) is considered a spanning tree
of G*(A), there are no "cross edges" joining vertices in different subtrees. It implies
that, if we think of the vertices of T(A) as columns of A or L, any given column of L
depends only on columns that are its descendants in the tree.

2.2.4. Clique trees. The elimination tree describes a Cholesky factorization in
terms of operations on single columns. A description in terms of operations on full
blocks can yield algorithms with better locality of reference, which is an advantage
either on a machine with a memory hierarchy (registers, cache, main memory, disk) or
on a distributed-memory parallel machine. The Connection Machine falls into both
of these categories.

Describing symmetric factorization in terms of operations on full submatrices is
the key idea in both Duff and Reid’s "multifrontal" algorithm [7] and the "supernodal"
algorithm of Ashcraft et al. [1], which can be traced back to the so-called element
model of factorization [15], [33]. A full submatrix of L is a clique in the chordal

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1155

graph G* (A). The clique structure of chordal graphs has been explored extensively
in the combinatorial literature; representations of chordal graphs as trees of cliques
date back at least to 1972 [10] and continue to be used [16], [25], [26].

A clique tree for matrix A is a tree whose nodes are sets that partition the vertices
of G* (A) into cliques in such a way that all the vertices of a node N are indistinguish-
able simplicial vertices in the graph that results by deleting from G*(A) all vertices
in nodes that are proper descendants of N. An equivalent definition is to think of
starting with an elimination tree and collapsing vertices that are indistinguishable
from their parents. (This definition differs slightly from that of Peyton [26], whose
tree nodes are overlapping maximal cliques of G* (A).)

A clique that is a node in a clique tree is also called a supernode. If all vertices of
G* (A) in proper descendants of some supernode are deleted, the supernode becomes a
simplicial clique in the resulting graph. The clique tree is sometimes called a supernode
tree or supernodal elimination tree [2]. A matrix may have many different clique
trees--indeed, the elimination tree itself is one. Our numerical factorization algorithm
Grid Cholesky can actually use any clique tree; the symbolic factorization we describe
in 4.1 uses a block Jess-Kees algorithm to compute a shortest possible clique tree.

2.3. The Connection Machine.

2.3.1. Architecture. The Connection Machine (model CM-2) is a local-memory,
SIMD parallel computer. The description we present here corresponds to the machine
architecture presented by the assembly language instruction set Paris [34]. We pro-
grammed the CM in *lisp, which is compiled into Paris.

A full-sized CM has 216 65,536 processors, each of which can directly access
65,536 bits of memory. (Since this work was completed, larger memories have become
available.) The processors are connected by a communication network called the
router, which is configured by a combination of microcode and hardware to be a
16-dimensional hypercube.

The essential feature of the CM programming model is the parallel variable or
pvar. A pvar is an array of data in which every processor stores and manipulates one
element. The size of a pvar may be a multiple of the number of physical machine
processors, p. If there are V times as many elements in the pvar X as there are
processors, then (through microcode) each physical processor simulates V virtual
processors; thus the programmer’s view remains "one processor per datum." The
ratio V is called the virtual processor (VP) ratio. The CM requires that V must be
a power of two. Thus we find useful the notation Ixl, meaning the smallest power of
two not smaller than the real number x.

The geometry of each set of virtual processors (and its associated pvars) is also
determined by the programmer, who may choose to view it as any multidimensional
array with dimensions that are powers of two. The VP sets and their pvars are
embedded in the machine (using Gray codes) so that neighboring virtual processors
are simulated by the same or neighboring physical processors.

The Paris instruction set corresponds fairly well to the abstract model of data
parallel programming that the CM attempts to present to the programmer, but it does
not correspond closely to the actual hardware of the CM. Largely for this reason, it
is hard to get high performance when programming in Paris or in a language that is
compiled into Paris [31]. We shall discuss this point in detail later. Other ways to
view and to program the hardware of the CM-2 to provide better performance are
now becoming available to users.

1156 JOHN R. GILBERT AND ROBERT SCHI:tEIBER

2.3.2. Connection Machine programming. Parallel computation on the CM
is expressed through elementwise binary operations on pairs of pvars that reside in
the same VP set--that is, that have the same VP ratio and layout on the machine.
(Optionally, we may specify a boolean mask that selects only certain virtual proces-
sors to be active.) These operations take time proportional to V, since the actual
processors must loop over their simulated virtual processors. This remains true even
when the set of selected processors is very sparse.

Interprocessor communication is expressed and accomplished in three ways, which
we discuss in order of increasing generality but decreasing speed.

Communication with virtual processors at nearest-neighbor grid cells is most effi-
cient. A pvar may be shifted along any of its axes using this type of communication.
The shift may be circular or end-off at the programmer’s discretion.

A second communication primitive, scan, allows broadcast of data. For example,
if x is a one-dimensional pvar with the value [1, 2, 3, 4, 5, 6, 7, 8] then a scan of x
yields [1, 1, 1, 1, 1, 1, 1, 1]. Scans are implemented using the hypercube connections.
The time for a scan of length n is linear in log n. Scans can also be used to broadcast
along either rows or columns of a two-dimensional array. Scans that perform parallel
prefix arithmetic operations are also available, but we do not use them.

Scans of subarrays are possible. In a segmented scan, the programmer specifies a
boolean pvar, the segment pvar, congruent to x. The segments of x between adjacent
T values in the segment pvar are scanned independently. Thus, for example, if we
use the segment pvar IT F F F T F F T] and x is as above, then a segmented scan
returns [1, 1, 1, 1, 5, 5, 5, 8].

The third and most general form of communication allows a virtual processor to
access data in the memory of any other virtual processor. These operations go by
several different names even within the CM environment; we refer to them in terms
already familiar in sparse matrix computation: gather and scatter.

A gather allows processors to read data in the memory of other processors. The
CM term for a gather is pref! (for the *lisp programmer) or get (for the Paris
programmer). In a gather, three pvars are involved: the source, the destination,
and the address. The address of the processor whose memory is to be read is taken
from the integer address pvar. Suppose that the source is the one-dimensional pvar
[15, 14, 13,..., 2, 1, 0] and the address pvar is [0, 1, 2, 0, 1, 2,--., 0, 1, 2, 0]. Then the
data stored in the destination is [15, 14, 13, 15, 14, 13,..., 15, 14, 13, 15]. The Fortran-
90 or Matlab statement that accomplishes this is dest source(address); it per-
forms the assignment dest(i) -- source(address(i)) for 1 < <_ length(dest).

A scatter allows processors to write data to the memory of other processors. The
CM term for a scatter is .pset (for the *lisp programmer) or send (for the Paris
programmer). Again, the three pvars are a source, a destination, and an integer
address. The Fortran-90 or Matlab version is dest(address) source, and the
effect is dest(address(i)) .- source(i) for 1 <_ i < length(source).

In a scatter, when the address pvar has duplicate values, data from several source
processors are sent to the same destination processor. (When this happens we say that
a collision has occurred.) The programmer can select one of several different ways
to combine colliding values by specifying a combining operator. For example, if the
source and address are as above and the destination initially has the value [1, 1,..., 1],
then after a scatter-with-add, the destination has the value [45, 40, 35, 1, 1, 1,..., 1].
The sum of elements source(j), such that address(j) k, is stored in dest(k) if there
are any such elements; otherwise, dest(k) is unchanged. Other combining operators

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1157

TABLE 1
Parameters of CM model.

Connection Machine parametric model
Parameter Description Measured CM-2 value
V Virtual processor ratio

Memory reference time 4.8 .V/zsec
Multiply or add time / u 7

a Scan time / 6.2 1.2 log2 scan-distance

News time / 3

Route time scatter (no collisions): 64

scatter-add (4 collisions): 110

scatter-add (100 collisions): 200

gather (many collisions): 430

include product, maximum, minimum, and "error." We have found combining scatter
to be a powerful aid to data parallel programming.

2.3.3. Measured CM performance. We now develop a model of performance
on data parallel architectures and use it to analyze performance of several algorithms
for sparse Cholesky factorization. The essential machine characteristics in the model
are described by five parameters:

#: The memory reference time for a 32-bit word.
: The 32-bit floating-point multiply time, in units of #.
: The 32-bit grid communication time, in units of .
a: The 32-bit scan time, in units of .
p: The 32-bit router time, in units of .

(Floating-point addition takes the same time as multiplication: #.) In our model,
execution time scales linearly with VP ratio, which is essentially correct for the Con-
nection Machine. Therefore, # is proportional to VP ratio, and the other parameters
are independent of VP ratio. In Table 1, we give measured values for these parameters
obtained by experiment on the CM-2. We observe that router times range over a fac-
tor of four depending on the number of collisions; it is possible to design pathological
routing patterns that perform even worse than this. For any given pattern, gather
usually takes just twice as long as scatter, presumably because it is implemented by
sending a request and then sending a reply. Therefore in our approximate analyses
we generally choose a value of p for scatter corresponding to the number of collisions
observed, and model gather as taking 2p floating-point times.

3. Router Cholesky. Our first parallel Cholesky factorization algorithm is a
parallel implementation of a standard column-oriented sparse Cholesky; it is based
closely on Gilbert and Hafsteinsson’s theoretically efficient algorithm [17] for the
PRAM model of computation. Its communication requirements are too unstructured
for it to be very efficient on a fine-grained multiprocessor like the CM, but we im-
plemented and analyzed it to use as a basis for comparison and to help tune our
performance model of the CM.

3.1. The Router Cholesky algorithm. Router Cholesky uses the elimination
tree T(A) to organize its computation. For the present, assume that both the tree and
the symbolic factorization G* (A) are available. (In our experiments we computed the
symbolic factorization sequentially; Gilbert and Hafsteinsson [17] describe a parallel

1158 JOHN It. GILBERT AND ROBERT SCHREIBER

algorithm.) Each vertex of the tree corresponds to a column of the matrix.

Following George et al. [12], we express a sequential column-oriented Cholesky
factorization in terms of two primitive operations, cdiv and cmod.

procedure Sequential Cholesky (matrix A);
forj-I tondo

for each edge (i, j) of G*(A) with i < j do
cmod (j, i) od;

cdiv (j) od
end Sequential Cholesky;

Routine cdiv (j) divides the subdiagonal elements of column j by the square root of
the diagonal element in that column, and routine cmod (j, i) modifies column j by
subtracting a multiple of column i. This is called a left-looking algorithm because
column j accumulates all necessary updates cmod (j, i) from columns to its left just
before the cdiv (j) that completes its computation. By contrast, a right-looking algo-
rithm would perform all the updates cmod (j, i) using column i immediately after the
cdiv (i).

Now consider the elimination tree T(A). A given column (vertex) is modified only
by columns (vertices) that are its descendants in the tree [30]. Therefore a parallel
left-looking algorithm can compute all the leaf vertex columns at once.

procedure Router Cholesky (matrix A);
for h 0 to height(n) do

for each edge (i, j) with height(i) < height(j) h pardo
cmod (j, i) od;

for each vertex j with height(j) -h pardo
cdiv (j) od

od
end Router Cholesky;

Here height(j) is the length of the longest path in T(A) from vertex j to a leaf. Thus
the leaves have height 0, vertices whose children are all leaves have height 1, and
so forth. The outer loop of this algorithm works sequentially from the leaves of the
elimination tree up to the root. At each step, an entire level’s worth of cmod’s and
cdiv’s are done.

A processor is assigned to every nonzero of the triangular factor (or, equivalently,
to every edge and vertex of the filled graph G*). Suppose processor Pij is assigned to
the nonzero that is initially aiy and will eventually become li. (If liy is a fill, then aij
is initially zero; recall that we assume that the symbolic factorization is already done,
so we know which li will be nonzero.) In the parallel cdiv (j), processor Pjj computes
ly as the square root of its element, and sends lyj to processors Piy for i > j, which
then divide their own nonzeros by lji. In the parallel cmod (j, i), processor Pji sends
the multiplier lj to the processors Pki with k > j. Each such Pki then computes the
update lkilji locally and sends it to Pkj to be subtracted from lkj.

We call this a left-initiated algorithm because the multiplications in cmod (j, i) are
performed by the processors in column i who then, on their own initiative, send these
updates to a processor in column j. Each column i is involved in at most one cmod
at a time because every column modifying j is a descendant of j in T(A), and the
subtrees rooted at vertices of any given height are disjoint. Therefore each processor
participates in at most one cmod or cdiv at each parallel step. If we ignore the time

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1159

taken by communication (including the time to combine updates to a single Pkj that
may come from different Pkil, Pki2, "), then each parallel step takes a constant
amount of time and the parallel algorithm runs in time proportional to the height of
the elimination tree T(A).

3.2. CM implementation of Router Cholesky. To implement Router Cho-
lesky on the CM, we must specify how to assign data to processors, and then describe
how to do the communication in cdiv and cmod.

We use one (virtual) processor for each nonzero in the triangular factor L. We
lay out the nonzeros in a one-dimensional array in column major order, as in many
standard sequential sparse matrix algorithms [13]. This makes operations within a
single column efficient because they can use the CM scan instructions. Each column
is represented by a processor for its diagonal element followed by a processor for
each subdiagonal nonzero. The symmetric upper triangle is not stored. We can also
think of this processor assignment as a processor for each vertex j of the filled graph,
followed by a processor for each edge (i, j) with i > j.

Router Cholesky, like many data parallel algorithms, is profligate of parallel vari-
able storage. Each processor contains some working storage and the following pvars:

1: Element of factor matrix L, initially A.
+/-: Row number of this element.
j" Column number of this element.
j_ht: height(j) in T(A).
+/-_ht: height(i) in T(A).
d+/-agona:[_p: Boolean: Is this a diagonal element?
e_parent: In processor Pij, a pointer to Pi,p(j).
next_update: Pointer to next element this one may update.

(Recall that p(j) > j is the elimination tree parent of vertex j < n.)
At each stage of the sequential outer loop, each processor uses +/-_ht and j_ht to

decide whether it participates in a cdiv or cmod. By comparing the local processor’s
+/-_ht or j_ht to the current value of the outer loop index, a processor can determine
if its element is in a column that is involved in a cdiv or a cmod.

The cdiv uses a scan operation to copy the diagonal element to the rest of the
active column.

The cmod uses a similar scan to copy the multiplier lji down to the rest of column i.
The actual update is done by a scatter-with-add, which uses the router to send the
update to its destination.

To determine where to send the update, each element maintains a pointer called
next_update to a later element in its row. The nonzero positions in each row are
a connected subgraph of the elimination tree, and are linked together in this tree
structure by the e_parent pointers. Each nonzero updates only elements in columns
that are its ancestors in the elimination tree. At each stage, next_update is moved
one step up the tree using the e_parent pointers.

3.3. Router Cholesky performance: Theory. Each stage of Router Choles-
ky does a constant number of router operations, scans, and arithmetic operations.
The number of stages is h + 1, where h is the height of the elimination tree. In terms
of the parameters of the machine model in 2.3.2, its running time is

(Clp + c2a + c3)#h.

1160 JOHN R. GILBERT AND ROBERT SCHREIBER

Recall that the memory reference time # is proportional to the virtual processor ratio,
which in this case is I7(L)/pl. The ci are constants.

The most time-consuming step is incrementing the next-update pointer; the
router is used twice in this operation. The dominant term is the router term clp#h.
Notice that we do not explicitly count time for combining updates to the same element
from different sources, since this is handled within the router and is thus included in p.

To get a feeling for this analysis consider the model problem, a five-point finite-
difference mesh in two dimensions ordered by nested dissection [11]. If the mesh has
k points on a side, then the graph is a k by k square grid, and we have n k2,
h O(k), and ri(L) O(k21ogk). The number of arithmetic operations in the
Cholesky factorization is O(k3), in either the sequential or parallel algorithms. Router
Cholesky’s running time is O(pk3 log k/p). If we define performance as the ratio of
the number of operations in the sequential algorithm to parallel time, we find that
the performance is O(p/logk) (taking p to be a constant independent of p or k;
this is approximately correct for the Connection Machine, although theoretically p
should grow at least with log p). This analysis points out two weak points of Router
Cholesky. First, the performance on the model problem drops with increasing problem
size. (This depends on the problem, of course; for a three-dimensional model problem
a similar analysis shows that performance is O(p) regardless of problem size.) Second,
and more seriously, the constant in the leading term of the complexity is proportional
to the router time p, because every step uses general communication.

This analysis can be extended to any two-dimensional finite-element mesh with
bounded-node degree, ordered by nested dissection [17]. The asymptotic analysis is
the same but the values of the constants will be different.

3.4. Router Cholesky performance: Experiments. In order to validate the
timing model and analysis, we experimented with Router Cholesky on a variety of
sparse matrices. We present one example here in detail. The original matrix is 2,500
2,500 with 7,400 nonzeros (counting symmetric entries only once), representing a 50
50 five-point square mesh. It is preordered by Sparspak’s automatic nested dissection
heuristic [13], which gives orderings very similar to the ideal nested dissection ordering
used in the analysis of the model problem above. The Cholesky factor has (L)
48,608 nonzeros, an elimination tree of height h 144, and takes 1,734,724 arithmetic
operations to compute.

We ran this problem on CM-2 computers at the Xerox Palo Alto Research Center
and the NASA Ames Research Center. The results quoted here are from p 8,192
processors, with floating-point coprocessors, of the machine at NASA. The VP ratio
was therefore V Iri(L)/pl-- 8. (Rounding up to a power of two has considerable
cost here, since we use only 48,608 of the 65,536 virtual processors.) We observed
a running time of 53 seconds, of which about 41 seconds was due to gathers and
scatters. Substituting into the analysis above (using p 200 since there were generally
many collisions), we would predict router time clp#h 39 seconds and other time

(c2a + c3)#h 1.5 seconds. This is not a bad fit for router time; it is not clear
why the remaining time is such a poor fit, but the expensive square root and the data
movement involved in the pointer updates contribute to it, and it seems that I/O may
have affected the measured 53 seconds.

The observation, in any case, is that router time completely dominates.

3.5. Remarks on Router Cholesky. Router Cholesky is too slow as it stands
to be a cost-effective way to factor sparse matrices. Each stage does two gathers
and a scatter with exactly the same communication pattern. More careful use of the

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1161

router could probably speed it up by a factor of two to five. However, this would not
be enough to make it practical; something more like a hundredfold improvement in
router speed would be needed.

The one advantage of Router Cholesky is the extreme simplicity of its code. It
is no more complicated than the numeric factorization routine of a conventional se-
quential sparse Cholesky package [13]. It is interesting to note that column-oriented
sparse Cholesky codes on multiple instruction, multiple data (MIMD) message-passing
multiprocessors [12], [14], [35] are more complex. They exploit MIMD capability to
implement dynamic scheduling of the cmod and cdiv tasks. They allow arbitrary as-
signment of columns to processors and therefore are required to use indirect addressing
of columns. Finally, they are written with low-level communication primitives, the
explicit "send" and "receive."

Router Cholesky’s simplicity comes dearly. Flexibility in scheduling allows MIMD
implementations to gain a modest performance advantage over any possible SIMD
implementation. More important, we employ ri(L) virtual processors, regardless of
the number of physical processors. It is essential that these virtual processors not all
sit idle, consuming physical processor time slices, when there is nothing for them to
do. As implemented by the Paris instruction set, they do sit idle.

We described Router Cholesky as a left-initiated, left-looking algorithm. In a
right-initiated algorithm, processor Pij would perform the updates to lij. In a right-
looking algorithm, updates would be applied as soon as the updating column of L
was computed instead of immediately before the updated column of L was to be
computed. Router Cholesky is thus one of four cousins. It is the only one of the
four that maps operations to processors evenly; the other three alternatives require
an inner sequential loop of some kind. All four versions require at least h router
operations.

4. Grid Cholesky. In this section we present a parallel supernodal, multifrontal
Cholesky algorithm and its implementation on the CM. Multifrontal methods, intro-
duced by Duff and Reid [7], compute a sparse Cholesky factorization by performing
symmetric updates on a set of dense submatrices. We follow Liu [23] in referring to
an algorithm that uses rank-1 updates as "multifrontal" and the block version that
uses rank-k updates as "supernodal multifrontal." The idea of using block methods
to operate on supernodes has been used in many different sparse factorization al-
gorithms [1], [7]. Parallel supernodal or multifrontal algorithms have been used on
MIMD message-passing and shared-memory machines [2], [6], [32].

The algorithm uses a two-dimensional VP set (which we call the "playing field")
to partially factor, in parallel, a number of dense principal submatrices of the partially
factored matrix. By working on the playing field, we may use the fast grid and scan
mechanisms for all the necessary communication during the factorization of the dense
submatrices. Only when we need to move these dense submatrices back and forth to
the playing field do we need to use the router. In this way we drastically reduce the
use of the router: for the model problem on a k k grid, we reduce the number of
uses from h 3k- 1 to 2 log2 k- 1. The playing field can also operate at a lower VP
ratio, in general, because it does not need to store the entire factored matrix at once.

This method, like all multifrontal methods, is in essence an "out of core" method
in that the Cholesky factor is kept in a data structure that is not referred to while
doing arithmetic, all of which is done on dense submatrices. The novelty here is the
factorization of many of these dense problems in parallel; the simultaneous exploita-
tion of the parallelism available within each of the dense factorizations; the use of a

1162 JOHN R. GILBERT AND ROBERT SCHREIBER

two-dimensional grid of processors for these parallel dense factorizations; the use of
the machine’s router for parallel transfers from the matrix storage data structure; and
the use of the combining scatter operations for parallel update of the matrix storage
data structure.

4.1. The Grid Cholesky algorithm.

4.1.1. Block Jess and Kees reordering. First, we describe an equivalent re-
ordering of the chordal graph G* G*(A) that we call the block Jess/Kees ordering.
Block Jess/Kees is a perfect elimination ordering that has two properties that make
it the best equivalent reordering for our purposes: It eliminates vertices with identi-
cal monotone neighborhoods consecutively, and it produces a clique tree of minimum
height.

Our reordering eliminates all the simplicial vertices of G* simultaneously as one
major step. In the process, it partitions all the vertices of G* into supernodes. Each
of these supernodes is a clique in G*, and is a simplicial clique when its component
vertices are about to be eliminated. Each vertex is labeled with the stage, or major
step number, at which it is eliminated. In more detail, the reordering algorithm is as
follows.

procedure Reorder (graph G*)
active_stage -- 1;
while G* is not empty do

active_stage +-- active_stage + 1;
Number all the simplicial vertices in G*, assigning

consecutive numbers within each supernode;
stage(v) +-- active_stage for all simplicial vertices v;
Remove all the simplicial vertices from G* od;

h +-- active_stage
end Reorder;

The cliques are the nodes of a clique tree whose height is h, one less than the number
of major elimination steps. The parent of a given clique is the lowest-stage clique
adjacent to the given clique.

The name "block Jess/Kees" indicates a relationship with an algorithm due to
Jess and Kees [21] that finds an equivalent reordering for a chordal graph so as to
minimize the height of its elimination tree. The original (or "point") Jess/Kees order-
ing eliminates just one vertex from each simplicial clique at each major step. (This is
a maximum-size independent set of simplicial vertices.) Each step of point Jess/Kees
produces one level of an elimination tree, from the leaves up. The resulting elimina-
tion tree has minimum height over all perfect elimination orders on G*. Our block
Jess/Kees eliminates all the simplicial vertices at each major step, producing a clique
tree one level at a time from the leaves up. This ordering may not minimize the height
of the elimination tree. However, as Blair and Peyton [4] have shown, it does produce
a clique tree of minimum height over all perfect elimination orders on G*.

Every vertex is included in exactly one supernode. We number the supernodes as
{S1,"’, Sin} in such a way that if i < j then the vertices in Si have lower numbers
than the vertices in Sj. The stage at which a supernode S is eliminated is the iteration
of the while loop at which its vertices are numbered and eliminated; thus for all v E S,
stage(v) stage(S) is the height of node S in the clique tree.

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1163

4.1.2. Parallel supernodal multifrontal elimination. Let C be a supernode.
It is immediate that K adj(C)U C is a clique, and that it is maximal. Our
factorization algorithm works by forming the principal submatrices of A corresponding
to vertices in the maximal cliques generated by supernodes. Let IC and 5
adj(C)l. Write A(K, K) for the principal submatrix of order Igl-- 7 + 5 consisting

of elements ai,j with i, j E K. It is natural to partition the principal submatrix
A(K, K) of A as

A(K, K) (X E)ET Y

where X A(C, C) is 7 x 7, Y A(adj(C), adj(C)) is ti, and E is 7 .
In the terminology of the previous section, Grid Cholesky is a "block right-

looking" algorithm. The details are as follows.

procedure Grid Cholesky(matrix A)
for active_stage -0 to h do

for each supernode C with stage(C) active_stage pardo
Move A(K, K) to the playing field,

where K C t2 adj (C);
Set Y to zero on the playing field;
Perform 7- [C steps of parallel Gaussian elimination

to compute the Cholesky factor L of X,
the updated submatrix E L-1E,
and the Schur complement Y -ETX-1E,
where X, E, and Y partition A(K, K) as above;

A(C, C) - L;
A(adj(C), C) - E’T;
A(adj(C), adj(C)) - A(adj(C), adj(C)) + Y’ od

od
end Grid Cholesky;

4.2. Multiple dense partial factorization. In order to make this approach
useful, we need a fast dense matrix factorization on two-dimensional VP sets. To that
end, we discuss an implementation of LU decomposition without pivoting. (We use
LU instead of Cholesky here because we can see no efficient way to exploit symmetry
with a two-dimensional machine; moreover, LU avoids the square root at each step and
so is a bit faster.) We analyzed and implemented two methods: a systolic algorithm
that uses only nearest-neighbor communication on the grid, and a rank-1 update
algorithm that uses row-and-column broadcast. With either of these methods, all the
submatrices A(K, K) corresponding to supernodes at a given stage are distributed
about the two-dimensional playing field simultaneously (each as a separate "baseball
diamond"), and the partial factorization is applied to all the submatrices at once.

We describe the rank-1 algorithm in terms of its effect on a single submatrix
A(K, K), with a supernode of size 7 and a Schur complement of size i. A single rank-
1 update consists of a division to compute the reciprocal of the diagonal element, a
scan down the columns to copy the pivot row to the remaining rows, a parallel multi-
plication to compute the multiplier for each row, another scan to copy the multiplier
across each row, and finally a parallel multiply and subtract to apply the update. The
number of rank-1 updates is 7, the size of the supernode.

An entire stage of partial factorizations is performed at once, using segmented
scans to keep each factorization within its own "diamond." The number of steps on

1164 JOHN R. GILBERT AND ROBERT SCHREIBER

the playing field at stage s is %, the maximum value of / over all supernodes at
stage s. Then a stage of rank-1 partial factorization takes time (c3a / ca)C#. Here c3
is 2/8, and ca is proportional to /8 as well.

The relative cost of the various parts of the rank-1 update code are summarized
below for a complete factorization (that is, one in which 5 0). The bookkeeping
includes nearest-neighbor communication to move three one-bit tokens that control
which processors perform reciprocals, multiplications, and so on at each step.

Scans (row and column broadcast): 79.7%.
News (moving the tokens): 5.5%.

Multiply (computing multipliers): 2.7%.

Divide (reciprocal of pivot element): 7.1%.

Multiply-subtract (Gaussian elimination): 4.8%.

Unlike the rank-1 implementation, the systolic implementation never uses a scan;
all communication is between grid neighbors. Thus its communication terms are
proportional to rather than a. This advantage is more than offset by the fact that

3"8 / 2ti8 sequential iterations are necessary, while the rank-1 method only needs /8.

4.2.1. Remarks on dense partial factorization. Theoretically, systolic fac-
torization should be asymptotically more efficient as machine size and problem size
grow without bound, because scans must become more expensive as the machine
grows. Realistically, however, the CM happens to have a 6; for a full factorization
(5 0) a sixfold decrease in communication time per step more than balances the
threefold increase in number of steps, and so the systolic method is somewhat faster.
But for a partial factorization, the rank-1 algorithm is the clear winner. For example,
for the two-dimensional model problem the average Schur complement size 58 is about
4%, so the rank-1 code has an l 1-to-1 advantage in number of steps. This more than
makes up for the fact that scan is much slower than grid communication.

It is interesting to note that the only arithmetic that matters in a sequential
algorithm, the multiply-subtract, accounts for only 1/21 of the total time in the rank-
1 parallel algorithm. Moreover, only 1/3 of the multiply-subtract operations actually
do useful work, since the active part of the matrix occupies a smaller and smaller
subset of the playing field as the computation progresses. This gives the code an
overall efficiency of one part in 63 for LU and one part in 126 for Cholesky. We
have found this to be typical in *lisp codes for matrix operations, especially with high
VP ratios. The reasons are these: scan is slow relative to arithmetic; the divide and
multiply operations occur on very sparse VP sets; and the VP ratio remains constant
as the active part of the matrix gets smaller.

Significant performance improvements could come from several possible sources.
A more efficient implementation of virtual processors could improve performance sub-
stantially: the loop over V virtual processors should be restricted to those virtual
processors that are active. Sometimes a determination that this is going to happen
can readily be made at compile time. As an alternative, we could have rewritten
the code: the VP set could shrink as the matrix shrinks, and the divides and the
multiplies could be performed in a sparser VP set.

The scans could be sped up considerably within the hypercube connection struc-
ture of the CM. Ho and Johnsson [19] have developed an ingenious algorithm that
takes O(b/d + d) time to broadcast b bits in a d-dimensional hypercube, in contrast

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1165

to the scan, which takes O(b / d). The copy scans could also be implemented so that
each physical processor gets only one copy of the data rather than V copies.

More efficient use of the low-level floating-point architecture of the CM-2 is pos-
sible. The Paris instruction set hides the fact that every 32 physical processors share
one vector floating-point arithmetic chip. Performing 32 floating-point operations im-
plies moving 32 numbers in bit-serial fashion into a transposer chip, then moving them
in parallel into the vector chip, then reversing the process to store the result. While
this mode of operation conforms to the one-processor-per-data-element programming
model, it wastes time and memory bandwidth when only a few processors are actually
active (such as computing multipliers or diagonal reciprocals in LU), since 32 memory
cycles are required just to access one floating-point number.

This mode also requires intermediate results to be stored back to main memory,
precluding the use of block algorithms [3] that could store intermediate results in the
registers in the transposer. Thus the computation rate is limited by the bandwidth
between the transposer and memory (about 3.5 gigaflops for a 64K processor CM)
instead of by the operation rate of the vector chip (about 27 gigaflops total).

A more efficient dense matrix factorization can be achieved by treating each 32-
processor-plus-transposer-and-vector-chip unit as a single processor, and representing
32-bit floating-point numbers "slicewise," with one bit per physical processor, so that
they do not need to be moved bit-serially into the arithmetic unit. (Viewed this way,
we were working with just 256 real processors!) Also, if virtualization is handled
efficiently, we need only keep 256 processors busy. At the time this work was done
(late in 1988) the tools for programming on this level were not easily usable. While
CM Fortran allows this model, it does not allow scans and scatter with combining, so
we still (early 1991) cannot use it.

4.3. CM implementation of Grid Cholesky. Grid Cholesky uses two VP
sets with different geometries: the matrix storage stores the nonzero elements of A
and L (doing almost no computation), and the playing jeld is where the dense partial
factorizations are done. The top-level factorization procedure is just a loop that moves
the active submatrices to the playing field, factors them, and moves updates back to
the main matrix.

4.3.1. Matrix storage. The matrix storage VP set is a one-dimensional array
of virtual processors that stores all of A and L in essentially the same form as Router
Cholesky. Each of the following pvars has one element for each nonzero in L:

:[_value: Elements of L, initially those of A.
gr+/-d_+/-: The playing field row in which this element sits.
gr+/-d_j The playing field column in which this element sits.
act+/-ve_stage: The stage at which j occurs in a supernode.
updates: Working storage for sum of incoming updates.

We use a scatter to move the active columns from matrix storage to the playing
field. The supernodes C are disjoint, but their neighboring sets adj(C) may overlap;
that is, more than one Yc may be computing updates to the same element of L at the
same stage. Therefore, we use scatter-with-add to move the partially factored matrix
from the playing field back to matrix storage.

4.3.2. The playing field. The second VP set, called the playing field, is the
two-dimensional grid on which the supernodes are factored. In our implementation
it is large enough to hold all the principal submatrices for all maximal cliques at any

1166 JOHN R. GILBERT AND ROBERT SCHREIBER

stage, although it could actually use different VP ratios at different stages for more
efficiency. Its size is determined as part of the symbolic factorization and reordering.
The pvars used in this VP set are

dense_a: The playing field for matrix elements.
update_dest: The matrix storage location (processor) that holds this matrix

element; an integer pvar array indexed by stage.
Some boolean flags are also used to coordinate the simultaneous partial factorization
of all the maximal cliques.

The processors of the playing field compute LU factorizations by simultaneously
doing rank-1 updates (see 4.2) of all the dense submatrices stored there, using seg-
mented scans to distribute the pivot rows and columns within all submatrices at the
same time. The number of rank-1 update steps is the size of the largest supernode at
the current stage. The submatrices may be different sizes; each matrix does only as
many rank-1 updates as the size of its supernode.

In order to use this procedure, we need to find a placement of all the submatrices
A(K, K) for all the maximal cliques K at every stage. This is a two-dimensional bin
packing problem. In order to minimize CM computation time, we want to pack these
square arrays onto the smallest possible rectangular playing field (whose borders must
be powers of two). Optimal two-dimensional bin packing is, in general, an NP-hard
problem, though various efficient heuristics exist [9]. Our experiments use a simple
"first fit by levels" heuristic. This layout is done during the sequential symbolic
factorization, before the numeric factorization is begun.

4.4. Grid Cholesky performance: Theory. We separate the running time for
Grid Cholesky into time in the matrix storage VP set and time on the playing field.
The former includes all the router traffic, and essentially nothing else. (There is one
addition per stage to add the accumulated updates to the matrix.) There is a fixed
number of router uses per stage, so the matrix storage time is TMS CbptMS
for some constant c5. The subscript MS indicates that the value of # is taken in
the matrix storage VP set, whose VP ratio set is VMS Irl(n)/p. In the current
implementation c5 4, since two scatters are used to move the dense matrices to the
playing field at the beginning of a stage, and then two scatters are used to move the
completely computed columns and the Schur complements back to matrix storage.

We express the playing field time as a sum over levels. At each level s the number
of rank-1 updates is the size of the largest supernode at that level, which is %.
According to the analysis in 4.2,

TpF (c6a + c7) %#8,
s--O

where c6 and c7 are constants (in fact, c6 2), and the subscript s indicates that
the value of is taken in the playing field VP set at stage s. The VP ratio in this
VP set could be approximately the ratio of the total size of the dense submatrices at
stage s to the number of processors, changing at each stage as the number and size of
the maximal cliques vary. However, in our implementation, it is simply fixed at the
maximum of this value over all stages.

Again, to get a feeling for this analysis, let us consider the model problem, a
five-point finite-difference mesh on a k k grid ordered by nested dissection. For this
problem n k2, h O(log k), and (L) O(k2 log k). The factorization requires
O(k3) arithmetic operations. Table 2 summarizes the number and sizes of the cliques
that occur at each stage. The columns in the table are as follows:

HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION 1167

TABLE 2
Subproblem counts and playing field size for the model problem.

Stage s

h-1
h-2
h-3

h-5
h-6
h-7
h- 2r
h-2r-1

1
2
4
8
16
32
64
128
22r
22rT1

k
k/2
k/2
k/4
k/4
k/S
k/S
k/16
k/2
k/2r+

k
3k/2
3k/2
3k/2

7k/S
k/S
7k/16
5k/2
7k/2r+

X(7c + c)2
k2

4.5k2

9k2

18k2

25k2

24.5k2

25k2

24.5k2

25k2

24.5k2

R(s)" Number of supernodes at stage s.

%" Size of largest supernode at stage s.

% + is" Size of largest maximal clique C U adj(C) at stage s.

(’c + 5c)2" Total area of all dense submatrices A(K,K) at stage s.

The VP ratio in matrix storage for the model problem is O(ri(L))/p- O(k2 log k/p),
so the matrix storage time is O(k2 log2 k/p). Our pilot implementation uses the same
size playing field at every stage. According to Table 2, a playing field of size I25k21
suffices if the problems can be packed in without too much loss. The VP ratio is
O(k2/p). The sum over all stages of % is O(k) (in fact, it is 3k +O(1)), so the playing
field time is O(k3/p). In summary, the total running time of Grid Cholesky for the
model problem is

k log2 k k3)O p+--a
P P

Two things are notable about this. First, the performance, or ratio of sequential
arithmetic operations to time, is O(p); the log k inefficiency of Router Cholesky has
vanished. This is because the playing field, where the bulk of the computation is
done, has a lower VP ratio than the matrix storage structure. Second, and much
more important in practice, the router speed p appears only in the second-order
term. This is because the playing field computations are done on dense matrices with
more efficient grid communication. This means that the router time becomes less
important as the problem size grows, whether or not the number of processors grows
with the problem size.

One way of looking at this analysis is to think of increasing both problem size
and machine size so that the VP ratio remains constant. Then the model problem
requires O(k) total parallel operations, but only O(logk) router operations. The
analysis of the model problem carries through (with different constant factors) for
any two-dimensional finite-element problem ordered by nested dissection; a similar
analysis carries through for any three-dimensional finite-element problem. Thus Grid
Cholesky is a "scalable" parallel algorithm.

4.5. Grid Cholesky performance: Experiments. Here we present experi-
mental results from a fairly small model problem, the matrix arising from-the five-
point discretization of the Laplacian on a square 63 63 mesh, ordered by nested
dissection. This matrix has n 3,969 columns and 11,781 nonzeros (counting sym-
metric entries only once). The Cholesky factor has (L) 86,408 nonzeros, a clique

1168 JOHN R. GILBERT AND ROBERT SCHREIBER

tree with h 11 stages of supernodes, and takes 3,589,202 arithmetic operations to
compute.

The matrix storage VP set requires 128K VPs. The fixed-size playing field requires
256 512 VPs. The results quoted here are from 8,192 processors, with floating-point
coprocessors, of the machine at NASA. Both VP sets therefore had a VP ratio of 16.
(A larger problem would need a higher VP ratio in the matrix storage than in the
playing field.)

We observed a running time of 6.13 seconds. Of this, 4.09 seconds was playing field
time (3.12 for the scans, 0.15 for nearest-neighbor moves of one-bit tokens, and 0.82
for local computation). The other 2.04 seconds was matrix storage time, consisting
mostly of the four scatters at each stage. Our analytic model predicts playing field
time to be about 3k. (2a + 4)pF. This comes to 4.0 seconds, which is in agreement
with the experiment. The model predicts matrix storage time of about h. 4pMS.
This comes to between 1.5 and 4.7 seconds, depending on which value we choose for
p. In fact three-fourths of the router operations are scatters with no collisions, and
the other one-fourth are scatter-with-add, typically with two to four collisions. The
fit to the model is therefore quite close.

4.6. Remarks on Grid Cholesky. On this small example, Grid Cholesky is
about 20 times as fast as Router Cholesky. It is, however, only running at 0.586
megaflops on 8K processors, which would scale to 4.68 megaflops on a full 64K ma-
chine. A larger problem would run somewhat faster, but it is clear that making Grid
Cholesky attractive will require major improvements. Some of these were sketched
in 4.2.1.

A first question is whether Grid Cholesky is a router-bound code, as Router
Cholesky is. For the small sample problem, the relative times for router and nonrouter
computations are as follows:

Moving data to the playing field: 12%.
Factoring on the playing field: 67%.
Moving Schur complements back to matrix storage: 21%.

Evidently, the Grid Cholesky code is not router bound for this problem. For larger
(or structurally denser) problems this situation gets better still: for a machine of
fixed size, the time spent using the router grows like O(log2 k), while the time on
the playing field grows like O(k3) for a k k grid, as we showed above. If we solved
the same problem on a full-sized 64K processor machine, the relative times would
presumably be the same as above; but if we solved a problem 8 times as large, the
operation count would increase by a factor of about 22 while the number of stages,
and router operations, would increase only by a factor of about 1.3.

Next, we ask whether our use of the playing field is efficient or not. The number
of parallel elimination steps on the playing field is given by

which is 177 for the example. On the playing field of 131,072 processors, this allows us
to do 22.8 106 multiply-adds or 45.6 106 flops. The number of flops actually done
is 3.69 106, so the processor utilization is 7.9 percent. There are several reasons for
this loss of efficiency.

The algorithm does both halves of the symmetric dense subproblems (factor
of 2).

HIGHLY PARALLEL SPARSE CHOLESKY FACTOI:tIZATION 1169

TABLE 3
Factors affecting ejciency of Grid Cholesky.

Impediment Time Mflops
removed
None 6.13 4.8
Virtualization 0.60 49.
Slow router 0.33 89.
Slow scans 0.065 450.
SIMD 0.021 1,400.
Paris 0.0042 7,000.

Speedup

10.
1.8
5.0
3.1
5.0

The implementation uses the same playing field size at every level (factor of
about 4/3).

The architecture forces the dimensions of the playing field to be powers of
two (factor of about 4/3).

The playing field is not fully covered by active processors initially, and as the
dense factorization progresses, processors in the supernodes fall idle (factor of about
7/).
These effects account for a factor of roughly 12.4, which is consistent with our mea-
sured result; 1/.079 12.6. In other words, every step must use all 131,072 virtual
processors, but on average, we only have work for about 10,500 of them. Thus the
Paris virtualization method costs us a factor of roughly (131,072/10,500) 12.5.

A similar analysis shows that virtualization slows the use of the router by a factor
of 7.6.

We summarize the reasons that our achieved performance is so far below the CM’s
peak as follows:

Virtualization. We used 217 virtual processors. On average, we make use of
10,500 on the playing field and 5,600 in matrix storage. In actuality, there are 256
physical (floating-point) processors in the machine we used.

The slow router.
Communication costs for scans on the playing field, using the built-in sub-

optimal algorithm.
The SIMD restriction. This causes us to have to wait for the divides and

multiplies. (Since there are very few active virtual processors during these tasks,
most of this effect could also be removed by efficient virtualization.)

The Paris instruction set, which makes reuse of data in registers impossible,
thus exposing the low memory bandwidth of the CM.

Table 3 gives an upper bound on the improvement that removal of each of these
impediments to performance would provide. In each case, we hypothesize an "ideal"
machine in which the corresponding cost is completely removed. Thus for example,
the statistics for the third row of the table are for a marvelous machine in which a
router operation takes no time whatever.

Clearly, good efficiency is possible, even on an SIMD machine with a router. The
chief problems are the Paris virtualization method; the lack of a fast broadcast in
the grid; and the memory-to-memory instruction set. All of these are peculiarities of
Paris on the CM-2; none is fundamental to SIMD, data parallel computing.

5. Conclusions. We have compared two highly parallel general-purpose sparse
Cholesky factorization algorithms, implemented for a data parallel computer. The
first, Router Cholesky, is concise and elegant and takes advantage of the parallelism
present in the elimination tree, but because it pays little attention to the cost of

1170 JOHN R. GILBERT AND ROBERT SCHREIBER

communication it is not practical.
We therefore developed a parallel algorithm, Grid Cholesky, that does most of

its work with grid communication on dense submatrices. Analysis shows that the
requirement for expensive general-purpose communication grows only logarithmically
with problem size; even for modest problems the code is not limited by the CM router.
Experiment shows that Grid Cholesky is about 20 times as fast as Router Cholesky
for a moderately small sample problem.

Our pilot implementation of Grid Cholesky is not fast enough to make the Con-
nection Machine cost effective for solving generally structured sparse-matrix problems.
We believe, however, that our experiments and analysis lead to the conclusion that
a parallel supernodal, multifrontal algorithm can be made to perform efficiently on
a highly parallel SIMD machine. We showed in detail that Grid Cholesky could run
two to three orders of magnitude faster with improvements in the instruction set of
the Connection Machine. These suggestions for improvement make the chasm sepa-
rating the five-megaflop performance of our pilot implementation from the 27-gigaflop
theoretical peak performance of a 64K processor CM yawn somewhat less dauntingly.

Most of these improvements are below the level of the Paris virtual processor ab-
straction, which is to say, below the level of the assembly-language architecture of the
machine. Although TMC has recently released a low-level language called CMIS in
which a user can program below the virtual-processor level, we believe that ultimately
most of these optimizations should be applied by high-level language compilers. Fu-
ture compilers for highly parallel machines, while they will support the data parallel
virtual processor abstraction at the user’s level, will generate code at a level below
that abstraction.

Although Grid Cholesky is more complicated than Router Cholesky, we are still
able to use the data parallel programming paradigm to express it in a straightforward
way. The high-level scan and scatter-with-add communication primitives substantially
simplified the programming. The simplicity of our codes speaks well for this data
parallel programming model.

In summary, even though our pilot implementation is not fast, we are nonetheless
encouraged about the Grid Cholesky algorithm, and about the potential of data paral-
lel programming and highly parallel architectures for solving unstructured problems.
We believe that future generations of highly parallel machines may allow efficient par-
allel programs for complex tasks to be written nearly as easily as sequential programs.
To get to that point, there will have to be improvements in compilers, instruction sets,
and router technology. Virtualization will have to be implemented without sacrificing
efficiency.

We mention four avenues for further research. The first is scheduling the dense
partial factorizations efficiently. The tree of supernodes identifies a precedence rela-
tionship among the various partial factorizations. Our simple approach of scheduling
these one level at a time onto a fixed-size playing field is not the only possible one.
There is, in general, no need to perform all the partial factorizations at a single level
simultaneously. It should be possible to use more sophisticated heuristics to sched-
ule these factorizations onto a playing field of varying VP ratio, or even (for the
Connection Machine) onto a playing field considered as a mesh of individual vector
floating-point chips. Some theoretical work has been done on scheduling "rectangular"
tasks onto a square grid of processors efficiently [8]. Kratzer [22] has experimented
with sparse QR factorization on the Connection Machine using a dataflow model to
schedule individual row operations.

HIGHLY PARALLEL SPARSE CHOLESKY FACTOI:tIZATION 1171

The second avenue is improving the time spent in the matrix storage VP set. Of
course, as problems get larger, this time becomes a smaller fraction of the total. At
present, matrix storage time is not very significant even for a small problem, but it
will become more so as the playing field time is improved.

Third, we mention the possibility of an out-of-main-memory version of Grid
Cholesky for very large problems. Here the clique tree would be used to schedule
transfers of data between the high-speed parallel disk array connected to the CM and
the processors themselves.

Fourth and finally, we mention the possibility of performing the combinatorial
preliminaries to the numerical factorization in parallel. Our pilot implementation
uses a sequentially generated ordering, symbolic factorization, and clique tree. We
are currently designing data parallel algorithms to do these three steps [18].

We conclude by extracting one last moral from Grid Cholesky. We find it inter-
esting and encouraging that the key idea of the algorithm, namely partitioning the
matrix into dense submatrices in a systematic way, has also been used to make sparse
Cholesky factorization more efficient on vector supercomputers [32], and even on work-
stations [29]. In the former case, the dense submatrices vectorize efficiently; in the
latter, the dense submatrices are carefully blocked to minimize traffic between cache
memory and main memory. We expect that more experience will show that many
techniques for attaining efficiency on sequential machines with hierarchical storage
will turn out to be useful for highly parallel machines.

REFERENCES

[1] C. ASHCIAFT, R. GRIMES, J. LEWIS, B. PEYTON, AND H. SIMON, Recent progress in
sparse matrix methods for large linear systems, Internat. J. Supercomput. Appl., (1987),
pp. 10-30.

[2] C. C. ASHCRAFT, The domain/segment partition for the factorization of sparse symmetric
positive definite matrices, Tech. Report ECA-TR-148, Boeing Computer Services, Engi-
neering, Computing and Analysis Division, Seattle, WA, 1990.

[3] C. H. BISCHOF AND J. J. DONGARRA, A project for developing a linear algebra library for high-
performance computers, Tech. Report MCS-P105-0989, Argonne National Laboratory,
Argonne, IL, 1989.

[4] J. R. S. BLAIR AND B. W. PEYTON, On finding minimum-diameter clique trees, Tech. Report
ORNL/TM-11850, Oak Ridge National Laboratory, Oak Ridge, TN, 1991.

[5] M. DIXON AND J. DE KLEER, Massively parallel assumption-based truth maintenance, in Proc.
Nat. Conf. Artificial Intelligence, ACM, New York, 1988, pp. 199-204.

[6] I. S. DUFF, Multiprocessing a sparse matrix code on the Alliant FX/8, Tech. Report CSS 210,
Computer Science and Systems Division, AERE Harwell, Oxfordshire, U.K., 1988.

[7] I. S. DUFF AND J. K. REID, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302-325.

[8] A. FELDMANN, J. SGALL, AND S.-H. TENG, Dynamic scheduling on parallel machines, in
31st Annual Symposium on Foundations of Computer Science, San Juan, October 1991,
pp. 111-120.

[9] M. R. (AREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, San Francisco, CA, 1979.

[10] F. GAVRIL, Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a chordal graph, SIAM J. Comput., 1 (1972), pp. 180-
187.

[11] A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345-363.

[12] A. GEORGE, M. T. HEATH, J. LIU, AND E. NG, Sparse Cholesky factorization on a local-
memory multiprocessor, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 327-340.

[13] A. GEORGE AND J. W. H. LIU, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

1172 JOHN It. GILBERT AND ItOBEItT SCHItEIBEIt

[14] A. GEORGE AND E. N(, On the complexity o] sparse QR and LU factorization offinite-element
matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 849-861.

[15] J. A. GEORGE AND D. MCINTYIE, On the application of the minimum degree algorithm to
finite element systems, SIAM J. Numer. Anal., 15 (1978), pp. 90-112.

[16] J. R. GILBERT, Some nested dissection order is nearly optimal, Inform. Process. Lett., 26
(1988), pp. 325-328.

[17] J. R. GILBERT AND n. HAFSTEINSSON, Parallel solution of sparse linear systems, in SWAT
88: Proceedings of the First Scandinavian Workshop on Algorithm Theory, Lecture Notes
in Computer Science 318, Springer-Verlag, Berlin, 1988, pp. 145-153.

[18] J. R. GILBERT, C. LEWIS, AND R. SCHREIBER, Parallel preordering for sparse matrix]actor-
ization, in preparation.

[19] C.-T. Ho AND S. L. JOHNSSON, Spanning balanced trees in Boolean cubes, SIAM J. Sci. Statist.
Comput., 10 (1989), pp. 607-630.

[20] J. J. HOPFIELD, Neural networks and physical systems with emergent collective computational
abilities, Proc. Nat. Acad. Sci., 79 (1982), pp. 2554-2558.

[21] J. A. G. JESS AND H. (. M. KEES, A data structure for parallel L/U decomposition, IEEE
Trans. Comput., C-31 (1982), pp. 231-239.

[22] S. G. KRATZEI, Massively parallel sparse matrix computations, Tech. Report SRC-TR-90-
008, Supercomputer Research Center, Bowie, MD, 1990.

[23] J. W. H. LIU, The multifrontal method for sparse matrix solution: Theory and practice, Tech.
Report CS-90-04, Computer Science Department, York University, York, England, 1990.

[24] J. W. H. LIu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134-172.

[25] J. NAOR, M. NAOI, AND A. J. SCHFFEP, Fast parallel algorithms for chordal graphs, SIAM
J. Comput., 18 (1989), pp. 327-349.

[26] B. W. PEYTON, Some Applications of Clique Trees to the Solution of Sparse Linear Systems,
Ph.D. thesis, Clemson University, Clemson, SC, 1986.

[27] D. J. ROSE, A graph-theoretic study of the numerical solution of sparse positive definite systems
of linear equations, in Graph Theory and Computing, R. C. Read, ed., 1972, pp. 183-217.

[28] D. J. ROSE, R. E. TARJAN, AND (. S. LUEKER, Algorithmic aspects of vertex elimination on

graphs, SIAM J. Comput., 5 (1976), pp. 266-283.
[29] E. ItOTHBERG AND A. (UPTA, Fast sparse matrix factorization on modern workstations, Tech.

Report STAN-CS-89-1286, Stanford University, Stanford, CA, 1989.
[30] R. SCHREIBER, A new implementation of sparse Gaussian elimination, ACM Trans. Math.

Software, 8 (1982), pp. 256-276.
[31] R. SCHPEIBER, An assessment of the connection machine, in Scientific Applications of the

Connection Machine, H. Simon, ed., World Scientific, Singapore, 1991.
[32] H. SIMON, P. Vv, AND C. YANG, Performance of a supernodal general sparse solver on the

Cray Y-MP, Tech. Report SCA-TR-117, Boeing Computer Services, Seattle, WA, 1989.
[33] B. SPEELPENNING, The generalized element method, Tech. Report UIUCDCS-R-78-946, Uni-

versity of Illinois, Urbana, IL, 1978.
[34] THINKING MACHINES CORPORATION, Paris reference manual, version 5.0, Cambridge, MA,

1988.
[35] E. ZMIJEWSKI, Sparse Cholesky Factorization on a Multiprocessor, Ph.D. thesis, Cornell Uni-

versity, Ithaca, NY, 1987.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1173-1193, September 1992

() 1992 Society for Industrial and Applied Mathematics
O08

PARALLEL BLOCK-PARTITIONING OF TRUNCATED NEWTON
FOR NONLINEAR NETWORK OPTIMIZATION*

STAVI:tOS A. ZENIOSt AND MUSTAFA (. PINAR

Abstract. Using the primal truncated Newton algorithm for the solution of nonlinear network
optimization problems gives rise to very large and sparse systems of linear equations. These systems
are solved iteratively with conjugate gradient methods. Using the structural characteristics of the
network basis the system of equations is partitioned into independent blocks. Each can be solved in
a fraction of the time required for the original equations and can also be solved in parallel.

Partitioning schemes are developed for both pure and generalized network problems. Empir-
ical results using problems with up to 15,000 nodes and 37,588 arcs demonstrate the efficiency
of the block-partitioning techniques, both for serial and parallel computing. Details of the paral-
lel implementation on a shared-memory multiprocessor, the Alliant FX/4, are given together with
computational results on a CRAY X-MP vector supercomputer.

Key words, nonlinear programming, network optimization, truncated Newton, parallel com-
puting

AMS(MOS) subject classifications. 90B10, 90C35, 90C06, 90C30

1. Introduction. In this paper we consider linearly constrained nonlinear net-
work (NLNW) programs of the form

(1) min F(x)

(2) s.t. Ax b

(3) _< x < u

where F n is convex and twice continuously differentiable; A is an m n
node-arc incidence matrix; b, and u E n are given vectors; and x E n is the vector
of decision variables. The node-arc incidence matrix A specifies conservation of flow
constraints (2) on some network G (N,E) with INI m and IEI n. It can be
used to represent pure networks, in which case each column has two nonzero entries:
a "+1" and a "-1." Generalized networks are also represented by matrices with two
nonzero entries in each column: a "+1" and a real number that represents the arc
multiplier. The structure of the constraint matrices of network problems is described
in [13] and [17].

Nonlinear network problems appear in several applications in operations research,
transportation, economics, finance, engineering design, and so on. These problems are
usually characterized by their very large size. Several theoretical and numerical studies
have developed algorithms and software for NLNW problems. As a result of their form,
NLNW problems are some of the largest nonlinear optimization problems solved in
practice today. A recent survey of models and methods for network optimization is
given in [8].

Received by the editors November 8, 1989; accepted for publication (in revised form) July 1,
1991.

Decision Sciences Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
The research of this author was funded in part by National Science Foundation grant CCR-8811135
and Air Force Office of Scientific Research grant 91-0168.

Department of Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104. The research of this author was funded in part by National Science Foundation grant ECS-
8718971.

1173

1174 STAVROS A. ZENIOS AND MUSTAFA (. PINAR

One of the most efficient algorithms for solving large instances of NLNW pro-
grams is the primal truncated Newton algorithm (PTN) of Dembo and Steihaug [9],
implemented within the active set framework of Murtagh and Saunders [15]. In this
paper we develop techniques for partitioning Newton’s equations, which comprise the
primary computational step of PTN, into blocks of equations of reduced size. These
blocks of equations can be solved in a fraction of the time required by the original
system. (For example, solving k systems of size n/k requires O(1/k2) fewer operations
than solving the original system of size n.) Furthermore, the blocks can be solved
in parallel both on message-passing and shared-memory architectures. The block-
partitioning techniques exploit the special structure of the basis of network problems.
Hence they can be executed efficiently even for very large problems. The partition-
ing schemes for pure networks formalize and generalize the procedures designed by
Rosenthal [18] and Escudero [10], [11] for the partitioning of replicated pure net-
work problems. The technique used for partitioning generalized networks extends the
scheme proposed in Clark and Meyer [4] for the solution of linear generalized networks
to nonlinear problems. Some related work on the partitioning of Newton’s algorithm
for unconstrained optimization is given in [16].

This paper makes three contributions. First, it develops the block-partitioning
methods based on the structure of the network basis. Second, it evaluates the efficacy
of the block-partitioned algorithm for solving large-scale problems on both serial and
parallel computers. Third, it compares the efficiency of these methods with more
standard partitioning techniques that do not exploit the basis structure. As a by-
product, this study compares two alternative methods for parallel computing within
PTN: the block-partitioning developed here and the implementation of Zenios and
Mulvey [20], which emphasizes parallel execution of the linear algebra operations
within PTN.

Our notation is as follows: BT denotes the transpose of matrix B; B.t and Bt.
denote the tth column and row, respectively, of B. With the tth variable xt we
associate the tuple (i, j) where is the row with "+1" in the tth column of A, and j is
the row with the arbitrary real value in the tth column of A. In network terminology,
i and j are called the incident nodes of arc (i,j). We use t (i, j) to indicate this
association.

The remainder of this paper is organized as follows: 2 reviews concepts from PTN
and active set methods that are relevant to our work. Section 3 reveals the relation
between the structure of Newton’s equations and the basis of network models and
develops the block-partitioning schemes. Section 4 discusses implementation issues
and reports results from numerical experimentation on serial computers, a shared-
memory multiprocessor, the Alliant FX/4, and a vector supercomputer, the CRAY
X-MP/48. Concluding remarks are given in 5.

2. The truncated Newton algorithm and active sets. The primal trun-
cated Newton algorithm is a feasible direction method within an active set framework.
We describe the algorithm in two steps: First, we give a model Newton’s algorithm
for unconstrained optimization problems. Second, we discuss the active set method,
which reduces a constrained optimization problem into a sequence of (locally) uncon-
strained problems in lower dimension. There exists an extensive literature on both
techniques. Our desktop reference is [12]. The development of active set methods for
large-scale constrained optimization is given in [15]. The truncated Newton algorithm
for unconstrained optimization is given in [9]. The combination of both techniques
for pure network problems is given in [6], and for generalized networks in [1].

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1175

2.1. Model truncated Newton algorithm for unconstrained optimiza-
tion. Consider the unconstrained problem

(4) min F(x)

where F(x) has the same properties as in (1). The PTN algorithm starts from an
arbitrary feasible point x E n and generates a sequence {xk}, k 1, 2, 3,..-, such
that

lim xk x*,

where x* belongs to the set of optimal solutions to (4) (i.e., x* e X* {xlF(x <_
F(y), V y n}). The iterative step of the algorithm is the following:

(5) x+ x + ap.
{pk} is a sequence of descent directions computed by solving the system of (Newton’s)
equations:

(6) V2F(xk)pk _VF(xk) + k.
V2F(xk) and VF(x) denote the Hessian matrix and gradient vector of F(x) eval-
uated at point xk. The sequence k is a meure of accuracy in solving (6). A
scale-independent meure of the residual error is

(7) rk
]]V2F(xk)P + VF(xk)]]2

]VF(xk)]]2

The step direction is computed from (6) such that the condition rk k is satisfied
and the sequence {k} 0 k . {ak} is a sequence of step sizes computed by
solving

(8) a arg min {F(x + ap)}

(i.e., at iteration k the scalar ak is the step size that minimizes the function F(x)
along the direction pk starting from point xk). Computing ak from (8) corresponds
to an exact minimization cMculation that may be expensive for large-scale problems.
It is possible to use an inexact line search. The global convergence of the algorithm is
preserved if the step length computed by inexact solution of (8) produces a sufficient
descent of F(x), satisfying Goldstein-Armijtype conditions.

2.2. Model active set algorithm for constrained optimization. Consider
now the transformation of (1)-(3) into a locally unconstrained problem. Following
[15], we partition the matrix A into the form

(9) A [B S N].

B is a nonsingular matrix .of dimension m m whose columns form a bis. S is a
matrix of dimension m r and N is a matrix of dimension m (n- m- r). We
also use B, 8, and to denote the sets of bic, superbic, and nonbic variables,
respectively. Similarly, we partition xk into

(10) x].

1176 STAVROS A. ZENIOS AND MUSTAFA (. PINAR

Xks e Nm are the basic variables, x E Nr are the superbasic variables, and XkN E
Nn-m-r denote nonbasic variables. Nonbasic variables, for a given partitioning (9)-
(10), are kept fixed to one of their bounds. If we now partition the step direction p

(11)],

then we require pkN _= 0 (i.e., nonbasic variables remain fixed) and furthermore, pk
should belong to the nullspace of A (i.e., Apk 0), so that p is a feasible direction.
Hence p} must satisfy

(12) BpkB + Spks 0 or pks -(S-S)p.

If the superbasic variables are strictly between their bounds and the basis B is
maximal as defined in [7] (i.e., a nonzero step in the basic variables XB is possible for
any choice of direction (pkB p 0)), then the problem is locally unconstrained with
respect to the superbasic variables. Hence a descent direction for p can be obtained
by solving the (projected) Newton’s equations:

(13) -Z VF(+
where Z is a basis for the nullspace of A defined as

(14) Z I
0

The primary computational requirement of the algorithm is in solving the system
of equations (la) of dimension r x r. This system is solved using conjugate gradient
with a preconditioner matrix equal to the inverse of the diagonal of the reduced
Hessian matrix ZrVF(x)Z. Calculation of p from (12) involves only a matrix-
vector product and is an easy computation. The partitioning of the variables and the
matrix A into basic, superbasic, and nonbasic elements is also, in general, very fast.
or some of the bigger test problems the solution of system (la) takes as much as
99 percent of the overall solution time. For example, solving problem MULTH2 of
Table 1 gives rise to a system of equations of dimension 22,1588 x 22,1588. In spite of
its very large size, system (la) is usually very sparse. In a we look at its sparsity
pattern, and determine ways to partition it into smaller systems that can be solved
independently and also in parallel.

3. Block-partitioning of Newton’s equations. We return now to (13), and
try to identify a partitioning of the matrix (zTV2F(xk)Z). Recall that

(15) Z I
0

and assume that the function F(x) -t Ft(xt) is separable so that the Hessian
matrix is diagonal. (This assumption is relaxed in 3.4.) If we momentarily ignore
the dense submatrix (B-iS) and assume that

(16) Z = [I]0

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1177

(the identity I and null matrix 0 chosen such that Z is conformable to V2F(xk)),
then the product 2TV2F(x)2 is a matrix of the form HI where HI is a diagonal
matrix with the tth diagonal element given by

Hence the complication in partitioning (13) is the presence of the submatrix (B-1S).
The structure of this submatrix is examined next.

3.1. The structure of (B-1S). The matrix B is a basis for the network flows
of problem (1)-(3). It is well known (see, e.g., [5] or [13]) that the basis of a pure
network problem is a lower triangular matrix. The graph associated with this basis
matrix is a rooted tree. The basis of a generalized network is characterized by the
following theorem (see, e.g., [5, p. 421]).

THEOREM 3.1. Any basis B of a generalized network problem can be put in the
/o m

B
B2

B

BL

where each square submatrix B is lower triangular with at most one element above
the diagonal.

The graph associated with each submatrix B is a tree with one additional arc,
making it either a rooted tree or a tree with exactly one cycle, and is called a quasi
tree (abbreviated: q-tree). The graph associated with a generalized network basis is
a forest of q-trees.

To describe the structure of (B-1 S) we first define the basic equivalent path (BEP)
for a superbasic variable xt with incident nodes (i, j). For pure network problems, it
is the set of arcs on the basis tree that lead from node j to node i. The BEP together
with arc t (i, j) creates a loop.

In the case of a generalized network, it is the set of arcs that lead from nodes i
and j to a cycle; the BEP includes all arcs on the cycle. The tth column of (B-1S)
has nonzero entries corresponding to the BEP of the tth superbasic variable. The
numerical values of (B-1S) are +1 for pure network problems and arbitrary real
numbers for generalized networks; the numerical values are of no consequence to our
development. To illustrate the preceding discussion, Fig. 1 shows the basis of a pure
network problem together with the BEP for a superbasic arc and the corresponding
column of (B-1S). Figure 2 illustrates the same definitions for generalized network
problems.

The matrix (B-1S) can be partitioned into submatrices with nonoverlapping rows

if the columns of each submatrix have a BEP with no basic arcs in common with the
columns of any other submatrix.

1178 STAVROS A. ZENIOS AND MUSTAFA 0. PINAR

9

1 2 3 4 5 6 7 8 9 10
1 *
2 *
3 *
4 * *
5 *
6 * * *
7
8 * * *
9 * * *

10 * *

Sparsity pattern of (B-1 S) corresponding to superbasic (1, 2)"

Row no.
1
2
3
4
5
6
7
8
9
10

Corresponding Basic Arc
(,4)
(2,6)

(4,8)

(6,9)

(8,10)
(9,10)

(10,10)

FIG. 1. Pure network basis: Matrix and graph representation, and an example of
a basic equivalent path. Basic equivalent path (BEP) for arc with incident nodes (1,2):
((2, 6), (6, 9), (9,10), (10,10), (10, 8), (8, 4), (4,1)}.

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1179

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

14
15
16
17
18
19
2O

Sparsity pattern of B-1S corresponding to superbasic arc (9,14):
Row no. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 0 0 0 0

FIG. 2. Generalized network basis: Matrix and graph representation, and an example of a basic
equivalent path. Basic equivalent path (BEP) for arc (9, 14): ((9,10), (10, 11), (11, 12), (12, 13),
(13,9), (14,15), (15,17), (17,17)}.

1180 STAVROS A. ZENIOS AND MUSTAFA (J. PINAR

3.2. Partitioning of (B-1S) for pure networks. Let/ denote an ordered
set of binary indices such that (/) 1 if the/th arc (i,j) e 13 is in the BEP of the
tth arc (i’, j’) E S, and (/) 0 otherwise. We seek a partitioning of the set ,S into
K disjoint independent subsets, say Sk, k E {1, 2,..., K} such that

K

(,7) s (J s
k-----1

(18) t,u ,k if t V l3u O

(i.e., superbasic arcs t and u belong to the same subset, say ,Sk, if the sets/t and
have at least one overlapping nonzero element, and hence there is at least one common
basic arc in the BEPs of the tth and uth superbasic arcs, respectively. Otherwise, t
and u belong to two distinct subsets).

Escudero [11] was the first to propose the partitioning of ,S into independent
superbasic subsets ,k according to (17)-(18), for replicated pure networks. These
replicated networks consist of subnetworks with identical structure and are connected
by linking arcs. (These linking arcs represent inventory flow for his problems that
are multiperiod networks.) In the same reference Escudero gives a procedure for
identifying the independent superbasic sets

In this section we formulate the problem of identifying independent superbasic sets
as problems from graph theory. Define the graph Gs {), Ss} where the node and
edge sets are defined as 2 {1,2,3,..., I,SI} and s {(t,u)lt, u e]),t V lu 0}.
A node is associated with each superbasic variable t e ,S, and an edge is incident to
two nodes if and only if the BEP of the corresponding superbasic variables overlap.
We call Gs the connectivity graph of the superbasic set ,. It can be constructed as
the adjacency graph of the matrix ZTZ.

The first partitioning scheme simply formalizes Escudero’s procedures.

Partitioning Scheme I. Find the connected components of Gs, say];k C_ V,
k 1, 2,... ,g. Then ,Sk {tit)k} will satisfy conditions (17)-(18), by definition
of connected components, and hence ,Sk, k 1, 2,... K are independent superbasic
sets. Finding connected components of Gs can be achieved with the algorithm of
Tarjan [19]. Unfortunately it is not always possible to find more than one connected
component of Gs. For the case of replicated networks such a partitioning usually
exists since the interaction among superbasics in different subnetworks is weak. This
explains the success of Escudero’s method for the multiperiod networks. The second
partitioning scheme we propose here allows us to partition the superbasic set , for a
broader class of problems.

Partitioning Scheme II. Find the articulation points of Gs. Let C c]) be the
set of articulation points and ,Sc the set of superbasic variables corresponding to the
set C. Update the set of superbasic variables by ,S’ $ \ C and let Af Af U C. The
new superbasic set ,S’ now consists of at least IC] independent subsets. The fact that
identifying articulation points leads to partitioning of the superbasic sets can easily
be seen by the definition of articulation points (see, e.g., [2]). An algorithm with
linear time and space complexity for finding articulation points of a graph is given in
[19], and was used in our implementation of this partitioning scheme. The variables
in the set ,c that have been eliminated from the superbasic set are kept fixed at

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1181

their current value. The new superbasic set ,, which leads to a block-diagonal form
for the projected Hessian matrix, can be used to compute a preconditioner for the
reduced Hessian matrix of the original superbasic set ,. An alternative approach,
which has been followed in our implementation, is to optimize the objective function
over the superbasic set while the variables in ,c remain nonbasic. Of course, the
elements of 8c may change for different major iterations. However, this scheme is not
guaranteed to produce an optimal solution since some eligible superbasic variables
(i.e., those in ,c) are kept fixed. Once the block-partitioned algorithm terminates, we
start a new major iteration without using the block-partitioning scheme. Hence the
algorithm reverts to the original PTN. We observed that, for our test problems, one
major iteration without block-partitioning would suffice. Furthermore, the objective
value was only improved by less than 0.5 percent when the last, non-block-partitioned
major iteration was completed. (See also the discussion in 4.3.) In essence, the block-
partitioned truncated Newton algorithm is used to compute an approximate solution.
Higher accuracy can then be achieved by applying the original truncated Newton
algorithm directly.

3.3. Partitioning of (B-1S) for generalized networks. The graph-parti-
tioning schemes discussed in 3.2 for pure network problems can also be applied in
the case of generalized networks. We refer to these procedures as scheme GN-I (for
generalized networks-I). Here we develop alternative techniques to partition the super-
basic set of generalized network problems that take advantage of the block structure
of the generalized network basis.

In 3.1 we observed that the graph associated with the basis of a generalized
network problem is a collection of quasi trees. Suppose the basis matrix B consists
of submatrices B, 1,..., L. We denote the graph (q-tree) associated with B by
G (N, E). The superbasic set S can be partitioned into subsets , defined by

(19) 8’-((i,j) ESli,jEN} Vg--1,2,...,L,

with t2=1St c_ . This partitioning scheme will ignore any superbasic variables that
connect basis submatrices. A partitioning scheme that includes additional superbasic
variables is the following: Given indices k, p(k) <_ L and q(k) <_ L, p(k) q(k),
choose Bp(k) and Bq(k) and define

(20)

(21) Sp(k) ((i,j) e Sli,j e Np(k)},

(22) Sq(k) ((i, j) e Sli, j e Nq(k)},

and finally, 8k p(k)q(k) [.j sp(k (.j q(k).
independent we require that

To ensure that two sets Skl,Sk are

Bp(t:) Bp(k) Bq(k), Bq(k) # Bv() :fi Bq(k).

We now describe a procedure to identify these independent subsets sk of superba-
sic arcs. The procedure works as follows: at each iteration, a pair of basis subgraphs

1182 STAVROS A. ZENIOS AND MUSTAFA (7. PINAR

connected with the largest number of superbasic arcs is identified; these superbasic
arcs, together with the superbasic arcs that connect nodes in each subgraph, form
a subset Sk. To ensure the independence of the subsets thus formed, the basis sub-
graphs used in constructing the subsets are marked and not considered in subsequent
iterations. A complete description of the procedure is given below.

/g--- (1,2,...,L}; k=O; scount -0; pe [0.5,1).
Repeat until scount > p[Sl or lUl 1.

1. k=k+l.
2. Find r(k) and s(k) such that r(k) s(k) and
3. scount scount + [8r(k)8(k) + 1,9(k)[+
4. Sk Sr(k)s(k) Sr(k) Ss(k).
U U

We refer to the procedure described above as partitioning scheme GN-II. We note
that scheme GN-II may place some candidate superbasic arcs into the nonbasic set
when creating the independent subsets ,9k. It is also advisable to choose p as close to
1 as possible. Some preliminary experimentation is needed to find a suitable value of
p. We also remark that alternative procedures that take into account the interaction
of more than two basis subgraphs can be designed. However, this scheme achieved a
satisfactory partitioning of the superbasic set with the generalized networks problems
used in this study.

To illustrate the partitioning procedure on the basis illustrated in Fig. 2, let us
assume that the superbasic set is as follows:

,5 {(6, 11), (3, 8), (9, 14), (14, 17), (13, 19), (7, 19),
(1, 18), (16, 20), (18, 20), (14, 16), (17, 20)}.

Scheme GN-II will identify

01 {(1, 18), (7, 19), (13, 19), (6, 11), (3, 8)}

and

82 {(14, 17), (14, 16), (16, 20), (17, 20)}.

In this example, superbasic arcs (9, 14), (16, 20) are placed into the nonbasic set to
ensure independence of ,91 and 82

3.4. Extensions to nonseparable problems. We can develop a partitioning
of the system (zTV2F(x)Z) for the case when the function F(x) is nonseparable. In
this case the Hessian matrix is not diagonal. The partitioning condition (18) from
3.2 has to be modified as follows. Let t, u E . Then

O2F(x) O.(23) tEkl and u,.gk" iff tVu=0 and
Oxtxu

The connectivity graph associated with the superbasic set S is now defined as the
graph Gs {1), Ss} where 1)= {1, 2,3,..., 1,91}, as in 3.2, and

& {(t,u)l t,u V,/, v ,, # 0 and
O2F(x) }Oxtx #0

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1183

(i.e., an edge is incident to two nodes if and only if the BEP of the corresponding
superbasics overlap and changes in the value of one variable, x, change the objective
value for the second, xu). The connectivity graph can be obtained from the adjacency
graph of (zTV2F(x)Z). With this definition of connectivity graph, we can now
apply either partitioning scheme from 3.2. Similarly, we can extend the partitioning
technique of 3.3 to handle nonseparable generalized network problems as well.

4. Computational experiments. The partitioning techniques discussed ear-
lier were implemented in the network optimizer GENOS of Mulvey and Zenios [14]. 1
The modified code, which we call GENOS/PCG, was used to solve a collection of non-
linear problems, both pure and generalized. (PCG stands for partitioned conjugate
gradient, since GENOS is using conjugate gradient to solve the partitioned systems of
Newton’s equations.) The objective of the numerical experiments is to establish the
performance of PTN when Newton’s equations are solved in block-partitioned form.
Furthermore, we solved the test problems on a shared-memory vector multiprocessor
to study the performance of the block-partitioned PTN with parallel computing. Fi-
nally, we compare the performance of the parallel implementation of GENOS/PCG
to an alternative parallel implementation proposed by Zenios and Mulvey [20].

GENOS and the modifications in GENOS/PCG are written in Fortran 77. Ex-
periments on serial computer were carried out on a VAX 8700 at the Wharton School,
running VMS. The programs were compiled with the default compiler optimization
option. Parallel computing experiments were carried out on an Alliant FX/4 of the
HERMES Laboratory for Financial Modeling and Simulation at the Wharton School,
running Ultrix. The level of optimization used was at least -Og (i.e., global scalar
optimizations). The flag -O was used for experiments using the vector and parallel
features of the Alliant. All times are reported in CPU seconds, exclusive of input
and output. The termination tolerance v]k is adjusted dynamically using a forcing
sequence; its final value is 10-2

4.1. Test problems. The characteristics of the test problems are summarized
in Table 1. In addition to the size of the problems, we give the number of superbasic
arcs at optimality; this is the dimension of the system of equations we had to solve
at the last iteration of the algorithm. The MULTxn problems were generated by
the network problem generator of Chang and Engquist [3]. They are multiperiod
networks: a basic generalized network structure is replicated for several time periods
and inventory-type links connect the replicated components. All problems have a
quadratic objective function of the form -t ax2 with at E [1,100]. The number
at the end of each problem name indicates the number of replications. For example,
MULTC2 is a two-period model; each single period network has 1000 nodes. MULTC8
is an eight-period model with a total of 8000 nodes. The STICKn and PTNn problems
were obtained from [1].

4.2. Solving pure network problems. We implemented both Partitioning
Schemes I and II, discussed in 3.2. First, we must construct the connectivity graph
Gs. This is the adjacency graph of the matrix ZTZ. Due to the large size of the matrix
Z, it is more efficient to construct the connectivity graph Gs based on the structural
nonzeros of Z than to form the product ZTZ. For example, finding the adjacency

GENOS is a library of algorithms for solving network problems. It includes network simplex,
primal truncated Newton, and simplicial decomposition. The partitioning techniques were imple-
mented within the primal truncated Newton solver. Details on the implementation of this solver
within GENOS using sparse graph data structures are given in [1].

1184 STAVROS A. ZENIOS AND MUSTAFA (. PINAR

TABLE 1
Test problem characteristics.

Test problem

MULTA4
MULTA8
MULTA12

MULTB4
MULTB8
MULTB12
MULTB15

MULTC2
MULTC4
MULTC8

MULTH1
MULTH2

PTN150
PTN660

STICK1
STICK2
STICK3
STICK4

Size

400-1002
800-2000
1200-3603

2000-4010
4000-8022

6000-15,039
7500-18,000

2000-5008
4000-10,027
8000-20,047

11,000-27,571
15,000-37,588

150-196
666-906

209-454
650-1412
782-1686
832-2264

No. of basis
submatrices

9-10
15-22
23-27

8-31
21-28
35-36
40-50

4-5
5-8

40-50

40-60
50-60

Free arcs
at opt.

602
1200
2403

2010
4022
9039

10,500

3008
6027

12,047

16,571
22,588

44
240

246
763
905
1433

Obj. value

0.32713 x 107
0.66535 x 107
0.10615 x 108

0.130059
0.267280
0.175176

0.3779514

107
108
108
107

0.53512
0.111013
0.201423

x 107
x l0s

x l0s

0.566242 x 107

0.795584 x 107

--0.481973 105
--0.206107 106

6.934392
3.124563

0.111797 102

1.566195

graph of ZTz takes 21.6 seconds for PTN660 and 18.5 seconds for STICK1. Working
on the matrix Z instead, the same graphs are constructed in 4.1 and 0.8 seconds,
respectively. The most efficient implementation was adopted in all experiments.

Partitioning Scheme I was implemented using an algorithm for connected com-
ponents due to Tarjan [19]. For the test problems we have available, the connectivity
graphs Gs are very dense and in all cases there is only one connected component.

Partitioning Scheme II was implemented using an articulation point algorithm
due to Tarjan [19]. This algorithm was then applied to the connectivity graph of the
superbasic set for the pure network problems STICK1-4 and PTN150-660 at each
major iteration of GENOS/PCG. The results are summarized in Table 2. Under the
column "Size of components" we do not list the (usually large) number of components
corresponding to a single superbasic variable. The difference between the size of the
subspace and the total of the sizes of the disconnected components is the number of
single-variable sets. We give the total CPU seconds spent in the graph-partitioning
procedure during the execution of the primal truncated Newton algorithm under the
heading "Partition. time."

We observe from the table that these test problems do not produce independent
superbasic sets of (approximately) equal sizes. The largest independent set dominates
the computations, and solution time for the block-partitioned Newton’s equations is
only marginally better than the solution time required in solving the equations over the
original subspace. In addition some overhead is incurred in creating the connectivity
graph and the subsequent partitioning. The connectivity graph of the superbasic sets
tend to be dense, and hence very large. For example, the connectivity graph for
the superbasic set of PTN660 has 236 nodes and 5768 arcs. The articulation point
algorithm identified four articulation points in 0.1 seconds. However, creating the
connectivity graph from the matrix (B-1S) takes 0.48 seconds.

We conclude that for pure network problems the block-partitioning techniques

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1185

TABLE 2
Articulation point analysis: Results for PTN and STICK problems.

Problem

PTN150

PTN660

STICK1

STICK2

STICK3

STICK4

Major
Iter.

Subspace
dimension

45
43
44

236
238

Number
of artic.
points

246
246
246

763
763

905
905

1433

7
11
8

11
14

10
9

Number
of Comp.

8
12
9

12
15

11
10

10

Size of
Components

3-2-4-36
2-1-34 -3
2-1-35-3

2-2-2-2-1-224
2-2-2-2-226

24-6-1-1-23-3-8-107
14-10-6-22-105-8-2

14-10-5-131-7-3

5-4-590-11-8
517-32-31-11-9

124-237-19-56-12
247-180-12-11-9

1341-28-26-12-2-2

Partition
time

0.53

0.68

0.33

0.66

0.27

1.41

do not offer any computational savings. However, for problems that have additional
structures, such as Escudero’s multiperiod networks, the partitioning could be very
effective. Nevertheless, since an attempt to partition the network can be executed
very efficiently, it is included as an optional preprocessing phase in GENOS/PCG.

4.3. Solving generalized network problems. We implemented both parti-
tioning schemes GN-I and GN-II. We observed that the scheme GN-II based on the
structure of the basis graph is more efficient and produces better partitioning of the
superbasic set . For example, problem MULTA4 is solved by GENOS in 40 sec-
onds without partitioning. Using partitioning scheme GN-I takes 54 seconds, whereas
with partitioning scheme GN-II the problem is solved in 15 seconds. We adopted the
scheme GN-II in solving all the test problems, as shown in Table 3 together with the
results from GENOS2. The speedup factor indicates the ratio of total solution times
of GENOS by that of GENOS/PCG. For smaller problems where the network basis
does not partition evenly, the savings are reduced due to overhead in creating the
subspaces. Improvements in performance increase with the problem size. We observe
an improvement in performance by a factor of 1.20 to 5.25.

One final observation on these experiments: We noted earlier that with the parti-
tioning procedure described in 3.3 some superbasic arcs may be placed in the nonbasic
set in order to achieve independence of the blocks. This usually affects the accuracy
of the solution. However, as the optimality tolerance is sufficiently decreased, one
iteration without partitioning the superbasic set is sufficient to achieve high accuracy.
But this step is computationally expensive, particularly for larger problems. Ignoring

2 PTN indicates the overhead in forming the network basis and other initializations, SB stands for
subspace selection, i.e., the selection of the superbasic variables. This is the step where partitioning
scheme GN-II is incorporated into the program. CG and LS stand for the conjugate gradient and
linesearch procedures, respectively.

1186 STAVROS A. ZENIOS AND MUSTAFA . PINAR

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1187

TABLE 4
Comparing serial GENOS with parallel GENOS/PCG.

Test problem (ENOS (leE) GENOS/PC((aCE) Speedup
MULTB12
MULTB15
MULTC8
MULTH1
MULTH2

2316.00
6362.59
6723.11
17045.85
25336.70

753.68
1172.81
2245.15
2009.73
3982.50

3.07
5.42
2.99
8.48
6.35

this step results in significant savings in performance. The objective value at termi-
nation in this case is within 0.5 percent of the objective value given by GENOS. This
observation is illustrated in Fig. 3. In all experiments the last step is performed and
hence the problem is solved to optimality.

4.3.1. Parallel implementation.
Solving Newton’s equations. First we tested the parallel implementation

of GENOS/PCG in solving the set of blocks in a particular instance of Newton’s
equation. Using problem MULTB12, we isolated one block of dimension 750 x 750,
replicated it 20 times, and solved it in parallel (i.e., we assumed that the system of
equations in the case of MULTB12 would partition into 20 blocks of equal size. This
would be the ideal situation.). Figure 4 shows the solution time when solving this set
of 20 blocks using 1-4 processors. Significant speedup factors are observed when using
parallel processors ranging from 1.6 on two computational elements (CE) to 3.4 on

four. The speedup is not perfect due to the overhead incurred in concurrent subroutine
calls. In Fig. 4 we also show the solution times when solving the actual set of 20 blocks,
with dimensions ranging from 10 x 10 to 900 x 900. While we still observe significant
speedup between the serial and parallel implementation, the speedup factors are lower
than those observed in the previous experiment. The difference is attributed to the
uneven load balancing among processors that is due to the varying sizes of the blocks.

The linesearch procedure. Parallel CEs were also used in the line search
procedure of GENOS/PCG. The line search routine of GENOS (see [1]) is a quadratic
interpolation with safeguards. At every iteration of the linesearch algorithm the
function value, gradient vector, and Hessian matrix are evaluated for all the arcs. In
GENOS/PCG we need only to evaluate this information for those basic and superbasic
variables that appear in the current block. Furthermore, multiple processors can
compute in parallel the required information for multiple arcs in the block. Figure 5
illustrates the speedup factor of both the routine that provides function, gradient,
and Hessian values, as well as the speedup of the overall line search procedure.

4.3.2. Comparing GENOS with Parallel GENOS/PCG. As a concluding
test on the Alliant, we run GENOS on one CE of the Alliant with the fully parallelized
GENOS/PCG running on four CEs. The observed speedup factor for some of the
bigger problems is shown in Table 4. The speedup factor in most cases exceeds four,
which is the number of parallel CEs used. This is due to the combined effect of solving
a sequence of smaller problems and the effect of multiprocessing. These two effects
were analyzed separately in the results of Table 3 and in 4.3.1, respectively.

4.4. Comparison with alternative parallel implementations. In [20] we
proposed an alternative parallel implementation of PTN based on the row-wise dis-

1188 STAVROS A. ZENIOS AND MUSTAFA (. PINAR

TABLE 5
Comparison of alternative parallel implementation methods.

Problem structure Tightly coupled Loosely coupled
Networks Partitioning multiprocessor multiprocessor

Poor MPTN MPTN
Pure

Good MPTN BPTN
Generalized MPTN BPTN

tribution of the nullspace matrix among processors. This implementation produced
significant speedups when implemented on the CRAY X-MP. We tested the same
implementation on the Alliant FX/4. Hence we now have two alternative parallel
implementations on two different architectures and can draw some conclusions on
the relative merits of the two methods. Table 5 indicates which method should be
preferred for different problem structures and computer systems (MPTN indicates
the microtasked implementation of Zenios and Mulvey, BPTN indicates the block-
partitioned methods developed here).

The advantage of MPTN is that its implementation does not require any ad-
ditional computing, and it results in even load balancing among processors. The
disadvantage is that the granularity of the parallel tasks is very small; the overhead
in spawning tasks on some computers could be significant compared to the amount
of computation performed by the task.

The advantage of BPTN is that it produces tasks of large granularity. The disad-
vantage is that it may produce uneven load balancing among processors. Furthermore,
BPTN needs to execute the partitioning algorithms and this overhead can add signif-
icantly to the total solution time.

Hence for tightly coupled systems where the overhead of spawning a task is only a
few machine cycles, as in the case of CRAY X-MP, MPTN should be preferred. From
Fig. 6 we observed that MPTN achieves a speedup of 2.6 on three CPUs for both
pure and generalized networks. BPTN does not achieve any speedups for the pure
network test problems and a speedup of 1.41 is achieved for generalized networks.

For more loosely coupled systems, which may also include distributed-memory
architectures, the BPTN is preferred unless the problems do not partition well. For
example, MPTN achieves a speedup of 1.75 on a four-processor Alliant FX/4. BPTN
achieves a speedup of 2.21 on the same system for generalized network problems that
partition well.

4.5. Solving the test problems on a CRAY X-MP/48. Although we were
able to achieve significant improvements both on sequential and parallel implementa-
tions, we observed that solving the multiperiod problems was still taking a consider-
able amount of time. As a final test, we conducted some experiments on the CRAY
X-MP/48 to test the effectiveness of the partitioning schemes on a different parallel
architecture. The results are summarized in Table 6. The tests were conducted with
the default vector option of the CRAY FORTRAN compiler. The results are stated
in CPU seconds. The last column gives the ratio of GENOS/PCG solution times on
the CRAY to GENOS solution time on the VAX. As can be observed from the table,
significant gains in computing resources were possible with a vector supercomputer
like the CRAY X-MP/48.

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1189

3000

2000

1000

Solving MULTB15, Percent in objective
value with superbasic partitioning in last
step 0.02

with partition.

partition.

500O

4000

3000

2000

1000

CEs

Solving MULTC8, Percent in objective
value without superbasic partitioning in
last step 0.38

with partition.

partition.

2

CEs

FIG. 3. Solution times with and without the superbasic partitioning step at the last iteration of
PTN.

TABLE 6
Comparing GENOS with GENOS/PCG on the CRAY X-MP/48.

Test problem GENOS GENOS/PCG Ratio of GENOS/PCG
to GENOS on the VAX

MULTB8
MULTB12
MULTB15
MULTC4
MULTC8

101.92
179.36
795.29
141.05
869.66

49.90
110.79
291.64
102.23
531.18

25.87
29.41
52.47
22.85
41.23

1190 STAVROS A. ZENIOS AND MUSTAFA Q. PINAR

Solving block of size 750
1-20 times in parallel

300

200

100

30

CE

CE

3CE

4CE

No. of

Solving 20 blocks of varying
sizes in parallel

4CE

1CE

2CE

3CE

No. of blocks

FIG. 4. Parallel solution of the block-partitioned equations.

CD:C4d

CE’s

FIG. 5. Speedup factors of the line search.

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1191

3- MPTN BPTN the CRAY X-MP/48

2 3 5

MPTN
BPTN

.5-

2.0

1.5

1.0

CEs

MPTN versus BPTN on the Alliant FX/8

0.5
0 2 3 4 5

CEs

MPTN

BPTN

FIG. 6. Comparison of microtasked PTN algorithm of Zenios and Mulvey [20] (MPTN) and
the block-partitioned PTN (BPTN) on different parallel architectures.

5. Concluding observations. We developed here techniques for partitioning
Newton’s equations in the context of solving nonlinear network problems. The tech-
niques appear to be quite effective and efficient for generalized network problems and
are also well suited for parallel computations. In Fig. 7 we use our generalized net-
work problems to illustrate the combined effect of both the partitioning schemes and
the computer architecture. As observed in the figure, the reduction in the solution
time increases as the problem size gets larger. The partitioning techniques can also be
applied efficiently for pure network problems. However, our current collection of pure
network test problems does not partition well. Our study also provides guidelines on

1192 STAVROS A. ZENIOS AND MUSTAFA (. PINAR

lm
GENOS VAX

[] PCG VAX

PCG Alliant

No. of

FIG. 7. Comparative char of solution times.

choosing between two alternative parallel implementations depending on characteris-
tics of the problem and the parallel computing platform.

Acknowledgments. The authors benefited from discussions with R. S. Dembo
and L. F. Escudero. The assistance of J. W. Gregory in the experiments with the
CRAY X-MP is gratefully acknowledged. The manuscript benefited from the com-
ments of two anonymous referees.

REFERENCES

[1] D. P. AHLFELD, J. M. MULVEY, R. S. DEMBO, AND S. A. ZENIOS, Nonlinear programming
on generalized networks, ACM Trans. Math. Software, 13 (1987), pp. 350-367.

[2] A. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA, 1974.

[3] M. CHANG AND M. ENGQUIST, GTGEN: A generator for generalized transportation problems,
Res. Report CCS 540, Center for Cybernetic Studies, The University of Texas, Austin,
1986.

[4] R. H. CLARK AND R. R. MEYER, Parallel arc-allocation algorithms for optimizing generalized
networks, Ann. Oper. Res., 22 (1990), pp. 126-160.

[5] (. B. DANTZIG, Linear Programming and Extensions, Princeton University Press, Princeton,
NJ, 1963.

[6] R. S. DEMBO, A primal truncated Newton algorithm with application to nonlinear network
optimization, Math. Programming Stud., 31 (1987), pp. 43-72.

[7] R. S. DEMBO AND J. (. KLINCEWICZ, Dealing with degeneracy in reduced gradient algorithms,
Math. Programming, 31 (1985), pp. 357-363.

[8] R. S. DEMBO, J. M. MULVEY, AND S. A. ZENIOS, Large-scale nonlinear network models and
their application, Oper. Res., 37 (1989), pp. 353-372.

[9] R. S. DEMBO AND W. STEIHAUG, Truncated Newton algorithms for large-scale unconstrained
optimization, Math. Programming, 26 (1983), pp. 190-212.

L. F. ESCUDERO, A motivation for using the truncated Newton approach in a very large scale
network problem, Math. Programming Stud., 26 (1986), pp. 240-244.
, Performance evaluation of independent superbasic sets on nonlinear replicated net-

works, European J. Oper. Res., 23 (1986), pp. 343-355.

[10]

[11]

PARALLEL BLOCK-PARTITIONED TRUNCATED NEWTON 1193

[12] P. GILL, W. MURRAY, AND M. WRIGHT, Practical Optimization, Academic Press, London,
New York, 1981.

[13] J. L. KENNINGTON AND R. V. HELGASON, Algorithms for Network Programming, Wiley-
Interscience, New York, 1980.

[14] J. M. MULVEY AND S. A. ZENIOS, User’s guide to GENOS 1.0: A generalized network opti-
mization system, Department of Decision Sciences Report 87-12-03, University of Penn-
sylvania, Philadelphia, 1987.

[15] B. MURTAGH AND M. SAUNDERS, Large-scale linearly constrained optimization, Math. Pro-
gramming, 14 (1978), pp. 41-72.

[16] S. G. NASI AND A. SOFER, Block truncated Newton methods for parallel optimization, Math.
Programming, 45 (1989), pp. 529-546.

[17] R. T. ROCKAFELLAR, Network Flows and Monotropic Optimization, Wiley-Interscience, New
York, 1984.

[18] R. E. ROSENTHAL, A nonlinear network flow algorithm for maximizing the benefits in a hy-
droelectric power system, Oper. Res., 29 (1981), pp. 763-786.

[19] R. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp.
146-160.

[20] S. A. ZENIOS AND J. M. MULVEY, Vectorization and multitasking of nonlinear network pro-
gramming algorithms, Math. Programming, 43 (1988) pp. 449-470.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. (1194-1217, September 1992

() 1992 Society for Industrial and Applied Mathematics
OO9

NEW BRANCH-AND-BOUND RULES FOR LINEAR BILEVEL
PROGRAMMING*

PIERRE HANSENt, BRIGITTE JAUMARD$, AND GILLES SAVARD

Abstract. A new branch-and-bound algorithm for linear bilevel programming is proposed.
Necessary optimality conditions expressed in terms of tightness of the follower’s constraints are
used to fathom or simplify subproblems, branch and obtain penalties similar to those used in mixed-
integer programming. Computational results are reported and compare favorably to those of previous
methods. Problems with up to 150 constraints, 250 variables controlled by the leader, and 150
variables controlled by the follower have been solved.

Key words, bilevel programming, Stackelberg game, variable elimination, branch and bound

AMS(MOS) subject classifications. 90C27, 90D05

1. Introduction. In many situations, multiple decision makers with divergent
objectives intervene in the decisions to be made (Wendell [38]). The simplest such
case, in which there are only two decision makers, has long been studied in game
theory. If there is some asymmetry between the decision makers in that one of them,
called the leader, makes his decisions first, anticipating the reaction of the other one,
called the follower, and cooperation is ruled out a priori, one has a Stackelberg game.
Adding joint constraints on the strategies of the leader and the follower makes the
model more realistic. This leads to bilevel programming, a topic which has attracted
much attention recently, mostly in the linear case (see Fortuny-Amat and McCarl [19];
Candler and Townsley [16]; eapavassilopoulos [34]; Bard [5]; Bialas and Karwan [10],
[11]; 0nlii [37]; Dempe [17]; Bard and Moore [9]; Judice and Faustino [27], [28]; Ben-
Ayed and Blair [12]; Haurie, Savard, and White [24]; hnandalingam and White [4]).
The nonlinear case and extensions to three or more levels are treated in a few papers
(e.g., Aiyoshi and Shimizu [1], [2]; Bard [6], [7]; Bard and Falk [8]; Bard and Moore [9];
A1-Khayyal, Horst, and Pardalos [3]). Related bilevel and multilevel decision models
and algorithms have also been extensively studied in control theory.

Applications of bilevel programming have been made in many domains; these
include economic development policy (Candler and Norton [15]), agricultural eco-
nomics (Candler, Fortuny-Amat, and McCarl [14]), road network design (Marcotte
[30], Leblanc and Boyce [29]), and cogeneration of electrical energy (Savard [35], Has-
riB, Loulou, and Savard [23]). Mathematical programs with optimization problems in
the constraints (e.g., Bracken and McGill [13]), arising in weapons allocation prob-
lems, can also be viewed as (nonlinear) bilevel programs.

The paper is organized as follows. In 2, the linear bilevel programming problem
is stated mathematically. It is shown to be strongly NP-hard in 3. Our algorithm is

Received by the editors May 1, 1989; accepted for publication (in revised form) July 2, 1991.
Rutgers Center for Operations Research, Rutgers University, Hill Center for the Mathematical

Sciences, New Brunswick, New Jersey 08903. The work of this author was supported in part by
Air Force Office of Scientific Research grants 0271 and 0066 to Rutgers University, and done in part
during two visits to GERAD, Montreal.

Groupe d’tudes et de Recherche en Analyse des Dcisions and tcole Polytechnique de Montreal,
Case Postale 6079, Succursale "A," Montreal, Canada, H3C 3A7. The work of this author was
supported by a Natural Sciences and Engineering Research Council of Canada grant GP0036426 and
a Fonds pour la Formation de Chercheurs et l’Aide la Recherche of Quebec grant 90NC0305.

Groupe d’Itudes et de Recherche en Analyse des Dcisions and Collge Militaire Royal de
Saint-Jean, Saint-Jean-sur-Richelieu, Canada, J0J 1R0. The work of this author was supported by
Programme de Recherche Universitaire du Ministre Canadien de la Dfense grant FUHBO.

1194

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1195

stated in 4 and illustrated in an example in 5. Computational experience is reported
in 6.

2. Formulation. The linear bilevel program (LBP) may be written in the fol-
lowing general form:

(1) maximize

(2)
(3)
(4)

zl (x, y(x)) clx + dly(x)
subject to:

Ax + By(x) <_ b,
x_>0;
maximize z2 (x, y) c2x 4- d2y,

Y

subject to:

A2x + B2y <_ b2,
y>_O,

where

C1T C2T,x E]Rnl;
A2]Rm2]Rnl;

b IRma;

d1T, d2T, y IRn2;
B]aTM Jan2;

b2 IRm2

A E IRTM
B2 IRm2]Rn;

For simplicity, we assume the polyhedra defined by (3), (5), and (6) and by
(2), (3), (5), and (6) to be nonempty and bounded. The constraints on y(x) implicitly
defined by (4)-(6) can be represented as

y(x) e argmax{z2(x,y) y e t2(x)},

where

(8) Ft2(x) {y B2y <_ b2 A2x, y >_ 0}.

A solution (x,y(x)) such that y(x) satisfies (7) and (8) is called rational. The
set of rational solutions of LBP is, in general, not convex and, in the presence of
first-level constraints (2), may be empty (in which case LBP has no solution). If the
set of rational solutions is nonempty, at least one optimal solution of LBP is obtained
at an extreme point of the polytope defined by (2), (3), (5), and (6). This important
property was proven by Candler and Wownsley [16], Bialas and Karwan [10], and Bard
[5]. (Their proofs are for the case in which there are no first-level constraints (2), but
readily extend to the case where such constraints are present.)

The leader controls the variables of x, and the follower, those of y, which are
chosen after those of x; i.e., by solving the follower’s subproblem (4)-(6). The model
(1)-(6), due to Aiyoshi and Shimizu [1], contains first-level constraints that are binding
only for the leader but depend also on the decisions of the follower. Such constraints
arise, for instance, when the leader, a central agency, decides upon public investments
and has to bear the cost of their maintenance, which depends on the level of use,
decided upon by the follower, i.e., the users. Another instance is the problem of
cogeneration of electricity by the leader, a central agency, and by the follower, i.e.,
independent firms (Savard [35], Haurie, Loulou, and Savard [23]). Electricity produced
by the latter is bought at marginal cost. If the constraint on demand satisfaction is
introduced at the second level, the optimal decision of the central agency is to produce

1196 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

no electricity at all, which is clearly unrealistic. Introducing the demand constraint
at the first level requires the leader to produce a sufficient amount of electricity for
the remaining demand to be satisfied through voluntary decisions of the follower.

Some recent algorithms for LBP, e.g., those of Bard and Moore [9], which do not
allow for y variables in the first-level constraints, can easily be modified to handle
them (see 6).

Algorithms for linear bilevel programming may be grouped as follows:
(i) Branch-and-bound algorithms, in which branching is done on complemen-

tarity conditions (Fortuny-Amat and McCarl [19], Bard and Falk [8], Bard and Moore

(ii) Extreme point-ranking methods (Papavassilopoulos [34], nialas and Uarwan
[111).

(iii) Algorithms based on_finding efficient solutions for the leader’s and follower’s
objective eun tions Jar1). algorithms should be viewed as heuris-
tics, as the set of efficient solutions may contain no optimal solution (see, e.g., Haurie,
8avard, and White [24]).

(iv) Algorithms using complementary pivoting (Candler and Townsley [16];
Bialas and Karwan [11]; Judice and Fustino [erl, [es]). The algorithm of Bialas
and Karwan [11] does not always provide an optimal solution, as shown in Judice and
Faustino [27]; the latter authors’ parametric method provides an e-optimal solution
for any given e.

(v) Penalty function methods (Dempe [17], Anandalingam and White [4]).
(vi) Reverse convex programming (A1-Khayyal, Horst, and Pardalos [a]).
The best computational results to date appear to be those of Bard and Moore [9]

and of Judice and Faustino [2r], [281.
In this paper we propose a new algorithm of class (i). It exploits necessary

conditions for subsets of the follower’s constraints to contain at least one constraint
that is tight at the optimum. These conditions are new in linear bilevel programming,
although similar ones have been used in global optimization in design. They allow
fathoming of subproblems for which they cannot be satisfied and lead to better bounds,
as well as penalties, similar to those used in mixed-integer programming. We also
investigate many branching rules, some of them based on logical relations expressing
the conditions on the tightness of constraints that have been detected.

For fixed 5 the follower’s subproblem (4)-(6) has a single optimal solution in
the absence of dual degeneracy. Otherwise there is an infinity of optimal ’s, not all of
which need to be feasible or of equal value in the leader’s problem. Then some further
assumptions have to be made on the willingness of the follower to cooperate with
the leader in order for the problem to be well defined. From the point of view of the
leader, the best case is when the follower accepts the leader’s preferences regarding the
yj’s for which he (the follower) is indifferent (the tie cooperative case) and the worst
case is when the follower adopts the opposite of the leader’s preferences regarding
these yj’s (the tie noncooperative case). In this paper, we present an algorithm for
the tie cooperative case, and indicate briefly how it can be modified to solve the tie
noncooperative case.

As cooperation between the leader and the follower is ruled out, except in the
case of ties for the follower’s objective function, the optimal solution of LBP need
not be an efficient one. In other words, there might be another feasible solution with
higher value for both objective functions.

The LBP includes as particular cases the linear max-min (LMM) problem and

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1197

the bilinear programming problem and is equivalent to some cases of concave pro-
gramming and of nonconvex quadratic programming (see Pardalos and Rosen [33] for
definitions and references).

3. Complexity. Jeroslow [26] has shown that LBP is NP-hard, and a shorter
proof has recently been given by Ben-Ayed and Blair [12]. We next show that this
result can be strengthened; we consider the LMM problem, a more restricted model
than LBP. LMM is obtained from LBP by omitting constraints (2) and setting c2

-c d2 -d1, as pointed out by Bard and Falk [8]. For definitions, see Garey and
Johnson [20].

THEOREM 3.1. LMM is strongly NP-hard.
Proof. We use reduction to KERNEL, which has been proved to be NP-hard by

Chvtal (see Garey and Johnson [20, p. 204]). Recall that a kernel K of a graph
G (V, E) is a vertex set that is stable (no two vertices of g are adjacent) and
absorbing (any vertex not in K is adjacent to a vertex of K). Then consider the
LMM

n

(9) max min z yj
x y

j--1

(10) s.t. xj -t- xk <_ 1 Vj, kl{vj, vk} e E,
() y <_ x v j,

(12) yj <_l--xk V j, kl{vj, vk} E E,
(13) xy, yj >_ 0 V j,

where variables xj and yj are both associated with the vertex vj of G, for j
1, 2, -.., n. We claim that G has a kernel if and only if the optimal solution to (9)-
(13) has avalue z* 0. Assume first that Ghas akernelK. Then set xj 1
for all j lvj e K, xj 0 otherwise. This solution satisfies (10) as K is stable. It
imposes yj 0 for all j through (11) and (12) as g is absorbing; so z* 0.

Assume next that G has no kernel. Then any optimal solution in which all
*’s 1}. As this stable set cannotx are integers defines a stable set S {vj]xi

be absorbing, at least one y must be equal to 1 and z* _< -1. Moreover, any
nonintegral optimal solution must contain at least one x taking a positive fractional
value, and because of (10) no x such that (vy, vk) E can be equal to 1. So
y takes a positive value and z* < 0. As KERNEL is not a number problem, this
completes the proof. [:]

COROLLARY 3.2. LBP is strongly NP-hard.
Recall that a fully polynomial approximation scheme provides an e-optimal solu-

tion to a given problem in time polynomial in the problem size and in e. It follows
from the above corollary that no fully polynomial approximation scheme can be found
for LBP unless P NP.

4. Algorithm.

4.1. Necessary conditions for optimality and penalties. We next derive
necessary optimality conditions, expressed in terms of tightness of constraints in the
follower’s subproblem, i.e., constraints (5) and (6). To this effect we associate with
each such constraint a boolean variable ci equal to 1 if the constraint is tight, and
equal to 0 otherwise. These conditions will play a basic role in the branch-and-bound
algorithm described in 4.2

1198 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

THEOREM 4.1. In any rational solution to LBP the tightness of the constraints
in the follower’s subproblem is such that

(14)

2(15) E a,+am2+j>_l ifdj <0
i]B2.<O

for j 1, 2, .--, n2.

Proof. Assume that by comradiction there is a rational solution (2,) to LBP
such that (14) does not hold for some j e {1, 2, ..., n2} such that dj > 0 or (15) does
not hold for some j {1, 2, ..., n2} such that dj < 0. In the former ce, increing
the value of t)j by

(16) A)j-- min
1 2 2^ 2b AkxkBij k=l

yields a solution satisfying constraints (5) for x 5 and (6) with a value larger by
djAt)j than that of (5, !)). This contradicts (5, t)) being rational. In the latter case,
decreasing the value of) by

17) At)j min t)j, min Ai2kCk + BikYk bBij k=l =

yields a solution satisfying constraints (5) for x 5 and (6) with a value larger by
-djA)j than that of (2,). This again contradicts (5,)) being rational. [:]

COROLLARY 4.2. In any optimal solution to LBP the tightness of the constraints
in the follower’s subproblem is such that conditions (14) and (15) are satisfied for all
j E {1, 2, ..., n2} such that dj > 0 and d < O, respectively.

Proof. This follows immediately from the fact that optimal solutions to LBP are
rational.

A weaker condition involving tightness of constraints was obtained by Falk [18]
for the LMM problem. Falk indeed noted that at least one constraint in the follower’s
subproblem must be tight at the optimum, i.e., that

m2 n2

(18) E ai +E am.+ >_ 1.
i--1 j=l

Falk [18] showed that using this relation at the first node while solving by
branch-and-bound algorithm does reduce computational effort, but he did not apply
it for subproblems obtained by branching. We next discuss branching for the LBP.
This leads us to show how further relations of type (14) or (15) can be obtained for
all subproblems.

In all rules studied, branching is done by fixing some binary variable(s) c at
0 or at 1. Either a single variable c will be chosen for that purpose (dichotomous
branching), or a logical relation (14) or (15), e.g., as, + ai + ai +". >_ 1 will be
chosen and branching will be done according to the rule ai 1 or (oi 0 and
a. 1) or (a, a 0 and a 1) and so on (multiple branching).

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1199

If ai 1, the ith constraint (in (5) or (6)) in the follower’s subproblem becomes
an equality. It can then be used to eliminate one of the follower’s variables yj (which
is Yi-m2 in case of a constraint of type (6)). New logical relations of type (14) and
(15) can then be derived.

Of course, variable elimination does not reduce the number of structural con-
straints in that the nonnegativity constraint yj >_ 0 for the eliminated variable is
replaced by an inequality involving several variables. If there are several possibl
choices for yj, the variable with the smallest fill-in, i.e., which least augments the
number of nonzero coefficients, is chosen.

If a subproblem is obtained in which no more y variables remain, its optimal
solution is found by solving the problem obtained by deleting the objective function
(4) of the follower (called leader relaxation below and denoted LR), as the leader
controls all remaining variables. However, it will be necessary to check whether this
solution is rational or not. This will be the case if the value of the follower’s objective
function, when the x variables are fixed at their values in the optimal solution of LR,
is the same for the y values obtained from the tight constraints used to eliminate
them, and for the optimal yj values for the follower’s subproblem.

If ci 0, the ith constraint (15) in the follower’s subproblem becomes a strict

inequality, and from the complementary slackness theorem of linear programming,
the ith variable in the dual of the follower’s subproblem must be equal to 0. As it
is not easy to handle constraints stating that a variable is strictly positive in linear
programming, the dual of the follower’s subproblem will be solved instead of the primal
in one test of the algorithm described below. When many variables ai are fixed at
0, this dual problem may be infeasible, in which case, from the duality theorem, the
primal follower’s subproblem together with the strict positivity constraints is also
infeasible, as by assumption it is bounded.

In practice, variable elimination can be performed by pivoting in a simplex tableau
and fixing the eliminated variable, which leaves the basis at 0. This is easily imple-
mented in a linear programming package such as Marsten’s XMP [31].

In the branch-and-bound algorithm described in the next subsection, depth-first
search is used and the subset of logical relations (denoted by R) is updated after either
branching or backtracking.

When a branch corresponding to (i 0 is explored, all logical relations involv-
ing ci are simplified by deleting (i. When a branch corresponding to (i 1 is
explored, all logical relations involving (i are deleted as they are trivially satisfied.
Then new relations (14) or (15) are obtained after a variable yj has been eliminated.
Finally, redundant relations are eliminated from R. (Recall that a logical relation

rk =-- ,ieIk ci >_ 1, where Ik denotes the set of indices of the logical variables in rk,

of R is redundant if R contains another logical relation r =_ ieI ci _> 1 such that

I C_ Ik, i.e., satisfaction of r >_ 1 implies that rk _> 1 is satisfied as all variables ai

appearing in r appear also in rk.) When backtracking occurs, we revert to the set R
corresponding to the last explored node for which one branch is unexplored and then
explore this branch, updating R accordingly.

When branching is done on the values of the ai, at most 2m-+n+l- 1 subproblems
will be generated. If multiple branching is used the number of subproblems will be
less, as subproblems with c 0 for all i Ik for relations rk R used for branching
are excluded.

As in many other algorithms for LBP, linear programming will be used to obtain
bounds on the optimal value. To this effect, the objective functions (4) of the follower

1200 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

will be deleted (in the original problem or in the current subproblem in which some
variables yj have been eliminated). Solving the so-obtained linear program LR gives
such an upper bound (denoted z). Then the effect of fixing a variable at 1, i.e.,
satisfying a constraint as an equality, can be anticipated to some extent by comput-
ing a penalty as in mixed-integer programming (see, e.g., Taha [36]). Consider the
equations corresponding to an optimal tableau of the LR of the current subproblem

(z;
jN

Xi b Aibxj, i e B,

where B denotes the index set of bic and N the index set of nonbic variables.
Then if xi is the slack variable of the ith constraint the down penalty for setting xi
at 0 is

pi=b min {z-cj}jeYlA5 >0 Ai
It corresponds to the decree in the value of ZL during the first dual-simplex iteration
after adding the constraint xi 0. Moreover, if rk ieI i 1 is a logical relation
of type (14) or (15) that must be satisfied by any rational solution, then at let one
of the slack variables xi (i Ik) must be set at 0. It follows that

*’ min PiZL ZL
iIk

is an upper bound on the optimal value of the current subproblem. Finally, taking
imo accoum all logical relations of type (14) or (15) leads to a stronger upper bound:

sit

klrR iI

4.2. Tests. Before giving the rules of the new algorithm, we recall and illustrate
a clsification of tests for branch-and-bound methods (Hansen, Jaumard, and Lu
[21], [22]). Viewed abstractly, any test of a branch-and-bound algorithm consists
in examining whether a sufficient condition for some proposition about the current
subproblem to be true is satisfied or not, and making use of this proposition when it
is the case to fathom or simplify the subproblem.

A direct test is such that the information provided by the proposition when the
condition holds is all that is required for the solution of the current subproblem. This
is the ce when it can be shown: (i) that a known solution x* is the globally optimal
solution of the subproblem (direct resolution test); or (ii) that the subproblem h no
solution better than the best one known, called incumbent (direct optimality test); or
(iii) that the subproblem has no legible solution (direct feasibility test).

One resolution test for LBP, which applies to subproblems in which all variables
yj have been eliminated, consists in solving LR for x and then checking whether

x*the solution L, YL), where YL is obtained by using the equations of elimination
backwards, is rational or not. If it is rational, (x, y) is the optimal solution of the
current subproblem. A stronger version of this test, in which some yi may remain in
LR, is given below. One direct optimality test for LBP consists of solving LR and
checking if its optimal value z exceeds the value Zopt of the best solution found so

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1201

far. One direct feasibility test for LBP, discussed above, consists in checking whether
the dual of the follower’s relaxation (FR) is feasible or not.

A conditional test is such that the information provided by the proposition when
the condition holds is all that is required for the solution of the current subproblem
when a variable is fixed at a given value (here a boolean variable ai fixed at the
value 1).

One conditional optimality test for LBP consists in solving LR, computing the
penalties pi for loose constraints (i.e., those with strictly positive slack variables in
the basis) and checking if z. -pi <_ Zopt. If this last inequality holds, no better
solution than the incumbent one can be found for the current subproblem with the
ith constraint being tight (i.e., ai 1), so ai may be fixed at 0.

A relational test is such that the information provided by the proposition when
the condition holds is all that is required for the solution of the current subproblem
if some algebraic or (here) logical relation is not satisfied.

Applying Theorem 4.1 yields logical relations (14) and (15) for all yj remaining
in the current subproblem; if all ai in one of these relations are equal to 0, the current
subproblem contains no rational solution and is fathomed.

We next describe a depth-first branch-and-bound algorithm. The current sub-
problem is characterized by: (i) objective functions and constraints of type (1)-(6)in
x and in the remaining yj variables; (ii) the vector a specifying which of the initial
constraints are tight, loose, or of unknown tightness; (iii) the logical relations obtained
from monotonicity; and (iv) the list of eliminated variables and the equalities defining
their values. This subproblem may be written as follows:

(19) max

subject to:

(20) 1x

__
1

__
1,

(21) x _> O;
(22) max 52(x,) 2x + 2,

subject to:

(23) 2x +/2 <_ 2,
(24)) _> 0,

where) denotes the vector of remaining yy variables and the tilde indicates that the
coefficients in (19)-(24) are those obtained by eliminating the variables of y \ . In
addition, the current subproblem is defined by (1,’", am2+n2), where the ci
can be fixed at 0 or at 1 or be free, and R {rk, k E K}, where rk =-- -I >-- 1
with Ik C_ {1,2,...,m2 + n2}, as well as the linear equations used to eliminate the
variables of y \ .

As discussed above, elimination of variables can be done by pivoting and fixation
of nonbasic variables at 0. For simplicity of exposition we will not distinguish between
eliminated and noneliminated variables when stating the rules of the algorithm given
below.

We use two relaxations of the subproblem: the leader’s relaxation (LR) obtained,
as explained above, by omitting (22), and the follower’s relaxation (FR), which con-
sists of (22)-(24) for x fixed to 5. We will also consider the follower’s subproblem (FS),
which consists of (4)-(6), for x 5.

1202 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

ALGORITHM HJS

a. Initialization.
Obtain an initial solution (Xh, Yh) with a heuristic (the choice of which is discussed
below). Initialize the incumbent solution (Xopt, yopt) to (Xh, Yh) and the incumbent
value Zopt to c Xopt +d Xopt. If no heuristic solution can be found, initialize (Xopt, yopt)
to an arbitrary value and set Zopt
Consider all variables ci (i 1, 2, .-., m2 + n2) to be free. Set R

b. First direct optimality test.
Solve LR; let (x, y) denote an optimal solution.

=clIf zL X*L + d YL Zopt, go to step m (backtracking).

c. First direct feasibility test.
Solve the dual of FR(x). If it has no feasible solution, go to step m.

d. Direct resolution test, first part.
Consider again the optimal solution (x, y) of LR.
Check if (x, y) is rational for the current subproblem: solve FR(x), and let y be
an optimal solution. If d2y*i d2y then (x, y) is rational; otherwise go to step f.

e. Direct resolution test, second part.
Consider again the optimal solution (x, y) of LR.
Check if (x, y) is rational for the initial problem: solve FS(x), and let y8 be an
optimal solution.
If 2, 2,d YL --d YFS then (X’L, YL) is rational; otherwise go to step f.
Update Zopt and (Xopt, Zopt) if Zopt < clX*L + d YL and go to step m.

f. Second direct optimality test.
Compute all penalties p associated with strictly positive slack variables in the optimal
tableau of LR. Set the other p equal to 0. Then for all k such that rk E R, compute

rk min Pi,
iEIk

and set

H max rk.
k

If Zop

_
Z II, gO to step m.

g. Second direct feasibility test.
If LR is infeasible, go to step m.

h. First conditional optimality test.
Consider again LR with the penalties pi. For all such that Zop

__
Z --Pi, fiX Cg at

0 and update R.

i. Third direct optimality test.
If R contains a relation rk such that cj 0 for all j Ik, go to step m.

j. Relational optimality test.
For all remaining yj appearing in z2(x, y), add to R the logical relations (14) or (15)
on the ci, if they are nonredundant. Eliminate from R those relations that have
become redundant.

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1203

k. Second conditional optimality test.
If R contains a relation rk such that aj 0 for all j EIk except for one index i, set
the corresponding ai to 1. Eliminate from the subproblem a variable yj remaining in
the ith constraint such that fill-in is minimum and return to step b.

1. Branching.
Apply the selected branching rule (the choice of which is discussed in 5) to choose
either a free variable ai or a relation rk R for which all variables a with i Ik
are free. In the former case, branch by fixing ai at 1. In the latter case, branch by
fixing the first variable (i in rk equal to 1. Eliminate a variable yj remaining in the
ith constraint such that fill-in is minimum. Return to step b.

m. Backtracking.
If branching took place on a variable, find the last ai branched upon and equal to 1,
set this (i 0 and free the a fixed at 0 after a was fixed at 1. Otherwise consider the
last logical relation rk for which less than IIk branches have been explored; consider
the next branch. If there is no such variable or relation, stop. Otherwise update the
current subproblem and return to step b.

Various heuristics may be used to obtain a first rational solution in the absence
of first-level constraints. One of them, used in our implementation, consists of solving
LR with the objective function Aclx + (1 A)d2y, i.e., a weighted sum of the leader’s
objective function for the x variables and of the follower’s objective function for the
y variables. The weight A was chosen to be equal to

nl

nl + 2n2

Better heuristic solutions could be obtained at higher computational cost, e.g., by
varying A between 0 and 1 in the following objective function (1-A)(clx+dly)+ Ad2y
and keeping the first rational solution obtained as in Bard’s algorithm [5], or by using
Judice and Faustino’s algorithm as they suggest in [28].

THEOREM 4.3. Algorithm HJS solves LBP in a finite time.

Proof. As mentioned in 2, LBP has an optimal solution at an extreme point of
or has no solution. Branching on the tightness of the follower’s constraints implies an
implicit enumeration of all bases of FS, which are finite in number, as is the number
of values for the vector a. Moreover, all steps take a finite time and the algorithm
cannot cycle, as they are done in sequence unless simplification or branching takes
place, which can happen only a finite number of times.

As mentioned above, Algorithm HJS is for the tie cooperative case. Therein, ties
in the values of the follower’s objective function are automatically resolved as the
leader wishes. This is ensured by LR: the objective function is that of the leader, so
that if in tests d and e the solution (x, y) is found to be rational, it is the best
from the leader’s point of view among all rational solutions with 5- x. Algorithm
HJS is easily adapted to solve the tie noncooperative case. Indeed, it suffices to add a
secondary objective function in the follower’s subproblem equal to -dly and activated
only in case of ties for the objective function d2y, in a similar way as in preemptive
goal programming (see, e.g., Ignizio [25]).

This modification, which affects tests d and e, has two consequences: first, rational
solutions in case of ties for d2y will usually differ from (x, y), so more branches will
have to be explored; second, again in case of ties for d2y, the optimal solution may
be modified.

1204 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

5. An example. Consider the following two-level linear program (from Candler
and Townsley [16], with an additional first-level constraint). The ai are written in
parentheses next to the corresponding constraints:

(25)

(26)

(29)
(30)

(32)
(33)
(3a)

max zl =8xl + 4x2 4y + 40y2 + 4y3,

subject to: x + 2x2 -Y3 _< 1.3,
X >__ 0, X2 > 0,
max z2 -2y Y2 2y3,

subject to:

(a) -yl + y2 + y3 <_ 1,

(o2) 4Xl 2y + 4y2 y3 _< 2,

(a3) 4x2 + 4y 2y2 y3 _< 2,
(aa) y >_ O,
(a5) Y2 O,
(a6) Y3 O.

Solve the problem:

max zn ,,clx -- (1 A)d2y with A nl + n2 5
x,y nl + 2n2 7’

i.e., zn 5Xl -- 2.5X2 1.5yl 15y2 + 1.5y3 subject to constraints (26)-(27) and (29)-
(34) (step a). Its optimal solution (x, y) (1.5, 0, 1, 0, 2), with value z 9, is
feasible for problem (25)-(34). Therefore, (Xopt, Yopt) is initialized to (x, y) and
Zopt to 16.

Solving the LR leads to (x, y) (0, 0, 1.5, 1.5, 1) and z 58 > Zop (step b).
As no constraint has yet been imposed on the dual variables of the follower’s problem,
it is feasible (step c). Setting to x, we obtain y (0, 0, 0) and z2(y) 0
z2(y) -6.5; hence (x, y) is not rational (step d).

The penalties pi associated with constraints (29)-(34) are equal to:

pl O, P2 O, P3 O, P4 28.8, P5 42, and P6 22 (steps f and h).

The set R of logical conditions

al q-a2 A-a4 > 1 (w.r.t. yl),
a3 + a5 > 1 (w.r.t. Y2),

a2 + a3 + a6 > 1 (w.r.t. Y3)

are obtained (step j). We branch on the second relation and first consider a5 1 as

p5 > P3. This leads to y2 0 and the problem reduces to

max Zl 8Xl -1- 4x2 4yl + 4y3,

subject to: x + 2x2 -Y3 < 1.3,
X1 __> O, X2 >__ 0;
max z2 -2yl 2y3,
Yl, Y3

subject to:

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1205

--Yl + Y3

_
1,

4xl- 2y- Y3

_
2,

4x2 + 4y Y3

_
2,

y

_
0, Y3

_
0.

XThe optimal solution L, YL) of LR is (1.5, 0, 1, 2) with a value z 16 _< Zopt
(step b).

The incumbent solution remains: Zopt 16, (Xopt, yopt) (1.5, 0, 1, 0, 2).
Backtracking (step m) leads to the branch (5 0, (3 1. Variable y is elimi-

nated, leading to the subproblem

max zl 8x + 8X2 - 38y2 + 3y3 2,

subject to: X + 2x2 -Y3 _> 1.3,

x _> O, x. _> O,
max z2 2x2 2y2 2.5y3 1,
Y2 Y3

subject to:

(a5) Y2 > 0,

(c6) Y3 _> 0.

X2 -" 0.5y2 + 0.75y3

_
1.5,

2X + X2 + 1.5y2 --0.75y3

_
1.5,

x2 0.5y2 0.25y3

_
0.5,

The current set of logical relations R (step j) is equal to {ha >_ 1} (with respect to
y2 in the above subproblem). Indeed the constraint O2 -" O4 -O6

_
1, corresponding

to Y3 in the current subproblem, is redundant and the three previous constraints of R
are eliminated, two of them because they contain O3 1 and the third one because
c4 1 makes it redundant. Tightness of the fourth constraint (step k), i.e., a4 1,
allows us to eliminate y2, leading to the subproblem

max Zl 8X -- 84X2 16y3 40,

subject to: x + 2x2- Y3 _< 1.3,
X 0, X2

__
0,

max z2 --2x2 1.5y3 + 1,
y3

subject to:

(-:)
2x2 + 0.5y3 2,

2x + 4x2 1.5y3

_
3,

--2x2 -0.5y3

_
--1,

y3_>0.

A new logical relation is found 2 / O6 -- 1. Computing the optimal solution
=L) of LR, its value zi and the penalties p yield (x YL) (0, .833 .466), zi

26.73 > Zopt, and pl 0, P2 8.333, P6 12.333. Setting to x in FR yields the
solution YEa (.3555) and z2(F) -1.3 z2(YL) --1.466; hence (X’L, YL) is not
rational.

Penalty P6 12.33 is such that Zopt > Z --P6; hence O6 0 (step h). The set
R reduces to (he _> 1}. Tightness of the second constraint allows us to eliminate Y3,

1206 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

the last of the follower’s variables. This gives the following subproblem

max Zl -13.33xl + 41.33x2 8

subject to: xl 2x2 _< -2.1

x >_ 0, x >_ 0;
max z2 -2Xl 6x2 -{- 4
Y

subject to:

(a) 2x+10x2<_9,
(a) Xl x < 0,
(a6) -2Xl 4x2 <_ -3.

Solving LR yields x (0.5, 0.8) and z 18.4, which is trivially rational
for the current subproblem. Moreover, setting 5 to x in FS yields the solution

Y’s (0, .2, .8) with z2(Ys) z2(y) -1.8. Thus the solution (0.5, 0.8, 0, 2, 0.8)
is rational for the initial problem, and the incumbent vector and value are updated.
Backtracking brings the algorithm to stop. The problem is thus solved after examining
three nodes only (see Fig. 1).

Zopt 16

Zopt

4 1 == 6 0 := 2 1

FIG. 1. Branch-and-bound tree for the example.

6. Computational experience. The algorithm of 4 has been coded in FOR-
TRAN 77 and extensively tested on a SUN 3/50 and, for one series of tests, on a
SUN SPARC computer. We also solved some test problems with the program of
Bard and Moore [9] (referred to as BM below) on the same computer. Algorithm BM
is similar to that of Fortuny-Amat and McCarl [19] in that both use branching on
the complementary slackness conditions associated with the follower’s subproblem.
Fortuny-Amat and McCarl convert the complementary conditions into mixed-integer
linear constraints before branching. The relaxation of the problem so obtained is less
tight than in the BM algorithm. Bard and Moore consider the relaxation of LBP
obtained by deleting the follower’s objective function (i.e., program LR), then add
the constraints of the dual of the follower’s subproblem, solve in both the primal and
dual variables, and branch on the complementary slackness conditions until they are
satisfied. The program BM uses Marsten’s code XMP [31] as a subroutine to solve
the linear programs. We used the same code for that purpose.

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1207

1208 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

Problems were generated randomly with the same characteristics as in Bard and
Moore [9] for 40 percent and 17 percent density and as in Savard [35] for sparser
(8 percent and 6 percent density) ones. To avoid empty columns, coefficients were
generated column after column with these densities. To avoid unbounded optimal
solutions in the follower’s subproblem if all coefficients in a column corresponding
to a variable yj with d > 0 are negative, the first one is multiplied by -1; then
boundedness is checked and unbounded problems deleted.

The main parameters considered are the numbers n and n2 of leader and follower
variables, m and m2 of first-level and second-level constraints and density d of the
coefficient matrix. For each set of these values in each series of tests, 10 problems are
solved. Mean (#) and median (m) values as well as standard deviations (a) for the
number of nodes in the branch-and-bound tree and for the cpu times are given.

A first class of experiments was aimed at streamlining the algorithm and assessing
which of its features are the most useful. Numerous branching rules were tested. In
Table 1 we present results for the seven best rules, which are described next. We
denote by si the slack variable associated with constraint of type (5) or (6) and by
ui the corresponding dual variable for i 1, 2, ..., m2 + n2.

BR1. Multiple branching. (i) Select the logical relation rk E R with smallest
cardinality. (ii) Break ties by choosing a relation with the largest number of slack
variables si in basis. (iii) Order the variables ai in rk by decreasing values of the
penalties pi.

BR2. Same as BR1, except for (iii). Order the variables ai by decreasing values
of the products siui.

BR3. Binary branching. Select the boolean variable ai associated with the largest
penalty pi.

BR4. Select the ai associated with the largest product siui (same rule as in
Algorithm BM).

BRh. Multiple or binary branching. (i) Select the relation rk E R with two vari-
ables ai and both the corresponding slack variables si in basis, such that iEIk UiSi
is maximum. (ii) If there is no such relation, use BR4.

BR6. Same as BR5 except that in (ii), branch on the variable ai with largest
penalty pi among those for which siui > O.

BR7. Same as BR5 except that in (ii), branch on the variable with smallest
product su > O.

It appears that:

(i) numbers of nodes generated and computation times are extremely sensitive
to the chosen branching rule;

(ii) multiple branching on logical relations involving few ai is less efficient than
dichotomous branching on the

(iii) best results are obtained by a hybrid rule in which multiple branching is
first used and one switches to dichotomous branching when no more logical relations
with few a are available;

(iv) with all branching rules, difficulty of resolution varies greatly from problem
to problem: often a > m and m << #. Many problems are easy to solve, with one or
a few nodes in the branch-and-bound tree, while a few take several thousand nodes.

As branching rules BR5 and BR6 gave the best results, they were adopted in the
remaining experiments.

In a second series of tests the effect of heuristics was assessed by obtaining an

upper bound on the reduction in computing effort they can provide in the following

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1209

TABLE. 2&
No heuristic.

BM

BR5

BR6

nl
n2
m2
d

50
50
40
8%

70
50
48
8%

60
6O
48
8%

7O
60
52
8%

nodes cpu nodes cpu nodes cpu nodes cpu
2863.2 2504.8
4968.3 4569.9
396 330.2

2111.7 3628.3
3114.2 4999.1
518 1208.2
30.4 112.6
31.3 98.3
19 83.3
34.2 123.3
29.4 97.4
25 85.6

18.0 59.4
12.6 37.7
13 53.2

1981.6 4238.4
2844.7 5853.9
662 1420.5
24.6 132.4
29.0 129.5
11 69.0
37.0
50.2
15

181.6
205.8
77.8

23.2 70.8
15.0 47.1
21 63.7

3658.3 7302.3
3462.3 6332.3
2138.0 4040.9

26.2 159.3
26.2 144.8
11 73.2
22.6 136.1
20.3 111.5
11 75.0

TABLE 2b
HJS heuristic.

BM

BR5

BR6

nl

n2
m2
d

50
50
40
8%

70
50
48
8%

60
6O
48
8%

70
60
52
8%

nodes cpu nodes cpu nodes cpu nodes cpu
2175.0 1991.2
4828.4 4525.3
342 250.3
17.6 56.8
12.8 35.7
11 41.1
22.6 67.0
14.9 42.8
21 59.0

1959.2
3114.7
518

3421.9
5010.3
1205.6

30.4 112.3
31.3 98.5
19 83.4
34.2 121.3
29.4 95.6
25 85.2

1953.7
2859.3
466

4209.6
5872.3
1153.5

24.0 126.0
29.4 126.6
11 69.5
36.4 174.6
50.6 205.9
15 76.8

3357.4
2989.2
2138

7303.1
6332.5
4040.6

26.2 154.8
26.2 140.8
11 68.7
22.6 133.7
20.3 109.4
11 70.8

TABLE 2c
Using the optimal solution as first heuristic solution.

nl
n2
m2
d

BM a
m

BR5 a
m

BR6 a

m

50
50
40
8%

70
50
48
8%

60
60
48
8%

70
60
52
8%

nodes cpu nodes cpu nodes cpu nodes cpu
1299.7 2700.1
2190.6 4574.7
304.0 598.7
15.2 64.9
14.3 46.8
9 424

17.4 70.6
16.5 53.7
9 42.4

1722.5 3719.7
2914.1 6011.2
160 652.1
18.8 99.2
30.1 129.7
3 31.1

25.0 119.1
48.6 196.5
5 33.9

2032.6 4675.5
2452.6 5643.5
944 2068.6
17.0 97.7
21.0 97.1
9 57.7

13.8 85.4
11.5 66.5
9 57.6

876.0 833.6
1935.6 1822.3
138 98.0
12.4 42.7
11.2 30.8
7 27.6

16.4 51.5
13.8 39.4
11 38.2

way: a series of test problems solved previously was solved again, first using no
heuristic and then assuming the optimal value to be known a priori. Results are given
in Tables 2a, 2b, and 2c (lines corresponding to BM will be discussed later) and are
to be compared with those of Table 1. It appears that"

(i) a priori knowledge of the best solution significantly decreases computational
effort (average cpu times are reduced by 21.3-42.2 percent);

1210 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1211

(ii) some problems remain difficult to solve;
(iii) the heuristic described in 5 only entails small reductions in numbers of

nodes and cpu time.

So, there is room for improved heuristics (e.g., as discussed above, those of Bard
[5] and Judice and Faustino [27], [28]) but heuristics alone will not always render the
solution of LBP easy.

In the next series of tests the effect of penalties was assessed by solving the same
series of problems without and with them. Results, given in Table 3, show that:

(i) using penalties significantly reduces the number of nodes in the branch-
and-bound tree (the average reduction in number of nodes is between 25.0 and 68.3
percent);

(ii) cpu times are not much affected (sometimes slightly increased and sometimes
slightly decreased) except for the largest test problems, in which case using penalties
reduces mean cpu time by 45.8 percent.

Table 3 also gives statistics on the number of times a variable ai is fixed using
a logical relation (rlog) and using a test involving penalties (pen). Note that the
number of fixations due to logical relations increases when penalties are used, as
these penalties can show that some ai must be equal to 0 and hence sharpen the
logical relations in which these a appear.

A second class of experiments aims at studying which parameters influence the
difficulty of resolution of LBP. Results of a sensitivity analysis on the right-hand side
vector are given in Table 4. Each component of this vector is chosen to be equal to s
times the fraction of the right-hand side minus the sum of the negative coefficients over
the sum of the absolute values of the coefficients in the corresponding constraint; s is
varied from 0.4 to 0.8. No clear-cut tendency appears to be detectable. Contrasting
with this result, very large differences in problem difficulty are observed when the
amount by which the leader’s and follower’s objective functions are antagonistic varies
(this amount depends on the ranges and the signs of the coefficients in both objective
functions). Table 5 shows results obtained when coefficients d in the leader’s objective
function and coefficients d in the follower’s objective function are randomly chosen
in a uniform distribution on [, 20] where varies from -20 to +12. It appears that:

(i) computational effort regularly decreases when the lower bound t increases,
i.e., when the leader’s and follower’s objective functions become closer to being par-
allel.

(ii) computational difficulty of the hardest and easiest problems is very different
(averages 33.3-56.3 times more nodes and 12.3-19.6 times more cpu time in the former
than in the latter case).

This suggests that in reporting future experiments on algorithms for LBP, a pa-
rameter such as / specifying the amount of antagonism between the two objective
functions should be systematically specified.

In another series of experiments the number of first-level variables was varied
while the numbers of second-level variables and of constraints were kept constant.
Results of Table 6 show that computational effort significantly decreases when the
number of first-level variables increases. It thus appears that the number of follower’s
variables is not in itself a sufficient measure of computational difficulty for LBP.

A third class of experiments was aimed at comparing our algorithm with the best
previous ones, those of Bard and Moore [9] and of Judice and Faustino [27], [28]. A
direct comparison with the algorithm of Bard and Moore was possible, as they kindly
made their code available to us. Results are reported in Table 2 and Tables 7a and

1212 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

TABLE 4
Sensitivity analysis on the right-hand side vector.

nl--50, n2--50, ml-01 m2--40, d--8% nl--60, n2-60, ml--0, m2--48, d-8%
s .4

nodes cpu
53.4 137.3

BR5 a 76.0 156.9
m 19 61.9
44.5 124.6

BR6 a 45.9 118.8
m 19 75.3

s .6 s .8 s .4 s .6 s .8
nodes cpu nodes cpu nodes cpu nodes cpu nodes cpu
47.0 111.7
80.9 147.7
19.0 57.1
4.0 108.7

52.8 116.4
19 57.5

64.2 161.3
111.8 258.3
19 58.5
62.3 152.2
99.4 249.0
19 75.7

188.2 706.6
471.4 1695.4
19 101.4

249.1 868.6
466.2 1443.4
43 196.0

213.0 787.7
447.3 1534.3
55 284.3

220.2 790.3
324.9 1016.5
95 413.8

196.6 754.4
336.4 1227.1
45 231.0

297.4 1047.4
533.4 1617.5
43 212.1

BR5

BR6

TABLE 5
Sensitivity analysis on the coe]ficients of the objective function.

nl ----50
n2 --50
ml 0 c E [--20, 20]
m2 =40
d-- 8%

[-4, 20] [0,20] c e [4, 0] e [, o]

nodes cpu nodes cpu nodes cpu nodes cpu nodes cpu nodes cpu
63.3 149.0
63.6 135.9
29 82.5

13.4 40.0
29.2 69.9
5 20.2

10.3 33.1
19.9 48.6
5 20.1

106.5 237.3
155.1 329.2
31 90.9

3.8 16.4
5.5 14.6
3 14.6
4.2 17.2
7.0 17.7
3 14.5

25.1 66.7
29.9 71.1
9 27.5

3.3 15.2
4.1 12.8
1 10.3
2.9 13.9
2.8 8.7
1 10.2

24.1 65.1
28.3 69.2
9 33.2

1.9 12.1
1.5 4.8
1 9.7
1.9 12.1
1.5 4.8
1 9.6

TABLE 6
Increasing the number of first-level variables.

nl 50

n2 60
m2 100
d 8%
nodes cpu, 6lg.s 908.

a 966.4 1377.1
m 221 333.6’

75
60
100
8%

nodes cpu
64.8 126.9
83.9 156.2
15 30.4

100
60
100
8%

nodes cpu
141.0 286.7
232.1 466.9
49 112.9

150
60
10o
8%

nodes cpu
12.0 35.5
10.1 26.7
7 25.6

200 250 300
60 60 60
100 100 100
8% 8% 8%

nodes cpu nodes cpu nodes cpu
20.2 86.5’ 9.0 37.1 7.8 38.0
23.6 131.1 15.1 48.6 7.4 27.6
13 51.7 3 21.9 5 25.1

350
60
100
8%

nodes cpu
4.0 27.5
4.2 18.4
1 19.0

7b. It appears that:
(i) Algorithm HJS with branching rule BR5 always outperforms Algorithm BM

and does the same with branching rule BR6 with two exceptions;
(ii) The ratios of computation times for Algorithms BM and HJS with branching

rule BR5 are between 1.4 and 9.6 when d 40 percent, 3.5 and 49.0 when d 17
percent, 23 and 47.1 when d 8 percent, but vary widely in each of these cases;

(iii) This ratio increases with problem size;
(iv) Similar conclusions hold even if no heuristic is used or if the optimum value

of LBP is assumed to be known a priori (see Table 2).
Reasons for which Algorithm HJS is faster than Algorithm BM appear to be the

following (probably in decreasing order of importance):
(i) use of logical relations (14) and (15); for sparse problems some of these

logical relations may have only one ai and thus lead to problem simplification and
possibly to complete solution without branching;

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1213

TABLE 7a
Comparison of HJS and BM algorithms on problems without first-level constraints.

40%
BM

40%
BR5

40%
BR6

nl 20
n2 30
m2 20

50
20
28

42
28
28

35
35
28

60
30
36

45
45
36

nodes cpu nodes cpu nodes cpu nodes cpu nodes cpu nodes cpu
67.6 148.2
60.6 116.7
30 75.0
10.2 13.0
20.5 19.3
1 3.6

175.2 130.8
239.0 169.8
68 59.2

158.4 306.9
199.3 337.6
82 172.2
32.6 47.5
44.1 59.9
9 15.1

72.2 96.7
108.3 132.7

9 14.9

105.8 92.4
195.8 159.0

5 9.6

579.0 1080.7
1244.5 2219.2
146 306.2
211.2
449.4
41

339.7
692.2
80.5

398.6 614.9
659.8 988.9
71 122.6

271.2 223.7
638.5 506.6

5 9.6

203.0 932.6
165.6 719.3
148 733.1
60.2 136.2
58.2 127.2
43 92.7

110.2 235.4
116.3 243.5
61 129.7

14.2 16.7
31.6 29.1
1 3.6

766.2 2957.5
877.7 3469.5
364 1259.8
441.8 1292.3
520.2 1513.0
81 244.3

1637.9 4662.4
2274.0 6486.7
117 345.5

17% 162.4
BM a 165.2

m 28
17% 18.2
BR5 a 21.3

m 5
17% 24.6
BR6 a 34.4

m 5

46.7
45.2
12.3
13.3
14.4
5.9

16.4
20.9
5.9

34.6
24.2
20
8.6

10.1
3
4.2
3.9
3

42.7
22.4
28.2
12.2
12.9
5.2
4.9
3.3
3.8

180.0 192.8
252.7 265.0
32 39.5
5.9 7.9
5.2 5.7
3 6.4
5.6 8.2
5.3 5.7
3 6.4

753.8 788.6
1079.8 1057.2
252 275.7
81.4 104.5
96.2 114.7
17 30.4
53.8 74.4
62.6 80.4
15 26.7

86.0 249.7
137.4 350.6
36 116.8
4.8 12.4
7.6 13.4
1 5.9
6.6 15.2

12.4 20.8
1 5.9

551.8 1097.9
1459.9 2659.3
80 267.2
20.8 58.2
32.1 79.0
5 17.5

27.6 70.8
51.3 114.6
5 17.5

8% U
BM a

BR5

8%
BR6 a

76.6
98.2
40
5.2
4.5
3

14.4
14.4
9.6
6.4
4.0
4.4

5.4 6.3
4.9 4.0
3 4.4

58.0
60.6
24
6.0
5.8
3

40.6
44.2
20.0
9.0
6.5
5.9

6.0 8.6
5.7 6.2
3 6.0

2290.0 1317.2
4522.5 2511.0
600 359.1
30.4 58.6
42.1 65.2
19 45.4
17.6 38.4
15.3 27.9
9 27.0

(ii) solution of LR, and the dual of FR separately instead ofjointly, thus reducing
the size of the LPs solved in various tests (Algorithm BM includes the dual variables
in the master program and hence contains m2 more variables than does Algorithm
HJS);

(iii) use of hybrid branching rules;
(iv) use of penalties.
In Table 8 we consider problems similar to those considered in the previous series

of experiments but transfer some of the second-level constraints to the first level.
These problems are solved by Algorithm HJS and a version of Algorithm BM, slightly
modified to allow for first-level constraints with y variables. It appears that:

(i) computational difficulty sometimes increases and sometimes decreases when
constraints are transferred from second to first level;

(ii) increase in computing time when there are first-level constraints does not
exceed a factor of 3 with Algorithm HJS;

(iii) Algorithm HJS always outperforms Algorithm BM, and the ratios of com-
puting times are higher when there are first-level constraints (from 2.83 to 53.3) than
when there are none.

Comparison of Algorithm HJS with Algorithm JF of Judice and Faustino [27],
[28] is more difficult, as a code for the latter is not generally available at this time.

Judice and Faustino [28] present computational results for several large sparse

1214 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

TABLE 7b
Comparison of HJS and BM algorithms on problems without first-level constraints.

nl
n2
m2

4o%
BM

m
40%
BR5 a

m
40%
BR6

m

7O
30
40

60
40
40

5O
5O
4O

70
50
48

60
60
48

7O
60
52

nodes cpu nodes cpu nodes cpu nodes cpu nodes cpu nodes cpu
128.8 434.4
97.2 293.8
92 302.2
48.6
72.7
7

160.8
215.0
32.2

315.5
422.4
97.5

77.4 519.5
53.9 342.5
54 383.0
17.2 54.2
22.4 55.8
3 29.3

18.0 60.3
30.8 96.4
7 29.3

97.8
134.5
33

17%
BM

17%
BR5

17%
BR6

260.6 926.2
506.8 1559.2
62 290.8
9.4 25.1

10.4 21.3
5 14.1
9.6 25.7
9.7 20.0
5 16.6

1032.6 1739.2
2497.9 3920.4
44 119.6
10.0 35.5
11.9 29.5
1 12.9
8.4 30.8

11.5 28.7
1 12.8

8%
BM

m

BR5 a
m

BR6 a

77.4
62.8
46
5.8
5.3
3

84.7
67.2
50.0
10.8
9.3
6.1

5.2 9.5
4.0 6.7
3 6.1

211.4
147.7
168

153.4
118.7
100.1

6.4 18.0
3.6 9.4
5 14.2
7.6 20.6
5.0 13.0
5 14.1

2863.2 2496.7
4968.3 4559.3
396 329.2
17.6
12.8
11

56.8
35.7
41.1

22.6 67.0
14.9 42.8
21 59.0

2114.0 3622.9
3119.9 4997.7
518 1204.5
30.4 112.3
31.3 98.5
19 83.4
34.2 121.3
29.4 95.6
25 85.2

1984.7 4235.4
2850.9 5855.2
662 1417.1
24.0 126.0
29.4 126.6
11 69.5

3663.9 7294.5
3469.5 6333.0
2138 4022.6

36.4 174.6
50.6 205.9
15 76.8

26.2
26.2
11

154.8
140.8
68.7

22.6 133.7
20.3 109.4
11 70.8

problems with up to 150 constraints, 250 variables controlled by the leader, and 150
variables controlled by the follower, on a CYBER 180-830 computer. These problems
belong to two classes: "nonconflicting" ones in which all coefficients in the leader’s
and follower’s objective functions are positive, and "conflicting" ones in which a few
coefficients in these objective functions differ in sign. We have generated similar
problems with all coefficients of the objective functions taken randomly in [0, 20] in
the first case: 80 percent of them are taken in that way .and 20 percent are taken
in [-20, 0] in the second case. Results obtained on a SUN SPARC computer are
presented in Table 9 (which also contains results for a few slightly denser problems).
It appears that computation times are roughly similar to those of JF, but the latter
have been obtained on a much more powerful computer (CYBER) and with a tolerance
of 1 or 2 percent of the optimal value, which is obtained by Algorithm HJS.

Acknowledgment. The authors are grateful to Jonathan F. Bard for making
available to them the code for linear bilevel programming he recently wrote with J. T.
Moore. They also thank Alain Haurie for several fruitful discussions of preliminary
drafts, and one anonymous referee for his comments.

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1215

1216 PIERRE HANSEN, BRIGITTE JAUMARD, AND GILLES SAVARD

REFERENCES

[1] E. AIYOSHI AND K. SHIMIZU, Hierarchical decentralized systems and its new solution by a
barrier method, IEEE Trans. Systems Man Cybernet., SMC-11 (1981), pp. 444-449.

[2] , A solution method for the static constrained Stackelberg problem via penalty method,
IEEE Trans. Automat. Control, AC-29 (1984), pp. 1111-1114.

[3] F. A. AL-KHAYYAL, R. HOIST, AND P. M. PARDALOS, Global optimization of concave func-
tions subject to quadratic constraints: An application in nonlinear bilevel programming,
Ann. Oper. Res., to appear.

[4] (. ANANDALINGAM AND D. J. WHITE, A penalty function approach for solving bilevel linear
programs, Res. Report, Department of Systems Engineering, University of Pennsylvania,
Philadelphia, November 1989.

[5] J. F. BARD, An ecient point algorithm for a linear two-stage optimization problem, Oper.
Res., 31 (1983), pp. 670-684.

[6] , An algorithm for solving the general bilevel programming problem, Math. Oper. Res.,
s (lSa), . e0-7:.

[7] ., Convex two-level programming, Math. Programming, 40 (1988), pp. 15-28.
[8] J. F. BARD AND J. E. FALK, An explicit solution to the multi-level programming problem,

Comput. Oper. Res., 9 (1982), pp. 77-100.
[9] J. F. BARD AND J. T. MOORE, A branch and bound algorithm for the bilevel programming

problem, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 281-292.
[10] W. F. BIALAS AND M. H. KARWAN, On two-level linear optimization, IEEE Trans. Automat.

Control, AC-27 (1982), pp. 211-214.
[11] , Two-level linear programming, Management Sci., 30 (1984), pp. 1004-1020.
[12] O. BEN-AYED AND C. E. BLAIn, Computational diJculties of bilevel linear programming,

Oper. Res., 38 (1990), pp. 556-559.
[13] J. BRACKEN AND J. MCGILL, Mathematical programs with optimization problems in the con-

straints, Oper. Res., 21 (1973), pp. 37-44.
[14] W. CANDLER, Z. FORTUNY-AMAT, AND B. MCCAPL, The potential role of multilevel program-

ming in agricultural economics, Amer. J. Agricultural Econ., 63 (1981), pp. 521-531.
[15] W. CANDLER AND R. NORTON, Multilevel programming and development policy, No. 258,

IBRD, World Bank Staff Working Paper, Washington DC, 1977.
[16] W. CANDLER AND R. TOWNSLEY, A linear two-level programming problem, Comput. Oper.

Res., 9 (1982), pp. 59-76.
[17] S. DEMPE, A simple algorithm for the linear bilevel programming problem, Optimization, 18

(9S7), pp. 373-3S5.
[18] J. E. FALK, A linear max-min problem, Math. Programming, 5 (1973), pp. 169-188.
[19] J. FORTUNY-AMAT AND B. MCCARL, A representation and economic interpretation of a two-

level programming problem, J. Oper. Res. Soc., 32 (1981), pp. 783-792.
[20] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H. Freeman, San Francisco, 1979.
[21] P. HANSEN, B. JAUMARD, AND S.-H. Lu, A framework for algorithms in globally optimal

design, J. Mech. Trans. Automat. Design, 111 (1989), pp. 353-360.
[22] , An analytical approach to global optimization, Math. Programming, 52 (1991), pp. 227-

254.
[23] A. HAUPIE, R. LOULOU, AND G. SAVARD, A two-player model of power cogeneration in New

England, IEEE Trans. Automat. Control, 1992, to appear.
[24] A. HAUIIE, G. SAVARD, AND J. C. WHITE, A note on an ejficient point algorithm for a linear

two-stage optimization problem, Oper. Res., 38 (1990), pp. 553-555.
[25] J. P. IGNIZIO, Goal Programming and Extensions, Lexington Books, Lexington, MA, 1976.
[26] R. G. JEROSLOW, The polynomial hierarchy and a simple model for competitive analysis, Math.

Programming, 32(1985), pp. 146-164.
[27] J. J. JUDICE AND A. M. FAUSTINO, The solution of the linear bilevel programming problem

by using the linear complementarity problem, Investiga(o Oper., 8 (1988), pp. 77-95.
[28] , A sequential LCP method for bilevel linear programming, Res. Report, Department of

Mathematics, University of Combra, Co’/mbra, Portugal, 1989.
[29] L. J. LEBLANC AND D. E. BOYCE, A bilevel programming algorithm for exact solution of the

network design problem with user-optimal flows, Transportation Res., 20B (1986), pp. 259-
265.

[30] P. MARCOTTE, Network design problem with congestion eJects: A case of bilevel programming,
Math. Programming, 34 (1986), pp. 142-162.

[31] R. E. MARSTEN, The design of the XMP linear programming library, Trans. Math. Software,

BRANCH-AND-BOUND FOR LINEAR BILEVEL PROGRAMS 1217

7 (1981), pp. 481-497.
[32] K. G. MURTY, Solving the fixed-charge problem by ranking the extreme points, Oper. Res., 16

(1968), pp. 268-279.
[33] P. M. PARDALOS AND J. B. ROSEN, Constrained Global Optimization: Algorithms and Appli-

cations, Lecture Notes in Computer Science 268, Springer-Verlag, Berlin, 1987.
[34] G. PAPAVASSILOPOULOS, Algorithms for static Stakelberg games with linear costs and polyhedral

constraints, in Proc. 21st IEEE Conference on Decisions and Control, 1982, pp. 647-652.
[35] G. SAVARD, Contributions la programmation mathdmatique & deux niveaux, Ph.D. Thesis,

tcole Polytechnique de Montreal, Montreal, Canada, April 1989.
[36] H. A. TAHA, Integer Programming, Theory, Applications and Computations, Academic Press,

New York, 1975.
[37] G. 0NLO, A linear bilevel programming algorithm based on bicriteria programming, Comput.

Oper. Res., 14 (1987), pp. 173-179.
[38] R. E. WENDELL, Multiple criteria decision making with multiple decision makers, Oper. Res.,

28 (1980), pp. 1100-1111.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1218-1235, September 1992

()1992 Society for Industrial and Applied Mathematics

010

A FAMILY OF BLOCK PRECONDITIONERS
FOR BLOCK SYSTEMS*

RAYMOND H. CHANt AND XIAO-QING JINt

Abstract. The solution of block system Amnx b by the preconditioned conjugate gradient
method where Amn is an moby-m block matrix with n-by-n Toeplitz blocks is studied. The precon-
ditioner c((Amn) is a matrix that preserves the block structure of Amn. Specifically, it is defined as
the minimizer of IIAmn -Cmnllf over all m-by-m block matrices Cmn with n-by-n circulant blocks.

We prove that if Amn is positive definite, then C(F1)(Amn) is positive definite too. We also show

that c((Amn) is a good preconditioner for solving separable block systems with Toeplitz blocks and
quadrantally symmetric block Toeplitz systems. We then discuss some of the spectral properties of
the operator C(F1).’" In particular, we show that the operator norms IIC(F1)112-- --[IC(t)IIF" 1.

Key words. Toeplitz matrix, circulant matrix, circulant operator, preconditioned conjugate
gradient method

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. Preconditioned conjugate gradient methods have been used ef-
ficiently in solving large matrix problems. The idea of using the method with circulant
preconditioners for solving symmetric positive definite Toeplitz systems TnX b was
proposed by Strang [16] and Olkin [15] independently. The number of operations per
iteration is O(n log n) as circulant systems can be solved efficiently by the fast Fourier
transform (FFT) and the matrix-vector multiplication Tnv can also be computed by
the FFT by first embedding Tn into a 2n-by-2n circulant matrix. The convergence
rate of the preconditioned conjugate gradient method depends on the whole spectrum
of the preconditioned matrix. In general, the more clustered the eigenvalues are, the
faster the convergence rate will be.

There are many circulant preconditioners that can produce clustered spectra; see
Chan and Yeung [5]. One good example is Chan’s [9] circulant preconditioner, which
is defined to be the minimizer of IIT,- ChilE in Frobenius norm over all circulant
matrices Cn. One can consider this circulant preconditioner from the operator point
of view. Given any arbitrary n-by-n matrix An, we define an operator CF which maps
An to the matrix cF(A,) that minimizes IIAn- CnllF over all circulant matrices Cn.
This circulant operator CF has been studied in Chan, Jin, and Yeung [3].

In this paper, we generalize the idea to the case of block matrices. Our interest
is in solving systems T,,x b where Tmn is an m-by-m block matrix with n-by-n
Toeplitz blocks. This kind of system occurs ina variety of applications, such as two-
dimensional digital signal processing and the discretization of two-dimensional partial
differential equations. Given such Tm,, we can use the mn-by-mn point-circulant
matrix cF(Tmn) as a circulant approximation to Tmn; see Chan and Olkin [10] and
Chan and Chan [8]. In this paper, however, we consider another approximation to
Tmn that preserves the block structure. The approximation extends the one proposed
by Chan and Olkin [10]. We define the matrix c()(T,) to be the minimizer of

*Received by the editors April 23, 1991; accepted for publication (in revised form) November
12, 1991.

tDepartment of Mathematics, University of Hong Kong, Hong Kong.

1218

BLOCK PRECONDITIONERS 1219

liTton- CmnllF over all m-by-m block matrices C,n with n-by-n circulant blocks. We
will show that the operator c(is well defined for all mn-by-mn complex matrices

A,n. Some properties of c(are then discussed. In particular, we prove that if Amn
is positive definite, then c()(A,) is also positive definite. We also show that the

operator c h operator norms]c)]2 c)]F 1.
We then consider the cost of using the preconditioned conjugate gradient method

with the preconditioner c (Amn) for solving block systems Amx b. The conver-
gence rate of the method is then analyzed for two specific types of block systems. The
first is the quadrantally symmetric block Toeplitz systems. We show that in this ce,
if the generating sequence of the matrices is absolutely summable, then the method
converges in at most O(min{m, n}) steps. Next we consider block matrices that are
of the form Am @ T where A is nonsingular and T is a Toeplitz matrix with a
positive 2r-periodic continuous generating function. We show that the resulting pre-
conditioned system h spectrum clustered around 1 and hence the method converges

()(A) is indeed a goodsuperlinearly. Our numerical experiments have shown that cF
preconditioner for solving these block systems--the number of iterations is roughly a
constant in both ces.

The outline of the paper is follows. In 2, we first recall some properties of the
point-circulant operator CF. Then we introduce three different possible block precon-
ditioners that preserve the block structure of the given matrix. In 3, we consider the
cost of using c (Am) a preconditioner for solving block systems Amnx b. The
convergence rate of the method is analyzed in 4 and numerical results are then given
in 5.

2. Operators for block matrices. Let us begin by introducing the operator
for point matrices. Given an n-by-n unitary matrix U, let

u {U*AU An is an n-by-n complex diagonal matrix},

where "," denotes the conjugate transposition. We note that when U is equal to the
Fourier matrix F, F is the set of all circulant matrices (see Davis [11]). Let 5(An)
denote the diagonal matrix whose diagonal is equal to the diagonal of the matrix An.
The following lemmaw first proved by Chan, Jin, and Yeung [3] for the ce U F
and w extended to the general unitary ce by Huckle [13].

LEMMA 1. Let An be an arbitrary n-by-n matrix and cu(An) be the minimizer of
}[Wn An]IF over all Wn e v. Then

(i) cv(A) is uniquely deteined by A and is given by

(1) cv(A) =U*5(UAU*)U

(ii) IfA is Heitian, then so is cu(An). Furtheore, if Amin(’) and Amx(’)
denote the largest and the smallest eigenvalues, respectively, then we have

min(An) min(cu(An)) max(au(An)) max(An)

In paicular, if An is positive definite, then cv(An) is also positive definite.
(iii) The operator cv is a linear projection operator from the set of all n-by-n

complex matrices into v and has the operator nos

su,
Ai=

1220 R.H. CHAN AND X.-Q. JIN

and
IICUIIF-- sup IIcu(A)IIF 1.

(iv)

j=0

where Q is the n-by-n circulant matrix

When U is the n-by-n Fourier matrix F,

E
p--q--j (mod n)

0
0

(3) Q_= 1 "’.

1

The circulant matrix cF(An), first proposed by Chan [9], is a good preconditioner
for solving some Toeplitz systems by the preconditioned conjugate gradient method
(see Chan [6]). In the following, we call cu the point operator in order to distinguish
it from the block operators that we now introduce.

2.1. Block operator c(). Let us now consider a general system Amnx b
where Amn is an ms-by-ms matrix partitioned as

AI,1 A1,2 Al,m
A, A, A,m

(4) A.n
Here the blocks Ai, are square matrices of order n. We emphasize that we are
interested in solving block systems where the blocks Ai,j are Toeplitz matrices. In
view of the point case, a natural choice of preconditioner for Amn is

cF(AI,1) cF(A1,2) CF(Al,m)
CF(A2,1) CF(A2,2) cF(A2,,)

cF(A.,l) cF(A.,e) cF(A.,.)

where the blocks cF(A,j) are just the point-circulant approximations to Ai,j (see (2)).
We will show in 4 and 5 that Emn is a good preconditioner for solving some block
systems. First, however, we study some of the spectral properties of the matrix Emn.

Let 5(1) (A.n) be defined by

(5) 5(1)(Amn) =-
(A1,1) 5(AI,:)... 6(Al,m)
(A2,1) 6(Au,e)... 6(A2,m)

5(A,,I) 6(Am,.) 5(A,,m)

where each block 6(Ai,j) is the diagonal matrix of order n whose diagonal is equal
to the diagonal of the matrix Ai,j. The following lemma gives the relation between
amax(Amn) and amax(5(1)(Amn)), where amax(’) denotes the largest singular value.

BLOCK PRECONDITIONERS 1221

LEMMA 2. Given any mn-by-mn complex matrix A,,n partitioned as in (4), we
have

rmax(5(1)(Amn)) <_ rmax(Amn).

Furthermore, when A,n is Hermitian, we have

)min(Amn)

_
,,min(5(1)(Amn))

_
,,max(5(1)(Amn))

_
,max(Amn)

In particular, if Amn is positive definite, then 5(1)(Amn) is also positive definite.
Proof. Let (Amn)i,j;k,t (Ak,t)ij be the (i, j)th entry of the (k,/)th block of A,n.

Let P be the permutation matrix that satisfies

(8) (P*AmP)k,;i,j (Amn)i,j;k,l, 1 < i,j < n, 1 <_ k, <_ m.

Then it is easy to see that Bran =- P*5(1)(Amn)P is of the form

B1,1 0 0
0 B2,2 0

0 0

Clearly, the matrices Bran and 5(1)(Amn) have the same singular values and eigen-
values. For each k, since Bk,k is a principal submatrix of the matrix Amn, it follows
that

(max(Bk,k) <_ (max(Amn);

see, for instance, Thompson [17]. Hence we have

(rmax(5(1)(Amn)) rmax(Bmn) Inkax ((rmax(Bk,k)) <_ amax(Amn)

When Amn is Hermitian, by Cauchy’s Interlace Theorem (see Golub and Van Loan
[12]) we then have

,min(Amn) <_ nn (,min(Bk,k)))min ((1)(Amn))
<_max(5(1)(Amn)) mkax (max(Sk,k)) <_ max(Amn)

In the following, we use :D(1) to denote the set of all m-by-rn block matricesm,n
(1) is the set of allwhere each block is a complex diagonal matrix of order n, i.e.,

matrices of the form given in (5). Let

(R) u),^ (R) u) e v,,ran ,,mn re,n}

where I is the m-by-m identity matrix and U is any given n-by-n unitary matrix. We
then define the operator c(to be the mapping that maps every mn-by-mn matrix

A,n to the minimizer of IIWm--Amnl]F over all W, e A/[(). Some of the properties
of this operator are given in the following theorem.

1222 t. H. CHAN AND X.-Q. JIN

THEOREM 1. For any arbitrary mn-by-mn complex matrix Amn partitioned as in

(4), let c((A.,) be the minimizer of IIWm A.IIF over all Wmn e Ad(Then

(i) c((Ainu) is uniquely determined by Amn and is given by

c((A.) (I (R) U)*5(1) [(I (R) U)Am(I (R) U)*] (I (R) U).

(ii) c()(Amn) is also gie by

(10)

cv(Al,1)
cv(A2,1)c() (A,)
v(,)

cu(A1,2) cu(Al,m)
cu(A2,2) cu(A2,,)

cv(Am,2) cv(A.,.)

where cu is the point operator defined by (1).
(iii) We have

(11) (Tmax(C()(Amn)) (max(Amn).

(iv) If Am, is Hermitian, then c((Ainu) is also Hermitian and

,min(Amn) ,min(c)(Amn))
_

Amax(C()(Amn))
_
,max(Amn)

In particular, if Area is positive definite, then c((Amn) is also positive definite.
(v) The operator c(is a linear projection operator from the set of all mn-by-mn

complex matrices into M and has the operator norms

sup IIc()(A.)l[2 1

and
sup][c()(A,)IIF- 1.

Proof. The following proves Theorem 1.

(i) Let Wm E 4(be given by

w ((R) U),A(2)((R) U),

where ^(1) (1) Since the Frobenius norm is unitary invariant, we havexxm E a.m

-IIA() (I (R) U)Am(I (R) U)* liE.

Thus the problem of minimizing [[Wmn-Amnl[F over M) is equivalent to the problem

.mn
(1) Since Aof minimizing II A(1) (I (R) U)Amn(I (R) U)*IIF over -m,. m can only affect

the diagonal of each block of (I (R) U)Am(I (R) U)*, we see that the solution for the
latter problem is A(m)n 5(1) [(I (R) V)A.n(I (R) V)*]. Hence

c((Am) (I (R) U)*5(1) [(I (R) U)A.(I (R) U)*] (I (R) U)

BLOCK PRECONDITIONERS 1223

is the minimizer of IIW,.,,- AmnllF. It is clear that A(l)n and hence c()(Am,) are
uniquely determined by Amn.

(ii) Since

6(UAI,IU*) 6(UA1,2U*) 6(UAI,,U*)

6(1)[(I(R) U)A,,(I (R) U)*]
6(UA2,1U*) 6(UA2,2U*) 6(UA2,mU*)

6(UAm,IU*) 6(UA,,,2U*) 6(VAm,mV*)

by (1) and (9) we see that c()(Am,) is also given by (10).
(iii) For general mn-by-mn matrix Amn, we have by (9) and (6),

Crmax(C()(Amn)) --Crmax [5(1) ((I (R) U)Amn(I (R) U)*)]
_<rmax [(I (R) U)A,,(I (R) U)*] O’max(Amn)

(iv) If Amn is Hermitian, then it is clear from (10) and Lemma 1 (ii) that

c((Amn)is also Hermitian. Moreover, by (7) and (9), we have

(v) By (11), we have

I]c((Am,)ll2 O’max[C((Amn)] <_ O’max(Amn) IIA.nll2.

However, for the mn-by-mn identity matrix Iron, we have I[c((Imn)l[2 l[Im ll 1.

Hence IIc()112 1. For the Frobenius norm, we also have

Ilc((A.n)i]F I1() [(I (R) U)Amn(I (R) U)*] IIF_
II(I (R) U)Amn(I (R) U)*IIF IIAm,IIF

Since
(i) I 111,,.11 ICU

F

it follows that {Ic(){}F 1.

~(1) For matrices Amn partitioned as in (4) we can define2.2. Block operator cy
another block approximation to them. Let (1)(Amn) be defined by

(12)
A, 0 0

A2,2 0
(1)(Am,)

0 0 A,m

1224 t. H. CHAN AND X.-Q. JIN

q5(1) to denote the set of all m-by-m block diagonal matricesIn the following, we use

where each block is a complex matrix of order n, i.e (1) is the set of all matrices
of the form given by (12). Let

JQ() {(V (R) I)*(lm)n(V (R) I) ,,mn(1) ()(1)m,n}

where V is any given m-by-m unitary matrix and I is the n-by-n identity matrix.

We define the operator () to be the mapping that maps every mn-by-mn matrix

A,n to the minimizer of [IWmn- Amn I[F over all Wren e J4(We have the following
theorem, which is similar to Theorem 1.

THEOREM 2. For any arbitrary ran-by-ran complex matrix Amn partitioned as in

(4), let () (Amn) be the minimizer of IIWmn Amn[[, over all Wren e J(A(Then

(i) ()(Amn) is uniquely determined by Amn and is given by

(13) () (Amn) (V (R) I),(1)[(V (R) I)A,n(V (R) I)*] (V (R) I).

(ii)

(iii)

We have

rmax(5()(Amn))
_
rmax(Amn).

If Amn is Hermitian, then () (Amn) is also Hermitian and

Amin(Amn)

_
)min(()(Amn))

_
)max(()(Amn))

_
Amax(Amn)

In particular, if A, is positive definite, then ()(Am) is also positive definite.
(iv) The operator () is a linear projection operator from the set of all ran-by-ran

complex matrices into j(A(and has the operator norms

The proof of Theorem 2 is quite similar to that of Theorem 1, so we omit it here.
We note, however, that Theorem 2 (ii)-(iv) can be proved easily by using the following

(1) and 5()relationship between cv
LEMMA 3. Let U be any given unitary matrix and P be the permutation matrix

defined in (8). Then for any arbitrary mn-by-mn complex matrix Am partitioned as
in (4), we have

5(1)(Am,) p(1)(P,AmnP)p,
and

c((Am) Ph() (P*A,nP)P*.
Proof. To prove the first equality, we note that by the definition of (1) and (8),

we have

(P*AmnP)k,l#,j, i j[(1)(P*AmP)]k’I;iJ
O, i j,

f (A,,),j;k,, i j

O, i Ttj

BLOCK PRECONDITIONERS 1225

Hence

I (Am)id;k,, i j
[Ph(1)(P*AmnP)P*]i’J;k’ [(1)(P*AmP)]k’;i’J

O, i j,

which by definition is equal to [60)(Amn)]i,i;k,.
To prove the second equality, we first note that

(I (R) U)P P(U (R) I)

for any matrix U. Hence by (13) and (9), we have

Ph((P*A,nP)P* P(U (R) I)*(1) [(V (R) I)P*AmP(U (R) I)*](U (R) I)P*
(I (R) U)*P(1)[P*(I (R) V)Amn(I (R) U)*P]P*(I (R) U)

(I (R) V)*5(1) [(I (R) U)Am(I (R) U)*](I (R) U) c((Am).

2 3. Operator ,.(2) Intuitively, (1) ~(1)
"-y,v" cv (Amn) and (Amn) resemble the diag-CV

onalization of Amn along one specific direction. It is then natural to consider the
matrix that results from diagonalization along both directions. Thus let (2) denote’V,U

the composite of the two operators, i.e., v,u =- o The following lemma will
.(:)be used to derive the properties of the operator y,v"

LEMMA 4. For any given Amn partitioned as in (4), we have

(14) (I (R) U)*(1)(Amn)(I (R) U) (1) [(I (R) U)*A,n(I (R) U)]

and

(15) (U (R) I)5(i)(Amn)(U (R) I)* 5(1)[(V (R) I)Amn(V (R) I)*]

Furthermore,

(16) (1) o 5(1)(Am) 5(Am) 5(1) o (1)(Amn
The proof of Lemma 4 i8 8raightforwrd, 80 we omit it here. By using Lemm

() is just a4, we can prove the following theorem, which states that the operator y,v
particular case of the point operator.

THEOREM 3. For any given Amn partitioned as in (4), we have

c(:) (A,) cv(R)u(Am)V,U

where cv(R)u is the point operator defined in Lemma 1.

Proof. For any given Amn, by definitions of c(and 5(), we have

v,u(A,) =cv

=(V (R) I)*(1) {(V (R) I)[(I (R) U)’6(1)[(I (R) U)Am(I (R) U)*](I (R) U)]
x (v (R) (v (R)

--(V (R) I).(1) {(I (R) V)*(V (R) I)((1) [(I (R) U)Am(I (R) U)*]
x (V (R) I)*(I (R) U)}(V (R) I).

1226 t. H. CHAN AND X.-Q. JIN

Hence by (14), (15), and (16), we have

[(v (R) (R) }(v (R)Cy,v(Am,) =(V (R) {i(1) U)A,,(V V)*] U)
=(V @ U)*6[(V U)A(V U)*](V @ U) cvv(A)

Since .(2) is just another point operator, we will concentrate our discussion on c("V,U

and 5(in the remainder of the paper. We remark that (2)
Cy,v(Amn) is an approximation

of Amn in two directions, whereas c((Amn) and 5((Amn) are approximations in one
direction only (with the other direction being approximated exactly). Thus we expect
that the c((A,n) and 5((Amn) are better preconditioners than (2)

Cy,v(A,,). This is
confirmed by the numerical results in 5.

We now give two simple formulae for finding c((Am,) and 5()(Am)in the case
where U and V are just the Fourier matrix F. When U F, we have by (10),

cf(A,l) cf(A,2) cf(A,m)
cF(A2,) cF(A2,2) CF(A2,m)

(17) c() (A,,)
". ".

CF(A,,) CF(A,,2) CF(A,,,)
where each block CF(Ai,j) is Chan’s circulant preconditioner for A,j.

Next we find 5((Amn) by using Lemma 3. We first let Am, P*BmnP and
partition Bm, into n2 blocks with each block B,j an m-by-m matrix. Then by Lemma
3 and (17), we have

[5(fi (Amn)]i,j;k,l [P*c((Bmn)P]i,j;k,1 [c((Smn)]k,1;i,j (CF(Bi,j))kl,
where B,j is the (i,j)th block of the matrix Bmn. By (2), we see that the (k,/)th
entry of the circulant matrix cF(Bi,j) is given by

1
m

p-q=k-1 (mod m)

Since (Bi,)pq (Ap,q)ij, we have

[5 (Amn)]i,j;k,l (Ap,q)ij, 1 <_ i,j <_ n, 1 <_ k, <_ m.
m

p--q=_k-I (mod m)

Thus the (k,/)th block of 5((Am,) is given by -:p-q=k- (mod .)(Apq). Since it

depends only on k -1 (mod m), we see that 5((Amn) is a block-circulant matrix.
Using the definition of the matrix Q in (3), we have

m
d=o p--q=_j (mod m)

3. Block preconditioners for block systems. In this section, we consider
the cost of solving block systems A,,x b by the preconditioned conjugate gradient
method with preconditioner c((Am). The analysis for 5((A,n)is similar. We first
recall that in each iteration of the preconditioned conjugate gradient method, we have
to compute the matrix-vector multiplication Amnv for some vector v and solve the
system

(18) c() (A..)y d

for some vector d (see Golub and Van Loan [12]).

BLOCK PRECONDITIONERS 1227

3.1. General matrices. Let Amn be a general mn-by-mn matrix. We note that
by (9), the solution to (18) is given by

(19) y (I (R) F)* [5() ((I (R) F)A,,(I (R) F)*)] - (I (R) F)d.

Hence before we start the iteration, we should form the matrix

A =_ 5() ((I (R) F)A,nn(I (R) F)*)

and compute its inverse. We note that by (17), the (i,j)th block of A is just
FcF(Ai,j)F*. By (1), FcF(Ai,j)F* 5(FAi,jF*) and hence it can be computed
in n2 operations and one FFT (see Chan, Jin, and Yeung [3]). Thus the cost of
obtaining A is O(m2n2) operations. Next we compute its inverse.

We first permute the matrix A by P to obtain

Bran P*AP

B1,1 0 0
0 B2,2 0

0 0 Bn,n

We then compute the LU decompositions for all diagonal blocks Bk,k. That will
take O(nm3) operations. It requires a total of O(n2m2 -{-nm3) operations in the
initialization step.

After obtaining the LU factors of A, we start the iteration. For a general dense
matrix Amn, Amnv can be computed in O(n2m2). To get the vector y in (19), we note
that by using the FFT, vectors of the form (I (R) F)d can be computed in O(mn log n)
operations. Using the LU factors of A, O(nm2) operations are need to compute A-ld
for any vector d. The total cost per iteration is O(mn log n) d-O(nm2) operations.

Thus the algorithm for solving system Amnx b for the general matrix Amn
requires O(n2m2 -f-nm3) operations in the initialization step and O(n2m2) operations
per iteration. Clearly, if A, is sparse, the cost can be reduced. In the next two sub-
sections, we will consider two types of block systems where the cost can be drastically
reduced.

Finally, we note that some of the block operations mentioned above can be done in
parallel. For instance, the diagonal 5(FA,jF*) of the blocks cF(A,j) can be obtained
in O(n2) parallel steps with O(m2) processors and the LU decompositions of the blocks
Bkk in Bm, can also be computed in parallel. This can further reduce the cost per
iteration.

3.2. Quadrantally symmetric block Toeplitz matrices. Let us consider the
family of block Toeplitz systems Tmnx b where Tm, is of the form

(20)

Here the blocks Ti,j T(li_Jl are themselves symmetric Toeplitz matrices of order n.
Such Tm, are called quadrantally symmetric block Toeplitz matrices.

1228 ft. H. CHAN AND X.-Q. JIN

By (17), the blocks of c((T,) are just CF(T(k)). Hence by (2) and the fact that
T(k) is Woeplitz, the diagonal 6(FT(k)F*) can be computed in O(n log n) operations.
Therefore, we need O(mnlogn) operations to form A ti(1)((I (R) F)Tmn(I (R) F)*).
We emphasize that in this case, there is no need to compute the LU factors of A. In

P*AP

fact,
~0 0
T2,2 0

where

(k,k)ij (5(FTi,jF*))kk (5(FT(Ii-yI)F*))kk, 1 <_ i,j <_ m, 1 <_ k <_ n.

Hence we see that the diagonal blocks Tk,k are still symmetric Toeplitz matrices of
order m. Therefore, it requires only O(m log2 m) operations to compute Tk,kv for any
vector v (see Ammar and Gragg [1]). Thus the system c((Tmn)Y d can be solved
in O(nm log2 m) operations.

Next we consider the cost of the matrix-vector multiplication TinnY. We recall that
for any Toeplitz matrix T(k), the matrix-vector multiplication T(k)W can be computed
by the FFT by first embedding T(k)W into a 2n-by-2n circulant matrix and extending
w to a 2n-vector by zeros. For the matrix-vector product Tinny, we can use the
same trick. We first embed Tmn into a (blockwise) 2m-by-2m block-circulant matrix
where each block itself is a 2n-by-2n circulant matrix. Then we extend v to a 4ms-
vector by putting zeros in the appropriate places. Using FFT, or more precisely using
(F2m (R) F2) to diagonalize the 2m-by-2m block-circulant matrix, we see that Tm,V
can be obtained in O(mn(logm + log n)) operations.

Thus we conclude that the initialization cost in this case is O(mn log n) and the
cost per iteration is O(nm log2 m + mn log n). We emphasize that if m > n, then one

should consider using 5((A,n) as preconditioner instead.

3.3. Separable matrices. Consider the following system (Am (R)Bn)x b where
Am is an m-by-m nonsingular matrix and Bn is an n-by-n Hermitian positive definite
matrix. This system arises in solving the inverse heat problem in two dimensions (see
Chan [7]). Since 5(1)(A, (R) Bn) Am (R) (Bn), it follows that

c((Am (R) Bn) Am (R) CF(B).

Thus the preconditioned system becomes

(A, (R) cF(Bn))-I(Am (R) Bn)x (A, (R) cF(Bn))-lb

or
(I (R) cF(Bn)-B)x (A (R) c (Bn))b.

For general B,, cF(B,) can be obtained in O(n2) operations and cF(Bn)-ly can
be obtained in O(n log n) operations for any vector y. By decomposing Am into its
LU factors first, we can then generate the new right-hand side vector

(A (R) c(B,))b (A (R) I)(I (R) cl(Bn))b

BLOCK PRECONDITIONERS 1229

in O(m3 + m2n -[- mn log n + n2) operations. In each subsequent iteration, the matrix-
vector multiplication (I(R)cF(Bn)-lBn)v can be done in O(mn log n+mn2) operations.

When Bn is a Hermitian positive definite Toeplitz matrix, cF(Bn) can be obtained
in O(n) operations. Hence the initialization cost is reduced to O(m3+m2n+mn log n).
Moreover, since the cost of multiplying Bny becomes O(n log n), we see that the cost
per iteration decreases to O(mn log n).

4. Convergence rate. In this section, we analyze the convergence rate of the
preconditioned conjugate gradient method when applied to solving some special block
systems.

4.1. Quadrantally symmetric block Toeplitz matrices. Let us consider the
system Tmnx b where Tmn is a quadrantally symmetric block Toeplitz matrix given
by (20). Let the entries of the block T(j) be denoted by t(pJq t(j) for 1 < p, q <Ip-ql
n, 0 _< j < m. We assume that the generating sequence t(kj) of Tmn is absolutely
summable, i.e.,

j=o k=o

In order to analyze the distribution of the eigenvalues of Tm-c((T,), we need
to introduce Strang’s circulant preconditioner. For each T(j), Strang’s preconditioner
sf(T(j)) is defined to be the circulant matrix obtained by copying the central diagonals
of T(j) and bringing them around to complete the circulant. More precisely, the entries

S(pJq o(J) of sF(T(j)) are given by

(21) s(kj) { t()
k, O<_k<_r,

t(nJ)r_ r _< k < n.

Here, for simplicity, we have assumed that n-- 2r. Define

(22)

We prove below that the matrices c()(Tmn) and s()(Tmn) are asymptotically the
same.

LEMMA 5. Let Tmn be given by (20) with an absolutely summable generating
sequence. Then for all m > O,

(1)(Tmn)[[1 =0.lim [[s((Tm,) cF

Proof. Let Bmn =- s()(Tmn)-C()(Tmn). By (17) and (22), we see that the block
B(j) of Bran are given by sF(T(j))--cF(T(j)). Hence by (2) and (21) they are circulant,
with entries b(pJq () given by

n k ,() t(k

O<_k<_r,

r<k<n.

1230 R.H. CHAN AND X.-Q. JIN

Thus

IIBm ll -< 2
j=0 j--0 k=0 j--0 k-- 1 j=0 k=r+

For all > 0, since the generating sequence is absolutely summable, we can always
find an N1 > 0 and an N2 > 2N1 such that

j=O k=N
and

1
o

Thus for all n > N2,

4 d0

/v

t(kj)
r

IlSmnlli <- G k]q-4
"= k=l j=0 k=Nl+l

It(kJ) +4 It(kd) < 12.
j=0 k=r+l

In view of Lemma 5 and the following equality,

Tmn c((Tmn) (s() (Tm) c((T,)) + (Tm s((Tm))

we see that the spectra of Tmn -c((Tmn) and Tm=- s((Vmn) are asymptotically the
same. However, it is easier to obtain spectral information about the second matrix,
as the following lemma shows.

LEMMA 6. Let Tmn be given by (20) with an absolutely summable generating
sequence. Then for all > O, there exists an N3 > 0 such that for all n > N3 and

I;tz(N3) (N3)s((T.n) Tm ,,n + U;
(N)where]uz(.. 2)]]1 e and rank(Ugh 2N3m.

Proof. Define Wm s)(T)- Tmn. It is dear from (21) that its blocks

W(]) sF(T(i))- T(i are symmetric Toeplitz matrices with entries
given by

{o,() t)Vn_k r < k < n

For all > 0, since the generating sequence is absolutely summable, there exists an

N3 > 0 such that y=0 It Y)l < . Corresponding to this N3, we define for
each blo@ W(j), the n-by-n matrix

uz(N) WO) 0
**(5) 0 0

where l(j) is the (n- N3)-by-(n- N3) principal submatrix of W(j). Clearly, each
rr(N3) isuz(Na) for all j We note thatl/(j) is a Toeplitz matrix. Let U((d9) W(d 0)

nonzero only in the last N3 rows and N3 columns; therefore, rank(U/))) _< 2N3.

BLOCK PRECONDITIONEPS 1231

(23)

and

Let

Ns

(N)
O) W()

l/Lr N3 l N3
(x) (0)

vv (,_ (,_)
T/I]"(N3)

(0)

(Ns

m-2)

o)

(Ns)T,r(Ns) rr(Ns) rr(Ns) in U; is an n-by-nThen s((T,,,) Tm, m + ’m, Since each block
matrix where the leading (n- Na)-by-(n- Ns) principal submatrix is a zero matrix,

(N3) (N3)it is easy to see that rank(Un <_ 2N3m O(m). For Wn we have by (23) that

Ti’/" -/’r I/i/" N3II""m Ill --< 2 ’ II-u) It, 2 lieu)Ill
j=o j=o
m--In--N3--1 m-in--N3--1

2 y [W(kj) 2 ’bn--kl’C(J) t(kj)
j--0 k--r+l j--0 k--r+l

m-In-N3-1 o

j=0 k=Ns+l j=0 k=Ns

Let N max{N2, N3}, where N2 and N3 are given in the proofs of Lemmas 5
and 6. Then for all n > N and m > 0, we have

Tmn --C((Tmn) Mmn + Lo(m)

where Man s()(Tmn) c((Tmn) + l/l/’(,, mNn with liMmnl[< e and Lo(m) rr(vmNn)
with rank (Lo(m)) O(m). Since Mmn is symmetric, we have

By using Cauchy’s Interlace Theorem, we then have the following theorem.
THEOREM 4. Let Tmn be given by (20) with an absolutely summable generating

sequence. Then for all s > O, there exists an N > 0 such that for all n > N and
(1) (Tan) Tmn have absolute values exceedingm > O, at most O(m) eigenvalues of cF

If Tmn is positive definite with the smallest eigenvalue ,min(Tmn)

_
} O, where

5 is independent of m and n, then by Theorem 1 (iv), /min (C() (Tmn))
_

> O. Hence

II(c()(Tmn))-lll2 is uniformly bounded. By noting that

(a() (Tmn))-lTmn I (C() (Tmn)) -1 (c(fi) (Tmn) Tmn),
we then have the following immediate corollary.

1232 R.H. CHAN AND X.-Q. JIN

COROLLARY 1. Let Tmn be given by (20) with an absolutely summable generating
sequence. If Tan are positive definite .for all m and n and Amin(Tmn) >_ > O, then
for all > O, there exists an N > 0 such that .for all n > N and m > O, at most O(m)

oI
As a consequence, the spectrum of (c() (T,n))-lTmn is clustered around 1 except

for at most O(m) outlying eigenvalues. When the preconditioned conjugate gradient
method is applied to solving the system Tmnx b, Corollary 1 shows that the number
of iterations will grow to a maximum similar to O(m). We recall that in 3.2, the
algorithm requires O(mn log n) operations in the initialization step and O(mn log2 m-k
mn log n) operations in each iteration. Thus the total complexity of the algorithm is
bounded above by O(m2n log2 m + m2n log n).

We emphasize that for the quadrantally symmetric block Toeplitz systems we
tested in 5, the number of iterations is independent of m and n and the complexity
of the method is therefore O(nm log2 m / nm log n).

We remark again that when m > n, one should consider using the preconditioner
5((T,n) instead. Then, by repeating the whole argument we used, we can show that
the preconditioned conjugate gradient method will converge in at most O(n) steps
for m sufficiently large. Hence the total complexity of the algorithm in this case is
bounded above by O(n2m log2 n + n2m log m).

Before we close this subsection, we would like to point out that for the quad-
rantally symmetric block Toeplitz matrix T,n, we can define the matrix ()(Tmn)
analogously to ()(Tmn):

(F1) (T,n) P*s() (PTmnP*)P,
where P is defined by (8). Then, as in 2.3, we can further define the doubly circulant

block preconditioner () o s()(Tmn). As remarked after the proof of Theorem 3,
()o s()(Tmn)is the approximation of Tmn in two directions. Therefore, it will

not be a good preconditioner compared to either s (T,n) or, in view of Lemma 5,
c((Tan). We finally remark that if Chan’s preconditioner [6] is used in (22) instead
of Strang’s circulant preconditioner, then the corresponding doubly-circulant block
preconditioner is the block preconditioner considered in Ku and Kuo [14].

4.2. Separable matrices. Next we consider the system (Am (R) Tn)x b where
Tn is a Toeplitz matrix with generating function f, i.e., the diagonals of Tn are given
by the Fourier coefficients aj(f) of f. More precisely, we have

j,k 1, 2,....

We assume that f is positive, 2r-periodic, and continuous, and denote
For such Tn(f), we have the following result (see Chan and Veung [4]).

LEMMA 7. Let f be a positive, 2r-periodic, and continuous function. Then .for
all e > O, there exist N and M > O, such that .for all n > N, at most M eigenvalues
of the matrices c7 (Tn(f))Tn(f) In have absolute values larger than .

Since the preconditioned matrix is given by

(R) (T.(S))] (R) Tn(f)) (R) (T.(S))T.(S)],
it is clear that the number of distinct eigenvalues of the preconditioned matrix is the
same as the number of distinct eigenvalues of c (Tn(f))Tn(f). In view of Lemma 7,

BLOCK PRECONDITIONERS 1233

we then see that for all e > 0, there exist N, M > 0, such that for all n > N and
m > 0, at most M distinct eigenvalues of the matrices {Ira (R) [c (Tn(f))Tn(f)] } I
have absolute values large than e. Thus the eigenvalues of the preconditioned matrix
are clustered around 1 and hence the number of iterations required for convergence is
a constant independent of n and m. Recalling the operation count in 3.3, the total
complexity of the algorithm in this case is equal to O(m3 -t- nm2 -t- mn log n).

5. Numerical results. In this section, we apply the preconditioned conjugate
gradient method to the block systems we considered in 4. The stopping criteria for
the method is set at

< 10-7

where rk is the residual vector at the kth iteration. The right-hand side vector b is
chosen to be the vector of all ones and the zero vector is the initial guess.

5.1. Quadrantally symmetric block Toeplitz matrices. We consider Tmn
of the form given in (20) with the diagonals of the blocks T(j) being given by tj).
Four different generating sequences were tested. They are

1
(i) tj)

(j + 1)(1il + J > O, i O, +/-1, +2,...,

(ii) t)- 1

(j + 1)x.X(lil / x)x/0.x(j/x), J > 0, i 0, +1, +/-2,...

(iii) t)- 1

(j + 1)1.1 -- (li[-- 1)1.1, j >_ O, i O, +/-1, +/-2,...

(iv) t})- 1

(J + 1)2"1 + (1il / "\2.1’ J >- O, i= O, +/-1, +/-2,..-.
/)

The generating sequences (ii) and (iv) are absolutely summable while (i) and (iii) are
not. Tables 1 and 2 show the number of iterations required for convergence. In all
cases, we see that as m n increases, the number of iterations remains roughly a
constant or increases very slowly for the preconditioned system with preconditioner
c((Tmn) while it increases with other choices of preconditioners.

TABLE 1
Preconditioners used and the number of iterations.

Sequence (i)
n

8 64 20 6 12 19
16 256 35 6 18 32
32 1024 43 6 21 41
64 4096’ 51 7 25 47
128 16384 54 7 26 50

Sequence (ii)

FF
5 12
6 1
6 20
7 22
7 24

1234 R.H. CHAN AND X.-Q. JIN

n--m

8
16
32
64
128

mn

64
256
1024
4096
16384

TABLE 2
Preconditioners used and the number of iterations.

Sequence (iii)
(2)None C(F (Tmn) F,F

18 7 16
40 8 30
63 9 49
101 11 80
144 12 123

Sequence (iv)
None C(F1) (Tmn) c(2) (Tmn)FF
14 7 12
22 8 20
30 9 26
36 9 33
42 8 38

5.2. Separable matrices. We consider the separable block Toeplitz system
(m @ Tn)x b where the diagonals of m and Tn are given by {i (li[+ 1) -1 and
tj (IJ[+ 1) -1"1, respectively, for i,j 0, +/-1,+/-2,.... We note that m (R)Tn is also a
quadrantally symmetric block Toeplitz matrix with the generating sequence given by

ti)
(i+l)(IjI+1)1-1’ i_>0, j=0,+/-l,+/-2,...

The preconditioner c((m (R) T,) is given by , (R) cF(T,). Table 3 shows the number
of iterations required for convergence. We notice that as n m increases, the number
of iterations stays almost the same for the preconditioned system with preconditioner
(1) (m (R) T,) while it increases with other choices of preconditioners. We remark thatcF

since , is a Toeplitz matrix, its inverse can be obtained in O(m log2 m). Hence the
total complexity of the algorithm is reduced to O(mn log2 m / mn log n).

TABLE 3
Preconditioners used and the number of iterations.

8 64
16 256
32 1024
64 4096
128 16384

None
20
34
48
57
67

CF(mTm) (R) cF(Tn) m (R) In m (R) CF(Tn)
7 5 4
9 10 4
9 14 5
10 18 5
11 20 5

Acknowledgment. This research was initiated by Professor Tony F. Chan dur-
ing his visit to the University of Hong Kong in December 1990. We would like to thank
him for his very helpful suggestions and guidance in the preparation of this paper.

REFERENCES

[1] G. AMMAR AND W. GRAGG, Implementation and use of the generalized Schur algorithm, Com-
putational and Combinatorial Methods in Systems, C. Byrnes and A. Lindquist, eds., North-
Holland, Amsterdam, 1986, pp. 265-280.

[2] R. CHAN AND (. STRANG, Toeplitz equations by conjugate gradients with circulant precondi-
tioner, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 104-119.

[3] R. CHAN, X. JIN, AND M. YEUNG, The circulant operator in the Banach algebra of matrices,
Linear Algebra Appl., 149 (1991), pp. 41-53.

[4] R. CHAN AND M. YEUNG, Circulant preconditioners for Toeplitz matrices with positive contin-

uous generating functions, Math. Comput., to appear.

BLOCK PRECONDITIONERS 1235

[5] R. CHAN AND M. YEUNG, Circulant preconditioners constructed from kernels, SIAM J. Numer.
Anal., 29 (1993), to appear.

[6] R. CHAN, Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal. Appl.,
i0 (1989), pp. 542-550.

[7] Numercal solutions for the inverse heat problems in RN, The SEAMS Bull. Math., to
appear.

[8] R. CHAN AND T. CHAN, Circulant preconditioners for elliptic problems, J. Numer. Linear Algebra
Appl., to appear.

[9] T. CHAN, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Com-
put., 9 (1988), pp. 766-771.

[10] T. CHAN AND Z. OLKIN, Preconditioners for Toeplitz-block matrices, in Second SIAM Conference
on Linear Algebra in Signals, Systems, and Control, San Francisco, CA, 1990.

[11] P. DAVIS, Circulant Matrices, John Wiley and Sons, New York, 1979.
[12] G. GOLUB AND C. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins Uni-

versity Press, Baltimore, MD, 1989.
[13] T. HUCKLE, Circulant/skewcirculant matrices for solving Toeplitz matrix problems, SIAM J.

Matrix Anal. Appl., 13 (1992), pp. 767-777.
[14] T. Ku AND C. KUO, On the Spectrum of a Family of Preconditioned Block Toeplitz Matri-

ces, USC-SIPI Report #164, Signal and Image Processing Institute, University of Southern
California, Los Angeles, CA, 1990.

[15] J. OLKIN, Linear and nonlinear deconvolution problems, Ph.D. thesis, Department of Mathemat-
ics, Rice University, Houston, TX, 1986.

[16] G. STRANG, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp. 171-176.
[17] R. THOMPSON, Principal submatrices IX: Interlacing inequalities for singular values of subma-

trices, Linear Algebra Appl., 5 (1972), pp. 1-12.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 5, pp. 1236-1264, September 1992

1992 Society for Industrial and Applied Mathematics
011

EFFICIENT SOLUTION OF PARABOLIC EQUATIONS BY KRYLOV
APPROXIMATION METHODS*

E. GALLOPOULOSt AND Y. SAAD$

Abstract. This paper takes a new look at numerical techniques for solving parabolic equations
by the method of lines. The main motivation for the proposed approach is the possibility of exploiting
a high degree of parallelism in a simple manner. The basic idea of the method is to approximate
the action of the evolution operator on a given state vector by means of a projection process onto
a Krylov subspace. Thus the resulting approximation consists of applying an evolution operator
of very small dimension to a known vector, which is, in turn, computed accurately by exploiting
high-order rational Chebyshev and Pad6 approximations to the exponential. Because the rational
approximation is only applied to a small matrix, the only operations required with the original large
matrix are matrix-by-vector multiplications and, as a result, the algorithm can easily be parallelized
and vectorized. Further parallelism is introduced by expanding the rational approximations into
partial fractions. Some relevant approximation and stability issues are discussed. Some numerical
experiments are presented with the method and its performance is compared with a few explicit and
implicit algorithms.

Key words, parabolic problems, method of lines, explicit methods, Krylov subspace, paral-
lelism, matrix exponential, polynomial approximation, exponential propagation, rational approxi-
mation, partial fractions, stability

AMS(MOS) subject classifications. 65M20, 65F10, 65W05

1. Introduction. In recent years there has been a resurgence of interest in ex-

plicit methods for solving parabolic partial differential equations (PDEs), motivated
mainly by the desire to exploit the parallel and vector processing capabilities of new
supercomputer architectures. The main attraction of explicit methods is their simplic-
ity, since the basic operations involved in them are matrix-by-vector multiplications,
which, in general, are rather easy to parallelize and vectorize. On the other hand, the
stringent constraint on the size of the timesteps required to ensure stability reduces ef-
ficiency to such an extent that the use of implicit methods becomes almost mandatory
when integrating on long time intervals. Implicit methods do not suffer from stability
related restrictions but have another disadvantage: they require the solution of linear
systems that are often large and sparse. For this reason implicit methods tend to be
far more difficult to implement on parallel machines than their explicit counterparts,
which only require matrix-by-vector multiplications. Thus the trade-off between the
two approaches seems to be a large number of matrix-by-vector multiplications on
the one hand, versus linear systems to solve on the other. For two-dimensional and,
more important, for three-dimensional problems, methods of an explicit type might
be attractive if implemented with care.

Received by the editors February 26, 1990; accepted for publication (in revised form) August
14, 1991.

Department of Computer Science and Center for Supercomputing Research and Development,
University of Illinois, Urbana, Illinois 61801-2932 (strat+/-s(C)csrd.u+/-uc.edu). This research was sup-
ported by National Science Foundation grant NSF CCR-8717942. Additional support was provided
by AT&T grant AT&T-AFFL-67-Sameh, Air Force Office of Scientific Research grant AFOSR-90-
0044, and Department of Energy grant DOE DE-FG02-85ER25001.

Computer Science Department, University of Minnesota, 200 Union St. SE, Minneapolis, Min-
nesota 55455 (saad(C)cs.umn.edu). This work was supported by the National Academy of Sciences
Systems Division and/or Defense Advanced Research Projects Agency via Cooperative Agreement
NCC 2-387 between the National Aeronautics and Space Administration (NASA) and the University
Space Research Association (USRA).

1236

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1237

We next observe that in spite of the above conventional wisdom, the distinction
between the explicit and implicit approaches is not always clear. Consider the simple
system of ordinary differential equations y’ Ay+f. We first point out that if our only
desire is to use matrix-by-vector products exclusively as operations with the matrix
A, for example, for the purpose of exploiting modern architectures, then certainly
standard explicit methods do not constitute the only possibility. For example, one may
use an implicit scheme and solve the linear systems approximately by some iterative
method, such as the conjugate gradient (CG) method, with no preconditioning or
with diagonal preconditioning. When the accuracy required for each linear system is
very low, then the method will be akin to an explicit scheme, although one of rather
unusual type since its coefficients will vary at every step. As the accuracy required
for the approximations increases, the method will start moving towards the family of
purely implicit methods. Therefore, if we were to call any scheme that requires only
matrix-vector products "explicit," then the borderline between the two approaches is
not so well defined.

We would like to take advantage of this observation to develop schemes that are
intermediate between explicit and implicit. In this paper we will use the term polyno-
mial approximation method for any scheme for which the only operations required with
the matrix A are matrix-by-vector multiplications. The number of such operations
may vary from one step to another and may be large.

To derive such intermediate methods, we systematically explore the ways in which
an approximation to the local behavior of the ordinary differential equations (ODEs)
can be obtained by using polynomials in the operator A. Going back to the comparison
sketched above, we note that the process involved in one single step of an implicit
method is often simply an attempt to generate some approximation to the operation
exp(St A)v via a rational approximation to the evolution operator [52]. If a CG-like
method is used to solve the linear systems arising in the implicit procedure, the result
will be a polynomial scheme. Thus there are two phases of approximation: the first is
obtaining a rational or polynomial approximation to the exponential, and the second
is solving the linear systems by some iterative method. We would like to reduce these
two phases to only one by attempting to directly approximate exp(St A)v. The basic
idea is to project the exponential of the large matrix A into a small Krylov subspace.

To make the discussion more specific and introduce some notation, we consider
the following linear parabolic PDE:

(1.1)

Ou(x, t) -Lu(x, t) + r(x) x e ,
Ot

u(x, O) uo, x ,
(x, t) (x), e o, t > o,

where -L is a second-order partial differential operator of the elliptic type, acting on
functions defined on the open, bounded, and connected set . Using a method of lines
(MOL) approach, (1.1) is first discretized with respect to space variables, resulting in
the system of, say, n ODEs

(1.2) dw(t) -Aw(t) + r, w(O) wo.dt

Here w, r are vectors and A is a matrix of order n. For the remainder of our discussion,
we will assume A to be time independent. In this situation the solution is explicitly

1238 E. GALLOPOULOS AND Y. SAAD

given by

(1.3) w(t) A-lr -- e-tA(wo A-lr).

If we let ff;(t) w(t)-A-lr, and accordingly, 0 wo-A-Ir, then (1.3) is equivalent
to the following expression:

o(t)

Note that when r 0, w(t) is the same as (t). An ideal one-step method would
consist of a scheme of the form

(1.4) + 5)

in which 6 constitutes the timestep.
The basic operation in the above formula is the computation of the exponential

of a given matrix times a vector. If we were able to perform this basic operation with
high accuracy, we would have what is sometimes called a nonlinear one-step method
[26], because it involves a nonlinear operation with the matrix A. We should stress
that there is no need to actually evaluate the matrix exponential exp(-6A), but only
its product with a given vector. This brings to mind an analogous situation for linear
systems in which it is preferable to solve Ax b than to compute A- and then
multiply the solution by b.

We point out that we follow an approach common in the literature [3], [42], putting
the emphasis on the semidiscrete problem (1.2). As a result, our discussion of stability
is purely from an ordinary differential equation point of view and is not concerned
with the effect of space discretization errors and convergence. We establish conditions
under which our methods, applied to the stiff system of ODEs (1.2), satisfy certain
criteria of stability, which, in turn, is an important step toward any investigations of
convergence. (See also [5] and [40].)

The Krylov subspace method presented here was introduced in [13] for general
nonsymmetric matrices. However, similar ideas have been used previously in vari-
ous ways in different applications for symmetric or skew-symmetric matrices. For
example, recall the use of this basic idea in Park and Light [34] following the work
by Nauts and Wyatt [30]. The idea of exploiting the Lanczos algorithm in order to
evaluate terms of the exponential of Hamiltonian operators seems to have been first
used in chemical physics by Nauts and Wyatt in the context of the recursive-residue-
generation method [29]. More recently, Friesner, Tuckerman, Dornblaser, and Russo
[9] have demonstrated that these techniques can be extended to solving nonlinear
stiff differential equations. The approach developed in this paper is related to that
of Gear and Saad [14] and Brown and Hindmarsh [1] on matrix-free methods in the
Newton iteration of implicit multistep schemes. Our scheme uses a similar reduction
of the underlying matrix but goes further in combining it with high-order approxima-
tion schemes for the reduced (exponential) operator. It is also related to the work of
Nour-Omid [32], in which systems of ODEs are solved by first projecting into Krylov
subspaces with an unsymmetric two-sided Lanczos process and then solving tridiag-
onal systems of ODEs, the approach of Tal-Ezer and Kosloff [46], and the work of
Wal-Ezer [45] and Schaefer [41] on polynomial methods based on Chebyshev expan-
sions. The idea of evaluating arbitrary functions of a Hermitian matrix with the use
of the Lanczos algorithm has also been mentioned by van der Vorst [51]. The use of
preconditioning for extending the stability interval of explicit methods, thus bringing

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1239

them closer to fully implicit methods, has been discussed in [37] and [50]. Although
our method works from a subspace, it does not suffer from some of the aspects of
partitioning methods (see, for example, [55]). Partitioning methods rely on explicitly
separating and treating differently the stiff and nonstiff parts. However, it is usually
impractical to confine stiffness to a subsystem [4]. The Krylov method, on the other
hand, relies on the nice convergence property of Krylov approximations to essentially
reach a similar goal in an implicit manner [38]. The outermost eigenvMues, including
the largest ones, will be well approximated by the Krylov subspace, so that the Krylov
approximation to the matrix exponential will be accurate in those eigenvalues, thus
accommodating stiffness. Note that there have been several recent efforts to design
algorithms for the solution of time-dependent problems, some of which may be partic-
ularly suited to parallel processing; see [19], [21], [22], [43], [48], and [49] for a review.
It should also be mentioned that the approach we are using to approximate and eval-
uate the exponential of the reduced operator has its roots in the work of Varga [52]
and in previous work by the present authors and others; see 3 for details.

The structure of our paper is as follows. In 2 we formulate the Krylov subspace
approximation algorithm and prove some a priori error bounds. In 3 we present
a method for the accurate approximation of the exponential of the Hessenberg ma-
trix produced in the course of the Arnoldi or Lanczos algorithm. In 4 we consider
problems with time-dependent forcing and introduce two approaches to handle the
integration of the nonhomogeneous term. We then proceed in 5 with a stability
analysis of each approach in the context of the quadrature techniques used, leading
to Theorem 5.3. In 6 we present numerical experiments for problems of varying
difficulty and, finally, in 7, we offer concluding remarks.

2. Polynomial approximation and the use of Krylov subspaces. In this
section we consider using polynomial approximation to (1.4), that is, we seek an
approximation of the form

(2.1) e-Av P,-I (A)v,

where Pm-1 is a polynomial of degree m- 1 and A and v are an order-n matrix and
vector, respectively. There are several ways in which polynomial approximations can
be found. The simplest technique is to attempt to minimize some norm of the error
e-z -Pm-1 (z) on a continuum in the complex plane that encloses the spectrum of A.
For example, Chebyshev approximation can be used, but one disadvantage is that it
requires some approximation to the spectrum of A. In this paper we consider only
approaches that do not require any information on the spectrum of A. This will be
considered in 2.1. A theoretical analysis then follows in 2.2.

2.1. The Krylov subspace approximation. The approximation (2.1) to e-Av
is to be taken from the Krylov subspace

K, span{v, Av,..., Am-iv}.

In order to manipulate vectors in K,, it is convenient to generate an orthonormal
basis V, [Vl, v2, v3,..., Vm]. We take as initial vector Vl v/llvll2 and generate
the basis Vm with the well-known Arnoldi algorithm, described below.

ALGORITHM: ARNOLDI.

1. Initialize:
Compute v :=

1240 E. GALLOPOULOS AND Y. SAAD

2. Iterate: Do j 1, 2,..., m.
1. Compute w :-- Avj.
2. Doi- l,2,...,j.

(a) Compute hi,j :-(w, vi).
(b) Compute w := w- hi,jvi.

3. Compute hj+l,j -IIw[[2 and Vj+l --w/hj+l,.

By construction, the above algorithm produces an orthonormal basis Vm of the
Krylov subspace K,, where Vm Iv1, v2,’", Vm]. If we denote the m x m upper
Hessenberg matrix consisting of the coefficients hiy computed from the algorithm by
Hm, we have the relation

TAVm VmH. + hm+l,mVm+ e..

For the remainder of this discussion, for any given k, ek will denote the kth unit
vector belonging to Rm. From the orthogonality of the columns of Vm we get that
Hm YTmAYm Therefore Hm represents the projection of the linear transformation
A to the subspace Km, with respect to the basis Vm.

Since Vm is orthonormal, the vector Xopt YmyTme-Av is the projection of e-Av
on Km, that is, it is the closest approximation to exp(-A)v from Km. Since for
/5 IIv[12, we can write v =/3v and v Vme, it follows that

We can therefore write the optimal solution as Xopt YmYopt, where Yopt
T -AV,e Vme. Unfortunately, Yopt is not practically computable since it still in-

volves e-A. We can approximate YTme-Aym by e-H’ leading to the approximation
Yopt /e-Hmel and

(2.3) e-Av Vme-H’el.
From the practical point of view there remains the issue of efficiently computing

the vector e-H’el, which we address in 3.
The approximation (2.3) is central to our method, and its effectiveness is discussed

throughout the remainder of the paper. The next section is devoted to providing the
theoretical justification.

We also note that when A is symmetric, Arnoldi’s algorithm simplifies into the
Lanczos process, which entails a three-term recurrence. This is a result of the fact that
the matrix Hm VTmAVm must be symmetric and therefore tridiagonal symmetric,
and so all h,j 0 for i 1, 2,..., j 2. However, the resulting vectors, which are in
theory orthogonal to each other, tend to lose their orthogonality rapidly.

2.2. A priori error bounds and general theory. The next question that
arises concerns the quality of the Krylov subspace approximation defined in 2.1. A
first observation is that the above approximation is exact for m n, because in this
situation Vm+l 0 and (2.2) becomes AVm VmHm, where Vm is an n n orthogonal
matrix. In fact, as with the conjugate gradient method and the Arnoldi process, the
approximation is exact for m whenever m is larger than or equal to the degree of
the minimal polynomial of v with respect to A. As for these algorithms, we need to
investigate what happens when m is much smaller than this degree.

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1241

In the sequel we need to use the concept of the logarithmic norm of a matrix. Let
B be a given matrix. The logarithmic norm #(.) is defined by

#(B) _= lim
[[I + hB[]- 1

h-0+ h

Note that # is associated with a particular norm. Unless it is otherwise specified, we
assume that the reference norm is the usual two-norm. Then the logarithmic norm
#(B) is equal to the maximum eigenvalue of the symmetric part of B, that is,

#(B) Amax (B + BT I"2
The function # satisfies many norm-like properties, but it can also take negative

values. We refer to [5] and [6] for a description of its properties. It can be shown in
particular that

(2.4) II B II
We assume throughout that A is a real matrix. We now state the main theorem

of this section.
THEOREM 2.1. Let A be any matrix and let p =_]IA[]2, 3 I[v]12, and 1 =- #(-A).

Then the error of the approximation (2.3) is such that

pm
(2.5) II -Av- Vm -H IlI

_
23pm(/) _< 2,---. max(1, en),

where

m k--0

The proof of the theorem is established in Appendix A.
To see what we can gain in using the logarithmic norm instead of a standard

spectral norm, compare Theorem 2.1 with the bound proposed earlier in [13]:

(2.6) Ile-Av tVme-H’e [12 < 2
pmep
m!

For the sake of illustration, let

0.5000 -0.0938 0.0000
-0.4063 0.5000 -0.0938
0.0000 -0.4063 0.5000

and let A I (R) B + B (R) I, where (R) is the symbol for the Kronecker product, and
I the identity matrix. Such an A arises after discretizing -(ux + u) + (ux + u)
on the unit square with a grid distance of 1/4 when 5 and after multiplying all
coefficients of the discretization by the scale factor 4 (e.g., representing a timestep).
In that case #(-A) -0.2929, whereas [[A[[2 1.7235. When m 7, the error in
the approximation from (2.6) is bounded by 0.10043, whereas Theorem 2.1 provides
the sharper estimate 0.018/.

1242 E. GALLOPOULOS AND Y. SAAD

In general, the advantage of using the logarithmic norm follows from the inequality
IIAII _> #(-A), which is among the properties of #(.) (cf. [6]). One can construct
examples, however, for which the bounds from using tt(-A) are as loose as those
obtained from using I]AII (cf. [5]). Also, asymptotically the rates of convergence
as estimated by the bounds (2.6) and (2.5) are both of the form p/(m!)t/m. The
following corollary follows trivially from Theorem 2.1.

COROLLARY 2.2. If the eigenvalues of the symmetric part of the matrix A are
nonnegative, then

Hence the bound of Corollary 2.2 holds for many important classes of matrices, in-
cluding positive definite matrices and normal matrices with eigenvalues in the positive
half-plane.

We note that when A is normal, the bound of Corollary 2.2 can be derived without
invoking logarithmic norms because we can write A QAQn where A is the diagonal
matrix of eigenvalues of A and Q is unitary. Let us denote the remainder after m
terms of the Taylor series expansion of e-z by rm(z). Then

IIrm(A)ll2 .(-A)k

k--m

1
.(-A)k

From the assumption on A, [A] >_ 0. Applying componentwise a result of Landau
[24] (cf. [36, p. 35, problem 151]), the remainder can be bounded by its first term:

Ilrm(A)ll2 < II-Amll2 IIAll2
m! m!

The bound of Corollary 2.2 follows after using a similar treatment for Hm and com-

bining the results as shown in Lemma A.1 of Appendix A.
When we know that A is symmetric positive definite, an even better bound can be

obtained by applying the previous theory to A-I, where >_ Xmin(A) (the minimum
eigenvalue of A). We refer to [12] for the proof.

THEOREM 2.3. Let A be a symmetric positive definite matrix and let p IIAII2
and Ilvl12. Then the error of the approximation (2.3) is such that

pm
(2.7) II -Av -< 2m_lm!

These theorems show that in the nonstiff situation, which occurs at the beginning
of the integration, the proposed method cannot be much worse than a more conven-
tional explicit method. Experimental results in 6 show that in the stiff situation
the actual errors are much smaller than suggested by the theorems. In the nonstiff
region the theorems can serve as a guide to choosing the stepsize in a timestepping
procedure. Indeed, if we were to replace A by the scaled matrix TA, then the Krylov
subspace would remain the same, that is, V, would not change and Hm would be
scaled to THIn. As a result, for arbitrary T one can use the approximation

(2.8) e-rAY Yme-’H’l,

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1243

and the bound (2.5) becomes

(2.9) II - Av- 2D(Tp)m(#(--TA)).

The consequence of (2.9) is that by reducing the stepsize one can always make the
scheme accurate enough without changing the dimension m. We note that these
bounds are most useful when m is much larger than what is usually used by standard
explicit methods. Indeed, in our experiments, we have used large values of m to our
advantage. We refer the reader to [39] for additional results on error bounds for this
method.

3. Practical computation of exp(-Hm)el. We now address the problem of
evaluating y e-Hel, where H is the Hessenberg or tridiagonal matrix produced
by Arnoldi’s method or the Lanczos method. We drop the subscript m for conve-
nience. Although H is a small matrix, the cost of computing y can easily become
nonnegligible. See [28] for a review of methods for computing the matrix exponential.
For example, when H is tridiagonal symmetric, the simplest technique for computing
y is based on the QR algorithm. However, this is rather expensive. Therefore, we
would like to use approximations that have high accuracy, possess desirable stability
properties, and allow fast evaluation. The method we recommend is to use ratio-
nal approximation to the exponential, evaluated by partial fraction expansion. This
technique has been discussed in the context of implicit methods in [10] and [13], and
we would like to take advantage of it in the present context. The (serial) complex-
ity of the QR factorization algorithm is O(m3) for Hessenberg matrices and O(m2)
for tridiagonal matrices, compared with a cost of O(m2) for Hessenberg and O(m)
for tridiagonal matrices when using the rational approximation method. In addition,
parallelism can be exploited in this approach.

The rational approximation to the exponential has the form

(3.1) e-z R,l,,.(z =_ p’I (z)
q,.(z)

where p and q. are polynomials of degrees vl and v2, respectively.
An approximation of this type, referred to as a Pad approximation, is determined

by matching the Taylor series expansion of the left-hand side and right-hand side of
(3.1) at the origin. Since Pad approximations are local, they are very accurate
near the origin but may be inaccurate far away from it. Other schemes have been
developed [3], [18], [52] to overcome this difficulty. For typical parabolic problems that
involve a second-order partial differential operator -L that is self-adjoint elliptic, the
eigenvalues of L are located in the interval [0, +x). It is therefore natural to follow the
idea introduced by Varga in [52] (see also [2] and [3]) and seek the Chebyshev (uniform)
rational approximation to the function e-z, which minimizes the maximum error on
the interval [0, +cx). To unify the Pad and uniform approximation approaches, we
restrict ourselves to "diagonal" approximations of the form (v, v), that is, in which
the numerator has the same degree v as the denominator. We note, however, that
alternative strategies (e.g., (- 1,)) frequently work better for Pad approximations
without altering the principle of the method. Note that the stability properties of the
aforementioned rational approximations are discussed extensively in the literature [7],
[0], [54].

A comparison between the Pad approximation and the Chebyshev rational ap-
proximation reveals the vast superiority of the latter in the context of the Krylov-based

1244 E. GALLOPOULOS AND Y. SAAD

methods presented in this paper, at least for symmetric positive definite matrices H
and relatively large values of m. To see why this is so, we note that the idea of
the method presented in this paper is to allow the use of large timesteps by utilizing
Krylov subspaces of relatively high order. However, for our method to be success-
ful, the ability to use a large timestep 5 must also carry over to the computation of
exp(-Hi)el. We mentioned earlier that the Pad approximations provide good ap-
proximation only near the origin. Using the Chebyshev rational approximation to the
function e-z over the interval [0, +oc) [2], [52], it becomes possible to utilize timesteps
as large as our Krylov-based method allows.

For example, in the diagonal Chebyshev rational approximation, the infinity norm
of the error over the interval [0, +oc) is of the order of 10-1 as soon as u reaches 10.
For each additional degree the improvement is of the order of 9.289025... [2]. This
means that for all practical purposes e-z can be replaced by a rational function of
relatively small degree. When H is nonsymmetric and its eigenvalues are complex,
then the rational function is no longer guaranteed to be an accurate approximation
to the exponential. Although a rigorous analysis is lacking, we experimentally veri-
fied that for the examples we treated, the approximation still remained remarkably
accurate when the eigenvalues were near the positive real axis. Although little is
known concerning rational uniform approximation in general regions of the complex
plane, a promising alternative is to use asymptotically optimal methods based on
Faber transformations in the complex plane [8]. We also point out that there exist
other techniques for approximating matrix exponentials by rational functions of A;
see, for example, [18] and [31]. The restricted Pad approximations of [31] avoid com-
plex arithmetic at the price of a reduced order of approximation and reduced levels
of parallelism caused by the occurrence of multiple poles.

For compactness of notation in the diagonal approximations we simply write Rv
from now on for the (u,) rational approximation to e-z. Then, in order to evaluate
the corresponding approximation to e-Hal, we need to evaluate the vector), where

(3.2) 1 pu(H)qu(H)-lel qu(H)-lp(H)el.

It has been proposed in several contexts that an efficient method for computing some
rational matrix functions is to resort to their partial fraction expansions [10], [11],
[13], [23], [25], [33], [44], [56]. The approach is possible since it can be proved analyt-
ically that the diagonal Pad approximation to e-z has distinct poles [57]. Explicit
calculations indicate that this seems to be true for the uniform approximation as well.
In particular, we write

’R(z) o +
z-

’/,=1

where

in which zr, a are the leading coefficients of the polynomials p and qv, respectively.
With this expansion the algorithm for computing (3.2) becomes

ALGORITHM
1. Fori=l,2, .., u solve (H- AiI)yi el.

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1245

2. Compute c0el + Yi=l aiYi"

The motivation in [10] for using the above scheme was parallelism. The first step
in the above algorithm is entirely parallel since the linear systems (H-AI)y el can
be solved independently from one another. The partial solutions are then combined
in the second step. The matrices arising in [10] are large and sparse, unlike those
here. However, parallel implementation of the above algorithm can be beneficial for
small Hessenberg matrices as well. For example, in a parallel implementation of the
Krylov scheme, the "Amdahl effect" may cause severe reduction in efficiency unless
all stages of the computation are sufficiently parallelized.

We should also point out that even on a scalar machine, the above algorithm
represents the best way of computing . It requires fewer operations than a straight-
forward use of the expression (3.2). It is also far simpler to implement. The poles Ai
and partial fraction coefficients i of R(z) are computed once and for all and coded
in a subroutine or tabulated. These are shown in Appendix B for u 10 and u 14
for the case of Chebyshev rational approximation.

4. The case of a time-dependent forcing term. In the previous sections we
made the restrictive assumption that the function r in the right-hand side is constant
with respect to time. In this section we address the more general case where r is time
dependent. In other words, we now consider the system of ODEs of the form

(4.1) dw(t) -Aw(t) + r(t).
dt

As is well known, the solution of this system is

wo + e(S-t)Ar(s)ds.

Proceeding as in 1, we now express w(t + 6) as

(4.2)

w(t + 6) e-A w(t) + e-(t-)Ar(s)ds
Jt

t+6

e-Aw(t) + e-(+t-s)Ar(s)ds
Jt

e-eAw(t) + e-(e-’gAr(t + r)dr.

In one way or another, the use of the above expression as the basis for a timestepping
procedure requires numerical integration. Note, however, that under the assumption
that we can evaluate functions of the form e-Asv accurately, we have transformed the
initial problem into that of evaluating integrals. Simple though this statement may
seem, it means that the concerns about stability disappear as soon as we consider
that we are using accurate approximations to the exponential. This is because the
variable w does not appear in the integrand. (The issue of stability will be examined
in detail in 5.)

We will now address how to evaluate the integral in (4.2); for this we consider
two distinct approaches.

1246 E. GALLOPOULOS AND Y. SAAD

4.1. The first approach. Consider a general quadrature formula of the form

(4.3) e-(-)Ar(t + T)dT 5E #Je-(-’)Ar(t + Tg),
j--1

where the Tj’S are the quadrature nodes in the interval [0, 5]. One of the simplest
rules is the trapezoidal rule on the whole interval [0, 5], which leads to

+ ++ +

+

The above formula is attractive because it requires only one evaluation of an
exponential times a vector. On the other hand, it may be too inaccurate to be of any
practical value since it means that we may have to reduce the stepsize 6 drastically
in order to get a good approximation to the integrals. The next alternative is to use
a higher-order formula, that is, a larger p in (4.3). For example, we tried a Simpson
formula instead of trapezoidal rule. The improvements are noticeable, but we have to
pay the price of an additional exponential evaluation at the midpoint t + 6/2.

The recommended alternative is again based on a judicious exploitation of Krylov
subspaces. In the formula (4.3) we note that each term e-(-j)Ar(t + rj) need not be
evaluated exactly. Observe that in the ideal situation where r(s) is constant (equal to
r) in the interval [t, t 4-5], then formula (2.8) shows that we can evaluate e-(-)Ar
for all T from the Krylov subspace generated for T 0 (for example) via

e-(6-r)Ar flYme-(6--)Hm el,

where Vm and Hm correspond to the Krylov subspace KIn(A, r). In the more general
case where r varies in the interval It, t 4- 5], we can use a projection formula of the
form

(4.4) e-(-)Ar(t + T) Y,e-(-)sVTr(t + T).

The combination of the quadrature formula (4.3) and formula (4.4) has been
tested and was found to be remarkably accurate. These tests were conducted in the
context of a slightly modified approach, discussed next.

4.2. The second approach. In the above approach we need to compute two
Krylov subspaces: one associated with the current iterate w(t) and the other asso-
ciated with r(t). We show that we can reduce the computation to only one Krylov
subspace. The resulting algorithm has different numerical properties from the one
presented in 4.1.

The main idea is to use the identity

e-hA I- A e-SAds I- A e-(5-)Ad",

which is obtained readily by integration. This is then substituted in the first term of
the right-hand side of equation (4.2) to obtain

(4.5) w(t + 5) w(t) + e-(e-’)A[r(t + ’) Aw(t)]dT.

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1247

Note the important fact that the term e-Aw(t), which was in the previously
used formula (4.2), has been removed at the slight expense of modifying the function
r(t + T) in the interval T E (0, 5). The modification consists of subtracting a vector
that is constant in the interval of integration. In terms of computations, this modifica-
tion requires one matrix-by-vector multiplication, certainly an inexpensive overhead
compared with that of applying the propagation operator to a vector.

With this transformation at hand, we can now proceed in the same manner as
for the first approach, combining Krylov projection and numerical quadrature. More
precisely, we evaluate the term v r(t+T)- Aw(t) at some point T in the interval, for
example in the middle, i.e., for T 5/2. Then a Krylov subspace is computed with the
initial vector Vl v/llvll2 and a formula similar to (4.4) based on this Krylov subspace
is used to approximate the terms inside the integrand of (4.5). The integration is then
carried out in a similar way with the appropriate quadrature formulas. The numerical
experiments in 6 will illustrate an implementation based on this strategy.

Our experiment in 6.4 shows an example of a rapidly varying forcing term r(t),
where the method can perform adequately with only one additional exponential eval-
uation (at the midpoint). We note, however, that for some highly oscillatory forcing
terms, a (preferably adaptive) scheme involving additional exponential evaluations or
a reduction of the timestep 5 may be needed.

There is one fundamental difference between the scheme (4.2) used in the first
approach and the scheme (4.5) of the second approach: the function w now figures
in the integrand. This may mean completely different numerical properties and, as is
shown in 5, the loss of the unconditional stability.

5. Stability. In this section we investigate the linear stability of the Krylov
timestepping methods when used for the solution of the semidiscrete system (1.2). As
noted in the introduction, this discussion will not take into account the interaction
between space and time discretizations.

We first consider the stability properties of the approximate evolution operator
Yme--HmyTm implicitly involved in (2.3). If A is positive real, i.e., if its symmetric

I(A+Awpart S 5 is positive definite, then so is the matrix H, [35]. Moreover, the
eigenvalues of A and Hm have positive real parts and the smallest eigenvalue ,min(S)

l(Hm+HWm)of the symmetric part of A is a lower bound for the eigenvalues of Sm
because S, VTmSV,. In terms of logarithmic norms, #(-H,) _< #(-A) _< 0; see
also Lemma A.3 in Appendix A. Since Vm has orthonormal columns, the approximate
evolution operator satisfies

As a result, we can state that in the case where exp(-Hmf) is evaluated exactly
then

< eta(-H.5) < eta(-AS)

If, on the other hand, exp(-Hm5) is not computed exactly, then stability will de-
pend upon the method of evaluation used. In particular, let exp(-H,5) be evaluated
using a diagonal (,) Pad approximation Rv. Diagonal Pad approximations are

A matrix B is positive real if XTBx > 0 for any real vector x = 0 [53].

1248 E. GALLOPOULOS AND Y. SAAD

A-acceptable, that is, IR(z)l < 1 for all z in the positive half-plane [42]. From above,
.xHHmx

_
0 for any x and #(-Hm) <_ O. We then obtain

IIVmR(Hmh)VTmlI2 <_ IIR(Hmh)II2 <_ 1

from a result of von Neumann, which states that, when the field of values of a matrix B
is contained in 7-/(the nonnegative half of the complex plane) and if a rational function

f maps 7-/into the unit disk, then IIf(B)ll2 _< 1; see also [47] and [15, Whm. 4]. A
similar conclusion holds for the subdiagonal (-1,) approximation. When a diagonal
Chebyshev approximation is used this no longer holds, as these approximations may
amplify small eigenvalues of Hm near zero. We can state only that for symmetric
positive definite matrices and large enough values of , and ()min(Hm) bounded
away from zero, IIVmR(Hmh)VTmlI2

_
1.

For the remainder of this section we assume that the exponential terms exp(-Hmh)
are computed exactly.

5.1. Stability behavior of the first approach. Consider a general solution
scheme for (4.1) of the form

(5.1) WN+I e-AhwN -- 8N,where 8N is some approximation to the integral (4.3). The above scheme is a one-step
technique where 5 is the timestep. If we assume that the exponential term is evaluated
exactly, then the above methods are referred to as the nonlinear multistep methods
of Lee [26]. It was remarked in [27] that these methods are stable. More generally,
let us assume that the error incurred in the evaluation of the term e-AhwN in (5.1)
is el,N, while the error in the evaluation of the integral term SN is e2,N. Then the
recurrence (5.1) is replaced by

WN-}-I e AhWN -- el,N - 8N -+- e2,N,

in which Sv is the exact integral (4.3). In this situation, the total error at each step
is of the form

eN+l -- W(tN+I) WN+I e-AheN + el,N + e2,N.

This shows that if A has no eigenvalues in the negative half-plane of the complex
domain, then the above procedure is stable. Note that this is independent of the
procedure used to compute the approximation to the matrix exponential by vector
product. If one uses the Krylov approximation to the exponential, then we essentially
have an explicit procedure that is stable. Although this may seem like a contradiction,
note that we have made very special assumptions. The important point is that we
are essentially considering accurate one-step methods. In the extreme case where r is
constant, the solution can be evaluated in just one step at any point in time provided
the exponential is accurately approximated.

5.2. Stability behavior of the second approach. As mentioned earlier, the
alternative approach described in 4.2 is attractive from the point of view of efficiency
but may have poor numerical properties. We outline in this section a stability analysis
of this class of methods in an effort to determine how to select the quadrature formulas
that are most likely to lead to robust procedures.

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1249

We consider the simple timestepping scheme derived by applying a quadrature
formula to (4.5)

k

(5.4) WN+ WN + 6 #e-(-’)A[r(t +) AWN],
i--1

where T, i 1,... ,k are the quadrature nodes in the interval [0, 6] and # are their
corresponding weights. Once more, we assume that the exponential terms in (5.4) are
exactly calculated. The above equation can be recast in the form

wr+ I e-(e-")A WN +
i=1

in which 9N is a term that does not contain the variable WN. We next assume that
the matrix is normal. Then the stabiligy of the above recurrence is easily studied by
replacing the matrix A by a generic eigenvalue). This leads to the scalar recurrence

WN+I 1 #ie
-(-r))., WN -1-

i=1

We need to determine under which conditions the modulus of the evolution op-
erator

k

() 1
i=1

does not exceed one.
Before proceeding with the more complicated general analysis, we first consider

in detail two basic quadrature formulas: the trapezoidal rule and the midpoin rule.
For the trapezoidal rule we have

5 [e_e +]a(A) 1-

We restrict ourselves to the case where A is real and positive. We need to have

-1 <_ a(A)= 1- [e- + 1] <_ 1

or, since the second inequality is trivially satisfied,

(5.5) 5Ale- + 1] _< 4.

Since e- <_ 1, a sufficient condition for the above inequality to hold is that 5A _< 2,
which is just as restrictive as an ordinary explicit method. Note that a necessary
condition for (5.5) to be true is that 5A _< 4.

For the midpoint rule we have

a() 1 5e-’x/2.

Considering again real and positive A, we seek conditions under which we have

(5.6) -1 <_ a(A)= 1- 5Ae-/2 <_ 1.

1250 E. GALLOPOULOS AND Y. SAAD

The second inequality is always satisfied and from the first we get the condition

,(e-A/2 < 2.

As is easily seen through differentiation, the maximum with respect to Ati of the left-
hand side is reached for Ai 2, and its value is 2e-1, which is less than 2. Therefore,
inequality (5.6) is unconditionally satisfied. This fundamental difference between the
trapezoidal rule and the midpoint rule underscores the change of behavior in the
second approach depending on the quadrature rule used. We will extend this analysis
shortly.

The above development for the midpoint rule was restricted to A being on the
positive real line. Let us consider this case in more detail for A complex. Setting
u Ai- - i, we have

a(A) 1 ue-/2

1 (c- i)e-(a-i)/2

1 ce-a/2(cos(/2) + sin(//2)) + ie-/2(cos(/2) + i sin(/2))
1 + +

where we have set c cos(/2) and s sin(/2). The modulus of a(A) is easily
found to satisfy

la(A)l 2 1 + e-(a2 + 2) 2e-/2(c + s)
1 + (1 1 +

This leads to the region of stability, symmetric about the positive real axis, defined
by

(a2 +/2) _< 2e,/2 (a cos(/2) + sin(/2)).

The shaded regions of Fig. 5.1 show the part of the complex domain [0, 50] x
[-25, 25] that corresponds to values of u satisfying (5.7).

If we concentrate on the shaded region enveloping the positive real axis, we note
that for large a, the limits of the curve bounding that section of the stability region
are =. This is because for < I/1 <: 2r, the coefficient cos(//2) becomes
negative, making (5.7) impossible to satisfy for large (being fixed). On the other
hand, for fixed such that I1 <- , we have cos(/2) _> 0 and there is always an
a large enough to satisfy (5.7). In addition, all the lines/ +/-4kr, k 0, 1, 2,..-
belong partly to the region: specifically all those points in these lines with a larger
than the (only) positive root of x(2ex/2 x) 2 are acceptable points. As shown in
Fig. 5.1, around each of these lines there is a whole subregion of stability, whereas in
between, there are regions around the lines/ -+-2(2k + 1)r that are unstable.

We return now to studying the general scheme and extending the above analysis
to the general case. Again we restrict ourselves to the case where A is real positive.
This condition will be replaced by a weaker condition later. However, we do not
necessarily assume that the weights are positive. Then we examine the conditions
under which

k

i--1

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1251

25

2O

15

10

-5

-10

-25
0

-:!!!!!!!!!!:::::::::::::::::::::::::::::::::

10 20 30 40 50

Real u

FIG. 5.1. Stability region for the midpoint rule (el. (5.r)).

or

k

0 <_ 5Ae-6’E#ier <- 2.
i=1

Consider now any quadrature rule that satisfies the following two conditions:
1. Positivity condition.

k

7, #ier’ > 0
i=1

for A>O.

2. Undervaluation condition.

5 k

(5.10) Ek fo eSds 6E#ier > 0 for A _> O.
i--1

The purpose of the positivity condition is to restrict the quadrature rule so that it
yields nonnegative approximations to the integral of the function e8 on any positive
interval. It is verified whenever the quadrature weights are nonnegative. In particular,
we have the following lemma.

LEMMA 5.1. The positivity condition is satisfied for any Gaussian quadrature
formula.

1252 E. GALLOPOULOS AND Y. SAAD

Proof. The fact that the weights are positive for Gaussian quadrature is well
known; see, e.g., [17, p. 328].

For the undervaluation condition, we can prove the following lemma.
LEMMA 5.2. (1) Any composite or simple open Newton-Cotes formula satisfies

the undervaluation condition (5.10).
(2) Any k-point Gaussian quadrature rule satisfies the undervaluation condition

Proof. This is a consequence of the well-known error formulas for open Newton-
Cotes rules [17, pp. 313-314], and for Gaussian quadrature rules [17, p. 330], and the
fact that all the derivatives of the function e8 are positive in the interval [0, i].

Going back to condition (5.8), we first observe under the positivity condition (5.9)
that the left-hand inequality is trivially satisfied. Moreover, under the undervaluation
condition, we have that

k

j0 ex- 1
#ie <_ eXSds

i--1

and as a result,

k

(5.11) 0<6Ae-#ie<Ae-(e-l) =l-e-e _<2.
i=1

We have therefore proved the following result.
THEOREM 5.3. Consider the timestepping procedure (5.4) based on the second

approach (4.2) using a quadrature formula satisfying the positivity condition (5.9)
and the undervaluation condition (5.10). Then the region of stability of this scheme
contains the positive real line.

Note that schemes with such properties are said to be A0-stable in the literature
[42]. In many of our numerical experiments, we have observed this difference in sta-
bility behavior between schemes that satisfy the conditions of the theorem and those
that do not. In many instances the composite closed-type Newton-Cotes formulas
tended to diverge for a small number of subintervals. On the other hand, we never
noticed any stability difficulties with the open Newton-Cotes formulas or with the
Gauss-Chebyshev quadrature.

As a general recommendation, it is advisable to use open Newton-Cotes formu-
las instead of closed formulas. Although these formulas satisfy the undervaluation
condition according to the previous lemma, we do not know whether they satisfy
the positivity condition (5.9). We know, however, that some of the low-order, closed
Newton-Cotes rules (three-point, four-point, and six-point) do satisfy this condition
since their weights are positive.

Gaussian rules are extremely attractive not only because of their stability prop-
erties but because of their potential to drastically reduce the number of function
evaluations needed to produce a certain level of accuracy. There is still much work to
be done to determine which of the quadrature formulas will yield the best results.

As is suggested by the analysis of the midpoint rule for complex A, we expect the
full analysis of the stability of the second approach to be very complicated for such
cases.

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1253

6. Numerical experiments.

6.1. A symmetric model problem. Our first test problem is issued from the
semidiscretization of the heat equation

O,(x, , , t) ZX,(, , t) , z e (0,)Ot
u(x, y, z, t) 0 (x, y, z) on the boundary,

where A stands for the three-dimensional Laplacian operator using 17 grid points in
each direction, yielding a matrix of size n 153 3375. The initial conditions are
chosen after space discretization in such a way that the solution is known for all t.
More precisely,

n
1 ii Tr jjTr kk Tru.,n xi, yj, zk

i + j + k
sin n + 1

sin
n + 1

sin n +,
i,j,k=l

where n 15. The above expression is simply an explicit linear combination of
the eigenvectors of the discretized operator. In order to separate the influence of
spatial discretization errors and emphasize the time evolution approximation, for the
experiments in this section we consider the solution of the semidiscrete problem ut
-Au to be the exact solution. The exact solution is readily computed from the explicit
knowledge of eigenvalues and eigenvectors of A.

The purpose of the first test is to illustrate one of the main motivations for this
paper, namely, the effectiveness of using large-dimensional Krylov subspaces whenever
possible. As shown in [10] and [13], similar conclusions also hold for methods based
on rational approximations to the exponential.

Assume that we want to integrate the above equation between t 0 and t 0.1,
and achieve an error-norm at t 0.1, which is less than e 10-1. Here by error-norm
we mean the two-norm of the absolute error.

We can vary both the degree m and the timestep 5. Normally we would prefer
to first choose a degree m and then try to determine the maximum 5 allowed to
achieve the desirable error level. However, for convenience, we proceed in the opposite
way: we first select a stepsize 5 and then determine the minimum m that is needed
to achieve the desirable error level. This experiment was performed on a Cray Y-
MP. What is shown in Table 6.1 are the various timesteps chosen (column 1) and
the minimum values of m (column 2) needed to achieve an error norm less than
e 10-l at t 0.1. We show in the third column the total number of matrix-by-
vector multiplications required to complete the integration. The times required to
complete the integration on a Cray Y-MP are shown in column 4. We also timed
the evaluations of e-H’el separately and found these times to be negligible with
respect to the rest of the computation. The last column of the table shows the type of
rational approximation used when evaluating e-H’el, with C(,) representing the
diagonal (u, u) Chebyshev approximation and P(,) representing the diagonal (,)
Pad6 approximation.

Another point is that the matrix is symmetric, so we have used a Lanczos algo-
rithm to generate the vs instead of the full Arnoldi algorithm. No reorthogonalization
of any sort was performed. The matrix consists of 7 diagonals, so the matrix-by-vector
products are performed by diagonals resulting in a very effective use of the vector ca-
pabilities of the Cray architecture. Based on the time for the last entry of the table,

1254 E. GALLOPOULOS AND Y. SAAD

TABLE 6.1
Performance of the polynomial scheme with varying accuracy on the Cray Y-MP.

0.5000E-04
0.1000E-03
0.5000E-03
0.1000E-02
0.5000E-02
01000E-01
0.2000E-01
0.3000E-01
0.4000E-01
0.5000E-01
0.1000ET00

m M-vec’s
6 12006
7 7007
10 2010
12 1200
20 400
26 260
34 170
39 156
44 132
49 98
71 71

Time (sec) IIErrorll: Method
0.8173ET01
0.4793E+01
0.1342E+01
0.7983E+00
0.2672E+00
0.1740ET00
0.1080E+00
0.9876E-01
0.8030E-01
0.5932E-01
0.4186E-01

0.1957E-11
0.3308E-10
0.1800E-10
0.2260E-10
0.5271E-10
0.7247E-10
0.3236E-10
0.6362E-10
0.4122E-10
0.5791E-10
0.9993E-10

P(2,2)
P(2,2)
P(4,4)
P(4,4)
P(8,8)
P(S,8)

C(14,1a)
C(14,14)
C(14,4)
C(14,14)

we have estimated that the average Mflops rate reached, excluding the calculation of
e-SH’el, was around 220. This is achieved with little code optimization.

Observe that the total number of matrix-by-vector products decreases rapidly as
m increases. The ratio between the lowest degree, m 6, and the highest degree,
m 71, is 169. The corresponding ratio between the two times is roughly 200. The
case m 71 can achieve the desired accuracy in just one step, that is, with 5 0.1.
On the other hand, for m 6, a timestep of 5 5 10-5 must be taken, resulting in a
total of 2000 steps. We should point out that we are restricting ourselves to a constant
timestep, but more efficient variable timestepping procedures are likely to reduce the
total number of steps needed. These observations are qualitatively consistent wth
Theorems 2.1 and 2.3. In effect, increasing the dimension of the Krylov subspace will
increase the accuracy in such a way that a much larger p (i.e., a larger ti) can quickly
be afforded.

6.2. A nonsymmetric problem with time-varying forcing term. In this
section we consider the more difficult problem

Ou(,ot z, t) u(x, z, + Ox + z, t),

defined as before on the unit cube, with homogeneous boundary conditions and the
following initial conditions:

u(x, y,z, O)= x(x- 1)y(y- 1)z(z- 1).

The function r is defined in such a way that the exact solution of the above PDE
is given by

x(x- 1)y(y- 1)z(z- 1)
l+t

As in the previous example, we took the same number of grid points in each
direction, i.e., nx ny nz 17, yielding again a matrix of dimension n 153
3375. This experiment was conducted on a Cray-2. Table 6.2 is the analogue of Table
6.1, except that we only report some representative runs with various values of m and
5. The parameter is set equal to 10.0. The integration is carried out from t 0.0
to t 1.0. We note that for the remaining experiments, unless otherwise mentioned,
the rational approximation used for e-Hm is the Chebyshev C(10,10).

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1255

TABLE 6.2

Performance of the polynomial scheme with varying accuracy on the Cray-2.

0.2000E+00
0.1000E+00
0.1000E+00
0.1000E+00
0.1000E+00
0.1000E+00
0.1000E+00
0.5000E-01
0.5000E-01
0.5000E-01
0.5000E-01
0.2500E-01
0.2500E-01
0.2500E-01
0.1000E-01
0.1000E-01

m npts Mvec’s
40 60 205
40 40 410
40 30 410
35 40 360
30 40 310
25 40 260
25 30 260
25 3O 52O
25 2O 520
20 20 420
15 20 320
20 10 840
15 20 640
15 10 640
10 10 1100
7 10 800

Time (sec) IIErrorll2
0.2402E+01 0.6151E-05
0.3690E+01
0.3114E+01
0.3177E+01
0.2617E+01
0.2110ET01
0.1721E+01
0.3413E+01
0.2726E+01
0.2124E+01
0.1550E+01
0.2992E+01
0.3086E+01
0.2109E+01
0.3561E+01
0.2693E+01

0.7483E-06
0.3011E-05
0.7483E-06
0.7484E-06
0.8743E-06
0.1054E-04
0.7503E-07
0.3961E-06
0.6163E-05
0.5463E-04
0.9015E-06
0.5327E-05
0.9887E-05
0.1743E-05
0.9483E-05

An important characteristic of this example is that the exact solution of the
discrete problem is also an exact solution of the continuous problem. This is because
the exact solution is a polynomial of degree not exceeding 2 in each of the space
variables. For these functions the centered difference approximation to the partial
derivatives in the operator (6.1) entails no errors. This fact has also been verified
experimentally. Therefore, all the errors in the computed solution are due to the time
integration process and this allows a fair comparison of the various techniques from
the standpoint of accuracy achieved in the time integration.

The second approach was used, in which the integrals were calculated with l 1-
point composite (closed) Newton-Cotes formulas. In most cases we had to take more
than 11 points, in which case we simply used a composite rule with a total number of
points equal to 1 + k 10. The third column reports the total number of subintervals
npts used to advance by one timestep of 5. Thus npts is a multiple of 10. The time
shown in the fifth column is the time in seconds needed to advance the solution from
t 0.0 to t 1.0, on a Cray-2. The sixth column shows the two-norm norm of the
error with respect to the exact solution of the continuous system, that is, with respect
to (6.2).

We observe that for larger timesteps a larger number of quadrature points must
be used to keep a good level of accuracy. We show the results associated with the
smallest number of points for which there are no significant qualitative improvements
in the error when we increase npts, while keeping m and 5 constant. Our tests indicate
that the higher the order of the quadrature used, the better. This means that large
gains in speed are still likely if we use more optimal Gaussian quadrature formulas.
A noticeable difference from the previous simple example is that the increase in ti
and the corresponding increase in m in achieving certain error tolerances cause a less
significant reduction in the total number of matrix-by-vector multiplications and the
total time required for the computation.

6.3. A comparison with other methods. Although an exhaustive compari-
son with other schemes is beyond the scope of this paper, we would like to give an idea
of how the efficiency of the Krylov subspace propagation compares with some immedi-
ate contenders. The first of these contenders is simply the forward Euler scheme. This

1256 E. GALLOPOULOS AND Y. SAAD

is an explicit scheme and, for not-too-small space mesh sizes, should not be excluded,
given that the corresponding process is highly vectorizable. However, it may be far
more challenging to use an implicit scheme such as the Crank-Nicolson method

(6.3) (I/ AI WNq-1-- (I-- A) WN q-r(tN q-/2),

combined with an iterative method, for example, the conjugate gradient method,
for solving the linear systems. The main attraction here is that we can solve the
linear systems inaccurately, making the solution process very inexpensive. From this
viewpoint, this "inexact Crank-Nicolson" method shares many of the benefits of the
Krylov method, as was already mentioned in the introduction. Finally, a well-known
stiff ODE package such as LSODE [16] is also considered.

For this comparison we took the same problem as before, but we needed to take

" 0.0 in order to make the matrix A symmetric. This was necessary in order to
be able to utilize the usual conjugate gradient algorithm for the linear systems in the
Crank-Nicolson scheme. The r function is defined as before, and the number of grid
points in each direction is again nx ny nz 17, yielding n 153 3375.

We point out that for the Crank-Nicolson method, we do not use precondition-
ing, and this is by no means a drawback. Because of timestepping, the matrix is
usually very well conditioned and, as a result, the algorithm converges in a rather
small number of steps. Moreover, because there is no need to solve the systems with
high accuracy, the overhead in setting up the preconditioner would be difficult to
amortize. Finally, the good preconditioners, such as the incomplete factorizations,
do not generally yield a high performance on vector machines. In our tests, the CG
algorithm is stopped as soon as the residual norm is reduced by a factor that does
not exceed a tolerance e. We always take the tolerance e that yields the smallest (or
close to the smallest) time for the Crank-Nicolson scheme to complete. In addition,
note that the timesteps in the Crank-Nicolson scheme are chosen at the outset and,
as with the Krylov method, they are not adaptively controlled. We show the perfor-
mance for two timesteps only, namely, those that deliver close to the desired accuracy
at the final point. In this test we used the Chebyshev rational approximation of order
(6,6) throughout for the computation of e-Hmel A final detail is that both the
Crank-Nicolson method, which is able to use the usual CG method, and the Krylov
method, in which the Lanczos version of the Arnoldi algorithm is used, take advantage
of symmetry.

For LSODE we used the method flag MF 24, which means that a stiff method
is used, and the Jacobian is user-supplied in banded format. The Cray-optimized
LINPACK banded solver is called to solve the linear systems. For LSODE we used a
relative tolerance of rtol 10-7 and an absolute tolerance of atol 10-7 at each
point is used. These have been chosen so that the level of error produced by LSODE
at t 1 is comparable to that of the other methods.

Table 6.3 shows the results. This comparison reveals that the Krylov scheme
is superior when one considers the number of matrix-by-vector products to be the
primary criterion. There are situations in which these may dominate the cost, in
which case the execution time could be proportional to the number of matrix-vector
products. When execution time is the primary criterion for comparison, then the
Krylov scheme is still faster than Crank-Nicolson but not by as large a margin. The
forward Euler scheme was unstable for the timesteps 5 0.001 and 5 0.00075.
We also performed a set of tests with a larger version of this problem corresponding

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1257

TABLE 6.3
Performance comparison o] a few methods on problem o] 6.3.

Method
used
Krylov
5----0.2

Krylov
5 =0.15

Method
parameters
m 30, npts 40
m 40, npts 40
m 35, npts 40
m 30, npts 40
m 20, npts 40
m 20, npts 30
m 25, npts 30
m 20, npts 30
m 15, npts 30

Matrix-vec.
products

155
205
180
155
105
105
182
147
112

Total Cray-2
time (sec.)
0.9374E+00
0.1225E+01
0.1038E+01
0.9355E+00
0.6615E+00
0.5229E+00
0.9530E+00
0.7828E+00
0.6151E+00

Final
error
0.6670E-05
0.6652E-05
0.6672E-05
0.6670E-05
0.7103E-05
0.1764E-04
0.9367E-06
0.7185E-05
0.4244E-04

Krylov m 20, npts 30 210 0.1044E+01 0.7956E-06
5 0.1 m 15, npts 30 160 0.9086E+00 0.8574E-05
Crank- 5 .01, e --.001 1053 0.1192E+01 0.1267E-05
Nicolson 5 .005, e .001 1578 0.1767E+01 0.3329E-06
F-Euler 5 .0005 2000 0.2779E+01 0.8678E-06
LSODE MF 24 400 0.1435E+02 0.2828E-05

to the grid sizes nx ny nz 22, leading to a problem of size n 8000. The
conclusion is essentially the same in that Crank-Nicolson and the Krylov method are
comparable, but the time for the explicit Euler scheme becomes much higher. We
should add that we have regarded the problem purely from the perspective of systems
of ODEs, although we are aware that in practice a balanced accuracy between space
and discretization is generally sought. However, this would lead to comparisons that
are too complex.

6.4. A case with highly oscillating forcing term. We consider here an ex-
ample of the same form as in 6.3; that is, the general equation is of the form (6.1),
and the initial and boundary conditions are identical. However, we now consider a
forcing term for which the exact solution is given by

u(x, y, z, t) x(x 1)y(y 1)z(z 1) cos(art).

If the coefficient a is chosen to be large, then the problem can be difficult to solve.
We take here 7 0.0 and a 20. The discretization mesh and interval of time
integration are the same as in the previous example. Note that as in the preceding
example, the errors in the computed solutions are also entirely related to the time
integration.

We compared the same four methods as those of the previous section, the forward
Euler scheme, the Crank-Nicolson/CG scheme, LSODE, and the Krylov method using
the second approach. In this example LSODE failed to complete in a reasonable
amount of time.

One difference with the previous tests is that here we varied the quadrature
formulas used. Thus npts 4 8 indicates that we used a composite rule in which
the interval of integration is first divided by 4 and then a nine-point formula is used
on each subinterval. Apart from this, all of the details concerning implementation
are identical to those of 6.3, except that this time we used the Chebyshev rational
approximation of order (8,8) instead of (6,6) to compute the vectors e-SH’el

The results in Table 6.4 indicate that for this harder problem, the Krylov scheme
performs far better than its competitors. The Crank-Nicolson scheme now requires
smaller timesteps to achieve acceptable accuracies. The forward Euler scheme would

1258 E. GALLOPOULOS AND Y. SAAD

TABLE 6.4
Performance comparison of a few methods for problem of 6.4.

Method Method Matrix-vec.
used parameters products

error norm
Krylov
5=0.2

Krylov
5=0.1

Crank-
Nicolson
F-Euler

LSODE

m 40, npts 3 10
m--30, npts=2 10
m 30, npts 8 5
m 25, npts 20 2
m 25, npts 8 5
m--20, npts--2 10
m 15, npts 10 2
m 15, npts 2 10
m 15, npts 3 8
m 15, npts 4 8
m 10, npts 4 8
5 .001, e .001
5 .5E-03, e .001
5 .5E-03
5 .1E-03
5 .5E-05
MF 24

205
155
155
130
130
210
160
160
160
160
110

4322
8000
2000
10000
20000

Total Cray-2 Final
time (sec.) error

0.1202E+01
0.6902E+00
0.1196E+01
0.1096E+01
0.1063E+01
0.1083E+01
0.8995E+00
0.8739E+00
0.1043E+01
0.1298E-{-01
0.1066E+01
0.5723E+01
0.1058E+02
0.4780E+01
0.2364E+02
0.4861E+02

0.8051E-04
0.2262E-03
0.2862E-04
0.3188E-04
0.2320E-04
0.7585E-05
0.9713E-03
0.6988E-04
0.1592E-04
0.1757E-05
0.3504E-04
0.8816E-04
0.2203E-04
0.2358E-02
0.4712E-03
0.2356E-03

require a much smaller timestep that those of the other methods to achieve comparable
performance.

7. Summary and conclusion. The goal of this paper was to show how to
systematically develop explicit-type schemes or, to use our terminology, polynomial
schemes for solving parabolic PDEs by the method of lines. We have proposed one
such procedure that has the advantage of being very simple. The method proposed
requires no information about the spectrum of the space discretization operator. We
have recommended using high-dimension Krylov subspaces whenever possible. By
using a Krylov subspace of high dimension to approximate the evolution operator, we
are able to use larger timesteps. At each step there is an additional cost due to the
increased dimension of the Krylov subspace, which translates into an increase in the
number of matrix-by-vector multiplications. On the other hand, because of the larger
timestep, the total number of steps required is reduced to such an extent that there
is an appreciable net gain in performance. We have also proposed two approaches
for handling nonconstant forcing terms, with the view of extending these methods for
general ODEs and nonlinear PDEs. The stability analysis of these approaches shows
that the first is unconditionally stable and the second is A0-stable for a large class Of
integration schemes used. This has been widely confirmed by numerical experiments
which indicate that the schemes proposed are competitive with standard methods
such as Crank-Nicolson.

Improvements to the approach described in 4.2 are possible by developing quadra-
ture formulas that are more elaborate and specialized than the simple Newton-Cotes
formulas used in our numerical experiments. We believe that the method proposed
here can be extended to the solution of general time-dependent nonlinear PDEs: the
only subtlety is to isolate the action of the evolution operator, which is then well
approximated by the schemes proposed here.

Appendix A. Proof of Theorem 2.1. The following lemma provides the basis
for establishing error bounds for the error of the approximation (2.3).

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1259

LEMMA A.1. Let A be any matrix, and p be any polynomial of degree smaller
than m, approximating e-z with the remainder rm(z) e- p(z). Then,

(A.1)

where - I111.
Proof. As a result of the relation e- p(z) + r,(z), we have

(A.2) e-Av fl[p(A)vl + rm(A)vl].

Using induction and the relation (2.2) we can show that AJv VmHdme for j <_ m-l,
and as a consequence we have

(A.3) p(A)v V,p(H,)e.

As a result of the definition of p and rm, we write

(A.4) p(Hm)el e-H’e rm(Hm)e.

To complete the proof, we substitute (A.4) in (A.3) and the resulting equation in

(A.2) to get

6-Av Ym6-H’6l q- [r,(A)vi Vmrm(Hm)e].

The result follows immediately.
Thus the error can be estimated by bounding each of the two remainder terms.

We now use the concept of the logarithmic norm of a matrix as defined in 2.2. We
will specifically use the inequality [leSt <_ et’(s)t.

We next prove the following lemmas.
LEMMA A.2. Let

m-1

k
k--0

be the (rn- 1)th partial Taylor sum of e-z and let rm(z) be the associated remainder
rm(Z) e-: Sm_(z). Define

?.]m
k--0

Then

(A.5) Ilrm(A)l[< IIAII()< IIAII mx(J’:)

where - #(-A).
Proof. The remainder after m terms of the Taylor series expansion in integral

form applied to exp(-A) is given by

(A.6) (-A)" o e--A(1--’)Tm--ldTr,(A) (m- 1)!

1260 E. GALLOPOULOS AND Y. SAAD

and therefore,

[[A’ f0[Irm(A)[] <- (m- 1)!

Denoting r/- #(-A) for convenience, since 0 < T < 1, we have from (2.4)

from which we get

e?(1--r)Trn--ldT"(A.7) IIr’(A)[I <- (m- 1)!
The value of the integral in the above expression is determined by noting that the
remainder of the (m- 1)st Taylor expansion of ev satisfies

ir/k rrn en(1--r)Tm--ldTen
k (m 1)

k=0

which gives

1 /01 er(1-r)Tm- dT.(r) (m 1)!

Incidentally, this expression shows that (7) is nonnegative. Substituting this in (A.7)
proves the first inequality in (A.5).

To prove the second part of the inequality, we observe that

1/01 er(1--r) Tm-- dT(A.8) (r/) (m- 1)!
i [1 max(l, e’)

13(A.9) -< (m 1)! Jo
max(l, en)Tm-ld m!

We remark that the upper bound for (r/) used in the above lemma can be some-
what refined. More specifically, it can be shown that.

(v) <

(m-1)V"-i

if < 0,

if 0 < v <
if "-/(m- 2)!m <_ r/.

Finally, we need the following lemma.
LEMMA A.3. If A is any real matrix and Hm is the associated m x m upper

Hessenberg matrix generated by m steps of the Arnoldi algorithm, then

#(-Hm) <_ #(-A).

Proof. By construction, Vm consists of m orthonormal vectors and Hm satisfies
H, VTmAVm. Since the maximum eigenvalues of the symmetric parts of A and
Hm can be characterized as the maximum values taken by their Rayleigh quotients,
it easily follows that

#(-Hm) :mixAi (VTmAVm-I" VTmATVm) <miaxA (AwAT)2 2
#(-A). r-1

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1261

TABLE B. 1
Coefficients of the partial fraction expansion for degrees 10 and 14.

Degree

10

14

Coef/root
0
(I

2

04

C5
A1
2
A3

),5
CO
(:x

o2

3

4
5
C6
c7

.2
A3

A5
A6
A7

Real part
0.136112052334544905E-09
0.963676398167865499E+01

-0.142343302081794718E+02
0.513116990967461106E+01

-0.545173960592769901E+00
0.115698077160221179E-01

-0.402773246751880265E+01
-0.328375288323169911E+01
-0.171540601576881357E+01
0.894404701609481378E+00
0.516119127202031791E+01
0.183216998528140087E-11
0.557503973136501826E+02

-0.938666838877006739E+02
0.469965415550370835E+02

-0.961424200626061065E+01
0.752722063978321642E+00

-0.188781253158648576E-01
0.143086431411801849E-03

-0.562314417475317895E+01
-0.508934679728216110E+01
-0.399337136365302569E01
-0.226978543095856366E+01
0.208756929753827868E+00
0.370327340957595652E+01
0.889777151877331107E+01

Imaginary part

-0.421091944767815675E+02
0.176390663157379776E+02

-0.243277141223876469E+01
0.284234540632477550E-01
0.137170141788336280E-02
0.119385606645509767E+01
0.359438677235566217E+01
0.603893492548519361E+01
0.858275689861307000E+01
0.113751562519165076E+02

-0.204295038779771857E+03
0.912874896775456363E+02

-0.116167609985818103E+02
-0.264195613880262669E+01
0.670367365566377770E+00

-0.343696176445802414E-01
0.287221133228814096E-03
0.119406921611247440E+01
0.358882439228376881E+01
0.600483209099604664E+01
0.846173881758693369E+01
0.109912615662209418E+02
0.136563731924991884E+02
0.166309842834712071E+02

Proof of Theorem 2.1. First note that as in Lemma A.2 we can show that

IIr(Hm)ll

_
Pr(Iz(-Hm)),

where Pm IIHII2 IIVTmAVII. The right-hand side of the above inequality is an
increasing function of p, and Pm < P. From Lemma A.3, #(-Hm)
and therefore,

(A.10)

Using Lemma A.1 the proof follows.

Appendix B. Partial fraction coefficients. In Table B.1 we list some of the
coefficients of the partial fraction expansion for the Chebyshev rational approximation
to the exponential. These are the (v, v) approximations for 10 and 14. Note
that because the roots go in complex conjugate pairs, we only need to show those with
nonnegative imaginary parts. In fact there are exactly [such roots for the (,)
approximation. Moreover, in the case of a complex pair the corresponding coefficient
ai in the partial fraction expansion is doubled. The roots are also distinct and we can
therefore write, for a real x,

(B.1) Jv/2
e- ao + 2, ai

1262 E. GALLOPOULOS AND Y. SAAD

Acknowledgments. We thank Professor Richard Varga for reading the paper
and for providing many enlightening suggestions, Dr. Roland Freund for many helpful
discussions, and Dr. Randall Bramley for his comments on an early version of the
paper. We also thank the referees for their recommendations and for bringing to our
attention reference [8].

REFERENCES

[1] P. N. BROWN AND A. C. HINDMARSH, Matrix-free methods for stiff systems of ODEs, SIAM
J. Numer. Anal., 23 (1986), pp. 610-638.

[2] A. J. CARPENTER, A. RUTTAN, AND R. S. VARGA, Extended numerical computations on the
1/9 conjecture in rational approximation theory, in Rational Approximation and Interpola-
tion, P. R. Graves-Morris, E. B. Saff, and R. S. Varga, eds., Lecture Notes in Mathematics
1105, Springer-Verlag, Berlin, 1984, pp. 383-411.

[3] J. C. CAVENDISH, W. E. CULHAM, AND R. S. VAlCtGA, A comparison of Crank-Nicolson and
Chebyshev rational methods for numerically solving linear parabolic equations, J. Comput.
Phys., 10 (1972), pp. 354-368.

[4] A. R. CURTIS, Jacobian matrix properties and their impact on the choice of software for stiff
ODE systems, IMA J. Numer. Anal., 3 (1983), pp. 397-415.

[5] K. DEKKER AND J. G. VERWER, Stability of Runge-Kutta Methods for Stiff Nonlinear Dif-
ferential Equations, North-Holland, Amsterdam, 1984.

[6] C. DESOER AND H. HANEDA, The measure of a matrix as a tool to analyze computer algorithms
]or circuit analysis, IEEE Trans. Circuit Theory 19 (1972), pp. 480-486.

[7] B. L. EHLE, A-stable methods and Padd approximations to the exponential, SIAM. J. Numer.
Anal., 4 (1973), pp. 671-680.

[8] S.W. ELLACOTT, On the Faber transformation and ejficient numerical rational approximation,
SIAM J. Numer. Anal., 20 (1983), pp. 989-1000.

[9] R. A. FRIESNER, L. S. TUCKERMAN, S. C. DORNBLASER, AND W. V. Russo, A method for
exponential propagation of large systems of stiff nonlinear differential equations, J. Sci.
Comput., 4 (1989), pp. 327-354.

[10] E. GALLOPOULOS AND Y. SAAD, Efficient parallel solution of parabolic equations: Implicit
methods on the Cedar multicluster, in Proc. Fourth SIAM Conf. Parallel Processing for
Scientific Computing, Chicago, Dec. 1989, J. Dongarra, P. Messina, D. C. Sorensen, and
R. G. Voigt, eds., Society for Industrial and Applied Mathematics, Philadelphia, 1990,
pp. 251-256.

[11] , Parallel block cyclic reduction algorithm for the last solution of elliptic equations, Par-
allel Comput., 10 (1989), pp. 143-160.

[12] , Efficient solution of parabolic equations by polynomial approximation methods, Tech.
Report 969, Center for Supercomputing Research and Development, University of Illinois,
Urbana, IL, February 1990.

[13] , On the parallel solution of parabolic equations, in Proc. 1989 ACM Internat. Conference
on Supercomputing, Herakleion, Greece, June 1989, pp. 17-28; also in Tech. Report 854,
Center for Supercomputing Research and Development, University of Illinois, Urbana, IL,
June 1989.

[14] C. W. GEAR AND V. SAAD, Iterative solution of linear equations in ODE codes, SIAM J. Sci.
Statist. Comput., 4 (1983), pp. 583-601.

[15] E. HAIIER, G. BADER, AND C. LUBICH, On the stability of semi-implicit methods for ordinary
differential equations, BIT, 22 (1982), pp. 211-232.

[16] A. C. HINDMAI:tSH, ODEPACK, A systematized collection of ODE solvers, in Scientific Com-
puting, R. S. Stepleman, ed., North-Holland, Amsterdam, 1983, pp. 55-64.

[17] E. ISAACSON AND H. B. KELLER, Analysis of Numerical Methods, John Wiley, New York,
1966.

[18] A. ISERLES, Rational interpolation to exp(-x) with application to certain stiff systems, SIAM
J. Numer. Anal., 18 (1981), pp. 1-12.

[19] A. ISERLES AND S. P. NORSETT, On the theory of parallel Runge-Kutta methods, IMA J.
Numer. Anal., 10 (1990), pp. 463-488.

[20] A. ISERLES AND M. J. D. POWELL, On the A-acceptability of rational approximations that
interpolate the exponential function, IMA J. Numer. Anal., 1 (1981), pp. 241-251.

[21] O. A. KARAKASHIAN AND W. RUST, On the parallel implementation of implicit Runge-Kutta
methods, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1085-1090.

PARABOLIC PDE SOLUTION BY KRYLOV-BASED EXPONENTIATION 1263

[22] S. KEELING, Galerkin Runge-Kutta discretizations for parabolic equations with time-dependent
coefficients, Math. Comp., 52 (1989), pp. 561-586.

[23] H. T. KUNG, New algorithms and lower bounds for the parallel evaluation of certain rational

expressio.n.s and recurrences, J. Assoc. Comput. Mach., 23 (1976), pp. 252-261.
[24] E. LANDAU, Uber einen Mellinshen Satz, Arch. Math. Phys. Ser. 3, 24 (1915), pp. 97-107.
[25] J. D. LAWSON AND D. A. SWAYNE, High-order near best uniform approximations to the solu-

tion of heat conduction problems, in Proc. IFIPS Congress--80, New York, 1980, North-
Holland, Amsterdam, 1980, pp. 741-746.

[26] D. LEE, Nonlinear multistep methods for solving initial value problems in ordinary differential
equations, Ph.D. thesis, Polytechnic Institute of New York, Brooklyn, NY, 1974.

[27] D. LEE AND J. S. PAPADAKIS, Numerical solutions of underwater acoustic wave propagation
problems, Tech. Report NUSC TR. 5929, Naval Underwater Systems Center, New London,
CT, 1979.

[28] C. MOLER AND C. V. LOAN, Nineteen dubious ways to compute the exponential of a matrix,
SIAM Rev., 20 (1978), pp. 801-836.

[29] A. NAUTS AND R. E. WYATT, New approach to many-state quantum dynamics: The recursive-
residue-generation method, Phys. Rev. Lett., 51 (1983), pp. 2238-2241.

[30] , Theory of laser-module interaction: The recursive-residue-generation method, Phys.
Rev., 30 (1984), pp. 872-883.

[31] S. P. NORSETT, Restricted Padd approximations to the exponential function, SIAM J. Numer.
Anal., 15 (1978), pp. 1008-1029.

[32] B. NOUR-OMID, Applications of the Lanczos algorithm, Comput. Phys. Comm., 53 (1989),
pp. 153-168.

[33] P. PANDEY, C. KENNEY, AND A. J. LAUB, A parallel algorithm for the matrix sign function,
Internat. J. High Speed Comput., 2 (1990), pp. 181-191.

[34] T. J. PARK AND J. C. LIGHT, Unitary quantum time evolution by iterative Lanczos reduction,
J. Chem. Phys., 85 (1986), pp. 5870-5876.

[35] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ,
1980.

[36] G. P6LYA AND G. SZEG, Problems and Theorems in Analysis I, Springer-Verlag, New York,
1972.

[37] G. RODRIGUE AND D. WOLITZER, Preconditioned time-differencing for the parallel solution of
the heat equation, in Proc. Fourth SIAM Conf. Parallel Processing for Scientific Computing,
Chicago, Dec. 1989, J. Dongarra, P. Messina, D. C. Sorensen, and R. G. Voigt, eds., Society
for Industrial and Applied Mathematics, Philadelphia, 1990, pp. 268-272.

[38] Y. SAAD, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J.
Numer. Anal., 17 (1980), pp. 687-706.

[39] , Analysis of some Krylov subspace approximations to the matrix exponential operator,
SIAM J. Numer. Anal., 29 (1992), pp. 209-228.

[40] J. M. SANZ-SERNA AND J. G. VERWER, Stability and convergence at the PDE/stiff ODE
interface, Appl. Numer. Math., 5 (1989), pp. 117-132.

[41] M. J. SCHAEFER, A polynomial based iterative method for linear parabolic equations, Tech.
Report 661, Center for Supercomputing Research and Development, University of Illinois,
Urbana, IL, May 1987.

[42] W. L. SEWARD, G. FAIRWEATHER, AND R. L. JOHNSTON, A survey of high-order methods
for the numerical integration of semidiscrete parabolic problems, IMA J. Numer. Anal., 4
(1984), pp. 375-425.

[43] Q. SHENG, Solving linear partial differential equations by exponential splitting, IMA J. Numer.
Anal., 9 (1989), pp. 199-212.

[44] R. A. SWEET, A parallel and vector cyclic reduction algorithm, SIAM J. Sci. Statist. Comput.,
9 (1988), pp. 761-765.

[45] H. TAL-EZER, Spectral methods in time for parabolic problems, SIAM J. Numer. Anal., 26
(1989), pp. 1-11.

[46] H. TAL-EZER AND R. KOSLOFF, An accurate and ejficient scheme for propagating the time
dependent SchrSdinger equation, J. Chem. Phys., 81 (1984), pp. 3967-3971.

[47] J. V. NEUMANN, Eine Spektraletheorie fiir allgemeine Operatoren eines unitiiren Raumes,
Math. Nachr., 4 (1950-51), pp. 258-281.

[48] P. J. VAN DER HOUWEN AND B. P. SOMMEIJER, Parallel iteration of high-order Runge-Kutta
methods with stepsize control, J. Comput. Appl. Math., 29 (1990), pp. 111-127.

[49] , Parallel ODE solvers, in Proc. 1990 ACM Internat. Conf. Supercomputing, Amsterdam,
June 1990, Association for Computing Machinery, New York, 1990, pp. 71-81.

[50] P. J. VAN DER HOUWEN, B. P. SOMMEIJER, AND F. W. WUBS, Analysis of smoothing oper-

1264 E. GALLOPOULOS AND Y. SAAD

ators in the solution of partial differential equations by explicit difference schemes, Appl.
Numer. Math., 6 (1989/90), pp. 501-521.

[51] H. VAN DER VORST, An iterative solution method for solving I(A)x b using Krylov sub-
space information obtained for the symmetric positive definite matrix A, J. Comput. Appl.
Math., 18 (1987), pp. 249-263.

[52] R. S. VARGA, On higher order stable implicit methods for solving parabolic partial differential
equations, J. Math. Phys., 40 (1961), pp. 220-231.

[53] E. L. WACHSPRESS, Iterative Solution of Elliptic Systems, Prentice-Hall, Englewood Cliffs,
NJ, 1966.

[54] G. WANNER, Order stars and stability, in The State of the Art in Numerical Analysis, A. Iserles
and M. J. D. Powell, eds., Clarendon Press, Oxford, 1987, pp. 451-472.

[55] D. S. WATKINS AND R. W. HANSONSMITH, The numerical solution of separably stiff systems
by precise partitioning, ACM Trans. Math. Software, 9 (1983), pp. 293-301.

[56] D. M. YOUNG, The search for "high-order" parallelism for iterative sparse linear system
solvers, in Parallel Supercomputing: Methods, Algorithms and Applications, G. F. Carey,
ed., John Wiley, Chichester, U.K., 1989, pp. 89-106.

[57] V. ZAKIAN, Properties ofIMN and JMN approximants and applications to numerical inversion

of Laplace transforms and initial value problems, J. Math. Anal. Appl., 50 (1975), pp. 191-
222.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1265-1286, November 1992

(C) 1992 Society for Industrial and Applied Mathematics
001

MOVING MESH TECHNIQUES BASED UPON EQUIDISTRIBUTION,
AND THEIR STABILITY*

YUHE REN" AND ROBERT D. RUSSELLf

Abstract. Various aspects of the moving mesh problem are investigated for the solution of partial
differential equations (PDEs) in one space dimension. In particular, methods based (explicitly or implicitly)
upon an equidistribution principle are studied. It is shown that equidistribution implicitly corresponds to
finding a solution to a PDE involving a new set of computational coordinates. Implementation of a discrete
version of equidistribution to compute a moving mesh corresponds to solving a weak form of the PDE. The
stability of equidistribution is discussed, and it is argued that stability can be significantly affected by the
way in which this solution process is carried out. Simple moving mesh methods are constructed using this
framework, and numerical examples are given to illustrate their robustness.

Key words, moving mesh, monitor function, equidistribution, conservative methods for PDEs

AMS(MOS) subject classifications. 65M50, 65L50, 65N50

1. Introduction. One of the most important computational considerations when
solving partial differential equations (PDEs) having nontrivial solutions is the decision
of how to automatically and stably choose a nonuniform mesh that suitably adapts to
the solution behaviour. For initial value PDEs, constructing a moving mesh in time
can be essential if the problem is to be solved efficiently, and often if it is to be solved
at all. The resolution of this issue has proven surprisingly difficult, and theoretical
results have been particularly slow in forthcoming. Considerable controversy surrounds
the questions of which overall strategy to use and how best to choose a moving mesh
for a given strategy 14], even though few basic mesh selection principles are available.
Here, we investigate one of the key mesh selection strategies" that in which equidistribu-
tion is explicitly done with respect to some nonnegative measure of the error. We also
discuss the implications of these results with regard to some other strategies, and focus
on PDEs in one space dimension.

First, consider the case of solving an ordinary differential equation (ODE), e.g.,

1 Uxx =f(x, u, Ux)

with boundary conditions u(a) =/3, u(b) =/32. The equidistribution idea, introduced
by de Boor [7] and Dodson [10], is based upon the simple idea that if some measure
of the error M(x) is available, then a good choice for a mesh r: a xo < Xl <" < xu
b would be one in which the contributions to the error over the subintervals are
equalized (or "distributed equally"). In practice, most strategies find r by only
approximately equidistributing with respect to the so-called monitor function M(x),
although White [41] provides a framework for doing this distribution exactly. He
defines a change of variables

1
M(:) d, 0 M(:) d,s=

0

* Received by the editors October 3, 1990; accepted for publication (in revised form) September 9,
1991. This research was supported by Natural Sciences and Engineering Research Council of Canada grant
A8781.

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia,
V5A 1S6, Canada.

1265

1266 YUHE REN AND ROBERT D. RUSSELL

and then forms a new system of ODEs consisting of the original ODE (say, (1))
rewritten in terms of this computational variable s, and the ODE

dx 0
(2)

Equidistribution then corresponds to choosing r with s(xi+l)-s(xi)=l/N, i-
0, 1,. .,N-1.

This continuous form has been a useful theoretical tool for interpreting schemes,
but it is generally unreliable computationally because the new ODE system can be
extremely sensitive to solve. While all of the reasons for numerical difficulties are not
well understood, a major one is that the transformed ODE (in s) can be extremely
nonlinear and its solution badly behaved due to the introduction of interior layers
[34], [36]. Still, equidistribution strategies are widely used in conjunction with the
original ODE (such as (1)), and in this way they have enjoyed general success.

Now consider an initial boundary value PDE

(3) u, =f(u, Ux, Uxx),

with u(x, 0), a <- x <- b, and u(a, t), u(b, t), > 0 given. Our concern is to investigate
properties of an equidistribution procedure, and in many respects this does not depend
upon the form of the PDE itself. For example, the PDE could be a system of equations
in u=(ul,. ", u,)r such as

(4) r(u,, Ux, Uxx) 0.

Many variations of equidistribution strategies have been investigated in practice.
The first ones generally did a static regridding 19], where equidistribution to determine
a new mesh is done after the solution to the PDE is computed at the new time level
(see, e.g., [2]). Later, the PDE and mesh solution processes were combined to do
dynamic regridding [19]. Several moving mesh methods based upon equidistribution
were investigated by Coyle, Flaherty, and Ludwig [8]. Hyman [19] studied a moving
mesh strategy for PDEs of the form (3), and later Petzold [32] did so for the implicit
PDE (4).

Mathematically, the goal of finding mesh functions (xi(t))=-1, or moving meshes

(5) r: {a Xo < x,(t) <. < x_,(t) < xv b},

which are equidistributing for all values of means that we want

f x,(t) lib 1
(6) M(x, t) dx M(x, t) dx=: O(t) i= 1 N.

This equidistribution equation can be written equivalently as

(7) M(x, t) dx=-7 M(x, t) dx=-7 0(t), i=0, 1,’’-, N.

With static regridding, (6) or (7) is approximately satisfied at every new time level,
where the monitor function M(x, t) depends upon the just computed solution of the
PDE at this time level. (For notational convenience, the explicit dependence of M
upon u is not specified.) With dynamic regridding, the PDE is solved together with
(6) or (7), and the rate at which the mesh moves is a function of how 0 changes with
time.

In actual fact, the regridding strategies only solve (7) approximately, producing so-called asymptotically
equidistributing meshes, but this distinction will not be a focus of our presentation.

MOVING MESH METHODS AND THEIR STABILITY 1267

White [42] also studies the PDE case. As for the ODE, he replaces the physical
variables x, with a new set of computational coordinates s, T defined via the exact
equidistribution process, viz.,

(8) s
0

M(sc, t) asc, T= t.

He obtains a new PDE system consisting of the original PDE for u rewritten in terms
of s and T, and

ax 0
(9) as M(x, T)"

Several attempts to solve this transformed PDE for u (as a function of these new
computational variables) have been made (see, e.g., [42] and [12]). This involves
forming a discretization of the transformed PDE and solving a coupled system for the
numerical solution and the equidistributing mesh which (approximately) satisfies (6).
The resulting system is, however, generally sensitive to solve numerically [37]. The
transformed PDE is nonlinear even if the original one is linear, and sometimes
physically meaningless solutions are obtained. Still, as we shall see, it provides a useful
model with which to interpret particular numerical schemes.

In [8], the stability of the equidistribution process is studied. In particular,
differentiating (7) with respect to t, they study the equations

’ i=1 ...,N-1.
dO

(10) M(x,, t)2, + M,(x, t) dx-
N dt

Using linear perturbation techniques for the mesh points, they perturb xi by X and take
+8x

(11) M(x, -b- txi, t)()i + t3i) + Mr(x, t) dx

and linearize (11) to get the first-order terms

that is

dO
N dt’

OM OM
M(xi(t), t)ti(t) + .’S--- (xi(t), t)i(t)txi(t) +--5s-. (xi(t), t)txi(t) 0,

dx

d
(12) d-- [M(x,(t), t)tx,(t)] =O.

Integrating from 0 to t,

M(x,(0), 0)
(13) 6x,(t) 6x, (0).

M(xi(t), t)

Doing this analysis and an accompanying numerical study, they conclude that mesh
equidistribution, while unquestionably a desirable property for the mesh points,
requires extreme care for its implementation because of potential instabilities for
dissipative PDEs, where the perturbation terms in (13) can grow rapidly.

A number of attempts have been made to eliminate this potential numerical
instability and to prevent mesh points from crossing by solving various forms of
differential equations for the moving meshes. Generally, these attempts have involved
some form of regularization [21], [32]. In the next section, we discuss the equidistribu-
tion problem within another framework, showing why the stability analysis needs to
be used cautiously.

1268 YUHE REN AND ROBERT D. RUSSELL

It is interesting to conjecture about the stability properties of equidistribution as
they relate to what is known about moving finite element (MFE) methods [30]. MFE
methods have proven very effective for parabolic PDEs [15], especially convection-
dominated problems [3]. The methods have been shown to be related to a weak form
of equidistribution [13], [17], [38]. Also, the MFE matrix can only become singular
if an equidistribution relationship is violated [17], and for hyperbolics, they run into
difficulty at the very point where the equidistribution property is lost 14]. In order to
avoid difficulties, Miller [28] introduces regularization terms, and the result is that the
penalty function in this regularization plays the key role of preserving equidistribution
17]. Nevertheless, the practical implications of these often tenuous theoretical connec-

tions are difficult to interpret, leaving many stability issues open to question.

2. Equidistribution PDE. In order to analyze further the stability ofmoving meshes
satisfying an equidistribution principle, we derive a PDE that provides a new interpreta-
tion of exact equidistribution. From (8), sO(t)= a M(, t) d, so assuming that M is
a smooth function, along lines where s(t) is constant with respect to time t,

(14)

implying

stO + s s , t) d+ M:,

OM
(15) SxO+ Sdx= S,d=--(x, t)+--(M.).Ox
Thus we have the differential form

(16)
0
M(x, t) +

0

0-7 xx (M(x, t)g)=- M(x, t),

or

OM.(17) 0__ M +div (M)=-Ot

Consequently, doing equidistribution implicitly corresponds to finding a solution to
(16). Although this is technically an integro-differential equation, we refer to it as a
hyperbolic conservation-type PDE. (In the next section, the integral term is eliminated
through a change of variables.) Differentiating (6) with respect to t, it is not difficult
to show that the discrete equidistribution process for the mesh (5) corresponds to
finding a solution to

(18) OM(x, t)+-x(M(x t)) dx=-- O= - M(x, t) dx.

This viewpoint is valuable in several respects. Practically, the effects of discretizing
(6) and (16) are similar. However, considerable experience has been gained from
solving PDEs in conservation-type form like (16), so it is natural to try to develop new
methods and interpret previous ones using this formulation. It also provides a physical
interpretation ofthese moving-mesh methods in terminology common in fluid dynamics.
The mesh points serve a similar function as panicles of flow. In paicular, the
equidistribution coordinates are chosen using a quasi-Lagrangian approach" The mov-
ing mesh is along lines of constant

ff(t)

s(t)=
M(,t)
0(t de

MOVING MESH METHODS AND THEIR STABILITY 1269

Here, (6) satisfies a finite version of the integral form (8), or a weak form. The weak
form (6) of the PDE shows that the "flux" of the error density function M is equivalent
across the subintervals, or across each cell [xi-1, xi], for each fixed time level. If the
total measure of error in the interval [a, b] is constant, then 0, and the moving
mesh equation (16) becomes the Euler equation for the "fluid" with density function
M(x, t). Finally, the case where meshes are calculated using static regridding can be
viewed as corresponding to the steady flow case in fluid dynamics, where the error
density function M(x, t) is independent of time. It is interesting to observe how the
choice M(x, t)= u and 0-=0 corresponds to a Lagrangian coordinate system. In
particular, for this case the integration of (16) leads to the well-known conservation
law [24]

(19) u+ u,, 0,

and x(t) is simply a characteristic. For the arclength monitor function

M(x, t) x/1 + u,
if u >> 0 then M(x, t) Ux, and we see how the moving mesh equation reflects the
shock behaviour where characteristics cross. For hyperbolic PDEs, the MFE method
with no regularization has also been shown to produce moving meshes along charac-
teristics [4], [16].

While (16) has not, to our knowledge, been used previously to interpret mesh
selection schemes in a general setting, similar approaches have been investigated in
special contexts. Larrouturou [23] develops an inexpensive moving mesh method for
which the mesh points move with a time-dependent velocity 2(t), the monitor function
is chosen as a physical quantity (temperature), and the total energy O(t) is constant.
This gives a PDE for solving (t) which is similar to (16), but with 0(t)=0. In
Larrouturou’s actual implementation, the new mesh is computed using static regridding.

Theoretically, White’s approach [42], being based upon equidistribution, involves
satisfying (16) exactly. He writes the original PDE in terms of the computational
quasi-Lagrangian coordinates (s, T), and, since the solution has no steep gradients in
these coordinates, a uniform mesh with S(Xi+I) S(Xi) 1/N is used for the transformed
PDE. He works with arclength as the monitor function, i.e.,

2M(x, t) x/l + u.
From the relation between the moving mesh problem with equidistribution and

(16), it is easy to see how problems can arise computationally. Approximation to the
left-hand side should generally be done with a conservative scheme, or one could
expect difficulties to arise. While many excellent methods of such type are available,
when 0 0 this term can cause considerable numerical difficulty, and finding suitable
numerical methods just to solve a PDE of this type is not well understood [25]. The
situation here is, of course, further complicated because the moving mesh PDE is
coupled to the original PDE.

To see how difficulties can generally arise for the moving mesh equation, suppose
we assume that 0 0. Then (16) becomes

(20)
aM O
--+- (M) 0.
Ot Ox

If we use the nonconservative form

OM
M

0 OMx(+ ()+ t) O,(21)
O Ox -x

1270 YUHE REN AND ROBERT D. RUSSELL

and discretize using a standard method of lines procedure, we obtain

OM
(xi(t), t) + M(xi(t), t)

i+l(t) i(t) OM(xi(t), t)
i(t) --0,

Ot Xi+(t)--Xi(t) OX

or

OM
(22)

8t

OM
(Xi, t)(x,+ Xi) + M(xi, t)(:i+ :i) +7 (xi, l)i(Xi+l Xi) O.

ox

Thus

(23)
d
d"[M(xi(t), t)(Xi+l(t)-xi(t))]=O,

and upon integrating, we get

M(xi(O),O)
(24) Xi+ (t) xi(t) (xi+ (0) x,(O)).

M(xi(t), t)

Unless

M(xi(0), 0)
M(xi(t), t)

remains small, which it generally would not do for dissipative PDEs, the moving mesh
points can easily leave the domain [a, b].

These observations apply as well to the differential equation (13) developed in
[8] using linear perturbation techniques. It is useful to investigate this linear perturba-
tion analysis further. Expanding (12) and dividing by 6xi, we have

(25)
ai(t) OM OM

M(xi(t), t)
8xi(t) +-x Yci(t) +--- (x(t), t) O.

Letting 6x --> O, we obtain

(26)
o OM OM

M(xi(t), t) _-’- (gi(t)) +7 gi + .-TT’. (xi(t), t) O,
OX Ox Ol

or

(27) aM+ o
7- =o.

The steps from (25) to (27) can be retraced.
Thus the perturbation equation (13), used in [8] to study stability of the equidistri-

bution process, can be obtained from setting the right-hand side in (16) to zero and
writing the resulting equation at x x in nonconservative form. In retrospect, we see
that (13) resembles a conservation of mass equation, where 0 corresponds to total
mass, which is unchanging with time. It is obtained from perturbing only the left-hand
side of (7) or (10), since there is no perturbation expansion for the term i/N. We
conclude that, while (13) is extremely useful for interpreting the stability of many
implementations of equidistribution procedures, the stability properties ofthe equidistri-
bution principle itself are more complicated.

MOVING MESH METHODS AND THEIR STABILITY 1271

Through a simple change of variables, (16) can be converted from a differential-
integral equation in M(x, t) to a differential equation for which the stability analysis
of [8] is more generally applicable. Introducing the transformation

M(x,t) M(x,t)
(28) W(x,t):

O(t) b M(x, t) dx’

it is easy to see that (16) takes the equivalent form

(29)
0 W(x, t) +0(W(x, t))

O.
Ot Ox

Thus, the "average energy" function W(x, t), for which

W(x, t) dx =-- 1,

satisfies the conservation equation (29). The transformation (28) is similar to the
Cole-Hopf transformation [40], although the context and purpose are quite different.
From (6), the weak form of the PDE (29) is

W(x,t) dx 1 N,
1

Xi N

i.e., the total "average energy" between any two mesh lines remains constant. In
principle, there is no reason why the moving mesh approaches constructed in terms
of M(x, t) cannot use W(x, t) instead. The derivation from (20) through (24) can be
repeated with W replacing M and, under the appropriate corresponding conditions
(except with no right-hand side that needs to be ignored), we see that the potential
for mesh crossings now occurs if

W(x,(O), O) M(x,(O), O) O(t)
W(xi(t), t) M(xi(t), t) 0(0)’

a measure of the average change in M(xi(t), t), grows. In comparison with (24), we
hope that the moving mesh equations derived using this new variable would be more
robust, if not necessarily more efficient. Finally, the analysis [8] is more directly
applicable to (29), so stability for the discretization of a nonconservative form of an
equidistribution process is given by (13), with W replacing M.

3. Implementations of equidistribution. In this section, we consider ways in which
the equidistribution process can be implemented. First, we consider how to choose
the monitor or density function that controls the movement of the mesh points. This
is more difficult than for ODEs due to the additional variable t. There are three basic
choices of M(x, t), which have been widely used in practice: (i) an arclength monitor
function [42], [11]; (ii) a combination of gradient and curvature [27], [12], [20], [11],
[31]; and (iii) truncation error or solution residualmused directly for ODEs [34], and
either explicitly [2], [5] or implicitly [30], [17] for moving finite element methods for
PDEs.

Stability properties of the moving mesh equations, while dependent upon the
choice of monitor function, are to some extent arbitrary, since they usually behave
asymptotically much like some fractional power of a solution derivative (see, e.g.,
[35]). Here, we use the arclength monitor function

(30) M(x, t) x/1 + u(x, t).

1272 YUHE REN AND ROBERT D. RUSSELL

Our first implementation of a moving mesh method involves using an approximation
for (16) of the form

(31) OM(x,(t),t)+ Mi+l:i+l(t)-Mi’(t) -- M(xi(t), t), 1 < < N-1=
Ot Xi+l(t)--xi(t 19

For the numerical examples presented in the next section,) > 0, so this simple upwind
approximation to (M)x is sufficient. On the interval [xi, xi+l], we use the monitor
function discretization

(32a) Mi :--" M(xi, t) 1 + Ui+l- ui

Xi+

To maintain discrete conservative laws,

O(t)= M(x, t) dx= M(x, t) dx
i=0

and

b N-1 f xi+l
(t) Mt(x, t) dx E Mt(x, t) dx

i:0 xi

are approximated using left rectangle rules

Xi+l
(32b) M(x, t) dx(xi+-xi)M(xi(t), t),

Xi+l
(32c) M,(x, t) dx(x,+-xi)M,(xi(t), t).

We test this moving mesh strategy, hereafter called Method I, both with and without
the right-hand side in (31). For both, only the fixed boundary case o(t)= :/N(t)= 0
is considered.

We also consider a moving mesh method developed using (29). Approximating
this PDE over [xi, xi+l] at t= t,+l =(n+ 1)At by

wT+li+l wi_ xiW7+ Wi +(33) =0,A Xi+ Xi

upon rearrangement, we obtain

rn+l(34a) W+(xi+ x) + At(W+i+ - xi) (x+ x) W.
As it stands, (34a) would be awkward to implement because it depends upon O(t)
and 0(t+), and therefore on all of the solution approximations at time levels t and
t,+. Founately, it is possible to simplify by working with two adjacent interval
discretizations. A similar approximation to (34a) on [x_, xi] gives

(34b) W(x x_)+At(W(""+",_ x,_) (x,- x,_) W,-1.

Equidistribution implies

(35 (x, l ax= (x, ax.
Xi

MOVING MESH METHODS AND THEIR STABILITY 1273

Equating the right-hand sides of (34a) and (34b), which are approximations to (35)
at t,, we obtain

Ll/,.n + .,n+lwT+l(Xi+l xi)+At(WT+lfCi+l i-1)i) wi-1 txi -xi-1)+t(WT-+Ji WT-+)i-1)
Since each term involves

W(x, tn+l)
M(x, t,+)

0(t,+l)

O(t) can be eliminated, leaving the discrete approximation

(36) r(Mi,+l-2Mi_12i+ Mi_2i_l)= M_l(xi-xi_l)-Mi(xi+l-xi)

at tn+l. Here, to avoid confusion with the time integration steps later on (when the
moving mesh equations are integrated with a method of lines approach), we write
r :-At. This moving mesh strategy, which we refer to as Method II (also using (32a)
and with 2o(t)- s(t)--0), is considered in the next section.

A great variety of moving mesh equations have been obtained by others, using
the various choices of monitor functions and approximation schemes. In the remainder
of this section, we show how some of these equations are related to the equidistribution
relationships derived in 2, either in the differential form (16) or the weak form (6).

For the moving finite element methods of Miller and Miller [30] and Herbst,
Schoombie, and Mitchell [17], the moving mesh equations are derived from the weak
form of the PDEs written in Lagrangian form. In particular, a given PDE u L(u) is
converted to its Lagrangian form ti- u- L(u). Suitable weight functions i(x) and
d/i(x) are chosen, and the residual

R(u) fi Ux- L(u)

is required to satisfy the orthogonality relations

(37) dA(x)R(u) dx=O,

(38)

The choice

(39)

and

qJ,(x)R(u) dx=O.

i(X)-- Oli(X)

(40) @i(X) i(X) --UxOli(X),

where a(x) is the hat function and /(x) is a discontinuous piecewise linear func-
tion on [xi-1, Xi+l], is made in [30], and the choice of the piecewise cubic Hermite
polynomials

(41) i(X) [ai(x)]:[3 2ai(x)],

(42) thi(x) [ai(x)]2[ai(x)- 1] k dx

is used in 17]. Both of these can be shown to be implicitly based upon a weak form
of (16). In particular, requiring that

f xi+l
(43) M(x, t) dx= M(x, t) dx

Xi

1274 YUHE REN AND ROBERT D. RUSSELL

is satisfied, for the monitor function

Mi(x l,l) (x -Xi_l)R(ui)

we obtain the moving mesh equation corresponding to (41) and (42), and for

-uxR(u), x [xi-1, xi],
M(x, t)

uxR(u), x [xi, xi+l],

we obtain the moving mesh equation corresponding to (39) and (40) [13].
Aside from stability, one of the most troublesome problems for a moving mesh

method is the tendency for mesh points to cross. For equidistribution (6), this happens
easily if M changes sign, so to avoid this, the early papers on equidistribution define
a monitor function to be nonnegative. For MFE methods, the associated equidistribu-
tion property above holds for a monitor function that changes sign, and consistent
with this is the fact that regularization terms generally must be added to prevent mesh
crossings. In contrast, we find that for discretizations formed directly from (16), for
positive monitor functions the problem of mesh crossing itself can be minimal (see

4 and 5).
If instead of (16) we take

0

Ox
(M:) 0,

and write it in the nonconservative form

+ M oA o,
Ox Ox

then the discretization

M,
Xi Xi- Xi Xi

=0

gives

This is similar to the moving mesh equation of 1], except that they attempt to optimize
a parameter value that is used in place of i/Mi.

If the monitor function is simply the solution to the PDE, i.e., M(x, t)= u, then
(16) becomes

ou o(u) 0
Ot Ox O’

or, in nonconservative form,

Ou Ou 02 0
(44) ---b-- 2 + u--= u-.

Ot Ox Ox 0

In developing a moving mesh strategy, Petzold [32] attempts to minimize, for a suitable

MOVING MESH METHODS AND THEIR STABILITY 1275

parameter a, the objective function

Ou+ O__U_U 2 + a22,a) ox
which is a measure of the change in the solution u and mesh x with respect to time t.

Since meshpoints can easily cross with this choice, she introduces a penalty
function

This can be viewed as "compensation" for the extra term u(O:/Ox) in (44), which
gives a scheme that in some sense minimizes the source error energy u(O/O) for the
PDE when moving mesh points in time. The usefulness ofthis interpretation of Petzold’s
scheme to develop other practical moving mesh strategies remains to be investigated.

One of the most reliable moving mesh discretizations is due to Dorfi and Drury
[11] and analyzed in [39]. It is similar to (36), where the general relationship between
them involves using an artificial dissipation term in conjunction with (36) [33].

4. Numerical results. Here we give some numerical examples to examine the
moving mesh strategy from Method I, with and without the right-hand side of (31),
and the strategy from Method II. We choose three examples, consisting of one
hyperbolic and two parabolic problems.

To discretize the PDE

Ou
(45) --=f(u, Ux, Uxx),

Ot

we first write it in the Lagrangian form

(46) ti-Ux f(u, Ux, Uxx).
Using a central difference scheme for the spatial derivatives, we obtain

(47) fii
Ui+I- Ui’-I Xi--fi, i=2,’’’, N.
Xi+ Xi_l

Thus we solve the coupled system of equations (47) and (31), with and without =0,
and the coupled system (47) and (36). This ODE system is solved using the code
LSODI of Hindmarsh 18]. An approximate Jacobian is computed by LSODI internally
using difference quotients. For simplicity, an initial uniform mesh is used in each case.
In the tables of numerical results reported, nst and nje are, respectively, the number
of steps and number of Jacobian evaluations taken by LSODI up to the time given;
and nqn and tstep are, respectively, the order of the last successful method and the
last successful stepsize. All runs were made on Sparcstations in a distributed computing
environment, and computer times are not given. Method I is more expensive using the
right-hand side in (31) than not using it, but the difference is not very significant
(always less than 20 percent for these problems).

Problem I. This problem, a scalar reaction diffusion problem from combustion
theory, has been used by several authors to test their moving mesh strategies [2], [32],
[14]. It is a model of a single-step reaction with diffusion,

-D(l+a-u) e-s/" t>0,0<x<l,
Ot -Ox
ux(O,t)=O,u(1, t)=l,
u(x, 0) 1, 0<=x=<l,

t>O,

1276 YUHE REN AND ROBERT D. RUSSELL

where the constant heat release is a, reaction rate is R, activation energy is 8, and
Damkohler number is D-Re/(aS). The solution represents the temperature of a
reactant in a combustion. For a short time, the temperature gradually increases from
unity with a "hot spot" forming at x- 0. At a finite time ignition occurs and the
temperature at x 0 jumps rapidly from unity to 1 / a. A flame front then forms and
propagates towards x-1 with speed proportional to ea/2(l/ a). Here, a is about
unity and 8 is large, so that the flame front moves exponentially fast after ignition.
The solution reaches a steady state once the flame propagates to x- 1. This problem
serves as a good test of moving mesh methods because of the sensitivity of tracking
the flame front [1], [2].

The derivative boundary condition (Ou/Ox)(O, t)- 0 is approximated by

Ul --//2
=0 or //1-//2-0.
X X2

The problem is solved for a 1, 6 20, and R 5, using a moving mesh with N 20
and with N =40. The results are compared with a reference solution (solid lines in
the figures) obtained by LSODI, using the method of lines with standard central
differences on (45) and N 500 equally spaced mesh points, with absolute tolerance
atol 10-8 and relative tolerance rtol 10-6. The problem is quite sensitive to the
tolerances for LSODI. For example, for atol rtol 10-3, the numerical solution (not
given here) moves too quickly and is very inaccurate.

Figure 1 shows the numerical solution computed using Method I with 0 # 0, for
N 20, atol 10-5, and rtol 10-4. The solution is fairly accurate except for an error
caused by the solution moving too quickly, so that it gives a slight shift for 0.27
and 0.28. This error is caused largely by the time integration, as the results change
qualitatively when smaller tolerances are used in LSODI (see below). The correspond-
ing results for 0- 0 are shown in Fig. 2. Note that the solution is inaccurate at the left
boundary when 0.26, and the solution is not very well equidistributed with respect
to arclength, especially near the left boundary. The sensitivity of the problem with
respect to integrator tolerances is severe, as performing the same runs with larger
tolerances can easily give poorer results, but even using atol 10-6 and rtol 10-5

gives lower accuracy (cf. Figs. 3 and 4).
For Method II with atol 10-5, rtol 10-5, r 10-5, and N 20, the numerical

solution moves slightly slower than the reference solution before reaching steady state
(see Fig. 5). Reducing the spatial mesh to N 40, the solution has fairly high accuracy
throughout, as shown in Fig. 6. Reducing r or the integrator tolerances does not
qualitatively affect the numerical solution, although from our experience - should be
kept smaller than the time integration stepsize used in LSODI. Note that the arclength
is considerably better distributed between mesh points than for the other moving mesh
equation.

The timestepping information for the runs summarized in the figures is given in
Table 1. In particular, the number of steps and Jacobian evaluations, order of the
integration method, and final stepsize used by LSODI are listed.

Problem II. Our next example is Burgers’ equation

Ou Of(u) 02u
t-e t>0,0<x<l

Ot Ox Ox’
u(O,t)=O,u(1, t)=O, t>0,

u(x,O)=u(x),

MOVING MESH METHODS AND THEIR STABILITY 1277

2.2

u axis 1.6

1.4

1.2

0 0.2 0.4 0.6 0.8 1
x axis

FIG. 1. First example, using Method with 0, =0.26, 0.27, 0.28, 0.29; atol l0-5, rtol 10-4, mesh
points N 20.

2.2|

u axis 1.6

1
0 0.2 0.4 0.6 0.8 1

x axis

FIG. 2. First example, using Method with =0, =0.26, 0.27, 0.28, 0.29; atol 10-5, rtol 10-4, mesh
points N 20.

2.2[

+1.8

u xis 1.6 +

1.4

0 0.2 0.4 0.6 0.8
x xis

FG. 3. First example, using Method with # 0, 0.26, 0.27, 0.28, 0.29; atol 10-6, ol 10-, mesh
points N 20.

1278 YUHE REN AND ROBERT D. RUSSELL

o/

0 0.2 0.4: 0.6 0.8
z axis

FIG. 4. First example, using Method with 0, 0.26, 0.27, 0.28, 0.29; atol 10-6, rtol 10-5, mesh
points N 20.

2.2

+

2

1.8

u axis 1.6

1.4

0 0.2 0.4 0.6 0.8 1
x axis

FIG. 5. First example, using Method II, =0.26, 0.27, 0.28, 0.29; atol= 10-5, rtol 10-5, mesh points
N =20.

2.2

2

1.8

u axis 1.6<
1.4

1.2

1
0 0.2 0.4 0.6 0.8 1

x axis

FIG. 6. First example, using Method II, 0.26, 0.27, 0.28, 0.29; atol 10-5, rtol 10-5, mesh points
N =40.

MOVING MESH METHODS AND THEIR STABILITY 1279

TABLE

0.26
0.27
0.28
0.29

0.26
0.27
0.28
0.29

0.26
0.27
0.28
0.29

Fig.
nst nje nqn tstep

33
8O

108
138

53
129
187
246

14 3 .000286
21 3 .000374
25 3 .000369
28 3 .000395

13
23
31
39

46 12
146 34
193 43
233 52

Fig.

Fig.

3
3 .000280
4 .000175
3 .000161
3 .000187

5
3 .000302
3 .000183
3 .000259
2 .000348

Fig. 2
nst nje nqn tstep

30 11 3 .000728
80 25 3 .000390
114 33 2 .000368
145 40 3 .000466

Fig. 4
54 12 3 .000514

121 24 3 .000216
168 31 3 .000274
212 38 3 .000263

Fig. 6
57 16 3 .000121
143 34 .000109
197 44 2 .000265
236 56 2 .000393

where f(u)= u2/2. This problem is also often used as a test (occasionally the only
test) of mesh selection strategies.

We use e 10-2 and e 10-4 and the smooth initial solution u(x)= sin (2rx) +
1/2 sin (Trx). For small times and e, the exact solution is a pulse that moves in the positive
x direction while steepening. The reference solution (solid lines) is computed as in
Problem I except with N 1000, rtol 10-6, and atol 10-8. The solution is shown for
time 0.2, 0.4, 0.8, 1.0, 1.4, and 2.0. For Method II, 10-5.

Using Method I with 0, the method easily breaks down due to mesh crossing
for e 10-2. For example, for N 20, atol 10-3, and rtol 10-3, breakdown occurs
because the second mesh point crosses the left boundary and becomes negative at

0.35. For e 10-4, atol 10-4, and rtol 10-5 several mesh points cross each other
on the interval [0.519, 0.597] at =0.2. This is consistent with the theoretical and
numerical findings of [8] regarding potential instability of (20).

For e 10-2, the presence of the right-hand side term 0 now stabilizes the
results. Figures 7 and 8 show the solutions and mesh points for N 20 with atol
10-3, rtol 10-3 and atol 10-4, rtol 10-5, respectively. The corresponding timestep-
ping information is given in Table 2. The solutions are quite accurate except at the
points of zero gradient (ux 0), where the graph is somewhat higher than that for the
reference solution. This same problem occurs using Method II: results for the same
parameter values are given in Fig. 9 and Table 2. Note, too, that the degree of
equidistribution is rather poor in this region. Using N =40, these inaccuracies are
remedied, and the problem resolution is generally quite satisfactory (see Fig. 9(a)).

For e 10-4, the problem causes considerable difficulty. At about 0.2, a shock
layer forms near x 0.6. Setting N 20, using Method I with 0, LSODI stops at
the very steep layer at =0.218224 due to a small stepsize (tstep 10-6 and nst=955
for atol= 10-4, rtol--10-5). With (36) and corresponding parameter values, LSODI
also stops, now at =0.341905 with tstep=0 and nst =949. Using N =40, LSODI is
able to progress further, but still soon fails. The same difficulty of breakdown when
the shock develops can occur for this problem with a high-order MFE method using
Hermite cubic test functions [16], although other methods are successful [14], [28].

1280 YUHE REN AND ROBERT D. RUSSELL

1.4 | 1

0.8

0.6
u axis 0.4

0"20
-0.2-0 4

-016
0 0.2 0.4 0.6 0.8 1

z axis

FIG. 7. Burgers’ problem, using Method with 0, e 10-2, 0.2, 0.4, 0.8, 1.0, 1.4, 2.0; atol
10-3, rtol 10-3, mesh points N 20.

1.4

1.2

1

0.8

0.6
u axis 0.4

0.2

0
--0.2

--0.4

--0.6

+

0 0.2 0.4 0.6
x axis

FIG. 8. Burgers’ problem, using Method with 0, e 10-2, 0.2, 0.4, 0.8, 1.0, 1.4, 2.0’ atol
10-4, rtol 10-5, mesh points N 20.

TABLE 2

0.2
0.4
0.8
1.0
1.4
2.0

Fig. 8
nst nje nqn tstep

39 10 3 .005603
83 21 3 .009411
165 43 3 .012868
186 49 4 .014660
218 57 3 .022651
234 59 3 .050789

Fig. 9
nst nje nqn tstep

88 24 3 .004330
103 29 2 .002011
171 57 2 .008990
197 64 3 .012833
215 69 3 .033861
242 79 2 .055271

MOVING MESH METHODS AND THEIR STABILITY 1281

1.41
1.2

1

0.8

0.6
u axis 0.4

0.2

-0"13
0 0.2 0.4 0.6

z axis

(a)

0.8 1

1.4 | |

0.8

0.6
axis 0.4

0.2

_0.02
-0 4

0"6
0 0.2 0.4 0.6 0.8 1

x axis

(b)

FIG. 9. (a) Burgers’ problem, using Method II, e 10-2, 0.2, 0.4, 0.8, 1.0, 1.4, 2.0; atol 10-4, rtol
10-5, mesh points N=40. (b) Burgers’ problem, using Method II, e= 10-2, t=0.2,0.4,0.8, 1.0, 1.4,2.0;
atol 10-4, rtol 10-5, mesh points N 20.

Problem III. The last example is the hyperbolic conservative Buckley-Leverett
equation

with the nonconvex flux function

2

f(U)=u2+1/2(l_u)2’
as in, e.g., [9]. The moving mesh methods of [1] and [15] test the problem with an
artificial viscosity term eux added. (See also [22].)

We consider the continuous initial data condition

0.1
0<x<l,u(x,O) 0.1+x’

1282 YUHE REN AND ROBERT D. RUSSELL

and boundary conditions

1
u(0, t) , u(,t)

1

where we express the right boundary condition for LSODI in the form tic(t)= 0. The
reference solution is determined as in the other two problems, with N 500, atol 10-8,
and rtol 10-6, and the solution profile shown for =0.1, 0.2, 0.3, 0.4. With N 20,
results with and without the right-hand side term in Method I are given in Figs. 10
and 11, respectively. These numerical solutions are virtually identical and move faster
than the reference solution. For Method II with atol 10-4, rtol 10-, and r 10-5,
LSODI stops due to the steep layer for 0.303228 with tstep 0 and nst 575. (Again,
mesh crossing is not a problem.) Adding the artificial viscosity term mentioned above,
here with e 10-4, the problem is solved more satisfactorily than before, using atol
10-4 and rtol 10-5. The results, given in Fig. 12, are qualitatively unchanged for
smaller tolerances, for example, atol 10-5 and rtol 10-6 (see Table 3). The scheme
developed in [1] has no difficulty for this problem when solved as a parabolic PDE

0.9

0.8

0.7

0.6
u axis 0.5

0.4

0.3

0.2

0.1-
0
0 0.4 0.6 0.8 1

x axis

FIG. 10. Buckley-Leverett problem, using Method with #. 0, =0.1, 0.2, 0.3, 0.4; atol 10-5, rtol
10-6, mesh points N 20.

0.9

0.8
0.7

0.6-
U axis 0.5

0.4-
0.3-

0.0_20.1

0 0.2 0.4 0.6 0.8 1
x axis

FIG. 11. Buckley-Leverettproblem, using Method with 0, 0.1, 0.2, 0.3, 0.4; atol 10-s, rtol 10-6,
mesh points N 20.

MOVING MESH METHODS AND THEIR STABILITY 1283

0.9

0.8
0.7
0.6

U axis 0.5
0.4

0.3
0.2
0.1

0
0 0.2 0.4 0.6 0.8

x axis

FIG. 12. Buckley-Leverett problem, using Method II, 0.1, 0.2, 0.3, 0.4; mesh points N 20, (a) atol
10-4, rtol 10-5. (Results for (b) atol 10-5, rtol 10-6 indistinguishable.)

TABLE 3

0.1
0.2
0.3
0.4

0.1
0.2
0.3
0.4

nst
Fig. 10

nje nqn tstep

21 4 4 .009126
32 6 4 .009126
43 8 4 .009126
57 13 4 .005544

Fig. 12(a)
60 14 3 .014108
67 15 3 .014108
75 19 3 .013226
606 307 3 .000147

Fig. 11
nst nje nqn tstep

22 4 4 .008524
33 5 4 .008524
48 7 4 .006048
74 13 3 .003204

Fig. 12(b)
75 17 3 .012381
85 18 3 .009835
95 24 3 .007773
883 372 2 .000415

using real artificial viscosity, e 10-3. However, it is interesting to wonder when a
difficulty arises solving hyperbolic PDEs because the scheme is nonconservative when
viewed as a scheme for solving the moving mesh PDE.

5. Conclusions. We have presented a new formulation of the equidistribution
strategy in terms of a PDE. Previously, authors who have explicitly used equidistribution
have generally developed moving mesh procedures that use (6), the integrated or weak
form of the conservative integral. We intend to further develop robust moving mesh
strategies based directly upon the differential form (16) or (29). Here, our intention
has been to present some simple strategies. The purpose has not been to give extensive
numerical results or a detailed comparison with other methods; this is done elsewhere
[33]. Nevertheless,. the results indicate that the schemes given here, with simple
improvements such as smoothing of the mesh (for Problem II) when necessary, should
prove competitive with those that have been recommended by others [14]. Use of
conservative-type schemes to approximate the PDEs is natural and probably essential
in many contexts. The importance of the right-hand side term of (16) is unclear, and
we have included numerical results for 0 partly to determine the effect and partly
because this corresponds to what many previous implementations have used.

1284 YUHE REN AND ROBERT D. RUSSELL

The numerical methods used here are quite simple and are presented mainly for
illustrative purposes. Constructing more robust moving mesh methods could well
require the incorporation of regularization terms as in [11], [14], [26], [29], [39], and
possibly a more complicated monitor function, an obvious choice being some combina-
tion of arclength and curvature. However, while using the arclength monitor function
can limit the number of mesh points that are placed in the transition region, strong
nonlinearities that arise using a curvature monitor function can also cause computa-
tional difficulties [6]. Efficient ways to produce the moving mesh equations using this
approach, particularly for higher-order systems (4), and for the higher-dimensional
form of (17) or (29), remain to be investigated. Still, it is important to realize that the
scheme is not plagued with mesh crossings the way most other simple moving mesh
schemes are. When the PDE (16) (including the right-hand side) is approximated, we
find very little difficulty of this type. In one case (Burgers’ equation with different
initial conditions than given here) (31) gave mesh crossing with a large tolerance, but
this was fixed when the tolerance was reduced. While there is no need to add penalty
functions for this reason, it may still be necessary to perform a mesh smoothing to
prevent problem stiffness when steep solution layers occur (as was the difficulty in
Problem II in the previous section). Obviously, a desirable ultimate goal is the develop-
ment of a robust scheme with minimal requirements for a user to select contentious
problem-dependent parameters.

This moving mesh PDE interpretation can be used to understand stability proper-
ties for moving mesh strategies, and extends the understanding ofthe stability properties
as given in [8]. While the stability issue for methods based upon equidistribution is a
very complicated one, and there is no doubt that a complicated interaction takes place
between the PDE (3) and the mesh PDE (16) or (29), we expect that this viewpoint
will be used to develop a deeper understanding of stability properties for currently
used methods which have proven reliable. It is important to realize how many moving
mesh methods are based upon equidistribution, making it possibly the single most
important concept in the development ofmoving mesh methods. Many ofthese methods
use equidistribution explicitly (e.g., [2], [20], [32], and those in [8]), and many of these
often have stability difficulties [8]. There are also those, like the moving finite element
methods [30], [17] and the elliptic grid generation methods [27], that have been
developed from another viewpoint, but for which equidistribution has played a role--
just how fundamental is unclear at this stage. The considerable success of some of
these methods may be due in part to the fact that the moving mesh PDE (16) is solved
implicitly, so that inadequate approximations from using nonconservative schemes, or
from ignoring the important right-hand side term, have been circumvented. Of course,
another underlying issue of critical importance is that of deciding what monitor function
to use, and it is unrealistic to expect that a single choice for M would serve as a
panacea for most problems.

Acknowledgments. The authors are very grateful to the referees, who suggested a
number of significant improvements to the paper.

REFERENCES

[1] S. ADJERID AND J. E. FLAHERTY, A moving-mesh finite element method with local refinement for
parabolic partial differential equations, Comput. Methods Appl. Mech. Engrg., 55 (1986), pp. 3-26.

[2] ., A moving finite element method with error estimation and refinement for one-dimensional time

dependent partial differential equations, SIAM J. Numer. Anal., 23 (1986), pp. 778-795.

MOVING MESH METHODS AND THEIR STABILITY 1285

[3] M. J. BAINES, Moving finite elements and approximate Legendre transformations, Numerical Analysis
Report 5/89, Dept. of Mathematics, University of Reading, Reading, UK.

[4] , Moving finite elements and envelopes, manuscript.
[5] M. BIETERMAN AND I. BABUKA, An adaptive method oflines with error controlfor parabolic equations

of the reaction-diffusion type, J. Comput. Phys., 63 (1986), pp. 33-66.
[6] J. G. BLOM AND J. G. VERWER, On the use of the arclength and curvature monitor in a moving-grid

method which is based on the method of lines, Report NM-N8902, Centrum voor Wiskundc en
Informatica, Amsterdam, the Netherlands, 1989.

[7] C. DE BOOR, Good approximation by splines with variable knots. II, in Springer Lecture Notes Series
363, Springcr-Verlag, Berlin, 1973.

[8] J. M. COYLE, J. E. FLAHERTY, AND R. LUDWIG, On the stability of mesh equidistribution strategies

for time-dependent partial differential equations, J. Comput. Phys., 62 (1986), pp. 26-39.
[9] P. CONCUS AND W. PROSKUROVCSKI, Numerical solution of a nonlinear hyperbolic equation by the

Random Choice Method, J. Comput. Phys., 30 (1979), pp. 153-166.
[10] D. S. DODSON, Optimal order approximation by polynomial spline functions, Ph.D. thesis, Purdue

University, West Layfette, IN, 1972.
11 E. A. DORFI AND L. O’C. DRURY, Simple adaptive grids for 1-D initial value problems, J. Comput.

Phys., 69 (1987), pp. 175-195.
12] H. A. DWYER, R. J. KEE, AND B. R. SANDERS, Adaptive grid method for problems in fluid mechanics

and heat transfer, AIAA J., 18 (1980), pp. 1205-1212.
[13] R. M. FURZELAND, The construction of adaptive space meshes for the discretization of ordinary and

partial differential equations, TNER. 85.022, Thornton Research Centre, the Netherlands, 1985.
[14] R. M. FURZELAND, J. G. VERWER, AND P. A. ZEGELING, A numerical study of three moving grid

methods for one-dimensional partial differential equations which are based on the method of lines,
J. Comput. Phys., 89 (1990), pp. 349-388.

[15] R.J. GELINAS, S. K. Doss, AND K. MILLER, The movingfinite element method: Application to general
partial differential equations with multiple large gradients, J. Comput. Phys., 40 (1981), pp. 202-249.

[16] B. M. HERBST, A. R. MITCHELL, AND S. W. SCHOOMBIE, A moving Petrov-Galerkin method for
transport equations, Internat. J. Numer. Methods Engrg., 18 (1982), pp. 1321-1336.

[17] B. M. HERBST, S. W. SCHOOMBIE, AND A. R. MITCHELL, Equidistributing principles in moving finite
element methods, J. Comput. Appl. Math., 9 (1983), pp. 377-389.

[18] A. C. HINDMARSH, LSODE and LSODI, two new initial value ordinary differential equation solvers,
ACM SIGNUM Newsletter, 15 (1980), pp. 10-11.

19] J. M. HYMAN, Adaptive moving mesh methodsfor partial differential equations, in Advances in Reactor
Computations, American Nuclear Society Press, La Grange Park, IL, 1983, pp. 24-43.

[20] J. M. HYMAN AND B. LARROUTUROU, Dynamic rezone methods for partial differential equations in

one space dimension, Los Alamos Report LA-UR-86-1678, Los Alamos National Laboratory, Los
Alamos, NM, 1986.

[21] J. M. HYMAN AND M. J. NAUC;HTON, Static rezone methods for tensor-product grids, in Proc.
SIAM-AMS Conference on Large Scale Computations in Fluid Mechanics, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1984.

[22] I. W. JOHNSON, A. J. WATHEN, AND M. J. BAINES, Moving finite element methods for evolutionary
problems, II. Applications, J. Comput. Phys., 79 (1988), pp. 270-297.

[23] B. LARROUTUROU, A conservative adaptive methodforflamepropagation, SIAM J. Sci. Statist. Comput.,
10 (1989), pp. 742-755.

[24] P. D. LAX, Hyperbolic Systems of Conservation Laws and Mathematical Theory ofShock Waves, Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1973.

[25] R. J. LEVEQUE AND H. C. YEE, A study of numerical methods for hyperbolic conservation laws with

stiff source terms, Report 100075, NASA Ames Research Center, Moffett Field, CA, 1988.
[26] N. K. MADSEN, MOLAG: A method of lines adaptive grid interface for nonlinear partial differential

equations, in PDE Software: Modules, Interfaces and Systems, B. Engquist and T. Smedsaas, eds.,
North Holland, Amsterdam, 1984.

[27] K. MATSUNO AND H. A. DWYER, Adaptive methods for elliptic grid generation, J. Comput. Phys., 77
(1988), pp. 40-52.

[28] K. MILLER, Moving finite elements II, SIAM J. Numer. Anal., 18 (1981), pp. 1033-1057.
[29] , Alternate modes to control the nodes in the movingfinite element method, in Adaptive Computa-

tional Methods for Partial Differential Equations, I. Babugka, J. Chandra, and J. E. Flaherty, eds.,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[30] K. MILLER AND R. N. MILLER, Movingfinite elements I, SIAM J. Numer. Anal., 18 (1981), pp. 1019-
1032.

1286 YUHE REN AND ROBERT D. RUSSELL

[31] M. C. MOSHER, A variable nodefinite element method, J. Comput. Phys., 57 (1985), pp. 157-187.
[32] L. R. PETZOLD, Observations on an adaptive moing grid methodfor one-dimensional systems ofpartial

differential equations, Appl. Numer. Math., 3 (1987), pp. 347-360.
[33] Y. REN AND R. D. RUSSELL, A study of moing mesh methods, in preparation.
[34] R. D. RUSSELL, Mesh selection methods, in Codes for Boundary Value Problems, Lecture Notes in

Computer Science 74, B. Childs et al., eds., Springer-Verlag, Berlin, 1979.
[35] R. D. RUSSELL AND J. CHRISTIANSEN, Adaptive mesh selection strategies for solving boundary value

problems, SIAM J. Numer. Anal., 15 (1978), pp. 59-80.
[36] M. D. SMOOKE, Solution of burner-stabilized pre-mixed laminar flames by boundary value methods,

J. Comput. Phys., 48 (1982), pp. 72-105.
[37] M. D. SMOOKE AND M. L. KOSZYKOWSKI, Fully adaptive solutions of one-dimensional mixed initial-

boundary oalue problems with applications to unstable problems in combustion, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 301-329.

[38] R. THRASHER AND K. SEPEHRNOORI, On equidistributing principles in moving finite element methods,
J. Comp. Appl. Math., 16 (1986), pp. 309-318.

[39] J. G. VERWER, J. G. BLOM, R. M. FURZELAND, AND P. A. ZEGELING, A moving-grid method for
one-dimensional PDEs based on the method of lines, in Adaptive Methods for Partial Differential
Equations, J. E. Flaherty, P. J. Paslow, M. S. Shephard, and J. D. Vasilakis, eds., Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[40] G. B. WHITHAM, Linear and Nonlinear Waves, John Wiley, New York, 1974.
[41] A. B. WHITE, JR., On selection of equidistributing meshes for two-point boundary-value problems, SIAM

J. Numer. Anal., 16 (1979), pp. 472-502.
[42] , On the numerical solution of initial/boundary-value problems in one space dimension, SIAM J.

Numer. Anal., 19 (1982), pp. 683-697.

SIAM J. ScI. STAT. COMPUTo
Vol. 13, No. 6, pp. 1287-1313, November 1992

1992 Society for Industrial and Applied Mathematics
002

FINITE DIFFERENCE SCHEMES ON TRIANGULAR CELL-CENTERED
GRIDS WITH LOCAL REFINEMENT*

P. S. VASSILEVSKI’, S. I. PETROVA:I:, AND R. D. LAZAROV:

Abstract. Based on approximation of the balance equation, finite difference schemes on triangular
cell-centered grids are derived. A priori estimates and error analyses are provided. For certain regular
triangulations, O(h2) convergence in the discrete Hi-norm is established. Also, finite difference schemes on
iriangular cell-centered grids with local refinement are derived with accuracy O(h 1/2+,,), where a 0 for a
simple symmetric scheme, a for a nonsymmetric and a more accurate symmetric scheme, and a for
a more accurate nonsymmetric scheme.

Certain algebraic properties of the corresponding matrices of the derived finite difference schemes are
verified, thus allowing the recently proposed algebraic theory for the Bramble-Ewing-Pasciak-Schatz (BEPS)
and Fact Adaptive Composite (FAC) two-grid preconditioners to apply.

Numerical experiments that demonstrate the accuracy ofthe difference schemes and the fast convergence
of the two-grid BEPS and FAC preconditioners in conjugate gradient-type iterative methods are presented.

Key words, triangular grids, cell-centered grids, local refinement, two-grid preconditioner, conjugate
gradients, finite volume method, elliptic problems

AMS(MOS) subject classifications. 65N05, 65N15, 65F10, 65N20, 65N30

1. Introduction. The finite volume method (also called the control volume method
or the balance method) has been used in many applications as a systematic approach
to effective discretization of fluid flow equations (cf., e.g., Patankar and Spalding [18]).
Pioneering work in this area for one-dimensional elliptic and parabolic equations with
piecewise smooth coefficients has been done by Tikhonov and Samarskii [23] and
Samarskii [20], [21]. Recently this approach was augmented by new techniques and
results by Kreiss, Manteuffel, and White [11]; Manteuffel and White [13]; and Weiser
and Wheeler [25]. An important feature of this approach is that the corresponding
discretizations are based on approximation of the balance equation and therefore they
satisfy exactly the discrete conservation law (of mass, heat, momentum, etc.). A key
aspect here is the choice of finite volumes (control volumes). In this context, we
distinguish two principal ways of choosing these volumes: by vertex-centered and
cell-centered grids.

In the context of vertex-centered grids (which are closely related to the finite
element discretization), finite difference schemes are studied by Hackbusch [9]; Bank
and Rose [3]; Samarskii, Lazarov, and Makarov [22]; and Heinrich [10], where the
basic theory of the stability and convergence analysis is developed. Such schemes on
vertex-centered grids with local refinement were proposed by McCormick [14] and
Cai and McCormick [5], [6] for the diffusion equation; see also the recent paper by
Cai, Mandel, and McCormick [6].

Convergence analysis of the difference schemes for elliptic equations on rec-
tangular cell-centered grids has been presented by Weiser and Wheeler in [25], where
the relation of the constructed schemes with mixed finite element discretization is used.

* Received by the editors May 14, 1990; accepted for publication (in revised form) October 22, 1991.
This research was partially supported by Bulgarian Committee for Science grant 55-26-3-87 and by National
Science Foundation grant INT-8914472.

f Center for Computer Science and Technology, Bulgarian Academy of Sciences, "Acad. G. Bontchev"
Str., Block 25 A, 1113 Sofia, Bulgaria. Present address, Department of Mathematics, University of California,
405 Hilgard Ave., Los Angeles, California, 90024-1555.

t Institute of Mathematics, Bulgarian Academy of Sciences, "Acad. G. Bontchev" Str., Block 8, 1113
Sofia, Bulgaria.

1287

1288 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

The finite volume method based on cell-centered grids has been used by Pedrosa [19]
for efficient computation of fluid flow in porous media, and by Ewing, Lazarov, and
Vassiievski [7], [8] for elliptic equations on grids with local refinement.

The approximations on cell-centered and vertex-centered grids actually coincide
on uniform rectangular partitionings. Essential differences in these two approximations
appear when using partitioning of the domain into triangles. Then the finite volumes
of the cell-centered grid are, by definition, the triangles of the partitioning, while those
of the vertex-centered grid are the Voronoi volumes [26].

In this paper, we investigate approximations of second-order elliptic equations
on model cell-centered grids with local refinement introduced by uniform triangulation
of the domain. The uniformity of the triangulation allows us to derive error estimates
of superconvergence type (see below). The results can be considered as an extension
of the results of [7] and [8], where similar problems were considered on rectangular
grids with local refinement.

Combining both discretizations, on triangular and rectangular finite volumes, we
can cover a wide range of applications, including elliptic problems on general polygonal
domains. The results presented here can also be extended with minor modifications
to curvilinear triangles near the boundary of the domain.

The difference schemes we develop are constructed by appealing to the balance
equation, which is valid for a general class of finite volumes. The first step in this
construction is to partition the region into a number of triangles. We assume that they
have angles less than 7r/2. (Such grids can be used in combination with rectangular
grids, for example, when the original region can be partitioned into a number of
rectangles and triangles.)

The grid points of the cell-centered grid are the centers of the circumscribed circle
of every triangle. Note that they are internal nodes with respect to the triangles and
any pair of two neighboring nodes is on the line perpendicular to the common edge
of the corresponding triangles. Thus the derivative of a function in a direction normal
to such an edge can be approximated using the difference of the values of the function
at these nodes. Such approximations are required when we use the balance equations.
The approximations on grids with local refinement are derived similarly. In this case,
however, we must use certain interpolations of values of the grid functions near the
interface boundary between refined and nonrefined triangles. Depending on this
approximation, we derive simple symmetric and nonsymmetric schemes, as well as
more accurate ones. These give rise to symmetric or nonsymmetric linear algebraic
problems, correspondingly.

Requiring certain regularity of the triangulation, a priori estimates are established
and corresponding error analysis is provided. In particular, we show O(h2) convergence
of the schemes in the discrete Hi-norm for schemes without local refinement. For grids
with local refinement, we prove a convergence rate in the discrete Hi-norm of O(h 1/2),
O(h3/2), or O(h2), depending upon the interpolation used (piecewise constant, linear,
or quadratic).

The second question studied in the paper is related to the construction of optimal
preconditioners for solving the resulting linear algebraic systems of equations (which
can be symmetric or nonsymmetric) on the composite grid, that is, on the grid with
local refinement. We verify the necessary algebraic properties of the composite grid
matrix and apply the algebraic theory for the BEPS and FAC preconditioners proposed
in Ewing, Lazarov, and Vassilevski [7].

Originally, the FAC method was proposed by McCormick [14], [15] and
McCormick and Thomas [16], and the BEPS technique by Bramble, Ewing, Pasciak,

TRIANGULAR CELL-CENTERED GRIDS 1289

and Schatz [4]. In Mandel and McCormick [12], these two methods were compared
in the case of finite element discretization with local refinement, noting that the BEPS
method can be viewed as a symmetrization of the FAC preconditioner. The theory in
[7] is based on the strengthened Cauchy inequality, which, in our case offinite difference
schemes, need not necessarily exist. None of these theories applies to the case of
nonsymmetric matrices.

The main result from Ewing, Lazarov, and Vassilevski [7] is valid here also,
namely, that the two-grid BEPS and FAC preconditioners B are spectrally equivalent
to the composite grid matrix A. In the nonsymmetric case, this is understood as follows:
the spectrum of B-1A is contained in a fixed subset of a disc in the right-half complex
plane independent of the grid parameter h. This implies that the generalized conjugant
gradient (GCG)-type methods, such as generalized minimum residual (GMRES) from
Saad and Schultz [27] or the GCG least squares (LS) method from Axelsson [1], [2],
have a rate of convergence independent of the grid parameter h. We point out that
throughout this paper the so-called aspect ratio, hc/hy, i.e., the coarse-grid parameter
hc over the fine-grid parameter hi, is assumed to be bounded.

The remainder of the paper is organized as follows. In 2, we formulate the
problem and derive approximations of the balance equation on regular grids and on
grids with local refinement. In 3, we state the discrete problem and verify certain
algebraic properties of the finite difference matrices on the composite grid. In 4, we
provide the error analysis for the derived finite difference schemes on uniform grids
and on grids with local refinement. Finally, in 5, we formulate the BEPS and the
FAC preconditioners and develop their spectral properties, while in 6, a number of
test examples are presented.

2. Approximations on regular cell-centered grids and on cell-centered grids with
local refinement. We consider the following differential equation in a polygonal region
1. Find u such that

(2.1) -div (aVu) =f(x), x e ,
with the following mixed boundary conditions

(2.2) u(x) g(x) on FD,

(2.3) W,=-v. aVu=O, XEFN=C912\FD,

where v is the unit outward normal vector on 012. The coefficient function a(x) should
be piecewise smooth (or piecewise continuous) and bounded away from the origin
and from above; that is, for some constants al, a2, we have that

(2.4) 0 < al <= a(x) <= a., x 12.

We cover the region 12 by a set of triangles ? { T} such that if two triangles are
interesecting, they have either only a common edge or only a common vertex. For
every finite volume T c ,7, the following balance equation is valid"

(2.5) fo W’dS= fTf(’)
Let T be the triangle shown in Fig. 2.1 with edges s, s., and s3. Then (2.5) reads

where vt are outward unit normal vectors on s, 1, 2, 3.

1290 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

FIG. 2.1. Triangle T e .
Consider now the following model situation. We assume that all triangles in "

have no angles greater than or equal to r/2. Let the grid o3 consist of the centers of
the circumscribed circles of all the triangles T e-7. Here we consider only uniform
partitionings of f, by which we mean that every two neighboring triangles form a
parallelogram. We asume further that the triangles T e ,7 have sides parallel to three
fixed directions, or equivalently, the normal vectors to their edges are three fixed vectors
vl, v2, and v3. Then we can introduce a coordinate system using vl and v3 as coordinate
axes. See Fig. 2.2 as an example of a region f covered by geometrically equal triangles.

The finite difference schemes are obtained by approximations of the fluxes W,
across the edges Sl, l= 1, 2, 3, for every triangle T,7. For every center x of the
circumscribed circle of a triangle T T(x) r, we denote by Wl(X) some approximation
to

fs W dSl, i.e., wl(x) fs W ds, 1=1, 2, 3.

These approximations can be derived in the following way. For definiteness we consider
the four neighboring nodes x,, x+,, x_,_, and x,+ as shown in Fig. 2.2. Since
a(x) > 0, then

Ou W,(x) 1=1,2,3.
OVl a(x)

FIG. 2.2. Region f.

TRIANGULAR CELL-CENTERED GRIDS 1291

Then integrating for 1 over the segment (xi,j, Xi,j+l) along the vector V we get

U(Xi’j+l) U(Xi’j
xi.j a(s)

ds Wvl(xi,j+l/2)
xi.j a(s)

where x,+1/2 is the point of intersection of sl and the segment (xi,x,2+). For uniform
partitioning this is the midpoint of the segment (x,2x,2+). Thus we get the following
approximation

(2.7) Wvt(xi,j+l/2) u(xi,j+l) U(Xi,
,x,.j a(s)

Then the integral .s, W, ds can be approximated as follows:

fs W,(s) ds W,(xi,j+/2) meas (Sl)

(2.8)
_meas (Sl)(u(x,,j+)-u(xi,))/ fx,,+, as

hi .,x,,j a(s)

where

meas (A)= Jads.
We can approximate the other integrals similarly.

Let y(x) y,j be a grid function that approximates u u(x) for x e 03. According

w(x) meash(S1) (Yid-Yi’J+X)/-l .,fx"+’x,, a(s)dS=k(x)Ay(x)’
(2.9) w2(x)=meas (s2)(yi,-y,-,-l)/ fx,_.j_, dS=k2(x)A2y(x),

h2 x,, a(s)

Wa(X)
meas(s3) /33 f1 x,+, ds_

h3
(Yi,-Yi+ld a(s)- k3(x)A3y(x)’

Xi,.i

where

meas (s)(1 f "J+’ ds)-kl(X)
hi x,.j a)

k2(x) meas(s2)[1 f x’-l’-’ ds] -I

h2 " .,x,,, a(s)

mea(s) [fka(x)
h3 dXi,

For 1, 2, 3, we define

(2.11)

where h is the mesh size in the Vl direction so that x + ehlVl, e 1 are the neighboring
grid points in the same direction (l 1, 2, 3).

In this way, we get the following cell-centered finite difference scheme

(2.2) w(x) + w(x) + w(x)= (x)
r(x)

(2.10)

to (2.8), we define

1292 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

for all T T(x) 7" and the boundary conditions (2.3) for w2(x), w3(x) on 0f\Fo (see
Fig. 2.3) and y(x) g(x), x Fo.

Consider approximation (2.12) at the grid points near the boundary Fo. Note that
the triangles along Fo are aligned so that the centers of their circumscribed circles lie
on Fo. For triangles about interior points that intersect Fo, we can apply the balance
equation by supposing that the solution u(x) is extended continuously in the whole
triangle T (see Fig. 2.3).

Now consider the case with local refinement, where some of the triangles of ,F are
refined into a number of congruent triangles. This new triangulation we denote by 7".

The circumcenters of all triangles form the new grid to, called the composite grid.
The approximation of the balance equation written for every triangle T 7" is

derived as above if T has four neighbors. For an interface triangle T, as shown in Fig.
2.4, we introduce the slave nodes (denoted by the superscript*), which are centers of
the circumscribed circles of the corresponding triangles obtained if T were to be refined
into congruent triangles. Now the difference scheme is derived as in the regular case.
However, the slave nodes are not grid points, so the values of the grid function at
these nodes must be obtained by interpolation. In order to simplify the exposition, we
suppose that the refinement process is organized so that any nonrefined cell has at
most one refined adjacent cell.

FIG. 2.3

FIG. 2.4. Interface triangle T T(x) with angles a, fl, and %

TRIANGULAR CELL-CENTERED GRIDS 1293

For definiteness, consider the case shown in Fig. 2.4. Let y y(x) be a grid function
defined at the composite grid nodes Po, P1,’", Ps. In order to derive the finite
difference scheme on the composite grid, we need values of the grid function y at the
points P4* and P*. Let p p(x) be a polynomial that interpolates y y(x) at some of
the nodes Po, P1,"" ", Ps. For x P4* and Ps* we set y(x)= p(x). Then the relation

is approximated by

Wl(Po) -kl(P4)(Y(P4)-Y(P*4))- kl(Ps)(y(Ps)-Y(P*5))

meas_(sl)(y(P4)-y(P*4)) a(s)(2.14) h P4

meas(s2)
((P) (Ps*))

h P5 a(s)

where/ dist (P4, P4*) dist (Ps, Ps*), i.e.,/ is the distance between the corresponding
points.

We distinguish the following four cases for defining the polynomial p p(x).

2.1. Simple symmetric approximation. This corresponds to the choice of piecewise
constant interpolation, i.e., p =p(x)= Y(Po). Then

y(P*4)= y(P*5 y(Po),

and we get (for the particular case of Fig. 2.4)

(2.15) w(P4) ka(P4)[Y(P4)-Y(Po)] kI(P4)Aay(P4).

From this definition of the flux w(P4), we can see that the matrix corresponding
to the finite difference scheme (2.12) is symmetric (the coefficient in front of Y(Po) in
the equation corresponding to the point P4 equals the coefficient in front of Y(P4) in
the equation for Po).

2.2. Simple nonsymmetric approximation. This scheme corresponds to piecewise
linear interpolation, i.e., p =p(x) Co+ ClXl + c2x2, P(Po) Y(Po), P(P2) Y(P2), and
P(P3) Y(P3). Then

and

(2.16)

(2.17)

Y(P*4) P(P4*), Y(P*5) P(Ps*),

Wl(P4)-- kl(P4)[Y(P4)-1/4(1-tan y cotan fl)y(P2)+1/4(1 +tan a cotan fl)Y(P3)

-1/4((tan c / tan y) cotan/3 + 4)y(Po)]

kI(P4)[Aly(P4)+(1-tan y cotan fl)A2y(Po)

-1/4(1 +tan a cotan fl)Aay(Po)].

For the case of equilateral triangles we have

Wl(P4)- kl(P4)[Y(P4) +1/2y(Pa) --y(Po)]

kl(P4)[AlY(P4)-1/2Aay(Po)].

1294 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

Obviously, in the finite difference equation for the point P4, the unknown Y(P2),
for example, enters with nonzero coefficient, while, y(P4) is not included in the equation
corresponding to the point P2. This means that the finite difference matrix is not
symmetric.

2.3. More accurate symmetric approximation. In this case, we again use the linear
polynomial p =p(x)= Co+ ClXl + cx, but p now interpolates y using the nodes Po,
P4, and Ps, that is, P(Po)= Y(Po), P(P4) Y(P4), and p(Ps) Y(Ps). Then

y(P*4 P(P*4), Y(P* P(P*5),
and

(2.18)
wI(P4) 1/2kl(P4)[-2y(Po)+ Y(P4)+ y(P5)]

=1/2kl(P4)[Aly(P4)+ A1 y(Ps)].
Here symmetry of the matrix can be established by inspection.

2.4. More accurate nonsymmetric approximation. Here we use the quadratic
polynomial

p p(x) Co + ClXl + CEX+ c3x21 + C4XlX2 + c5x
and interpolate y- y(x) using the nodes Po, P1, P, P3, P4, and Ps. Then

Y(P*) P(P4*), Y(P*5) P(Ps*),
and when c fl y, we get

Wl(P4) okl P4)[-15y(Po) + 15y(P1) 3y(P2) + ay(Pa) + 6y(P4) 6y(P5)

(2.19) =okl(P4)[6AEy(Po)--6Aay(Po)-- 15A2Y(P4) 15Aay(P5)

+ 27A1 y(P4)+ 3A1 y(Ps)].

3. Formulation of the discrete problems and properties of the corresponding
cell-centered composite grid matrices. All finite difference schemes derived in 2 can
be written in the general form

(3.1) Wl(X)"i" w:z(x)+ w3(x) th(x)=- f(s) d:, T= T(x), x to,
.IT

and

y=g(x) forxyo, w given for x near

where y y(x) is the approximate solution at the grid nodes x e to and Wl(X), 1, 2,
3, are approximate fluxes defined accordingly by (2.9).

Since for every two regular neighboring triangles (see, e.g., Fig. 3.1.), we have
k(x) k(x+), then

(3.2) Wl(X) -Wl(X/).

TRIANGULAR CELL-CENTERED GRIDS 1295

For a regular grid without local refinement, we have the following identity, which is
valid for every grid function z(x) such that z 0 on

(3.3)
I2 {wa(x) + w(x) + w(x)}z(x)

E {Oll(X)WI(X)A1z(X) + OI2(X)W2(X)A2Z(X) + OI3(X)W3(X)I3Z(X)},

where, for example,

A1Z(X)--Z(X)--Z(X+)

{1/21 forx-internalnode,
a(x)

for x near 3’0,
I= 1,2,3.

The equation (3.3) is in accordance with (3.2) since, for example, in the vl-direction
for the first two terms of the sum in the left-hand side of (3.3), we have

w(x)z(x) + w(x+)z(x+)

kw(x)(x) -1/2w(x+)z(x) +w(x+)z(x+) -w(x)z(x+)

1/2Wl(X)Z(X) -w(x+)(x) -1/2Wl(X)Z(X+) +1/2w(x+)z(x+)

1/2w(x)az(x) +w(x+)+/-z(x+).

In the case of a regular grid, since wl(x)= k(x)Ay(x), 1= 1, 2, 3, we have

E {w(x) + w(x) + w(x)}z(x)

(3.4) E {I(X)Aly(X)’IZ(X)-Jr" fc.(x)A2y(x)A2z(x

+ k3(x)A y(x)A3z(x)},

where kl(X)= a(x)k(x) and kl(x) are defined by (2.10).
Writing the difference scheme (3.1) as a system of linear algebraic equations

(3.5) Ay= qb,

then

(3.6) z’Ay= E E k(x)A,y(x)A,z(x).
/=1

Obviously, (3.6) represents a symmetric and positive definite form, hence the matrix
A is invertible. In fact, A is an M-matrix (see, e.g., Varga [24]): it is weakly diagonally
dominant with nonpositive off-diagonal entries.

Consider the case of the composite grid, where we prove that a similar formula
is valid. Denote

(3.7) z’Ay
I=1 1=1

Using (3.4) for every subregion of f with regular grid points (see Fig. 3.2, where f2
is a subregion of covered by a refined grid to2), we present the term I in the following

1296 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

FIG. 3.2. Composite grid (io 2, Jo 2).

form:

I, 20ll(Xi,j)WI(Xi,j)A1z(Xi,j) "4- 2 Oll(Xi,j)Wl(Xi,j)mlZ(Xi,j)
J<=Jo J>jo,i<2io-1

gv Wl(X2io-I,j)Z(X2io-I,j)
x
J>Jo

"91- 20ll(Xi,j)WI(Xi,)AIZ(Xi, " 2 WI(XI,j)Z(XI,j)’
i>1 jl

where, in accordance with (3.2) and the requirement for mass conservation, we have

Wl(X2io-I,jo+k)=--(Wl(Xl,2k-1)+Wl(Xl,2k)) for k= 1,2,.’..

Define

a,z(x,,_,) z(x,,_,)- z(X,o-,,o+),
A1Z(X1,2k Z(X1,2k) g(X2io_l,jo+k).

Using these in the expression for I above, we get

I= 2 a,(x)wl(x),z(x),

where (x)= 1 for the irregular grid points in a and S {x xd,j>jo, i= 2io-1}
is the set of irregular coarse grid points for which Az(x) is not defined.

Similarly, in the 2-direction we have

h 2 2(Xi,)W2(Xi,)2Z(Xi, + 2 2(Xi,)W2(Xi,)2Z(Xi,
Xe xe
i2i0-- J<Jo
JJo

x xm2
kl jl

+ :(x.)w:(x,.)(x:.) + w(x..)(x..).
kl kl

i=2k-1

TRIANGULAR CELL-CENTERED GRIDS 1297

where

Define

Then

W2(X2(,o+k)-l,jo)=--(W2(Xak-3.1)+ W2(Xak-I.1)) for k= 1,2,....

A2Z(X4k_3,1 Z(X4k_3,1) Z(X2(io+k)_l,jo),

A2Z(X4k-I,1) Z(X4k-I,1)- Z(X2io+k)-l,jo).

I= E (X)W(x)Az(x),
xea,\S2

where a)_(x)= 1 for the irregular grid points in ’2 and $2-{x xij, i-2(io+ k)-1,
j =jo, k- 1, 2,...} is the set of irregular coarse-grid points for which Aaz(x) is not
defined.

Since in the direction of the normal vector /2 there are no irregular grid points
(see Fig. 3.2), we get I3=,xo OI3(X)Wa(X)A3Z() directly from (3.4). In general,
inserting these expressions for I1, 12, and I3 in (3.7), we get the basic representation

z’Ay , (al(X)Wl(X)AlZ(X)+ a2(x)w)_(x)Az(x)
(3.8)

+ (x)w(x)az(x)).

In (3.8) and in all expressions for z’Ay below, the summation is taken to mean over
those grid points x to, for which alZ(X) is defined (l 1, 2, 3).

In order to simplify the considerations below we suppose that a(x)= 1. First, we
consider the simple symmetric scheme for which the fluxes are defined in (2.15). In this
case we have

(3.9) z’Aoy , , al(X)Wl(X)AlZ(X)= , Z Cl(X)Ay(x)Atz(x).
/=1 /=1

Obviously, z’Aoy is a symmetric bilinear form and

y’Aoy E E k’(x)(a,Y(X)).
/=1

Here Ao is a positive definite matrix, since y’Aoy =0 if and only if y(x)= 0 (we have
y(x) O, x e 3/0).

Next we consider the simple nonsymmetric approximation of the fluxes at the
irregular grid points defined by (2.16). In the particular case of equilateral triangles,
by (2.17) we have

z’ay (/IA yAlz +/2A2YA2Z +/3A3 yA3z)

E { Cl(X1,2k-1)A2Y(X’2io-l,jo+k)A1Z(X1,2k-1)
2

(3.10) + k,(x,.2k)A3y(X2,o-,jo+k)A,z(x,.2k)

E { k’(X4k-3,)Aly(x2,o+k)-ljo)A2z(X4k-3.1)2 kl

+ (x_,)z3y(x(o/_,o)Z(x_,)

1298 P.S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

It is a nonsymmetric bilinear form and, applying the Cauchy inequality to the right-hand
side of (3.10), we get

Iz’ay[<= (z’aoz) l/2(y’aoy) X/2.

For z =y the estimate from below is obtained in the following way: the terms of
the nonsymmetric part of the corresponding bilinear form are estimated from below
using the inequality -[ab[>=-(a2+ b2)/2 and compensated with the terms from the
symmetric part. Thus

ytAoy <- ytAy <= ytAoy.
In the case of the more accurate symmetric scheme, using (2.18), the following

expression for the inner product is valid

ztAy (]IA1 yA1 z +]2A2yA2z +]3A3 yA3Z)
1 {"---- I(Xl,2k-1)[--2Aly(X1,2k-1) + Aly(X1,2k)]A1z(X1,2k-1)
3 k>=l

(3. +,(x,,[-zy(x,+ay(x,_]z(x,l

+- 2 (x_a,[-2a_y(x_,+y(x_,]az(x_,
3 kl

+ (x_,[-y(x_,+ay(x_,la(x_,/
Obviously, z’Ay is a symmetric bilinear form and, by the Cauchy inequality, we easily
get the upper bound

Iz’eyl <-- (zteoz) ’/2(yteoy) 1/.
When z y, we obtain the lower bound-y T"Aoy <= y’Ay <= y tAo y.

Hence, in both cases of linear interpolation, we get that A is invertible and that the
corresponding finite difference scheme has a unique solution.

Finally, we consider the case of the more accurate nonsymmetric approximation of
the fluxes defined by (2.18) at the irregular grid points when a =/3 3’. Then

ztay (/IA1 yA1z + c2A2yAz +]3A3 yA3Z)

1 , {l(X1,2k_X)[_33Aly(Xx,2k_1 15A2y(Xl,2k_l 15A3y(Xl,2k_l+6-’
+ 6A3 y(X,o-l,jo+k) --6A2y(X2,o-l,jo+k) + 3Ax y(Xl,k)]AlZ(X,k-1)}

1 {q(Xl,2k)[--33Ay(xx,k)-- 15Aay(Xx,k-a)-- 15AEy(Xl,z)+6-- k=>l
(3.12)

6A3 Y(X:o-,o+k) + 6A2y(X2,o-,o+k) + 3A1 y(x,2k-X)]A1Z(Xl,2k))

1

+6-- x {k.(X4k-3,X)[--33A2y(Xk-3,1)- 15Axy(X4k-X,1)- 15A3y(X4k-3,1)

+ 6A y(x,o+k)-l,o) 6A y(x2,o+k)-l,o) + 3A2y(X4k-,l)]A2Z(Xak-3,1))
1 , (2(X4k_I,)[_33A2y(X,k_X,1)_ 15A3y(Xak_3,X)_ 15Axy(X4k-I,X)+6-- kl

--6A3 y(xo+k-l,o) + 6A1 y(x_o+k-l,o) + 3A2y(X4k-a,1)]AEZ(X4k-I,1)}.

TRIANGULAR CELL-CENTERED GRIDS 1299

Applying the Cauchy inequality to the right-hand side of (3.12), we get

Iz’ayl =(z’aoz)< 3 /2(y,aoy)l/2"

In order to obtain a lower bound for z y, we combine this inequality with a
similar one and get

312-6ytAoy <= ytAy <=ytAoy.
The following theorem summarizes the results for all four approximations.

THEOREM 3.1. The following basic inequalities are valid"

(3.13) Iztayl <= y2(z’aoz)l/2(y’Aoy) 1/2,
(3.14) 3/1Y tAoY <- YrAy <- 3/2 Y tAo Y,

where Ao is the matrix of the simple symmetric approximation and A is the matrix ofany
of the four approximations. For the case of the simple nonsymmetric or more accurate
nonsymmetric scheme, yl is a positive constant only under additional assumptions for the
angles a, , and y (see Remark 3.1). If a(x)= 1 and the partition is with equilateral
triangles T ’, the constants yl and ")/2 are" 3/1- 1/4, 3/2-- for the simple nonsymmetric

31 forscheme; 3/1 1/2, 3/2 for the more accurate symmetric scheme; and ")/1 236,
the more accurate nonsymmetric scheme.

Remark 3.1. In the general case (see Fig. 2.4) we have
(i) for the case of the simple nonsymmetric scheme,

where

{1-max (ICll, Ic2l)}ytAoy <= ytAy <= {1 + 2 max (ICll, Icl)}y’Aoy,

C "-’ 1 +tan and c2= 1 + ta---/
Obviously, 3/1 1-max (]c,I [c2l) and Y2 1 + 2 max (Ic, I, Ic=l) depend only on the

angles a,/3, and 3/, but 3/1 is not always positive. Therefore, the matrix A in this case
is invertible only for triangles for which tan y cotan/3 < 7 or tan a cotan/3 < 7.

(ii) For the case of the more accurate symmetric scheme,

1/2ytAoy <= ytAy <__ ytAoy.
We get the same constants y 1/2 and 3/2 as in our particular case. Hence the matrix
A is always invertible, so that the more accurate symmetric scheme, in general, has a
unique solution.

4. Error estimates.
4.1. An a priori estimate for the error. If e(x)= y(x)- u(x), where x o is the

error of the finite difference method, then y(x) e(x)+ u(x), x o, or, in vector form,
y e + u. Substituting y into (3.5), we get

(4.1) Ae ch Au =- O,

where Au(x)= w(x)+ w2(x)+ W3(X and the approximate fluxes are defined by the
values of u(x) at the grid points, i.e., Wl(X) kl(X)Au(x), x to, 1, 2, 3. The vector

b is defined by the right-hand side of (3.1). We represent the right-hand side of (4.1)
in the form

(4.2) (x) W, ds- wt(x) =- Y rll(X),
/=1 /=1

1300 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

where the approximate fluxes w, 1, 2, 3, are defined by the values of u(x) at the
grid points. Here we have implicitly defined

(4.3) q(x)
.Is

Obviously, according to (3.2) at the regular grid points (see Fig. 3.1), ,/l(X)=-r/a(X+)
holds.

On Fo we have Dirichlet boundary conditions, so that y(x)= u(x) and e(x) =0
for x yo. In order to prove convergence of the finite difference schemes in the energy
norm, we are interested in a priori estimates for the error e(x). From (4.1) we get

(4.4)

According to (3.8),

(4.5)

e’Ae Y’, {wa(x) + w(x) + w3(x)}e(x)

E Y
/=1

where w(x)= k(x)Ae(x), l= 1, 2, 3. On the other hand, from (4.2) and (3.8) we have

(4.6)
3

e’q,= Z q,(x)(x)= E E n,(x)(x)= E E ,(x)n,(x)a,(x).
xE(o /=1 /=1

Hence, by (4.4), we have

(4.7) e’Ae =- Z Z Ol’l(DIAle Z Z OgllAIE
/=1

From (3.14) and the Cauchy inequality applied to the right-hand side of (4.7), we get

(4.8) yae ’Aoe <= (etAoe) 1/9 rl(x)
/=1

Since A0 is symmetric and positive definite and e(x)=0, x yo, we can define the
energy norm

(4.9) II I1, [1 I1o- (e’aoe) a/2.

THEORZM 4.1. The error e(x)= y(x)-u(x), x w, of the finite difference scheme
(3.1) satisfies the a priori estimate

(4.10) I111.
where the discrete _2-norm is defined by

Ilyllo,

where l, 1, 2, 3, are the components of the local truncation error defined by (4.3) and
Wl, 1, 2, 3, are the approximate fluxes for our four difference schemes (2.15)-(2.19).

4.2. Error estimates. If the diffusion coefficient satisfies a(x)=- 1, from (4.3) we
have that the local truncation error is

01
ds- Wl(X), X E (.0,(4.11) ll(X):--

Ol’ll

TRIANGULAR CELL-CENTERED GRIDS 1301

where the fluxes Wl(X) are defined by the values u(x) at the grid points x o (1 1,
2, 3). Now we estimate the terms ll(X), 1, 2, 3.

In the case of regular grid points for 1 (see Fig. 4.1(a)), using (2.15) we have

ou
nl(Po) (s) ds kl(Po)[u(Po)- u(P,)],

n

where

dist (P:, P3)
kl(Po) -tan ft.dist (Po, P1)

The expression on the right-hand side is a linear functional of u(x), bounded in H’(T),
m >-_, - (x)= (Po)- T(Po)k3 T(P). This functional vanishes for all polynomials
of second degree. Therefore, by the Bramble-Hilbert lemma, we get

(4.12) 17,(x)l <- Ch’lul,,+,,(x), 1/2 < m <= 2,

where h diam T(Po).
In the case of collection of uniform triangulation on the interface between these

two uniform triangulations, we have the situation shown in Fig. 4.1(b). Since PoM
PM, the linear functional 71(Po) vanishes for polynomials of first degree and therefore

[nl(X)l <= ChJul2,(for u .m(T), m >= 2.

Now consider the different cases of the flux approximation at the irregular grid
points of o.

First, in the case of the simple symmetric approximation, for the point P4 from
Fig. 2.4, the following expression is valid"

Ip Ou
n,(n4) (s) ds k,(P4)[u(n4)- u (no)I,

where

dist (P7, Ps)
kl (P4) tan/3.

dist (P4, n4*)

This functional vanishes only for u const. Then

(4.13) IT/I(X)[C(lUll,(x)+ hmlu[+l,())

(a) uniform (b) piecewise uniform

FG. 4.1. Triangulation of l).

1302 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

and, with the help of (4.12) and (4.13), we get

(4.14)

Z nI(x)-<c(Z
irregular

1,x) + [Ulm+l.<x)

<C(lul = +h=’lul=1,1"
1

where 12h is a strip of width 2h around the interface between the coarse- and fine-grid
regions and h is the coarse-grid size.

The first term on the right-hand side of (4.14) can be estimated using the so-called
II’in’s inequality (see [17])

where f/ is a strip in f with width 8. Therefore we have

(4.16) Ilnlllo, n,(x) <= Ch/llull,,+.a, m>1/2.

In the same way, we can estimate r/2110,, and r/31[o,o, yielding in the case of the simple
symmetric difference scheme an O(hl/2) rate of convergence in the energy norm:

< Ch 1/2(4.17) Ily--Ulll,,.o= U]]m+l, m>1/2.

Second, for the case of the simple nonsymmetric difference scheme, using (2.16)
we have (see Fig. 2.4)

(4.18)

ou
n(P,) (s)

P7 0Vl
1as- kl(P) u(P)-- (1 -tan y cotan)u(P)

1
+-:(1 +tan ce cotan/3)u(P3)

--- ((tan a + tan y) cotan/3 + 4)u(Po)|.
4

For the case of the more accurate symmetric scheme, by (2.17) we have

P8 0u 1
(4.19) /l(P4) (s) ds kl(P4)[-2u(Po) + u(P4) + u(Ps)].

P7 01

The functionals from (4.18) and (4.19) vanish for all linear polynomials, so the
Bramble-Hilbert lemma yields

Irl,(x)l Chmiul,,,+l,x), 1/2 < m <= 1.

In the same way as in the cases of linear interpolation, we get

(4.20) nllo. n(x) -< Ch’+/2[lullm+3/=,, 1/2< rn <- 1.

For the case of the simple nonsymmetric or more accurate symmetric scheme, the
rate of convergence in energy norm is O(h3/2)"

(4.21)]]y-ull,.,<=Ch"+/)-llUllm+3/)_,., 1/2<m_<--l.

TRIANGULAR CELL-CENTERED GRIDS 1303

Third, in the case of the more accurate nonsymmetric scheme, when we consider
equilateral triangles, using (2.18) for the approximate fluxes, the functional has the form

’P8 0u 1
r/l(P4) (s) ds- k(P4)[-15u(Po)+ 15u(P1)-3u(P)

P70ll
(4.22) + 3 u(P3)+ 6u (P4) 6u(Ps)],

where kl(P4) --tan fl x/. This functional vanishes for polynomials of second degree.
Hence, for the irregular grid points, we have

In,(x)l<-Chmlulm+,,.(,, 1/2<m=<2.
Then, in a similar way as in (4.14) and (4.15), the following inequalities are valid:

(x)<C(h2mlu[2 h2m 2)
x-irregular

(4.23) C(h mlu[+ h

+,, < m 2.

Thus the case of the more accurate nonsymmetric scheme yields the best convergence
rate of (h2)

The following theorem summarizes the results.
THEOREM 4.2. Ifthe solution u(x) oftheproblem (2.1)-(2.3) with constant coecient

a(x) is H-regular, m , then the rate ofconvergence in the energy norm (4.9) is (h 1/2)
for the simple symmetric scheme, (h3/2) for the simple nonsymmetric and more accurate
symmetric schemes, and (h), m R 2, for the more accurate nonsymmetric scheme.

Remark 4.1. Let h be the coarse-grid cell size and h be the fine-grid cell size.
Our analysis is done for m h/h 2. It is easy to see that we can construct and study
the corresponding schemes for any integer ratio m. For instance, in 6 we have
performed a series of computational experiments for m 2, 4.

From a more careful look at the proofs of the estimates (4.16), (4.20), and (4.23),
we can see that the constant C in (4.16) does not depend on m, and estimates in (4.20)
and (4.23) depend on m linearly.

Remark 4.2. In the case of collection of uniform triangulations, applying the
estimate of (x) on the interface cells and II’in’s inequality (4.15), we can show that
the rate of convergence in the energy norm is (h/2) for the simple symmetric scheme
and (h3/) for all remaining approximations.

5. Eeient iterative methofls.
5.1. Algebraic formulation of the BEPS reeoaflitioaer. We paition the nodes in

the composite grid into two groups: 2, the nodes in the refined subregion f12, and, the nodes in 1. Then the matrix A admits the two-by-two block form

A
A AJ}"

The coarse-grid matrix is paitioned in the same manner as the composite grid
matrix A into a two-by-two block structure, where the first block represents the
coarse-grid points in

1304 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

The preconditioner B of Bramble, Ewing, Pasciak and Schatz [4] can be constructed
as follows.

For a given vector

b-
b2

the solution of B v b is computed in the following steps: (i) solve in ’2"

AllIF-- bl
(ii) compute the defect

d b-A
b2-Av

(iii) form the coarse-grid correction (solve the coarse-grid problem)

A=
b-Av

(iv) find vff in 2 such that

All Vff + A122 0

(i.e., compute the harmonic component). Then set

v=B-b=[v+v]2

In matrix notation, we have the following factored form ofthe BEPS preconditioner [8]:

(5.1) B=kA
where =-is the Schur complement for the coarse-grid matrix. The
corresponding block Choleski factorization of A reads

kA S I

where S=A-AA[A is the Schur complement for the composite-grid matrix.
Note that factorizations of A and B agree except for these Schur complements... Mgere frlfi ofe t-gd FC reefier f MeCre [141,
[11. Consider the omposite-grid matrix A (symmetric or nonsymmetric) and the
coarse-grid matrix A paitioned into the two-by-two block structures according to the
paitioning of into regions and . Then we formulate the FAC preconditioner
B for solving the system

Av=b, v= IVY]}}V2

as follows"
(i) solve the fine-grid problem in f/2"

AllVF= bl;

TRIANGULAR CELL-CENTERED GRIDS 1305

(ii) restrict the defect to the coarse grid

b2- A2A(bl
(iii) solve for coarse-grid correction

(iv) interpolate the correction

b-AA-]b
(v) then set

In matrix notation, we have [7]

(5.3) B,c [A-tl

5.3. Optimal order two-grid preconditioners. As shown in [8], the following
representation,

B-1A=
0 3--1S2

is valid for both two-grid preconditioners considered here. Using the local analysis
technique from [8], we can show the following main result concerning the spectrum
of g-ls2 and, hence, that of B-1A.

THEOREI 5.1. The Schur complements $2 and S are spectrally equivalent with
constants independent ofh. These constants are also independent ofjumps in the coefficient
a a(x) if it is continuous within each coarse-grid cell In the nonsymmetric case the
spectral equivalence reads as follows. The spectrum of -1S2 is contained in a segment
of the disc in the right-half complex plane

{z C, Re z >- Yl, Izl y_)

with "Y1 and ’Y2 constants independent of h and ofjumps in the coefficient a a(x).
Proof From Theorem 3.1, we have a spectral equivalence between the composite-

grid matrix A for any of our four approximations and the matrix ofthe simple symm.etric
approximation Ao. Hence it suffices to prove that Ao and the coarse-grid matrix A are
spectrally equivalent, i.e., that there exist two positive constants y and y2, such that

(5.4))tl;t; --< inf ytAoy <= ")tEft

and

1306 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

Then by taking inf over all the nodes from w2, we obtain

TlYY2 <- yzS2y <- y2yty:.
The constants y and Y2 in the above inequalities, which imply the desired result,

are bounded uniformly with respect to he, as well as with respect to jumps of the
coefficient a(x), as long as it is continuous within each coarse-grid cell.

The estimate (5.4) from above holds immediately from (3.9) and the flow definition
(2.15). We get

y aoy <- fi’,.,
where y(x) is a piecewise constant interpolant of)7 over each coarse-grid cell. Hence
2 1 when a(x) is constant over each coarse-grid cell.

The estimate below is based on local analysis. For simplicity, we consider the
case when a (x) -= 1 in 1.

We cover the region 1 with cells E (x) obtained by connecting the centers of every
six neighboring cells (see Fig. 5.1). Then the following representation of the quadratic
form ytAoy is valid:

y’Aoy Y Y {a(j)ki(j)(Aly()))} Y J(x;y),
E(x) _E(x)f-qto /=1
x

where the cells E(x) are counted only once.
Here

for the internal nodes,
for : near Yo.

In a similar way, we have

Z Z Z Z Y(x;
E(x) j.E(x)C’l /=1 xo3
x

Note that J(x; y) and J(x;) are nonnegative quadratic forms for each x 03. They
are positive definite if E (x) has at least one point on yo(Ul, 0) or when vlEx const
and]Ex) const.

rD

FIG. 5.1

TRIANGULAR CELL-CENTERED GRIDS 1307

We introduce

J(x; fi,)= J(x; y), y .
The local quadratic forms (x; 37) and infy J(x; fi,) are defined in the finite-

dimensional space associated with the coarse-grid unknowns in E(x). Therefore, there
exists a positive constant yl,e(x), such that

min J(x; fi,)>- Vl,e(x).(x;).

The constant Yl.x), x , do not depend on h but they are not, in general,
bounded with respect to h/hy. Hence

min yAoy min J(x; fi,) y,ex)J(x;)

min y,) J(x;)=
x x

where

")/1 min ’)/1,E(x)"
xo3

We note that, since the coarse-grid cells are geometrically similar to a fixed number
of triangles, the constant yl is independent of the number of the coarse-grid cells, but
our analysis allows some dependence on the aspect ratio he hi., which we have assumed
to be bounded.

Actually, as demonstrated in Ewing, Lazarov, and Vassilevski [8], we can show
that in the case of a(x)# 1, there exist constants 3’1 and Y2 which are bounded
independently of possible jumps of a(x) as long as it is continuous within each
coarse-grid cell. This has also been confirmed by our numerical experiments.

Theorem 5.1 implies the following corollary.
COROLLARY 5.1. The GCG-LS method from Axelsson [1], [2] for solving the

composite grid system with any of the preconditioners B will have a rate of convergence
independent of h and it will be insensitive to jumps in the coefficient a a(x).

6. Numerical experiments. In this section, we present numerical results for solving
model problems of type (2.1)-(2.3). We investigate experimentally the accuracy of the
finite difference schemes and how rapidly the proposed preconditioned methods
converge.

Our test problem is the diffusion equation on the region 12, the unit parallelogram
with acute angles equal to r/3"

12 { x, y O <--_ y <-- x/, y/x/ <- x <--_ yx/+ l }.

We assume the Dirichlet boundary

Fo {(x, 0): 0--<x -< 1} LJ {(x, v/-x)" 0-<_ x-<1/2}.
The discretizations are done on a cell-centered grid, as shown in Fig. 6.1, with

h 1/(n-) for some given integer n and ratio between coarse- and fine-grid cell sizes
equal to m, m => 1, integer.

We partition 12 into 12 U 122, where

122 {(x, y)" Yo < Y < x/, Xo + y Yo)/x/ < x < y/x/+ 1 }

and

Xo=(io+(jo-1)/2)h, mlYo (jo g)hx/,

1308 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

Yo x/(x- 1)

io z0

FIG. 6.1. The composite grid (m 2).

for some integers 0 < io < n, 0 <jo < n, and fl f\f2. All numerical experiments were
performed for io =jo n/2, i.e., the refined region is one-quarter of the whole domain.

We investigate the following cell-centered finite difference schemes" Scheme 0
(simple symmetric) and Scheme 1 (simple nonsymmetric). Our test problems are as
follows.

PROBLEM 1 (a smooth solution).

u= y(y--32)(y-x/x)(y-x/(x 1))

with a diffusion coefficient

a(x, y)= 1/(1 + 10(x2 +y2)).
PROBLEM 2 (a smooth solution with a discontinuous diffusion coefficient a(x, y)).

u (v/(x) (y))(y)dp(x, y)/a(x, y),
where

b(x, y) sin ((y x/(x 1)))sin ((y---_)sin (y)sin ((y-x/))
a(x, y) f lO0 whenR<Oor

1 otherwise,
R x/(x) y fi),

and =(i+(j-1)/2)h, fi (j 3j, 2. For our experiments we choose =io+2 and
f=jo+2.

PROBLEM 3 (a smooth solution with a support in f2).
u=p(x, y)qb(x, y),

where

p(x, y)=I(yo, -x/(x-))(y-),

and :)7 0.75.

33+<x<3+1,

otherwise;

y 37)), 33+<x<33+
1,

otherwise;

37<y<
2

TRIANGULAR CELL-CENTERED GRIDS 1309

We consider the following error estimators:
(i) the discrete L2-error, defined by

)1/2eo h2(y(x)- u(x)):

(ii) the discrete HI-error, defined by

el--I(Y- u)tA(y- u)l 1/2

We also consider the following preconditioners: Preconditioner 1 (BEPS precon-
ditioner) and Preconditioner 2 (FAC preconditioner).

We report on the number of iterations required of our preconditioned iterative
methods: PCG in the symmetric case and GCG-LS in the nonsymmetric case. The
stopping criterion is

rtr < e, e 10-18,
where r- b- Ay is the residual vector and y is the current iterate. As an initial guess,
we always choose p/-l/, i.e., a piecewise constant interpolant of the coarse-grid
approximation. Also, we report on the average reduction factor

q (A/Ao)1/iter,

where Ao is the corresponding norm of the initial residual, A is the norm of the last
residual, and iter is the number of iterations required to achieve the desired accuracy
e. The numerical results are collected on Tables 6.1-6.7. N is the number of unknowns
and go and gl are the corresponding discrete L2- and Hi-errors of the coarse-grid
approximations, which we interpolate piecewise constantly in order to get initial guesses
in our iterative methods.

TABLE 6.1
Accuracy results for problems without local refinement.

Problem

n go gl N

12 0.14-3 0.26-3 265
24 0.36-4 0.62-4 1105
48 0.89-5 0.15-4 4513

Problem 2

n go 71 N

12 0.18-4 0.57-3 265
24 0.75-5 0.29-3 1105
48 0.23-5 0.11-3 4513

Problem 3

n go N

12 0.32-5 0.87-4 265
24 0.65-6 0.23-4 1105
48 0.14-6 0.65-5 4513

1310 P. S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

TABLE 6.2
Accuracy results for problems with local refinement (m 2).

Problem

n iter Scheme eo e N

12 5 0 0.98- 3 0.82- 2 481
6 0.54-3 0.53-2

24 5 0 0.47-3 0.55-2 1969
6 0.13-3 0.26-2

48 5 0 0.23 3 0.38 2 7969
6 0.34-4 0.12-2

Problem 2

n iter Scheme eo e N

12 5 0 0.51-5 0.74-3 481
7 0.54-5 0.43-3

24 6 0 0.24-5 0.38-3 1969
6 0.20- 5 0.16-3

48 6 0 0.10- 5 0.26- 3 7969
6 0.61-6 0.54-4

Problem 3

n iter Scheme eo e N

12 4 0 0.94-6 0.32-4 481
4 0.94-6 0.32-4

24 4 0 0.15-6 0.56-5 1969
4 0.15-6 0.56-5

48 3 0 0.32 7 0.18 5 7969
3 0.32-7 0.18-5

From Tables 6.2 and 6.3, which use two different refinement factors 2m, we observe
a monotonic improvement of the accuracy in both norms. Since the solution of Problem
3 has support entirely in the refined region, predictably both schemes give consistently
the same results, since the truncation error is actually localized in the refined region.
For Problem 2, where the solution is piecewise smooth and almost local, we obtain
good convergence results. Both schemes behave in almost the same way, with the
simple nonsymmetric scheme giving slightly better results.

Although symmetric and nonsymmetric schemes show almost the same accuracy
and number of iterations, we recommend the use of the symmetric scheme since the
PCG method is more effective in both storage and operational count (hence, more
stable). Both preconditioners show fast convergence of the iterations which do not
depend on the discretization parameters h and rn (see Tables 6.4-6.7).

In the nonsymmetric case, we recommend the use of the FAC preconditioner
because it is less expensive in operation counts (one fine-grid solution is replaced by
interpolation, which is much faster).

Acknowledgments. The authors would like to express their gratitude to Professor
Richard Ewing and Professor Steve McCormick for their useful comments and remarks
which improved substantially the presentation. Careful comments by the referee are
also gratefully acknowledged.

TRIANGULAR CELL-CENTERED GRIDS 1311

12

24

48

12

24

48

12

24

48

TABLE 6.3
Accuracy results for problems with local refinement m =4).

Problem

iter Scheme eo e

6 0 0.20-2 0.15-1
8 0.85-3 0.10-1
6 0 0.10-2 0.10-1
8 0.21-3 0.51-2
6 0 0.54-3 0.72-2
8 0.53 -4 0.25 2

Problem 2

iter Scheme eo e

6 0 0.33-5 0.13-2
8 0.44-5 0.74-3
7 0 0.21-5 0.73-3
9 0.10-5 0.23-3
7 0 0.12-5 0.54-3
8 0.26-6 0.71-4

Problem 3

iter Scheme eo e

5 0 0.13-6 0.52-5
6 0.13-6 0.52-5
5 0 0.36-7 0.13-5
5 0.36-7 0.13-5
4 0 0.74-8 0.82-6
4 0.74-8 0.82-6

N

1345

5425

21793

N

1345

5425

21793

N

1345

5425

21793

TABLE 6.4
Iterative convergence results for Problem with local refinement.

Preconditioner

12

24

48

iter

m=2

Scheme q N

0.32-1 481
0.55 -1
0.32-1 1969
0.53-1
0.34-1 7969
0.49-1

n iter Scheme

12 6 0
8

24 6 0
8

48 6 0
8

m=4

0.46-1
0.73
0.57
0.118
0.60-1
0.109

N

1345

5425

21793

1312 P.S. VASSILEVSKI, S. I. PETROVA, AND R. D. LAZAROV

TABLE 6.5
lterative convergence results for Problem with local refinement.

Preconditioner 2

m=2

n iter Scheme q N

12 6 0 0.37 481
7 0.80-1

24 6 0 0.45 -1 1969
7 0.81 -1

48 6 0 0.49 -1 7969
7 0.74-1

m=4

n iter Scheme q N

12 8 0 0.63 1345
9 0.108

24 7 0 0.68-1 5425
10 0.155

48 7 0 0.80-1 21793
9 0.151

TABLE 6.6
Iterative convergence results for Problem 2 with local refinement.

Preconditioner

m=2 m=4

n iter Scheme q N n iter Scheme q N

12 5 0 0.28-1 481
7 0.64-1

24 6 0 0.45-1 1969
6 0.51-1

48 6 0 0.46-1 7969
6 0.51-1

12 6 0 0.46-1 1345
8 0.83 -1

24 7 0 0.64-1 5425
9 0.112

48 7 0 0.72-1 21793
8 0.103

TABLE 6.7
Iterative convergence results for Problem 2 with local refinement.

Preconditioner 2

m=2

n iter Scheme q N

12 6 0 0.44-1 481
7 0.78 -1

24 6 0 0.40-1 1969
7 0.79-1

48 7 0 0.64-1 7969
7 0.81-1

m=4

n iter Scheme q N

12 7 0 0.61 -1 1345
9 0.119

24 7 0 0.68 -1 5425
10 0.149

48 8 0 0.90-1 21793
10 0.146

REFERENCES

[1] O. AXELSSON, A generalized conjugate gradient, least squares method, Numer. Math., 51 (1987),
pp. 209-227.

[2] , A restarted version of a generalized preconditioned conjugate gradient method, Comm. Appl.
Numer. Methods, 4 (1988), pp. 521-530.

TRIANGULAR CELL-CENTERED GRIDS 1313

[3] R. BANK AND D. ROSE, Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987),
pp. 777-787.

[4] J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK, AND A. H. SCHATZ, A preconditioning technique for
the efficient solution ofproblems with local grid refinement, Comput. Meth. Appl. Mech. Engrg., 67
(1988), pp. 149-159.

[5] Z. CAI AND S. F. MCCORMICK, On the accuracy of the finite volume methodfor diffusion equations on

composite grids, SIAM J. Numer. Anal., 27 (1990), pp. 636-655.
[6] Z. CAI, J. MANDEL, AND S. F. MCCORMICK, The finite element method for diffusion equations on

general triangulations, SIAM J. Numer. Anal., 28 (1991), pp. 392-403.
[7] R. E. EWING, R. D. LAZAROV, AND P. S. VASSILEVSKI, Local refinement techniquefor elliptic problems

on cell-centered grids, I: Error analysis, Math. Comp. 56 (1991), pp. 437-462.
[8] ., Local refinement techniques for elliptic problems on cell-centered grids, II: Two-grid iterative

methods, Report No. 1989-47, Enhanced Oil Recovery Institute, University of Wyoming, Laramie,
WY, 1989; J. Numer. Linear Algebra Appl., to appear.

[9] W. HACKBUSCH, On first and second order box schemes, Computing, 41 (1989), pp. 277-296.
[10] B. HEINRICH, Finite Difference Methods on Irregular Networks, Akademie-Verlag, Berlin, 1987.
11] H. O. KREISS, T. A. MANTEUFFEL, B. SWARTZ, B. WENDROFF, AND A. B. WHITE, JR., Superconver-

gent schemes on irregular grids, Math. Comp., 47 (1986), pp. 537-554.
[12] J. MANDEL AND S. MCCORMICK, lterative solution of elliptic equations with refinement: The two-level

case, in Proc. Second Internat. Sympos. Domain Decompositions Methods, January 14-16, 1988,
University of California, Los Angeles, CA, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1989, pp. 81-92.

13] T.A. MANTEUFFEL AND A. WHITE, JR., The numerical solution ofsecond order boundary valueproblems
on nonuniform meshes, Math. Comp., 47 (1986), pp. 511-535.

[14] S. MCCORMICK, Fast adaptive composite grid (FAC) methods: Theory for the variational case,
Computing, Suppl., 5 (1984), pp. 115-121.

15] S. McCORMICK, Multilevel Adaptive Methods for Partial Differential Equations, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1989.

16] S. MCCORMICK AND J. THOMAS, Thefast adaptive composite grid (FAC) methodfor elliptic equations,
Math. Comp., 46 (1986), pp. 439-456.

[17] L. A. OGANESJAN AND L. A. RUHOVEC, Variational difference methods for the solution of elliptic
problems, Izd. Acad. Nauk Armjanskoi SSR, Jerevan, 1979. (In Russian.)

[18] S.V. PATANKAR AND D. B. SPALDING, Heat and mass transfer in boundary layers, Morgan-Grampian,
London, 1967.

19] O. A. PEDROSA, JR., Use of hybrid grid in reservoir simulation, Ph.D. thesis, Stanford University, CA,
1984.

[20] A. A. SAMARSKII, Introduction to Theory of Difference Schemes, Nauka, Moscow, 1971. (In Russian.)
[21] ., Local one dimensional difference schemes on nonuniform nets, USSR Comput. Math. and Math.

Phys., 3 (1963), pp. 572-619.
[22] A. A. SAMARSKII, R. O. LAZAROV, AND V. L. MAKAROV, Difference schemesfor differential equations

having generalized solutions, Vysshaya Shkola Publishers, Moscow, USSR, 1987. (In Russian.)
[23] A. N. TIKHONOV AND A. A. SAMARSKII, Homogeneous difference schemes on nonuniform nets, USSR

Comput. Math. and Math. Phys., 2 (1962), pp. 927-953.
[24] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[25] A. WEISER AND M. F. WHEELER, On convergence ofblock-centeredfinite-differencesfor elliptic problems,

SIAM J. Numer. Anal., 25 (1988), pp. 351-375.
[26] G. VORONOI, Nouvelles applications des paramtres continus ?t la thdorie desforms quadratures, J. Reine

Angew Math., 134 (1908), pp. 198-287.
[27] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized conjugate residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1314-1329, November 1992

1992 Society for Industrial and Applied Mathematics
003

SEMICOARSENING MULTIGRID ON A HYPERCUBE*

RICHARD A. SMITHf AND ALAN WEISERt

Abstract. A semicoarsening multigrid algorithm suitable for the kinds of problems arising in reservoir
simulation has been implemented on the Intel iPSC/2 hypercube. The method is an extension to nonsymmetric
problems of a method in [Dendy et al., Paper SPE 18409, presented at Society of Petroleum Engineers
Symposium on Reservoir Simulation, Houston, TX, 1989]. It performs well for strongly anisotropic problems
and problems with strongly discontinuous coefficients. For a test set of reservoir simulation problems,
residual reduction factors for a full-multigrid V-cycle range from 0.0022 to 0.19. The current codes achieve
about 50 percent parallel efficiency in two dimensions and about 30 percent parallel efficiency in three
dimensions with about x/-/8 processors for a grid with N unknowns.

Key words, multigrid, hypercubes, reservoir simulation

AMS(MOS) subject classifications. 15, 65, 68

1. Introduction. Multigrid was first applied to reservoir simulation in the early
1980s [3]. For three-dimensional (3d) problems, multigrid was not found to be competi-
tive with other solution methods because of the large expense per cycle of performing
preconditioned conjugate gradient smoothing in the xy, xz, and yz planes. Subsequently,
Dendy [6] reduced the cost of the method by using more efficient two-dimensional
(2d) multigrid solvers for the smoothing subproblems. More recently, Dendy et al. [8]
presented a semicoarsening version of multigrid for symmetric problems which per-
forms well for reservoir simulation problems, with about the same (sequential) CPU
cost per cycle but much simpler coding requirements than the previous multigrid
methods.

We present an extension ofthis semicoarsening method to nonsymmetric problems.
Among the features of the method are promising intergrid transfer operators due to
Schaffer [7]. We investigate ways to implement the method efficiently on hypercube-type
parallel processors, both to take advantage of current cost/benefit efficiencies of such
machines and to predict how method performance scales with future massively parallel
distributed-memory computers.

In the following five sections, respectively, we describe our method, describe
several ways of implementing it on hypercube machines, present convergence results,
present parallel timing results, and indicate future plans for this project.

2. The sequential method. Consider a one-dimensional (ld) problem resulting
from the one-dimensional pressure equation in reservoir simulation or any similar
scalar second-order elliptic partial differential equation. The nonzero structure of the
resulting tridiagonal matrix is depicted in Fig. 1. Let P be the permutation matrix
ordering the unknowns red-black. The resulting red-black matrix PT"AP is depicted in
Fig. 2.

In block form, the red-black linear system is

(1) Ax b

* Received by the editors February 19, 1991; accepted for publication October 18, 1991.

" 9550 Ella Lee Lane, Houston, Texas 77063. This work was performed while the author was at the
Exxon Production Research Company, 3120 Buffalo Speedway, Houston, Texas 77252.

t Center for Research on Parallel Computation, Rice University, Houston, Texas 77251 (deceased).

1314

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1315

b
d e
.lab

e d
! a

e d
!

FIG. 1. One-dimensional nonzero structure (n 7).

fa b
a f b

a ! b

e d
c e d

c e d/

FIG. 2. One-dimensional red-black matrix nonzero structure.

or

(2) (Art Arb
abr Abb/ (xX) (bb)

The nonzeros in Figs. 1 and 2 are labeled so that each nonzero diagonal of Art, Ark,
Akr, or Akk is labeled with a different letter. One way to solve (2) is to form and solve
the smaller Schur complement linear system

(3) AsXb-- bs,

where

(4) As Abk AbrA-rlArb
and

(5) bs bb AbA- b,

and then backsolve

(6) xr A(b Ax).

Note that in this ld case A is tridiagonal like A.
Now consider a two-level multigrid method for the original system, where the

black unknowns are the coarse-grid unknowns. The main steps in such a method are"

(i) smooth on the fine grid,
(ii) transfer the fine-grid residual to the coarse grid and solve for the coarse-grid

correction,
(iii) transfer the correction back to the fine grid and add it in to the current solution,
(iv) smooth again on the fine grid.

1316 RICHARD A. SMITH AND ALAN WEISER

In the black-box multigrid framework [5] it is customary to construct the coarse-
grid system Acxc bc as follows:

(7) rbr Ibb
Abr Abb,] Ibb /I bb

Here br and bb denote the current residuals, and are only equal to the original right-hand
side if the current iterate is zero. Ibb denotes the coarse-grid identity matrix" Pure
injection is used for interpolating coarse-grid unknowns to black unknowns on the
fine grid.

A key observation is that if

(8) Tbr -AbrA
and

(9) Trb -AIA,.b,

then

(10) Ac TbrArrTrb + TbArb + AbrTrb + Abb

(11 Ab,.Ar1Ab Ab,.A1A,.b Ab,.A1Arb + Abb

(12) -AbrAlArb + Abb

(13) =A
and

(14) b -AbrAr-r br q- bb bs,

so that the coarse-grid multigrid system is identical to the Schur complement system.
If the smoother on the fine grid solves exactly for the red unknowns in terms of the
black unknowns, e.g., the smoother is red-black Gauss-Seidel, then the two-level
multigrid solver is an exact solver. Furthermore, if the coarse-grid system itself is solved
by a two-level multigrid solver, and so on recursively until the coarsest-grid system
with one unknown is solved directly, the resulting multigrid V-cycle is a direct solver.

Now consider a two-dimensional problem with a nine-point operator. The resulting
nine-diagonal matrix is depicted in Fig. 3. Let P be the permutation matrix ordering
lines of unknowns red-black. The resulting red-black matrix PrAP is depicted in Fig. 4.

As in the ld case, if Tb -Ab,.Ar and Tb -AlArb, then the coarse-grid system
for two-level multigrid is exactly the Schur complement system Ax b. However,
the Schur complement matrix is dense. Fill occurs for two reasons. First, Ar has dense
diagonal blocks, so Tb,. and T,.b have dense diagonal blocks. Second, extra fill occurs
in direction 1. For instance, the black unknowns corresponding to (il, i2) (2, 1) and
(4, 3) are both connected to the red unknown corresponding to (il, i2)= (3, 2) via Trb
and Tb terms. Elimination of red terms results in direct connections between (2, 1)
and (4, 3) in As even though their indices differ by more than 1 in direction 1. The
only way to avoid this extra fill is to allow connections in Tbr and Tb in direction 2
only. The locations in Fig. 4 corresponding to connections in direction 2 only are the
locations for diagonals c, g, k, and p.

Some new notation must be introduced to deal with connections in direction 2
only. Let an "/" (respectively, "r") superscript appended to Arb or Abr denote the
result of zeroing out all entries except those corresponding to connection of a black
unknown to a red unknown with a smaller (respectively, larger) index in direction 2.

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1317

f a
e

b d
a b fed
e f c
h i j k
g h n j o k
rn g n o k

p q a b
p q e a b
r p e a

g h
rn O h

rn g

c d
fcd

c
ij kl
ni j ok

n o
p q a b
r p q e a

r p e

k

b

a/

FIG. 3. Two-dimensional matrix nonzero structure (n 3, n2 5).

h k
o k

o k
g h
m !t h

rn 0

e d
f c d

P q
r p q

r p

c d

P q
r p

k j
o k n j

o k n i)

FIG. 4. Two-dimensional red-black matrix nonzero structure.

Then Arb Alrb + Ab and Abr Albr+ Abr. For example, in Fig. 4, Alb may contain
nonzeros on diagonals c, d, and f; Ab may contain nonzeros on diagonals p, q, and
r; Albr may contain nonzeros on diagonals g, h, and m; and A, may contain nonzeros
on diagonals k, l, and o. Similarly, let diagtrb (V) (respectively, diagb (V), diag/b (V),
diag, (v)) denote the matrix with the same nonzero structure as Arb (respectively, Arb,
Abr, Abr) with the only nonzero entries obtained from vector v and put on the diagonal
corresponding to connections of black unknowns to red unknowns with lower (respec-
tively, higher, lower, higher) index in direction 2 and with the same index in direction
1 For example, in Fig. 4, diag rb (v) (respectively, diagrb (v), diag (v), diagbr (v))
puts nonzeros in the locations of diagonal c (respectively, p, g, k).

1318 RICHARD A. SMITH AND ALAN WEISER

With this notation, we define the following transfer operators due to Steve Schaffer
at the New Mexico Institute of Mining and Technology [7]"

(15) Trb=_(diagl (A-1 (A-Irb Arbe) q- diagrb arbe)),

(16) T=- (diag (eTAbrA)+diagrbr (eTarar)),
where e is the vector of all ones.

We use (15) and (16) for transfer operators. We take the initial guess for the
solution to (1) on a given grid to be the best constant solution

be
(17) x0- e,

e TAe
rather than zero. Here (eTAe)- is precomputed and calculation of b T e is very cheap,
involving only adds. For our smoother we use red-black line Gauss-Seidel with lines
oriented in direction 1. This completes the specification of our basic two-level 2d
semicoarsening multigrid method. The adjective semicoarsening is used because the
coarse grid is only coarsened in direction 2, while the usual "full coarsening" multigrid
involves coarsening in both directions 1 and 2 simultaneously.

The method works particularly well for strongly anisotropic problems. Suppose
connections are much stronger in direction 1 than direction 2. Then line Gauss-Seidel
is a good iterative method in direction 1. Also, entries in arb and A are small, so
entries in Tr and T are small, and by (7), A is a good approximation to A (and
A). Conversely, suppose connections are much stronger in direction 2 than direction
1. ThenA is approximately diagonal, and At, A,A, and A, are well approximated
by diag (A), diag(A), diag (A), and diag (A), respectively. Thus T and

T are very good approximations to -A-A and -AA- and hence the coarse-grid
system is very close to the Schur complement.

This good convergence for strongly anisotropic problems is borne out in Tables
2, 3 and 4. (Here ratio is the anisotropy ratio in (18).)

Now consider a 3d model problem with a 15-point operator (a three-point operator
in direction 3 tensored with a five-point operator in directions 1 and 2). The resulting
15-diagonal matrix is depicted in Fig. 5. Let P be the permutation matrix ordering
planes of unknowns red-black. The resulting red-black matrix PAP is depicted in
Fig. 6.

Again, the same two considerations cause fill in the Schur complement matrix.
Our notation to deal with connections in direction 3 is similar to the 2d case. For Fig.
6, Arb has nonzeros only in diagonals a and b, Arb has nonzeros only in diagonals c
and d, Ar has nonzeros only in diagonals a and b, A has nonzeros only in diagonals
g and h. Also, diagtr (v) (respectively, diag (v), diagr (v), diag,r (v)) has nonzeros
only in diagonal a (respectively, c, e, g).

We would again like to use transfer operators (15) and (16). However, now Arr
is a five-point operator which is expensive to invert. Hence, following Schaffer [7], we
use one cycle of our 2d semicoarsening multigrid method to approximately solve the
Arr systems needed in constructing T and Tb.

We use (17) for initial guesses and approximate red-black Gauss-Seidel plane
relaxation for our fine-grid smoothing step, where the 2d semicoarsening multigrid
method approximately solves the plane Gauss-Seidel equations. This completes the
specification of our basic two-level 3d semicoarsening multigrid method.

Note that a fine-grid 3d seven-point operator forms 15-point operators on the
coarser 3d grids, and a fine-grid 2d five-point operator forms nine-point operators on
the coarser 2d grids.

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1319

e f f
f e f f

f e f
f e f f

f f e f f
f f e f

f e f
f f e f

f f e

a b b
b a b b

b a b
b a b b

b b a b b
b b a b

b a b
b b a b

b b a

c d d
d c d d

d c d
d c d d

d d c d d
d d c

d c d
d d c d

d d c

g h h
h g h h

h g h
h g h h

h h g h h
h h g h

h g h
h h g h

h h g

FIG. 5. Three-dimensional matrix nonzero structure (nl n2 n3 3).

e f f
f e f f

f e f
f e f f

f f e f f
f f e f

f e f
f f e f

f f e

x x

a b b
b a b b

b a b
b a b b

b b a b b
b b a b

b a b
b b a b

b b a
c d d
d c d d

d c d
c d d

d d c d d
d d c d

d c d
d d c d

d d c
g h h : z z
h g h h , : z x

h g h z z
h g h h z

h h g h h
h h g h

h g h
h h g h

h h g

FIG. 6. Three-dimensional red-black matrix nonzero structure.

1320 RICHARD A. SMITH AND ALAN WEISER

4 4
3 3

2 2

FIG. 7. V-cycle.

4 4
3 3 3 3

2 2 2 2 2 2
1 1 1 1

FIG. 8. FMV-cycle.

Again this method works particularly well for strongly anisotropic problems. This
good convergence for strongly anisotropic problems is borne out in Table 5.

We have used several standard multigrid cycling approaches. The "V-cycle" (Fig.
7) starts on the finest grid with a two-level method and solves the resulting coarser-grid
system recursively with another two-level method, and so on until the coarsest-grid
system with one unknown is solved directly. The full multigrid V-cycle, or FMV-cycle
(Fig. 8), generates an initial guess for the fine-grid system by preceding the fine-grid
V-cycle recursively with another V-cycle on the next-finest grid, and so on so that the
very first calculation is a direct solve on the coarsest grid. The initial FMV-cycle, or
IFMV-cycle, takes the first cycle to be an FMV-cycle and the remaining cycles to be
V-cycles.

Our 2d sequential code requires about 30N words of storage, where N is the
number of unknowns on the fine grid. Our 3d sequential code requires about 148N
words of storage. This is a large storage requirement for an iterative solver. It can be
reduced if the matrix is known to be symmetric, if single precision is acceptable, or if
the fine grids are known to be seven-point in three dimensions and five-point in two
dimensions, rather than 15-point in three dimensions and nine-point in two dimensions.

3. The parallel method. We have implemented our method on distributed-memory
parallel computers of hypercube type by partitioning the problem domain into sub-
domains and assigning a rectangular subdomain to each node (processor). We have
left the number of subdomains in each direction variable, so that we can experiment
with all possible rectangular mappings ofour line and plane algorithms to our hypercube
architecture. Our results in Tables 7-12 indicate experimentation with various node
configurations. For each node, we pad local arrays by one at the lower and higher
bounds of each array in each direction. The padding areas are used as buffers to
exchange boundary information with neighbor nodes. Because the method mainly
consists of subtasks of the form

for all unknowns in direction
perform task T in directions j and k

oi"

for all unknowns in direction
for all unknowns in direction j
perform task T in direction k

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1321

where (i,j, k)-some permutation of (1,2,3), the parallelization tasks required in
directions 1, 2, and 3 are essentially independent. Boundary data are exchanged as
needed before loops. In the following example, the call to pad exchanges boundary
data for array b in direction 2, as needed by loop 10.

call pad (2,b
do 10 i3- i31,i3h
do 10 i2 i21,i2h
do 10 i1= ill, ilh

a(il,i2,i3) b(il,i2-1,i3) + b(il,i2 + 1,i3)
10 continue

A major aspect of parallel implementation is treatment of coarse grids with no
unknowns for some nodes (such grids are designated "below C-level" in Briggs, Hart,
McCormick, and Quinlan [4]). FMV-cycles tend to be relatively more expensive than
V-cycles in parallel, because a greater portion of their computations are carried on
below C-level. Both Hempel and Schuller [10] and Briggs et al. [4] use the "sleeping
nodes" approach to C-level, in which nodes which are allocated no unknowns are set
idle and then re-awakened when they rise above C-level again. We have taken two
different approaches to C-level in our current 2d and 3d codes.

2d. Our current 2d code uses a ld global approach. When the grid goes below
C-level in direction i, global copies of the current problem are distributed to all nodes
in direction i. The distribution is performed using a ld version of a global concatenation
operation (GCOL in [11]). Each node then proceeds to handle the global problem
below C-level. No more internode communication is needed in this direction until
computations resume above C-level. The penalty, of course, is that sub-C computations
are duplicated many times, and extra communication is required for the global broad-
casts.

This ld global approach does not scale well. As the number of nodes grows large,
so does the size of the sub-C level, and hence the parallel CPU time. However, for a
moderate number of nodes good parallel efficiency is achieved, balancing the size of
the sub-C level with the communication performed above the sub-C level. This approach
can efficiently accommodate up to the order of x/ nodes, where N nl. n2 is the
number of fine-grid points.

Solution of the tridiagonal ld linear systems in our 2d code is consistent with this
approach. We solve the tridiagonal systems with line Gauss-Seidel using a version of
two-level cyclic reduction (Johnsson [12]). The steps in two-level cyclic reduction are:

1. Forward solve local interior unknowns in each subgrid;
2. Broadcast and solve a small global system for boundary unknowns in each

subgrid (ld global concatenate in direction 1);
3. Backsolve local interior unknowns in each subgrid (Fig. 9).
The small global system is distributed exactly at C-level. We combine the two-level

cyclic reduction approach with the burn-at-both-ends (BABE) idea, assigning an upper
and a lower node to each subgrid and eliminating unknowns for the two nodes for
each subgrid in parallel (Fig. 10).

3d. Our current 3d code handles C-level using a ld local duplication approach.
As a node goes below C-level, it copies the local problem from a neighboring node.
In this way all nodes stay busy working on systems of small size. This approach is
closely related to the superconvergent parallel multigrid approach [9]. However,
identical rather than different small systems are solved, so that the numerical answer
is independent of the number of nodes.

1322 RICHARD A. SMITH AND ALAN WEISER

o

n" nonzero
o created zero

f" fill-in

f
f
f
N
N
0

o

f
f
f

F

o
B o
o

N, F" part of small global system for boundary unknowns

FIG. 9. Two-level cyclic reduction.

T c
a n

a N N
N N

d

n" nonzero
a created zero in initial stage for upper node
b created zero in initial stage for lower node
N part of small shared system for center unknowns
c created zero in final stage for upper node
d created zero in final stage for lower node

FIG. 10. Burn-at-both-ends elimination.

As the grid gets coarser, the increment between neighboring nodes grows. Thus
on the next-to-coarsest grid there are nnode/2 copies of small system 1, nnode/2
copies of small system 2, and a nodal increment to neighbors of nnode/2. This situation
is illustrated in Fig. 11, where there are 8 nodes and 16 fine-grid unknowns, and
ninc nodal increment to neighbors.

Solution of the tridiagonal ld linear systems in our 3d code is consistent with our
local duplication approach: We use the ld semicoarsening multigrid direct solve
outlined in 2, which is equivalent to fully recursive cyclic reduction.

The local duplication approach scales fairly well. As a number of nodes grows
large, the amount of work done by each node is proportional to log (N), the number
of levels. However, in practice there is a penalty for using this approach, as well as
the "sleeping nodes" approach: internode communication must continue at all sub-C
levels.

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1323

node node 2 node 3 node 4 node 5 node 6 node 7 node 8

ninc ab cd ef gh ij kl mn op

coarsen
copy

ninc

a b c d e f g h

coarsen
copy

ninc 2

a b c d
a b c d

coarsen
copy

ninc 4

a a b b
a a b b

coarsen
copy

ninc 8
a a a a

a a a a

FIG. 11. Duplication of neighboring systems.

Our 2d hypercube code requires about 56N words of storage, where N is the
number of unknowns on the fine-grid local subdomain. Our 3d sequential code requires
about 136N words of storage. So far, storage has been the bottleneck in determining
the size of problems we can run on hypercubes.

4. Convergence results (2d). Our 2d test problems are Neumann model problems

(18) (Ul),- (ratio u:)2= 1

in the unit square,

Ou
(19) --=0

On

on the boundary, with the matrix made nonsingular by doubling the first main diagonal
entry.

The next few tables depict residual reduction factors for various runs. The initial
guess Xo for x is taken to be 0. The residual reduction factor is averaged over five
iterations as

([I b ax5 II/II b 2) 5.

Factors less than .005 or so are affected by roundoff and may actually represent even
faster convergence.

The effect of (17) is seen for ratio 1, FMV-cycles in Table 1. Based on these
results, (17) is used in all other runs reported.

V-cycle, IFMV-cycle (one FMV-cycle followed by four V-cycles), and FMV-cycle
residual reduction factors for different values of ratio are presented in Tables 2, 3, and
4, respectively. Residual reduction factors are generally largest for ratio near one and
smaller for ratio either very large or very small. Since an FMV-cycle costs roughly
twice as much as a V-cycle, the IFMV-cycle generally seems most efficient, with little
more cost than a V-cycle and with residual reduction factors intermediate between
those of V and FMV.

1324 RICHARD A. SMITH AND ALAN WEISER

TABLE
Effect of (17).

nl n2 xo=0 (17)

10 .054 .016
20 .070 .020
40 .14 .024
80 .24 .027

TABLE 2
Two-dimensional V-cycle residual reduction factors.

Ratio nl=n2=10 nl=n2=20 nl=n2=40 nl=n2=80

1000.
100.
64.
32.
16.
8.
4.
2.
1.
.5
.25
.125
.0625
.03125
.015625
.01
.001

.033 .079 .097 .11

.078 .090 .11 .12

.075 .091 .11 .12

.072 .090 .10 .12

.069 .086 .10 .11

.061 .076 .090 .10

.055 .068 .085 .099

.055 .068 .084 .099

.054 .067 .083 .098

.053 .068 .082 .096

.056 .065 .079 .093

.050 .061 .077 .090

.035 .065 .073 .087

.017 .056 .071 .085

.0055 .039 .073 .080

.0036 .025 .067 .078

.0052 .0068 .0092 .047

TABLE 3
Two-dimensional IFMV-cycle residual reduction factors.

Ratio nl n2= 10 nl n2=20 nl n2=40 nl n2=80

1000.
100.
64.
32.
16.
8.
4.
2.
1.

.5

.25

.125

.0625

.03125

.015625

.01

.001

.0078 .017 .020 .023

.028 .030 .037 .043

.029 .034 .042 .048

.033 .041 .048 .055

.040 .048 .056 .064

.045 .053 .061 .070

.046 .053 .061 .071

.044 .051 .059 .068

.042 .050 .057 .066

.042 .048 .056 .064

.040 .046 .054 .062

.032 .045 .052 .060

.020 .044 .049 .058

.0083 .036 .048 .056

.0030 .024 .047 .050

.0035 .016 .043 .030

.0051 .0069 .0092 .030

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1325

TABLE 4
Two-dimensional FMV-cycle residual reduction factors.

Ratio nl=n2=10 nl=n2=20 nl=n2=40 nl=n2=80

1000.
100.
64.
32.
16.
8.
4.
2.
1.

.5

.25

.125

.0625

.03125

.015625

.01

.001

.0055 .0080 .010 .014

.0037 .0051 .0068 .0091

.0034 .0044 .0059 .0085

.0029 .0041 .0057 .0078

.0048 .0056 .0065 .0077

.0090 .010 .012 .014

.014 .016 .019 .021

.017 .020 .023 .026

.017 .019 .022 .025

.014 .017 .019 .022

.012 .015 .017 .019

.011 .013 .015 .017

.010 .011 .013 .015

.0072 .011 .013 .015

.0037 .012 .014 .015

.0034 .011 .012 .015

.0052 .0068 .0092 .015

3d. We use the test set of reservoir simulation problems from Dendy et al. [8].
The problems are symmetric except for Problem 7, which was symmetrized before
solution in [8]. Several of the problems have large coefficient discontinuities. Average
residual reduction factors are given in Table 5 for the results from [8] and for our
code running with V-cycles, IFMV-cycles, and FMV-cycles. In these runs our code
used two-dimensional FMV-cycles to do the red-black smoothing by planes.

Our results for Problems 6 and 7 depend strongly on ordering of axes. Other
solvers that do particularly well on anisotropic problems share this property, e.g.,
nested factorization [2]. Table 6 presents average residual reduction factors for an

TABLE 5
Three-dimensional residual reduction factors.

Problem Dendy V V IFMV FMV

.27 .044 .027 .012
2 .27 .059 .025 .0022
3 .27 .11 .011 .0070
4 .25 .058 .028 .0083
5a .09 .21 .16 .054
5b .02 .27 .22 .091
6 .29 .24 .20 .10
7 .27 .37 .29 .19

TABLE 6
Three-dimensional residual reduction factors.

Ordering: 123 132 213 231 312 321

Problem 6 .43 .13 .43 .31 .10 .31
Problem 7 .19 > > > > .16

1326 RICHARD A. SMITH AND ALAN WEISER

FMV-cycle with our code for the various axis orderings. The results in Table 5 are
given for ordering 312 for Problem 6.

5. Parallel timing results (2d). Table 7 (respectively, 8) presents timing results for
a five-iteration V-cycle (respectively, FMV-cycle) of the 2d code on the iPSC/2 hyper-
cube at Oak Ridge with 64 Intel scalar 386 nodes. CPU is seconds of dedicated wall
clock hypercube CPU time, and efficiency is

CPU1
nnodes CPUnnodes

The OLM optimizing compiler was used. An S indicates that the run ran out of storage
and the CPU time was estimated based on other runs. The nnodel and nnode2 columns
show the numbers of nodes in directions 1 and 2, respectively. The shown values
resulted in the smallest CPU time for that value of nnodes nnodel nnode2. The
fact that this usually occurred with an approximately square configuration of nodes
indicates that the additional arithmetic incurred by using cyclic reduction in direction
1 is not a significant factor, and that communication costs comprise the bulk of the
parallel inefficiency. The * values achieve about 50 percent efficiency. This is obtained
with up to about n 1/8 nodes, scaling as expected. The .’s represent runs that were not
made because of configuration or storage constraints.

3d. Table 9 (respectively, 11) presents timing results for a five-iteration V-cycle
(respectively, FMV-cycle) of the 3d code on the iPSC/2 64-node hypercube at Oak
Ridge. Table 10 (respectively, 12) presents the resulting efficiencies. For V-cycles,
scaling behavior is more uniform than in the 2d case, in that CPU time for a given
grid consistently decreases as more nodes are used. Unfortunately, efficiencies are not
as high as in the 2d case. About 30 percent efficiency for V-cycles is achieved with

TABLE 7
Two-dimensional V-cycle hypercube timing results.

nl n2 nnodes nnodel nnode2 CPU Efficiency

32 3.8 1.0
2 2 2.8 .7
4 2 2 2.1 .5*
8 4 2 1.9 .3

16 4 4 1.6 .1
32 8 4 1.9 .1
64 8 8 2.0

64 14.9 1.0
2 2 9.7 .8
4 2 2 5.9 .6
8 4 2 4.8 .4*

16 4 4 3.8 .2
32 8 4 3.8 .1
64 8 8 4.8

128 59.6S
2
4 2 2 20.7 .7
8 4 2 15.0 .5*
16 4 4 10.8 .3
32 8 4 9.7 .2
64 8 8 10.3 .1

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1327

TABLE 8
Two-dimensional FMV-cycle hypercube timing results.

n n2 nnodes nnode nnode2 CPU Efficiency

32 7.9 1.0
2 2 5.4 .7
4 2 2 4.7 .4*
8 4 2 4.4 .2
16 4 4 4.0 .1
32 8 4 4.0
64 8 8 4.2

64 30.9 1.0
2 2 18.1 .9
4 2 2 12.5 .6
8 4 2 9.9 .4*
16 8 2 7.7 .3
32 8 4 6.8 .1
64 16 4 7.3

128 123.6S
2
4 2 2 41.2 .8
8 4 2 25.9 .6
16 8 2 17.8 .4*
32 8 4 14.6 .3
64 16 4 13.4 .1

TABLE 9
Three-dimensional hypercube V-cycle CPU seconds for given node configuration.

nl =n2 n3 8x8x1 4x4x2 4x4xl 2x2x2 2x2xl lxlxl

32 4.6 4.9 5.0 5.3
32 2 15.8 16.6 17.1 18.4 18.9 29.6S
32 4 27.8 28.4 31.3 32.4 38.7 70.0S
64 6.5 7.5 9.6 21.2S
64 2 22.6 26.5 27.6 118.4S
64 4 41.0 46.3 54.8 280.0S
128 9.3 13.2 84.8S

TABLE 10
Three-dimensional hypercube V-cycle parallel efficiencies.

nl=n2 n3 8x8xl 4x4x2 4x4x1 2x2x2 2x2xl lxlxl

32 <.1 .1 .3 1.0

32 2 <.1 .1 .1 .2 .4
32 4 <.1 .1 .1 .3 .5
64 .1 .2 .6
64 2 .1 .1 .3
64 4 .1 .2 .3
128 .1 .4

1328 RICHARD A. SMITH AND ALAN WEISER

TABLE 11
Three-dimensional hypercube FMV-cycle CPU seconds for given node configuration.

nl=n2 n3 8x8xl 4x42 4x41 22x2 2x2x1 lx11

32 14.3 14.2 13.6 11.5
32 2 63.7 64.1 66.5 64.0 65.7 74.4S
32 4 149.0 148.1 150.4 150.4 161.7 211.6S
64 22.9 23.8 27.3 46.0S
64 2 102.2 110.4 114.5 297.6S
64 4 242.3 257.5 284.3 846.4S
128 35.6 45.0 184.0S

TABLE 12
Three-dimensional hypercube FMV-cycle parallel efficiencies.

nl=n2 n3 8x8xl 4x42 4x4xl 22x2 2x21 llxl

32 <.1 .1 .2 1.0
32 2 <.1 <.1 .1 .1 .3
32 4 <.1 <.1 .1 .2 .3
64 <.1 .1 .4
64 2 <.1 .1 .2
64 4 .1 .1 .2
128 .1 .3

v/nl n2. n3/8 nodes, with relatively higher efficiencies for finer grids. The lower
efficiency in three dimensions than in two dimensions may be partly due to the treatment
of coarse grids, and partly due to the larger surface-to-volume ratio for 3d grids than
2d grids, with finer grids needed to get the same ratio of interior work to boundary work.

6. Plans. Plans include trying different coarse-grid approaches in three dimen-
sions, timing our codes on the new generation of Intel RX hypercubes with faster
communication networks, and writing a version of the codes for the Connection
Machine.

We are grateful to Joel Dendy at Los Alamos for access to his sequential semi-
coarsening multigrid codes and for many helpful conversations; and to Mary Wheeler,
Lawrence Cowsar, and Ashok Chilakapati at Rice University for helpful conversations.

REFERENCES

[1] R. E. ALCOUFFE, A. BRANDT, J. E. DENDY, JR., AND J. W. PAINTER, The multi-grid methodfor the

diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput., 2 (1981),
pp. 430-454.

[2] J. R. APPLEYARD AND I. M. CHESHIRE, Nested factorization, Paper SPE 12264, presented at the
Seventh Society of Petroleum Engineers Symposium on Reservoir Simulation, Nov. 16-18, 1983.

[3] A. BEHIE AND P. A. FORSYTH, JR., Multi-grid solution of the pressure equation in reservoir simulation,
Soc. Pet. Engrg. J., 23 (1983), pp. 623-632.

[4] B. BRIGGS, L. HART, S. MCCORMICK, AND D. QUINLAN, Multigrid methods on a hypercube, in
Multigrid Methods: Theory, Applications, and Supercomputing, S. F. McCormick, ed., Marcel
Dekker, Inc., 1988.

[5] J. E. DENDY, JR., Black box multigrid, J. Comp. Phys., 48 (1982), pp. 366-386.
[6] ., JR., Two multigrid methods for three-dimensional problems with discontinuous and anisotropic

coefficients, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 673-685.

SEMICOARSENING MULTIGRID ON A HYPERCUBE 1329

[7] J. E. DENDY, JR., private communication.
[8] J. E. DENDY, JR., S. F. MCCORMICK, J. W. RUGE, T. F. RUSSELL, AND S. SCHAFFER, Multigrid

methods for three-dimensional petroleum reservoir simulation, Paper SPE 18409, presented at the
Society of Petroleum Engineers Symposium on Reservoir Simulation, Houston, TX, Feb. 6-8, 1989.

[9] P.O. FREDERICKSON AND O. A. MCBRYAN, Parallel superconvergent multigrid, in Multigrid Methods:
Theory, Applications, and Supercomputing, S. F. McCormick, ed., Marcel Dekker, Inc., 1988.

[10] R. HEMPEL AND A. SCHULLER, Experiments with parallel multigrid algorithms using the SUPRENUM
communications subroutine library, GMD Studie 141, St. Augustin, April 1988.

[11] iPSC/2 Programmer’s Reference Manual, Intel Corporation, 1988.
[12] S. L. JOHNSSON, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci. Statist. Comput.,

8 (1987), pp. 354-392.

SIAM J. SCI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1330-1346, November 1992

1992 Society for Industrial and Applied Mathematics
004

EFFICIENT PARALLEL ALGORITHMS FOR SOLVING
INITIAL-BOUNDARY VALUE AND TIME-PERIODIC
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS*

STEFAN VANDEWALLE" AND ROBERT PIESSENSf

Abstract. The numerical solution of a parabolic partial differential equation is usually calculated by a
timestepping method. This precludes the efficient use of vectorization and parallelism if the problem to be
solved on each time level is not very large. In this paper an algorithm that overcomes the limitations of the
standard marching schemes by solving the problem at all the time levels simultaneously is discussed. The
method is applicable to linear and nonlinear problems on arbitrary domains. It can be used to solve
initial-boundary value problems as well as time-periodic equations. We have implemented the method on
an Intel iPSC/2-VX hypercube. The numerical properties of the method are illustrated by two numerical
examples and its performance is compared to that of the best standard solvers.

Key words, parallel processing, waveform relaxation, multigrid, parabolic partial differential equation

AMS(MOS) subject classifications. 65M20, 65N20, 65W05

1. Introduction. The class of parabolic partial differential equations plays a very
important role in many branches of science and engineering. As a result, considerable
effort has been expended in formulating numerical solution methods that are both
accurate and efficient. Due to the advent of parallel computers these well-known
algorithms must be reconsidered, judged, and eventually restructured, to take advantage
of the facilities offered by the new hardware.

In a previous study, we analyzed and compared the parallel characteristics of
several classical techniques (see 16]). We illustrated that standard parabolic marching
schemes can only be parallelized efficiently for problems that are large enough, i.e.,
the number of unknowns (and, consequently, the arithmetic complexity) per processor
at each time level is large enough to outweigh communication. In that case, the best
sequential algorithm will run efficiently and new parallel algorithms are not really
needed. For relatively small problems, i.e., problems with few unknowns per time level
or problems solved on large-scale parallel machines, only explicit methods retain some
parallel efficiency. They suffer, however, from a severe stability constraint, which
necessitates the use of very small timesteps and makes them numerically unattractive
for solving problems on fine meshes. The best standard methods, e.g., implicit discretiz-
ation with multigrid solution of the system of unknowns at each time level, perform
totally unsatisfactorily.

New algorithms are therefore needed for solving parabolic problems on large-scale
parallel machines. These algorithms should either improve the numerical quality of
the explicit methods, or increase the parallel efficiency of the implicit methods. The
former is explored in a series of papers by Evans (see, e.g., [3] and [4]) and in a paper
by Rodrigue [12]. Both approaches essentially lead to new explicit methods with
extended stability regions. An improvement in the implicit methods may be achieved
by operating on several, or on all, time levels at once. With the windowed relaxation
methods proposed by Saltz and Naik, the standard Jacobi and successive overrelaxation

* Received by the editors November 14, 1990; accepted for publication (in revised form) December 2,
1991.

f Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001
Heverlee, Belgium. The second author is a senior research assistant of the National Science Foundation,
Belgium.

1330

PARALLEL PARABOLIC PROBLEM SOLVERS 1331

(SOR) methods are extended to operate on a window of time levels [13]. In the parallel
timestepping method of Womble, one or more processors are assigned to each time
level [21]. While the solution is being calculated on one time level, other processors
update the approximation on the subsequent time levels. In 1984, the multigrid
technique was extended by Hackbusch to solve a parabolic equation on several time
levels simultaneously (see [6]). A parallel implementation of this parabolic multigrid
method was presented by Bastian, Burmeister, and Horton in [2].

In this paper, we discuss a technique that belongs to the latter class of methods.
It is different from the previous approaches in that it can be defined without explicit
reference to any time discretization technique or to any time levels. The method is
based on waveform relaxation, which is briefly discussed in 2. We discuss the applica-
tion of waveform relaxation for solving initial-boundary value problems in 3. In 4,
the solution of time-periodic parabolic equations is considered. We have implemented
the method on an Intel hypercube. Some implementation aspects are discussed in 5.
The communication and arithmetic complexities are calculated in 6. In 7, we
illustrate the method by two examples, and we compare its performance to that of a
parallel implementation of the best standard methods. The results are summarized in
the final section.

2. The waveform relaxation method. Waveform relaxation, also called dynamic
iteration or Picard-Lindel/Sf iteration, is an iterative solution technique for systems of
ordinary differential equations [10], [11], [20]. It differs from any other method in
that the iteration in the algorithm is defined on functions. The successive iterates are
defined as the solutions of a sequence of systems of differential equations. These
systems may be derived similarly to the way in which the systems of equations are
derived for the classical relaxation methods.

Consider the following linear, constant-coefficient system of d first-order differen-
tial equations"

d
(2.1) U+LU=F, with U(to) Uo (Ldxd; U(t),F(t)d).

dt

The application of a waveform relaxation step to U"), an approximation ofthe solution
U, corresponds to calculating the solution U"+) of the following equation:

d u(n+l) +l) n) u(n+l)(2.2) -t + NU(" MU(+ F, with (to) Uo (N, M dxd).

The matrices N and M are the so-called splitting matrices and satisfy L N-M. In
the case of Jacobi, Gauss-Seidel, or SOR waveform relaxation, these matrices are
identical to the splitting matrices used for solving the stationary problem LU F by
the corresponding standard relaxation methods. With the above splittings, each of the
d differential equations can be solved separately, one after the other. As such, the
method is very similar to the iterative techniques for solving algebraic systems, except
that each variable is a function of time rather than a scalar unknown. The idea
immediately extends to variable-coefficient and nonlinear differential equations. It is
straightforward to determine waveform equivalents to the familiar nonlinear relaxation
methods. Furthermore, it may be advantageous to solve for the variables in groups of
unknowns, which leads to a waveform extension of the block-relaxation procedures.

The waveform idea has proven very effective in solving the systems of differential
equations that describe the behavior of large, complex, very large scale integration
(VLSI) devices (see [20]). Its success is to a large extent due to the fact that it is a

1332 STEFAN VANDEWALLE AND ROBERT PIESSENS

multirate integration method. Each equation or each block of equations may be solved
independently with a timestep that reflects the behavior of the corresponding variables.
A second reason for its success in the above application has to do with the loosely
coupled nature of the governing equations. The speed of the Gauss-Seidel relaxation
depends on the order in which the functions are updated. Because of the loose coup-
ling, efficient orderings may be derived from the system dependency graph (see [8]).
Finally, we should also mention the advantages of conceptual simplicity and ease of
parallelization.

A theoretical analysis of the linear iteration (2.2) is presented in the papers of
Miekkala and Nevanlinna [10], [11]. In [20], one of the basic papers on waveform
relaxation in the electrical engineering literature, uniform convergence is proven for
nonlinear systems. Further convergence results are given in [8], in which the relation
is established between the number of iterations and the accuracy order, i.e., the number
of correct terms in the Taylor expansion of a partially converged solution.

3. Waveform relaxation applied to initial-boundary value problems. We consider
the following linear parabolic initial-boundary value problem

0u
(3.1a) m+ Lu =fl, (x, t) f to, t/],

0t

(3.1b) Bu f2, (x, t) 012 to, tf],

(3.1c) u(x, to) Uo, x ,
where l ", L is a uniformly elliptic linear operator, and B is the boundary operator.
After spatial discretization and incorporation of the boundary conditions, the parabolic
problem is transformed into a system of ordinary differential equations (ODEs) with
one equation defined at each grid point.

3.1. Standard waveform relaxation. The waveform relaxation algorithm may be
applied to solving the semidiscretized parabolic equation. For instance, in the case of
a five-point finite-difference discretization of the heat equation on a regular mesh with
mesh spacing h, one iteration of the Jacobi algorithm would read as follows"

for all grid points (x, y):

d u(n+l) 1
solve- ,-i+l.j + u)l.j-4-i + ,-,.+1 + 1) with (to)1 i,j-- Ill ij l’lij,O

At each grid point a simple first-order differential equation is solved. This can be done
by using any standard, stiff ODE integrator, possibly combined with variable-timestep
variable-order techniques.

Attempts to use waveform relaxation in the way described above to solve parabolic
problems have not led to a satisfactory algorithm. This is due to the slow convergence
of the method, which, in turn, is due to the strong coupling between the grid-point
variables. For the semidiscretized heat equation, it was shown in 10] that the conver-
gence rates of the Jacobi, Gauss-Seidel, and SOR schemes are of order 1-O(h2).
(Strictly speaking, this result is only true in the case of infinite time intervals, as the
asymptotic convergence rate equals zero on any finite time interval. However, for
sufficiently long time intervals, the actual convergence behavior is adequately described
by the above formula.) The convergence is thus rapidly deteriorating with an increasing
number ofgrid lines and, unfortunately, successive overrelaxation does not significantly
improve convergence characteristics.

PARALLEL PARABOLIC PROBLEM SOLVERS 1333

3.2. Multigrid waveform relaxation. The convergence can be accelerated if the
waveform algorithm is combined with the multigrid idea. The resulting algorithm was
published by Lubich and Ostermann in [9] and rediscovered by the current authors
[14], 15]. The multigrid method is extended to time-dependent problems in essentially
the same way as the classical relaxation methods were extended. Each of the standard
multigrid operations is replaced by a similar operation defined to operate on functions.

Smoothing is performed by applying one or more damped Jacobi or Gauss-Seidel
waveform relaxations of the form (2.2). In the latter case a red-black or any multicolor
ordering can be used. Smoothing rates for these relaxations are defined in [9].

The defect of an approximation Un+l) is defined and calculated as follows:

d u(n+l) u(n+l) u(n+l)),(3.2) D:=- + L F M(U"
where U") and U"+1) are two successive iterates obtained with the smoothing
procedure.

Restriction, prolongation, and correction are calculated with identical formulae
as in the elliptic case. However, these formulae now operate on functions. By way of
illustration, we formulate the one-dimensional waveform full-weighting restriction
operator

(3.3) u,(t) (Ui+l(t) + 2ui(t) -{- Ui_l(t))/4,

where u(t) and u(t) are corresponding grid-point functions on the coarse and the
fine grid.

With the above changes to the elliptic multigrid algorithm, we may immediately
state the waveform equivalent of the multigrid correction scheme, which is the usual
variant for solving linear problems. Let G,, i= 0, 1,..., k, be the hierarchy of grids
required in the multigrid procedure, with G the finest grid and Go the coarsest grid.
Equation (2.1) or, equivalently, dU/dt +LU F, with Uk(tO)= U,o, is solved by
iteratively calling the following procedure with the parameters k, F and an approxima-
tion of U.

PROCEDURE mgm (k, F, U)
if k 0 solve the coarse-grid problem (dUo/dr)+ LoUo Fo exactly
else

perform v smoothing operations (e.g., by red-black waveform
relaxation)

--compute the defect: Dk :’- (dUk/dt)+ LkUk--Fk
--project the defect on Gk-I" Fk-1 := I-1Dk
resolve on Gk-I: (dUk_l/dt)+ Lk-1Uk-1 Fk-1 with Uk-l(to) =0

repeat Yk times mgm (k 1, Fk_ 1, Uk-1), starting with Uk-1 := 0.
minterpolate the correction to Gk and correct Uk" Uk := Uk- Ikk-1Uk-1
--perform v. smoothing operations (e.g., by red-black waveform

relaxation)
endif

The algorithm is completely defined by specifying the grid sequence Gi,
0,..., k, the discretized operators Li, the intergrid transfer operators I i_1 (prolonga-
tion) and 11-1 (restriction), and the nature of the smoothing relaxations, and by
assigning a value to Vl, rE, and yi. Additionally, the algorithm can be combined with
the idea of nested iteration, which leads to the waveform equivalent of the full multigrid

1334 STEFAN VANDEWALLE AND ROBERT PIESSENS

method. The starting approximation on G is then derived from the solution obtained
on G_I in the following way"

(3.4) --i --iUs(t) I,_ Ui-l(t)+(Uw- I,_ U-l(to)).

The interpolation operator [i-1 may be different from the corresponding operator Ii-1
in the multigrid procedure. The former is often biquadratic or bicubic while bilinear
interpolation mostly satisfies for the latter. The second term in (3.4) is needed to satisfy
the initial condition.

The linear multigrid waveform algorithm is theoretically analyzed in [9]. For a
model problem, the authors explicitly calculate convergence rates. They show that
convergence characteristics are not quite as good as those for the corresponding elliptic
multigrid method, yet are sufficient to obtain typical multigrid convergence speeds.
With some obvious modifications, the algorithm may be used for solving systems of
parabolic partial differential equations. Furthermore, the multigrid waveform relaxation
algorithm can be extended to nonlinear parabolic problems (see [14] and [17]). The
nonlinear algorithm is easily derived from the well-known multigrid full approximation
scheme.

4. Waveform relaxation applied to time-periodic parabolic problems. We consider
the nonautonomous parabolic problem (3.1a)-(3.1c) where the initial condition (3.1c)
is replaced by the periodicity condition

(4.1) u(x, to)= u(x, tf).

This problem is of considerable importance in various areas of practical interest. A
possible solution strategy is based on a dynamic simulation of the studied system,
starting from an arbitrary initial condition and lasting until a stable periodic orbit is
reached. A second approach uses difference methods where a large system of equations
is obtained after discretization. A third approach is based on the shooting method.
Finally, a very fast algorithm was presented by Hackbusch, in which the periodic
problem is reformulated as an integral equation and solved by the multigrid method
ofthe second kind (see [5]). We briefly review this algorithm here, as it will be compared
with a new waveform relaxation-based algorithm.

4.1. Multigrid method of the second kind. The solution of the linear initial-bound-
ary value problem (3.1a)-(3.1c), restricted to tf, can be written as the outcome of an
affine mapping applied to the initial condition Uo, that is, uf Kuo+f The operator
K is a linear integral operator, such that Kuo equals u(x, ty), the solution to (3.1a)-(3.1c)
with homogeneous right-hand sides (f 0 and f2 0), while f(x) equals u(x, ty), the
solution to (3.1a)-(3.1c) with zero initial condition (uo=0). With this notation, the
periodicity condition (4.1) becomes a Fredholm integral equation

(4.2) y=Ky+f

The unknown function y(x), defined on I, is such that the solution of the initial-
boundary value problem (3.1a)-(3.1c) with Uo =y, is the solution of the time-periodic
problem. Equation (4.2) can be solved by the multigrid method of the second kind. We
refer to [7] for an analysis of this technique and for a discussion ofvarious applications.
In a similar way as in the multigrid method for elliptic equations, (4.2) is discretized
on a set of grids, G, 0,. ., k, which results in a set of discrete equations

(4.3) Y=KY+F, on G.

PARALLEL PARABOLIC PROBLEM SOLVERS 1335

The problem on the fine grid is solved by repeated application of the following
procedure to an approximation of Yk.

PROCEDURE mgm_2nd (k, Fk, Yk)
if k 0 solve Yo Ko Yo + Fo exactly
else

--smoothing: Yk := KkY +F
--compute the defect: Dk := Yk KkYk Fk
--project the defect on Gk-l" Fk-1 := Ikk-1Dk
--solve on Gk-l: Yk-1-- Kk-1 Yk-1 nt- Fk-1

repeat 2 times mgm_2nd (k-1, Fk-1, Yk-I), starting with Yk- := 0.
--interpolate the correction to Gk and correct Y: Yk := Yk- Ikk- Yk-

endif

No explicit representation of the discretized integral operator K is required.
Indeed, application of K to a function Y is equivalent to calculating the solution of
one discrete initial-boundary value problem defined on G. KY may thus be computed
by using standard parabolic solvers, such as a timestepping method, or by using the
waveform relaxation algorithm of 3. In [5], the convergence factor of the algorithm
with proper choice of the time-integrator is shown to be of the order O(h2), where h
is the fine-grid mesh size. As such, one iteration step is usually sufficient to solve (4.2)
to discretization accuracy.

4.2. A waveform relaxation algorithm. Spatial discretization of the partial differen-
tial equation (3.1a)-(3.1b) with the periodicity condition (4.1) leads to the following
system of ordinary differential equations:

d
(4.4) d-- U + LU F with U(to) U(tf).

This two-point boundary value problem can be solved with a waveform relaxation
algorithm that is only slightly different from the algorithm discussed in 2. The basic
iteration step closely resembles (2.2) and is given by

d U(,+)+ NU(n+I MU(")+ F, with u(n+l)(to) u(n+l)(tf).(4.5) d-
Instead of repeatedly solving an ODE of initial value type at each grid point, one
repeatedly solves a periodic differential equation at each grid point. This boundary value
problem may be solved by a discretization method, which results in a sparse linear
system. Application of an implicit one-step discretization method, such as the
trapezoidal rule or the backward Euler method, leads to an easily solvable, almost
bidiagonal system.

The modified waveform relaxation method can be used as such, or it can be
integrated as a smoother into the multigrid waveform scheme of 3. The only algorith-
mic change is then in the core of the ODE solver. The other multigrid operations
remain totally unchanged. Numerical results show that the new method, periodic
multigrid waveform relaxation, leads to a rapidly converging iteration, with typical
multigrid convergence rates. The algorithm was theoretically analyzed in [18], where
we proved that the convergence characteristics of the time-periodic iteration are closely
related to those of initial-value iteration. There it is shown that convergence of the
initial-value algorithm is a sufficient condition to guarantee the convergence of the
time-periodic iteration.

1336 STEFAN VANDEWALLE AND ROBERT PIESSENS

5. Implementation aspects.
5.1. Time discretization. Up to this point, the waveform relaxation method has

been defined without explicit reference to time discretization. We have not considered
data structures or memory requirements either. We briefly address these issues now.

Any stiff integrator can be used to solve the differential equations that arise in
the smoothing step of the algorithm. A sophisticated variable-timestep variable-order
integrator from the ODEPACK library was used in our early experiments [14].
However, the overheads of stepsize and order selection, reoccurring at each grid point,
badly deteriorated the execution times. Consequently, our experience now advocates
the use of a simple but fast ODE integrator. Only then can the waveform method
remain competitive with the standard techniques. For the examples in the next section,
we used the second-order accurate trapezoidal rule (or Crank-Nicolson method) and
the backward differentiation method, both with fixed timestep At. The same timestep
was used for the integrations on the fine grid and on the coarse grids. This choice of
time integration precludes taking advantage of waveform relaxation as a multirate
integration method. However, it simplifies implementation and, as is explained in 5.3,
it allows for vectorization.

In the waveform method, several functions are associated with each grid point.
For these functions, an effective and compact computer representation should be
chosen. It should allow for efficient evaluation of the functions and, more importantly,
for efficient algebraic manipulation (mainly the summation of functions and multiplica-
tion with a scalar). For the latter reason, we have represented each function as a vector
of function values evaluated at equidistant time levels. We denote the vector length
by nt (number of time levels). The time increment is chosen equal to the time increment
used by the integration formula. With the above implementation choices, a correspon-
dence arises between the waveform method and standard timestepping techniques. A
careful analysis shows that the set of equations that determines the unknowns in the
waveform method is exactly the same as the set of equations that determines the
solution when a timestepping method is used with the same discretization formula and
the same time increment. Thus the solution of both techniques is identical.

In Fig. 5.1 we depict the set of unknowns for a problem on a one-dimensional
domain. In the case of a timestepping procedure the unknowns must be stored in the
computer memory on a few time levels only. In the case of waveform relaxation the
values at every time level must be available. Storage requirements are therefore very
high. However, if storage is a problem, the time interval of interest can be partitioned
into several smaller windows, which can be solved in sequence (in the case of an
initial-boundary value problem).

If we are willing to pay the memory price involved in waveform relaxation, we
could wonder whether it is possible to apply multigrid on the whole of the space-time
grid, i.e., with coarsening, restriction, and interpolation also in the time direction.

6 b 6 b b 6

i i

window 2

window

FIG. 5.1. Distribution of grid points: timestepping method (left) and waveform relaxation (right).

PARALLEL PARABOLIC PROBLEM SOLVERS 1337

Although we certainly do not want to claim that such an approach is not possible, we
may argue that it is not natural. Consider the following elliptic partial differential
equation with an aligned anisotropy in the y-direction:

(5.1)
Ou 02u Oil

e + =f (e << 1).

In the limiting case e 0, this becomes the one-dimensional heat equation. Problems
like (5.1) are often solved with the following multigrid parameter choices. For handling
the e-term, the use of either x-line smoothing or semicoarsening, i.e., coarsening only
in the x-direction, is advocated [7, Chap. 10]. The first-order derivative term is handled
by backward differencing, and either y-line smoothing or pointwise smoothing from
low to high y-values. Thus two "natural" parameter choices arise: standard coarsening
combined with x-line smoothing from low to high y-values, and semicoarsening
combined with y-line smoothing or pointwise smoothing in the direction of increasing
y. In the limiting case, when the elliptic problem becomes a parabolic problem, the
first approach is equivalent to standard timestepping (the smoother is an exact solver).
The second approach leads to a discrete multigrid waveform relaxation algorithm as
defined above, i.e., without coarsening in the time direction.

5.2. Parallelization. We have implemented the algorithms on an Intel iPSC/2-VX
hypercube. For a description of this multiprocessor, its hardware characteristics, and
various performance benchmarks, see [1]. The implementation of the waveform
algorithm and the parallelization of the standard timestepping methods are discussed
in detail in our studies 15], 16]. In this section, we only review some of the main issues.

A classical data decomposition is used to evenly distribute the computational
workload. The processors are arranged in a rectangular array and are mapped onto
the domain of the partial differential equation, which, in our implementation, is
restricted to be a rectangle. Each processor is responsible for doing all computations
on the grid points in its part of the physical domain. This straightforward partitioning
scheme ensures a fairly good load balance, especially when the number of grid points
is large. However, some load imbalance cannot be avoided whenever the number of
processors in a coordinate direction does not divide the number of grid lines in that
direction. During the computation, communication with neighboring processors is
needed mainly to update local boundary values. Some other communication strategies
are further used to improve the parallel performance. We mention, in particular, the
use of an agglomeration strategy to reduce the communication complexity of the
coarse-grid operations 16]. Agglomeration is especially important for use with multi-
grid cycles that frequently visit the coarse grids, such as the W-cycle. Although this
cycle has superior convergence properties, in a parallel environment without the use
of agglomeration, this cycle is easily outdone by the less robust but more efficiently
parallelizable V- and F-cycles.

We may now qualitatively analyze the parallel characteristics of the waveform
methods. A more quantitative approach is presented in 6. The arithmetic complexity
of the waveform operators increases linearly with the value of n,. In the same way,
the total length of the messages exchanged during the computation is proportional to
n,. The number of messages, however, and the sequential overhead due to program
control are independent of n,. From the high message startup time on most parallel
machines (and in particular on the iPSC/2), it is clear that the communication
time-to-calculation time ratio will decrease with increasing function length. The larger
the number of time levels calculated simultaneously, the better the parallel efficiency
will be.

1338 STEFANVANDEWALLE AND ROBERT PIESSENS

5.3. Vectorization. The use of vector processors for executing the multigrid
waveform algorithm may result in a substantial reduction of computing time. Indeed,
most of the operators can be expressed as simple arithmetic operations on functions,
i.e., on vectors (see, e.g., the restriction operator (3.3)). In contrast to the standard
approach vectorization is in the time direction and not in the spatial direction. The
vector speedup of the arithmetic part of the computation mainly depends on the value
of nt. It is virtually independent of the size of the spatial grid, the number of multigrid
levels, the multigrid cycle used, and the number of processors. This contrasts sharply
with standard multigrid vectorization results. Standard vectorization does not lead to
a performance improvement unless the number of grid points per processor is very
large. Its application is therefore of very limited use on large-scale parallel processors.

The only operation that is not perfectly vectorizable is the core of the ODE
integrator, which is used in the smoothing step. It consists of one or two first-order
recurrence formulae of length n, (one in the case of an initial value problem, and two
in the case of a time-periodic problem solved by discretization with a one-step formula).
This reduces the possible gain through vectorization. It can be shown, however, that
the cost of the recurrence relation is only a small fraction of the total computation
cost, typically 5 to 10 percent [19]. This leads to a possible vector speedup of 10 or
more. As an additional advantage of vectorization in the time direction, we mention
the ease of implementation. As the vector operations at each grid point involve the
vectors at neighboring grid points only, no complex grid restructuring is needed.

6. A comparison of arithmetic and communication complexities. It is instructive to
compare the complexities of the multigrid waveform algorithms with the complexities
of the corresponding standard sequential methods. In this section, we assume that the
discretization and integration formula used in the waveform algorithms is chosen as
explained in 5.1.

6.1. Initial-boundary value problems. We first introduce some notation. The grids
are again denoted by Go, G1,’", Gk, where Gk identifies the fine grid. Let Ni be the
number of messages sent by each processor in one multigrid cycle, when an elliptic
problem is solved on Gi. If Ni differs from processor to processor, we take the maximum
value. Let L be the corresponding total message length, a denotes the number of
multigrid cycles needed to solve the elliptic problem, aWR is the number of multigrid
waveform cycles needed for convergence of the waveform relaxation algorithm. The
values of a and OIWR depend on the particular equation solved and the multigrid
cycle used. Finally, nt, is the number of time levels used for the time discretization of
an initial-boundary value problem on G. If we further assume that the multigrid cycle
type used in the timestepping algorithm corresponds to the one in the waveform
method, and that aE is the same on each time level, then we can immediately derive
the communication complexity values presented in Table 6.1. TMk and TLk denote
the total number of messages and the total message length to solve the initial-boundary
value problem (IBVP) on Gk. In the case of the full multigrid approach, a value of 1
for a and tWR frequently suffices to obtain a solution that is accurate to discretization

TABLE 6.1
Communication complexity of the initial-boundary value solvers.

Timestepping algorithm Multigrid waveform relaxation

TMk(IBVP) nt,kNkOtE NkOtWl
TL (IBVP) nt, LkOtE nt, LkOtWR

PARALLEL PARABOLIC PROBLEM SOLVERS 1339

accuracy. The total message length in both solvers is then identical, whereas the number
of messages differs by a factor of nt.

In addition, a count of the number of floating point operations reveals that the
arithmetic complexity of both methods is very similar (at least if the same cycle types
and a same number of cycles are used). When using the Crank-Nicolson discretization,
differences are typically in the range of 10 to 20 percent, with timestepping being more
expensive. This higher cost is due to the cost of setting up the system of equations in
each timestep, more precisely the cost of constructing the right-hand side (see [19]).

6.2. Time-periodic problems. To derive the complexities of the time-periodic sol-
vers, some further assumptions are helpful. We assume, in particular, that the length
of the messages in each of the multigrid operators is inversely proportional to the mesh
size, and that the number of message exchanges is a constant independent of the
discretization. For instance, in a Jacobi smoothing step, precisely four messages are
needed on any grid, namely, one to each neighboring processor. The length of each
message, however, is proportional to the number of grid lines. For simplicity, we only
consider the use of multigrid V-cycles and standard coarsening, i.e., the mesh size is
halved in going from a coarse to a fine grid. This immediately leads to the following
formulae:

2i- 1
Lk (2i-kLk if i, k sufficiently large).(6.1) Ni=Nk and Li=2k -1

In the multigrid method of the second kind, several IBVPs are to be solved on every
grid level. In each iteration, two such problems are to be solved on the fine grid. Each
coarser grid, G, is visited 2k-i times. In half of the visits, two IBVPs are to be solved
(one in smoothing and one in defect calculation). In the other half, the problem in
the smoothing step can be skipped. Indeed, when the initial condition is zero, the
smoothing step simplifies to Yk := Fk. Consequently, the number of IBVPs on G, with
i< k, denoted by hi, satisfies the formula

3 2k_i.(6.2) ni 2

If a time discretization method is used with sufficient smoothing behavior, e.g., a
backward differentiation formula, the number of timesteps may be divided by 2 in
going from one grid level to a coarser one. We assume that nt,k is large enough so that
this process of halving the number of timesteps can be continued down to the coarsest
grid. In that case, the number of timesteps used to solve an IBVP on Gi, denoted by
nt, equals
(6.3) nt, 2i-kn.k.
The total number of messages and the total message length for solving a time-periodic
problem (TPP) with aa4 iterations of the multigrid method of the second kind can
now be calculated as follows:

(6.4) TM(TPP) 2 TM(IBVP) + E nTM(IBVP) aM n, NaEaM,

TLk(TPP)= 2TLk(IBVP)+ E nTL(IBVP) o
i=0

7
(6.6) nt,kLkaEaM.

1340 STEFAN VANDEWALLE AND ROBERT PIESSENS

The communication complexity of one time-periodic multigrid waveform cycle is
identical to that of one initial-value multigrid waveform cycle. However, the number
of cycles needed to obtain convergence, awRe, may be different from awR.

A fair comparison of the time-periodic problem solvers should take the conver-
gence characteristics into account. From several experiments, it is shown that an
algorithm based on one iteration of the multigrid method of the second kind (aM 1),
or on one periodic full multigrid waveform step, is sufficient to obtain a solution
accurate to discretization accuracy. Consequently, we should compare these two
approaches. We have added a column to Table 6.2 for the full multigrid waveform
step with one V-cycle on each grid level. Its communication complexity is derived
from the formulae

k k+l
(6.7) TMk(TPP)= Y Ni Nk,

i=o 2

(6.8) TLk(TPP) n,,k Li 2-2k n,.kLk 2n,,kLk.
i=0

The arithmetic complexity remains to be analyzed. By Wk(IBVP), we denote the
complexity of solving one IBVP on Gk. The cost of solving a similar problem on Gi
is then equal to

(6.9) W(IBVP) 8-kWk(IBVP),

when we assume that an algorithm is used the complexity of which is proportional to
the number of grid points. The cost of the multigrid method of the second kind equals

(6.10) Wk(TPP)= 2Wk(IBVP)+ E n,W(IBVP) aM2.5Wk(IBVP)a.
i=0

The arithmetic complexity of a time-periodic multigrid waveform cycle with
one-step time discretization hardly differs from that of the corresponding initial-value
cycle [19]. Furthermore, since the convergence rates are very similar, we may safely
state that the cost of solving a time-periodic problem by a waveform relaxation method
is similar to the cost of solving the corresponding initial-boundary value problem with
the waveform method.

The communication complexity of the periodic waveform relaxation algorithm is
substantially smaller than that of the multigrid method of the second kind (see Table
6.2). Consider, e.g., the following typical set of parameters, taken from the example
in 7.2: k =4, /’/t,4-" 32, aE 2, a4 1. With these parameters the total number of
messages differs by a factor of more than 100, while the total length differs by a factor
of 3.5. In addition, the arithmetic complexity of the time-periodic multigrid waveform

TABLE 6.2
Communication complexity of the time-periodic problem solvers.

Multigrid second kind Periodic MWR (cycling) Periodic MWR (full mgrid)

TMk(TPP (5 + 3k)/4n,,kNkaaM NkotwRp (k + 1)/2Nk
TL (TPP) 7/2nt, LkOtOtM nt, LkOtwR, 2nt, Lk

PARALLEL PARABOLIC PROBLEM SOLVERS 1341

relaxation is smaller with a factor of 2.5. The latter holds, whenever the sequential
complexity of the time integrator in the multigrid method of the second kind is similar
to that of the initial-value multigrid waveform relaxation (MWR) method. (Numerical
experiments have shown that this is very often the case.)

7. Numerical examples.
7.1. An initial-boundary value problem. We consider the following IBVP:

+xy + +f onf=[0,1]x[0,1] for t[0,0.5],(7.1)
Ot Ox OxOy

with Dirichlet conditions on the northern, eastern, and southern boundary, and a
Neumann condition on the boundary to the west. The right-hand side function f is
chosen in such a way that the solution is given by u(t,x,y)=sin(5x+y+lOt)e-4t.
For this problem, we compare the performance ofMWRwith a parallel implementation
of the Crank-Nicolson method. In both cases, multigrid is used with a four-color
nine-point Gauss-Seidel smoother, standard coarsening to a 3 x3 coarse grid, full
weighting restriction, bilinear interpolation, and a coarse-grid solver that performs two
Gauss-Seidel iterations. The timestep At was set to 0.01, which leads to a vector length
of 50. In the waveform method, we apply the trapezoidal rule to guarantee solutions
identical to those obtained with Crank-Nicolson timestepping. The initial waveform
solution is a function constant in time and equal to the value of the initial condition.
The problem is solved on a 16-processor Intel iPSC/2 hypercube. Load distribution
is performed by means of a two-dimensional partitioning with four processors in each
coordinate direction.

The timing results are depicted in Fig. 7.1. The graphs show the accuracy of the
solution (largest error at the grid points) versus execution time. The figures show
smooth curves for the waveform method. The error of the initial waveform approxima-
tion decreases as more and more multigrid cycles are applied. (The results for the
successive iterates are indicated by "o" symbols.) The Crank-Nicolson results show
up as discrete points. The Crank-Nicolson solution process is advanced timestep per
timestep in a total of seconds. The accuracy of the result is represented by a "+"
sign at position (t, error) in the figure. Depending on the multigrid cycle type used,
different execution times are needed. As such several results are presented for each
technique. They are annotated in Fig. 7.1 in the following way: with "WR V(1, 1) with
FMG" we mean "waveform relaxation using V-cycles with one pre- and one post-
smoothing step and use of the full multigrid technique with one cycle at each grid
level to determine the initial approximation on the fine grid." In the Crank-Nicolson
method the initial approximation at a time level is either calculated by a linear
extrapolation of the solutions at two previous time levels, or is determined by using
full multigrid. It is then corrected by means of a fixed number of V- or F-cycles. This
is denoted as "C-N, 1 V(1, 1) with FMG," which indicates the use of full multigrid
with one V(1, 1) cycle on each grid level. Two sets of curves are given for the waveform
method. The dashed lines represent the results obtained with vectorization, while the
solid lines represent the results obtained in scalar execution mode.

On 16 processors, MWR is faster than the Crank-Nicolson method with a factor
of 7 (for the 65 x 65 problem) up to a factor of 10 (for the 17 x 17 problem). This is
due to the smaller arithmetic complexity of the waveform method, its superior parallel
characteristics, and the use of vectorization. In Table 7.1, we have tabulated the execution
time of the full multigrid solver with one V(1, 1) cycle on each grid level, on 1 and
on 16 processors. We have also added the parallel speedup Sp. In this particular

1342 STEFAN VANDEWALLE AND ROBERT PIESSENS

A: WR, V(I,I) with FMG
B: WR, F(I,I) with FMG
C: WR,
D: WR, F(l,l)

I- discmtization: 17 by 17
A: WR, V(l,1) with FMG
B- WR, F(1,1) with FMG
C" WR, V(L1)

’,\ \\ D" WR, F(1,1)

:\ ,.. : b C-N, V,I,1, with FMG
’>,, 1 \\ c C-N, 3 V(l,l)
’,, \\ d C-N, F(1,1) with FMG
:, \\ e C-N, 2 F(1,1),,,,, , \\

AC BD AC BD ba d c e

0 2 3 4 5 6 7 8 9 I0

execution time on 16 processors (seconds)

FIG. 7.1. Comparison of Crank-Nicolson and multigrid waveform relaxation.

TABLE 7.1
Execution time, in seconds, of the full multigrid solver on and 16 processors.

50

h 1/16, n, 50 h 1/32, n 50

Method proc. 16 proc. Sp proc. 16 proc. Sp

Waveform relaxation 9.35 1.91 5.0 36.00 4.30 8.4
Crank-Nicolson 12.90 6.32 2.0 48.29 12.52 3.9

example, waveform relaxation outperforms the standard method by a factor of approxi-
mately 1.3 on a single processor. This is due to a somewhat smaller arithmetic
complexity, a reduced initialization cost (some intermediate results may be retained
when setting up system (2.1), especially when evaluating the right-hand side), and the
much lower computational overheads associated with program control (loop overhead,
indexing overhead, procedure call overhead, etc.). An additional factor of 2 to 2.5
results from the better parallel characteristics of the MWR method. This immediately
shows from the speedup figures.

The remaining performance difference is due to vectorization. In Table 7.2, we
give the execution times of the full multigrid solver, together with the values of the

PARALLEL PARABOLIC PROBLEM SOLVERS 1343

TABLE 7.2
Execution time, in seconds, of the WR FMG V(1, 1) solver (on 16 processors).

h 1/16 h 1/32 h= 1/64

Scalar Vector Sp Scalar Vector Sp Scalar Vector Sp

100 3.54 1.12 3.16 8.20 2.42 3.39 (na) (na) (na)
50 1.91 0.76 2.51 4.30 1.59 2.70 11.88 4.02 2.96
25 1.10 0.59 1.86 2.43 1.20 2.03 6.53 2.91 2.24
10 0.62 0.49 1.27 1.29 0.97 1.33 3.21 2.25 1.43

speedup obtained by vectorization. (The largest problem, 65 x 65 grid lines and 100
timesteps, could not run on the machine due to lack of memory on the vector board.)
The low values of the vector speedup are due to the high startup time of the vector
operations on the iPSC/2. The speedup values should be substantially higher on a
processor with more specialized vector hardware. The dependence of the speedup on
the vector length is obvious. It should be noted that for problems of this size on a
16-processor machine, vectorization in the Crank-Nicolson method would not lead to
any speedup.

7.2. A time-periodic problem. We consider the time-periodic parabolic partial
differential equation,

(7.2)
Ou 02u Ou
=+ +f, with u(O, x, y) u(1 x, y),
O Ox2 y2

defined on the unit square with four Dirichlet boundary conditions. The function f is
chosen in such a way that the solution of the equation becomes u(t,x,y)--
1/ lO0(x--x2)E(y--y2)2 sin (27rt). In Fig. 7.2, we represent the timing results which
were again obtained on a 16-processor Intel iPSC/2 hypercube. However, no vectoriz-
ation was used.

Three methods are compared. The first method is a parallel implementation of
the multigrid method of the second kind. The second-order backward differentiation
method (BDF(2)) is used for time integration. It has excellent smoothing properties
and is of high accuracy. The spatial mesh size of each grid Gi is determined by standard
coarsening from a fine grid, Gk, with 65 or 17 grid lines in the x- and y-direction. The
time increment Ati is chosen equal to the mesh size. The linear systems obtained by
the BDF(2) scheme on each time level are solved by using the standard multigrid
method, with two V(1, 1) cycles or by full multigrid with one V(1, 1) cycle on each
level. Due to its O(h2) convergence rate, one iteration of the method is sufficient to
solve the problem to discretization accuracy. Various programming techniques are
applied to optimize the parallel performance of the implementation. In particular, the
use of an agglomeration technique is crucial to reducing the parallel overhead of the
coarse-grid operations.

A related method is obtained if the multigrid waveform algorithm is used as the
IBVP solver inside the multigrid method of the second kind. The resulting algorithm
is about 1.5 to 2 times as fast as the method with timestepping, as shown in Fig. 7.2.
This was to be expected, from the speedup values given in Table 7.1. The periodic
multigrid waveform method is faster than the best standard algorithm, by a factor of
7 to 10. This is in part due to its lower arithmetic complexity, as explained in 6. To
verify the complexity estimates of both methods we report the one-processor execution
times in Table 7.3.

1344 STEFAN VANDEWALLE AND ROBERT PIESSENS

10-1

10-3

discretization: 65 by 65

B

5 10 15

A: WR, V(l,l) with FMG

B WR, V(l,l)

oc MGRID 2nd kind, WR 2 V(l,2)

a MGRID 2nd kind, BDF(2) 2 V(I,1)

b MGRID 2nd kind, BDF(2) V(1,1) with FMG

/

20 25 30 35 40 45 50 55 60

+ /

65 70

10-1

10-2

discretization: 17 by 17

A WR, V(1,1) with FIVlG

B WR, V(1,1)

{z MGRID 2nd kind, WR 2 V(1,1)

a MOR/D 2nd kind, BDF(2) 2 V(1,1)

b MGRID 2nd kind, BDF(2) V(1,1) with FMG

+ +
t b a

0.5 1.5 2 2.5 3 3.5 4 4.5

execution time on 16 processors (in seconds)

FIG. 7.2. Comparison of multigrid waveform relaxation and multigrid of the second kind.

TABLE 7.3
Execution time, in seconds, of two time-periodic problem solvers" time-periodic full

multigrid waveform relaxation and one cycle of multigrid of the second kind.

h 1/16, n 16 h 1/32, nt 32

Method proc. 16 proc. Sp proc. 16 proc. Sp

Waveform relaxation 1.77 0.46 3.9 14.33 1.78 8.1
Multigrid sec. kind 4.83 3.74 1.3 35.11 15.74 2.2

The remaining performance difference results from the betterparallel characteristics
of waveform relaxation. This is illustrated in Table 7.3, which shows that hardly any
speedup is obtained with the multigrid method of the second kind. As noted above,
it is difficult to parallelize coarse-grid operations efficiently. The multigrid method of
the second kind visits the coarse grids very frequently because of its "double multigrid"
nature. It is basically a multigrid W-cycle where, in each smoothing step, a timestepping
method is used which applies standard multigrid for solving the elliptic problems on
each time level. Consequently, the algorithm is not well suited for parallel
implementation.

We should also note that vectorization leads to an additional speedup only in the
case of the waveform algorithm. The performance difference on the 16-processor
machine is then in the range of 20 to 40, depending on the problem size.

PARALLEL PARABOLIC PROBLEM SOLVERS 1345

8. Summary and concluding remarks. The transformation ofthe parabolic problem
into the sequential process of solving small problems on successive time levels seriously
degrades the parallel efficiency of the standard marching schemes. While these methods
can be used efficiently for problems with a very large number of grid points per
processor, they perform totally unsatisfactorily for small problems and/or large num-
bers of processors.

To tackle these problems, we have presented a family of methods based on
waveform relaxation. They show multigrid convergence speeds and are competitive
with, or even surpass, the standard solvers on sequential processors. They can be
implemented efficiently on parallel machines, as they have a very low communication
complexity. As an added advantage they can be vectorized straightforwardly, with no
substantial changes in the program code. This vectorization leads to an important
reduction in execution time, even if the number of grid points per processor is too
small to justify vectorization of the timestepping approach. In addition, the algorithms
are not restricted to linear problems or rectangular domains; nonlinear problems and
systems of equations on arbitrary domains can be treated in a similar way with
qualitatively the same parallelization and vectorization characteristics. The main price
to be paid is memory cost, as the iterates generated by the algorithm are to be stored
along the entire time interval of interest.

REFERENCES

L. BOMANS AND D. ROOSE, Benchmarking the iPSC/2 hypercube multiprocessor, Concurrency: Practice
and Experience, (1989), pp. 3-18.

[2] P. BASTIAN, J. BURMEISTER, AND G. HORTON, Implementation of a parallel multigrid method for
parabolic partial differential equations, in Parallel Algorithms for Parabolic PDEs, W. Hackbusch,
ed., Vieweg-Verlag, Wiesbaden, Germany, 1990, pp. 18-27.

[3] D. EVANS, New parallel algorithms for partial differential equations, in Parallel Computing 83, M.
Feilmeier, J. Joubert, and U. Schendel, eds., North-Holland, Amsterdam, 1984, pp. 3-56.

[4], Alternating group explicit method for the diffusion equation, Appl. Math. Modelling, 9 (1985),
pp. 201-206.

[5] W. HACKBUSCH, Fast numerical solution of time-periodic parabolic problems by a multigrid method,
SIAM J. Sci. Statist. Comput., 2 (1981), pp. 198-206.

[6] ., Parabolic multi-grid methods, in Computing Methods in Applied Sciences and Engineering,
VI, R. Glowinski and J.-L. Lions, eds., North-Holland, Amsterdam, 1984, pp. 189-197.

[7],Multi-grid methods and Applications, Springer Series in Comp. Math. 4, Springer-Verlag, Berlin,
1985.

[8] F. JUANG, Accuracy increase in waveform relaxation, Report No. UIUCDCS-R-1466, Department of
Computer Science, University of Illinois, Urbana, IL, October 1988.

[9] CH. LUBICH AND A. OSTERMANN, Multi-Grid Dynamic Iteration for Parabolic Equations, BIT, 27
(1987), pp. 216-234.

[10] U. MIEKKALA AND O. NEVANLINNA, Convergence of dynamic iteration methods for initial value
problems, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 459-482.

11] , Sets of convergence and stability regions, BIT, 27 (1987), pp. 554-584.
12] G. RODRIGUE AND D. WOLITZER, Preconditioned time-differencingfor the parallel solution of the heat

equation, in Proc. Fourth SIAM Conf. on Parallel Processing for Scientific Computing, J. Dongarra,
P. Messina, D. Sorensen,and R. Voigt, eds., Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1990, pp. 268-272.

13] J. SALTZ AND V. NAK, Towards developing robust algorithms for solving partial differential equations
on MIMD machines, Parallel Comput., 6 (1988), pp. 19-44.

[14] S. VANDEWALLE AND D. ROOSE, The Parallel waveform relaxation multigrid method, in Parallel
Processing for Scientific Computing, G. Rodrigue, ed., Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1989, pp. 152-156.

1346 STEFAN VANDEWALLE AND ROBERT PIESSENS

[15] S. VANDEWALLE AND R. PIESSENS, A comparison of the Crank-Nicolson and waveform relaxation
multigrid methods on the Intel hypercube, in Proc. of the Fourth Copper Mountain Conference on
Multigrid Methods, J. Mandel, S. McCormick, J. Dendy, C. Farhat, G. Lonsdale, S. Parter, J.
Ruge, and K. Stiiben, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA,
1990, pp. 417-434.

16] S. VANDEWALLE, R. VAN DRIESSCHE AND R. PIESSENS, Theparallelperformance ofstandardparabolic
marching schemes, Internat. J. High Speed Comput., 3 (1991), pp. 1-29.

17] S. VANDEWALLE AND R. PIESSENS, Numerical experiments with nonlinear multigrid waveform relaxation
on a parallel processor, Appl. Numer. Math., 8 (1991), pp. 149-161.

[18] S. VANDEWALLE, On dynamic iteration methods for solving time-periodic differential equations, Report
TW 148, Department of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium,
March 1991; SIAM J. Numer. Anal., to appear.

19] , The parallel solution ofparabolic partial differential equations by multigrid waveform relaxation
methods, Ph.D. thesis, Katholieke Universiteit Leuven, Heverlee, Belgium, 1992.

[20] J. WHITE, F. ODEH, A. S. SANGIOVANNI-VINCENTELLI, AND A. RUEHLI, Waveform relaxation:
Theory and practice, Memorandum No. UCB/ERL M85/65, Electronics Research Laboratory,
College of Engineering, University of California, Berkeley, CA, 1985.

[21] D. WOMBLE, A timestepping algorithm for parallel computers, SIAM J. Sci. Statist. Comput., 11 (1990)
pp. 824-837.

SlAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1347-1360, November 1992

1992 Society for Industrial and Applied Mathematics
005

EVALUATING BEST-CASE AND WORST-CASE VARIANCES WHEN
BOUNDS ARE AVAILABLE*

GEORGE S. FISHMAN’, BORIS L. GRANOVSKY:, AND DAVID S. RUBIN’

Abstract. This paper describes procedures for computing the tightest possible best-case and worst-case
bounds on the variance of a discrete, bounded, random variable when lower and upper bounds are available
for its unknown probability mass function. An example from the application of the Monte Carlo method
to the estimation of network reliability illustrates the procedures and, in particular, reveals considerable
tightening in the worst-case bound when compared to the trivial worst-case bound based exclusively on range.

Key words, best-case variance, computational complexity, Monte Carlo, parametric linear programming,
sample size, worst-case variance

AMS(MOS) subject classification. 62

Introduction. Let X denote a discrete random variable with unknown probability
mass function (pmf) {i pr (X i);/xi > 0, 1 -< _-< r < ;/Xl +" +]-Lr 1} and sup-
pose one wishes to estimate

(1)

where

g(tt, w) =/Xl Wl -’" "-" [.rWr,

[[Jl,--([L1,"""

and where w (Wl,- , wr) is known, with wi wj for Sj. Let

1 if j=l,
(2) qS,(j)

0 otherwise 1 -<_ i, j-< r.

Then the random variable Z=qbl(X)Wl+...+chr(X)w,. has expectation (1) and
variance

(3) var Z h(, w)= iw- xiwi
i=1 i=1

This paper describes algorithms for evaluating the tightest possible worst-case
lower bound and best-case upper bound on h(, w) when nontrivial lower and upper
bounds are available for I. Formally, we solve the worst-case nonlinear program

h*(w) max h(Ix, w),

subject to

(NLPW)

At >: e >: 0,

fti _--<f/--< 1,

ei <: fii, 1 <= <= r

ftl-[- "’-fitr 1,

Received by the editors October 17, 1989; accepted for publication (in revised form) September 9,
1991. This research was partially supported by Air Force Office of Scientific Research grant AFOSR-84-0140
and by a grant from the Business Foundation of North Carolina.

f Department of Operations Research, University of North Carolina, Chapel Hill, North Carolina 27599.
Mathematics Department, Technion-Israel Institute of Technology, Haifa, Israel. The research of this

author was partially supported by a grant from the Technion V.P.R. Fund-J. and S. Frankel Research Fund.
Kenan-Flagler Business School, University of North Carolina, Chapel Hill, North Carolina 27599.

1347

1348 G.S. FISHMAN, B. L. GRANOVSKY, AND D. S. RUBIN

and we also solve the best-case nonlinear program (NLPB), the analogous problem
of finding h,(w)= min, h(l, w), subject to the same constraints. Knowing h,(w) and
h*(w) is of considerable value when designing a sampling experiment to achieve a
variance no greater than, say, a specified quantity v(w). In particular, a sample size
of no less than n,(w)= [h,(w)/v(w)], but no larger than n*(w)= [h*(w)/v(w)] is
required to achieve this accuracy. Moreover, if we wish to estimate the function
{g(Ix, w), we /4/’}, where /4/" denotes a set of alternative weight vectors, to achieve
variance accuracies {v(w), w o/}, then

n [max [h*(w)/ v(w)]]
gives the worst-case sample size.

For the trivial {0, 1} bounds on each/x, the best-case bound for h(lx, w) is zero,
and we immediately derive the worst-case bound

(4) h**() max w- min w /4.
lNiNr

As the example in 2 makes clear, even relatively modest improvements in these
bounds can lead to substantially tighter h,() and h*(), thus significantly reducing
their ditterence as well as the corresponding worst-case sample size. This improved
bound is the reward for going to the effort of solving the nonlinear programs in (NLPW)
and (NLPB).

Problems of this type arise in many areas where the setting of the problem makes
a set of bounds e=(e,..., e) and f=(f,... ,f) available to the analyst at low or
no cost before data gathering begins. This is especially true when applying the Monte
Carlo method where the mathematical structure of the problem often allows one to
deduce the bounds. Section 1 describes the algorithms for solving (NLPW) and (NLPB)
and 2 illustrates their use in a Monte Carlo example designed to estimate system
reliability in a stochastic network.

1. Method of solution.
1.1. Determining h*(w). We begin by characterizing the solution to (NLPW). Since

(NLPW) has a continuous objective function, and since the set of points that satisfy
its constraints is compact, the problem has an optimal solution.

THeOReM 1. Let w s w for j, and let p.O (txo, txor) denote the solution to

(NLPW). There exists a partition e, 6f, STy of the integers { 1,. ., r} such that

o fe forie,

txi i, ei < Oi <fi, forint,

fori 6f,

and Ibel <= 2.
Proof. The only result requiring proof is 15[<_-2. Let q=q(Ix, w)=

h(I,, w)+ L(1-/x /Zr), with L a Lagrange multiplier, be the usual Lagrangian
function for (NLPW). Let

ao o
b Wi,

i=l

and let L be an optimal value for L. If e </x <f, then at Ix Ix and L L, Oq/Otz
2 Lo o Low-2Aw =0. Since X and are fixed, this can happen for at most two
{1, , r}, because Oq/Og is a quadratic polynomial in w, and the w are distinct.

BEST-CASE AND WORST-CASE VARIANCE 1349

Therefore, 16el-<_ 2, implying that the remaining /x must be either at their lower or
upper bounds. D

The proposed method of computing h*(w) is based on consideration of a para-
metric family of linear programs related to (NLPW). Let

subject to

(A) max
j=l

(LPW(A)) mwj A,
j=l

ej N lq -- fj, l <=j <--_ r,

where h and w are fixed and the indices are assigned so that wl > w2>’" > Wr. Let
’I’(X) ,(X)- X,

-A-min(tziwi’ti--a;ei<=tzi<fi’l<=i<=r)i=1

and

A max [.iWi /xi 1; ei <_-/x --<_f, 1 _-< _-< r
i=1 i=1

Then (NLPW) has the equivalent representation

(PW) h*(w)= max (h).

The proposed method solves a sequence of linear programs (LPW(A)) for changing A
until the optimal solution to (PW) is found. Since (LPW(A)) has two structural
equations, there are exactly two variables that are basic in any basic feasible solution
to (LPW(A)), an observation consistent with the result in Theorem 1.

We assume that the wi are distinct: if, in reality, w =w^ for some ij, we
can replace/x and/x by/2 =/xi +/z, with bounds g, e + e and f =f +f, and reduce
the dimension of the problem by one.

For feasibility we must have Y= e <- 1 and Y

__
f => 1, and these inequalities must

be strict or else the problem is uninteresting, since Yi=l e 1 implies that/z e, 1 -<_

r, is the only feasible solution, and Y __
f 1 implies that/xi f, 1 _-< -<_ r, is the only

feasible solution.
We assume that e <f for all 1 =< -< r: if for some r’ < r, e f for r’ < <- r, then

we prefer to work with the random variable

and then maximize

rp

Z’= e,w, + Z
i=r’+l i=1

IiW2i]UiWi
i=l

subject to]d, + --]-r’-- 1 er,+l er, and ei <_-/x =<f, 1 <_- <_- r’. A suitable
reassignment of indices allows this reformulation to apply when e =f for any i.

1350 G.S. FISHMAN, B. L. GRANOVSKY, AND D. S. RUBIN

LEMMA 2. (A) is continuous, piecewise differentiable, and strictly concave for A in
the interval (_A,).

Proof. That (A) is a piecewise-linear, continuous, concave function of A is a
standard result in the theory of linear programming [4, p. 288]. The lemma now follows
because -h2 is continuous, differentiable, and strictly concave.

The next result is an immediate corollary of Lemma 2.
COROLLARY 2.1. The quantity (_A,) is optimal for (PW) if and only if

lim ’(h) >_- 0 and lim ’(h) _-< 0;

,3 is optimal for (PW) if and only if lim ’(h)-_<0; is optimal for (PW) if and only
if lim,x @’(A) _>- 0; furthermore, (PW) has a unique optimal solution.

Assume that h initially takes the value h and suppose we have found (by the
simplex algorithm or any other method) I= (o,.. ",/Z0r), an optimal basic solution

to (LPW(A)). Appendix A discusses the choice of a starting value for h. Suppose the
basic variables are/xi and/xj with i<j. Then the basis matrix is

W Wj W Wj Wi 1

The usual linear programming optimality conditions now reduce to

>0 i.e., i<k<j==>t.*k=ek,
--(Wk--W,)(Wk--W)

<0 i.e.,k</ or k>jlzOk=fk.

In addition, we have

Let 0 w- wj > 0. Then

dtz,_ 1 dl.,= _1
dA O’ dA O’

for all A [AL, Au], where

(ei) <(txi) <(fi’
ej \tx/ \f]

d(x)
dh

-w+w, and
dh

-wi+wj-2h,

(5) AL=h-Omin(f-,/_c,.-e,) and Au=A+Omin(f-p,,l.-e).
The derivatives given above are to be interpreted as two-sided for A (A, Au), but as
one-sided derivatives to the right at A A/ and to the left at A Au.

The following algorithm solves (PW)"

ALGORITHM 1.
1. If ((w + w.)/2 h, h u], then the optimal solution to (LeW((w, + w))/2)) is

optimal in (PW). If ((wi + wj)/2) h < 0, go to Step 2. If ((wi + wj)/2) At: > 0,
go to Step 3.

2. If AL _h, then the optimal solution to (LPW(_,3)) is optimal in (PW). If h> _h,
then let h= h/-e (where e is a positive infinitesimal). Use standard linear
programming sensitivity analysis techniques to solve the new (LPW(A)), to
determine the new indices and j, and to determine the new [h, hu]. (Note
that the new hu equals the old h.) if ((wi+ wj)/2)-hu _-->0, then the optimal
solution to (LPW(Au)) is optimal in (PW). Otherwise, go to Step 1.

3. If hu , then the optimal solution to (LPW(,)) is optimal in (PW). If hu < ,
then let h= hu + e (where e is a positive infinitesimal). Use standard linear

BEST-CASE AND WORST-CASE VARIANCE 1351

programming sensitivity analysis techniques to solve the new (LPW(A)), to
determine the new indices and j, and to determine the new [A/, Ate]. (Note
that the new AL equals the old Ate.) If ((wi+ wj)/2)-A/--<0, then the optimal
solution to (LPW(A)) is optimal in (PW). Otherwise, go to Step 1.

Finiteness of the algorithm follows from the fact that the sequence of the A values
is monotone increasing if the initial A is too small and monotone decreasing if the
initial A is too large. Hence, no pair (i, j) ever repeats. Optimality of the claimed
solution to (PW) follows from Corollary 2.1 to Lemma 2. Given the structure of
(LPW(A)), the linear programming sensitivity analysis techniques can be specialized
so that this algorithm can be implemented with O(r) time complexity. Algorithmic
details and the proof of this complexity result are given in Appendix A.

1.2. Determining h,(w). Let (LPB(A)) be the linear program to determine

<(A) min /xjw]
j=l

subject to the same constraints as (LPW(A)), and let q(A)= th(A)-A2. Then (NLPB)
has the equivalent representation

(PB) h,(w)= min 0(A).
;t-< ;<=X

Analogous to the results of 1.1, if Ixo is an optimal basic solution to (LPB(A)),
with basic variables/xi and/x with i<j, it follows that

< k <j=txOk= fk, k < or k >j=txOk= ek,

and

Again, let 0= w-w and determine A and At by (5). As before, dcb(A)/dA wi 1- Wj
for , (,Xt,

LEMMA 3. Let B be an optimal basis matrixfor (LPB(A)). Then q(A) is continuous
and strictly concave for A in the interval [A, At:].

Proof b(A) is linear on [A/,At] (see [4, p. 288]) and -A2 is continuous and
strictly concave.

COROLLARY 3.1. If is optimal in (PB), then either , or else for some
basis matrix B which is optimal in (LPB()).

Proof This is immediate from Lemma 3 because of the concavity of
COROLLARY 3.2. (NLPB) has an optimal solution in which at most one of the

components of Ix lies strictly between its lower and upper bounds.
Proof. This follows immediately from Corollary 3.1 and the theory of linear

programming, since one of the basic variables is zero at the endpoint A.
The following algorithm solves (PB).
ALGORITHM 2.
1. Set A=]. Let IxB solve (LPB()). Set AB and qn 4()-2.
2. If b(At)-(wi+ w)(Av- A)- A]->_ qn, go to Step 3.

Otherwise, set AB=A, qB=4(At)--(w+w)(At-AL)-)t, let Ixn solve
(LPB(A/)), and go to Step 3.

3. If A/ _A, stop" Ixn is the optimal solution to (PB).
Otherwise, let A= A-e (where e is a positive infinitesimal). Use standard
linear programming sensitivity analysis techniques to solve the new (LPB(A)),

1352 G. S. FISHMAN, B. L. GRANOVSKY, AND D. S. RUBIN

to determine the new indices and j, and to determine the new [AL, Ate]. Go
to Step 2.

Finiteness of the algorithm follows from the fact that the sequence of A values
is monotone decreasing. Hence no pair (i,j) ever repeats. Optimality of the claimed
solution to (PB) follows from Corollary 3.1 to Lemma 3. Given the structure of
(LPB(A)), the linear programming sensitivity analysis techniques can again be special-
ized so that this algorithm, too, can be implemented with O(r) time complexity.
Algorithmic details and the proof of their complexity result are given in Appendix B.

2. Example. We illustrate this method of determining lower and upper bounds
on h(Ix, w) for the estimation of the all-points-connectedness reliability in network
analysis. Let G (//’,) denote an undirected network with node set and arc set. Suppose that nodes operate perfectly but arcs fail randomly and independently,
each with probability 1-p. Let re(p) denote the probability that all nodes in G are
connected. The exact evaluation of re(p) is known to belong to the # P-complete class
of problems, implying that no algorithm is known for solving this problem in time
polynomial in //’1 and I1. This limitation has encouraged analysts to apply the Monte
Carlo method to the estimation of re(p). In particular, Nel and Colbourn [5] recom-
mend a Monte Carlo approach based on a partition of the set of all spanning trees of
G due to Ball and Nemhauser [1], who show that one can represent the probability
that all nodes are connected in the form

l-k+1

(6) m(p)=pk-1 Hi(i-p)’,
i=0

where

Hi Iil, O<=i<-_l-k+l,

k I1, 1= I’1, and {o, 1,’", l-k+l} denotes a particular partition of the set of
all spanning trees of G. A spanning tree is a set of k-1 arcs that connects all nodes.
Using this formulation on each of n independent replications, Nel and Colbourn [5]
randomly generate a spanning tree and determine the partition to which it belongs.
They then demonstrate how to employ one version of the Ball and Provan [2] bounds
together with these sample data to derive point estimates and confidence intervals for
{Hi} and for re(p) for a range of values of the component reliability p. They illustrate
their technique for the Advanced Research Projects Agency Network (ARPANET) in
Fig. 1 with k 20 nodes and 32 arcs. Our example consists of finding best-case and
worst-case bounds for the variance of the point estimate for this network.

To place this problem in the context of this paper, let

1 if arc operates,
xi= 0 otherwise, l_-<i_-<l,

x=(xl,... ,x,),

{0, 1)l set to which all x belong.

Then

ff,* {X E ’. X + "- X k- 1 and all nodes are connected}

denotes the set of all spanning trees of G with size I*1, and Y(o, l-k+l

BEST-CASE AND WORST-CASE VARIANCE 1353

13

27

28

5 31

24

42

56

55

51

FIG. 1. Skeleton of the 1979 ARPANET.

is the partition of * of interest with

(x) o,
ifx i
otherwise,

Wi pk-l(1 _p)i,
and

txi Hi i=0, 1,. ., r= l-k + l.

Suppose that we randomly draw X from *. Then

Z-- ,/-[to(X)w0+ tl(X)w +. + tr(X)Wr]

is an unbiased estimator of m(p) in (6) with variance zEh(t, w) in (3). This is the
essence of the Nel and Colbourn [5] approach.

Table 1 gives lower and upper bounds for {Hi} based on the Ball-Provan method
[2]. Note that these differ from the bounds given in [5] which are used to derive lower
and upper bounds on re(p), but not on each Hi. Since the lower and upper bounds
are identical for Hi, 0 <- <- 3, there is no need to estimate these quantities. Accordingly,
the worst-case variance is 7"2h*(w), where

(7)

subject to

h*(w) max Ixiw2 tziwi
la, i=4 i=4

/d,4-" "+"//,13 1-(Ho+HI+H=+H3)/a’=p,

ei <- la, <- f, 4 <- <- 13.

The suggested algorithm of 1 and Appendix A continues to apply with a, defined in
(A2), replaced everywhere in Appendix A by a* a 1 + p. Table 1 also lists the lower
and upper bounds for {/zi}.

Table 2 lists the resulting best-case and worst-case variance bounds apart from
the factor .2. Observe that 3.90<-h*(w)/h.(w)<=5.78 for all values of p of interest.
Also, the ratios h**(w)/h*(w) make clear the benefit of solving (NLPW), suggesting
that any worst-case sample size based on z2h**(w) would be at least 82.5 times greater
than one based on -2h*(w).

1354 G. S. FISHMAN, B. L. GRANOVSKY, AND D. S. RUBIN

TABLE
Bounds 1.

0

2
3
4
5
6
7
8
9
10
11
12
13

Bounds on Hi Bounds on/xi

Lower Upper ei f/

.987878 10-7 .987878 10-7

19 19 .187697 10-5 .187697 10-5

190 190 .187697 10-4 .187697 10-4

1310 1310 .129412 10-3 .129412 10-3

1820 7107 .179794 10-3 .702085 10-3

6187 32148 .611200 10-3 .317583 10-2

18548 126141 .183232 x 10-2 .124612 x 10-1

50152 441066 .495441 10-2 .435720 10-1

122772 1401345 .121284 10-1 .138436
256688 4105178 .253576 x 10-1 .405542
307099 6369522 .303376 10-1 .629231

0 5853352 0 .578240
0 5420570 0 .535486
0 5026666 0 .496573

10122705.

TABLE 2
Best-case and worst-case variance bounds.

Basic indices Basic
for h* variables

h**(w)
p h,(w) h*(w)

h*(w)
j /x /xj

.50 .7418 10-17 .4289 10-16 82.5 8 12 .138436 .249234

.60 .8330 10-15 .4091 10-14 148.6 8 12 .138436 .249234

.66 .6963 10-14 .3173 10-13 195.4 8 12 .119424 .268246

.70 .2148 10-13 .9413 10-13 226.4 7 12 .043572 .375542

.80 .1102 10-12 .4503 10-12 295.2 7 12 .043572 .375542

.90 .3394 10-13 .1339 10-12 340.7 6 12 .0124612 .414159

.92 .1297 10-13 .5094x 10-13 346.3 6 12 .0124612 .414159

.94 .2911 10-14 .1140 10-13 350.7 6 12 .0124612 .414159

.96 .2511 10-15 .9815 10-15 353.9 5 12 .00317583 .424788

.98 .2138 10-17 .8349 10-17 355.7 5 12 .00317583 .424788

.99 .1227 10-19 .4791 10-19 356.2 5 12 .00317583 .424788

Notes:
1. h**(w) (max4__</_13 wi-min4<=i<__13 wi)2/4.
2. Variables with indices between and j are set to their lower bounds; those with indices below or

above j are set to their upper bounds.
3. In all cases, the value of /.j(--t12 is strictly between e12 and f12. At p-.66, /xi(=/xs) is strictly

between e and f8; for all other cases,/xi is at its upper bound f.

BEST-CASE AND WORST-CASE VARIANCE 1355

Note that the trivial worst-case bound h**(w) is evaluated after deleting the /ai’S
for which ei =f in Table 1. Had this not been done, the resulting h**(w) would have
been considerably greater in magnitude. The entry at p .66 demonstrates a case at
which two interior point assignments are made. For the true I, 1.03 -< h*(w)/h(l, w) -<

1.28 for all p {.5 + .01 (i 1), 1 <- -< 50}, revealing that, in this particular example, the
bound is remarkably tight in spite of the fact that the individual bounds in Table 1
are not particularly tight. This observation strengthens the argument for computing
the bound before sampling begins.

The results in Table 2 also show a limitation of this approach for estimating m(p).
Observe that the worst-case variance 7’2h*(w) exceeds unity for p .66, .70, .80, .90,
.92, and .94. In retrospect, this is not surprising when we rewrite (6) in the form

l-k+1

m(p) .pk-1 y. (Hi/’)(1-p)’,
i=0

and recognize that observations on each trial of the experiment range over [’rpk-l(1-
p)l-k+l, 7.pk-1], which widens with increasing p. This suggests that an alternative
approach based on generating random subgraphs and checking for connectedness may
be a more efficient approach since the variance of each observation there never exceeds
one-fourth. An adaptation of the Monte Carlo proposal in [3] to the all-points-
connectedness problem would do just that.

Appendix A. Algorithmic details and complexity for worst-case variances.
A.I. Preliminaries. Let h [_h, h] be given and let/x and {./,j with i<j be optimal

basic variables in (LPW(A)). Let

(A1) O= w-wj>O,
i--1 j--1

(A2) a 1- Y. fk-- ek-- fk,
k=l k=i+l k=j+l

i-1 j-1

(A3) /3 Wkfk + , Wkek + Wkfk
k= k i+1 k =j+l

Then the optimal simplex tableau for (LPW(A)) is given schematically in Table 3.
For the nonbasic columns, this schematic tableau only indicates the signs of the

entries; their exact values are given by the formulas in the "Typical entry" column.
This tableau is optimal as long as h satisfies

(e,) l (-awj-fl+A<(f
that is, as long as A [AL, A u], where

AL= max {Ai Oe + aw: +, A: -Of + awi + },
Au min {Au Of + aw: +, At: -Oej + aw + }.

TABLE 3

Nonbasicatf Basic Nonbasic at e Basic Nonbasicatf

Typical entry

z (x) 0 +. + 0 (w,- w)(w,- w)
tz,=(1/O)(-ow.-fl+A) +...+ +" ’’+ 0 (Wk--W)/(W,--Wj)
tz=(1/O)(aw+fl-X) 0 +’’’ + +’’’ + (Wi--Wk)/(Wi--W)

1356 G.S. FISHMAN, B. L. GRANOVSKY, AND D. S. RUBIN

The quantities AL and At: result from substituting into (5) the values of/x,. and
(with h h) given in the tableau above. It is straightforward to verify the following
result.

LEMMA A.1. AL hLc:f + e >-- a; AL hl4Cf + e <= a and At: hcf + e <-

a; At: hvC:>f + e _-> a.

A.2. Moving from one basis to another. Suppose that Algorithm I has us decreasing h.
1. If AL hLi_--> ALj, then decreasing h to AL introduces a primal degeneracy in

row 1 (because/zi is driven down to ei).
(a) If i_> 2, then pivoting in row 1 and column i-1 yields an alternate optimal

tableau for h AL with /x-I basic at its upper bound f-l. Further small
decreases in h decrease/x_l, but row 1 remains primal feasible (i.e.,/x-a > e_)
for sufficiently small decreases.

(b) If i= 1, then decreasing A below AL introduces a primal infeasibility in row
1 which cannot be removed by any pivot that maintains dual feasibility, i.e.,
AL

_
2. If /L--/Lj > lri then decreasing h to hL introduces a primal degeneracy in

row 2 (because/j is driven up to
(a) Ifj _>- + 2, then pivoting in row 2 and column j 1 yields an alternate optimal

tableau for h =/r with /;_ basic at its lower bound e;_. Further small
decreases in h increase k;-, but row 2 remains primal feasible (i.e., ;_
for sufficiently small decreases.

(b) If j + 1 and _-> 2, pivoting in row 2 and column 1 (and switching rows
1 and 2) yields an alternate optimal tableau in which/zi_l is basic at its upper
bound f_, and the discussion in l(a) applies to further decreases in h.

(c) If j 2 and i= 1, the discussion in l(b) applies.
If we are increasing A, analogous results hold. The result of this discussion leads

to the following implementation of steps 2 and 3 of Algorithm 1, for which we need
not explicitly compute any simplex tableaus"

2. Since ((w + w;)/2) -/L < O attempt to decrease h below hr.
A. If f + ei _-> a, and

(a) If >_- 2, then set

i’=i-1, j’=j,

Ol,’ a ei ’-fi-1,
fl’= fl + wiei- Wi-lfi-

(b) If i-1, then h AL _,3 is optimal for (PW).
B. Iff+e<a, and

(a) If j ->_ + 2, then set

i’=i, j’=j-1,

c’ c -f + e;_,
#’= # + wf- w_e_.

(b) If j + 1 >= 3, then set

i’=i-1, j’=j-1,

O O --f/+l -]-f/__l

j j + W/+lf/+l- Wi_lfi_l

(c) If i= 1 and j 2, then A AL _A is optimal for (PW).

BEST-CASE AND WORST-CASE VARIANCE 1357

3. Since ((wi + wj)/2) At: > 0, attempt to increase A above Ate.
A. Iff+ej->a, and

(a) If j =< r- 1, then set

i’=i, j’=j+ 1,

’=a-e+fi,

’= 1 + we- w,f,.

(b) If j =r, then A At is optimal for (PW).
B. Iff+e<a, and

(a) If j -> + 2, then set

i’= i+1, j’=j,

t t --f/-+- ei+

(b) If j + 1 -< r- 1, then set

i’= i+1, j’=j+ 1,

c’= c -Z +f+2,

’=/3 +w- w,+f,+.

(c) If i= r-1 and j =r, then a At: is optimal for (PW).

A.3. Finding an initial basis. Apply the following algorithm.

ALGORITI-IM 3
0. Let 6o __a e < 1. Set 0.
1. (a) If 8 < 1, let 6+ 6i- e+l+f+. Set i+ 1 and return to step 1.

(b) If =r, then/z_ and/x are the initial basic variables.
(c) If 6 > 1 (and i< r), then and/z are the initial basic variables.

It should be pointed out that this algorithm for getting started is actually calculating
the optimal basis for h =. Changing step l(a) to 8i+l=8i-e,._i+fr_i and making
corresponding changes in steps l(b) and l(c) calculates the optimal basis for h _h.
Equally simple modifications yield bases for values of h well into the interior of (_,3,).

A.4. Complexity of Algorithm 1. In the analysis, both additions and subtractions
are grouped together as additions.

A.4.1. Initial basis (via Algorithm 3), i, j, t, fl, 0, A, and
1. 8o requires r- 1 additions.
2. Each repetition of step l(a) requires one comparison and two additions.
3. Step l(a) is repeated at most r times; i.e., for 0, 1, , r- 1.
4. Given the basic variables and r, (A2) reduces to

r--2

1- fk=l--Sr+fr_l+fr ifi=r-1,
k=l

O
i-1 r-1

1- fk-- , ek=l-8+f+er ifi<r-1.
k=l k=i+l

1358 G.S. FISHMAN, B. L. GRANOVSKY, AND D. S. RUBIN

Hence, the computation of a requires three additions. The computation of/, using
(A3), requires r-2 multiplications and r-3 additions, and 0 in (A1) requires one
addition.

5. Given a, one addition and one comparison are needed to determine if At Ati

or AL ALj. Once this is known, the computation of At requires two multiplications
and two additions. The computation of At is analogous.

6. Hence, finding the initial basis, i, j, a,/3, 0, At, and Ate, requires at most 4r+6
additions, r + 2 multiplications, and r+ 2 comparisons.

A.4.2. Typical iteration.
1. Checking the current basis for optimality:
(a) For each basis, determining if ((wi + wj)/2) (h, Ate) requires one addition,

one multiplication and two comparisons.
(b) For each basis after the first, determining if At or ht is optimal requires an

additional comparison.
2. Computing i’,j’, a’, fl’, 0’, h, and h’v if the current basis is not optimal:
(a) Each of i’ and j’ requires at most one addition.
(b) a’ requires two additions.
(c) /3’ requires two multiplications and two additions.
(d) 0’ requires one addition.
(e) Either h h t or h At. To compute the other member of {h, h} requires

three additions, two multiplications, and one comparison.
3. Hence, each iteration requires at most eleven additions, five multiplications,

and four comparisons.

A.4.3. Number of iterations. Since the successive values of A considered by the
algorithm are either monotonically increasing or else monotonically decreasing, the
successive values of and j are similarly either monotonically nondecreasing or else
monotonically nonincreasing (although at each iteration at least one of or j will
change). Hence the number of iterations is at most 2r-4 (which occurs if initially

1 and j 2, but the optimal basis has r- 1 and j r, or vice versa).

A.4.4. Finding the optimal solution, given i, j, re, fl, 0, and A. From Table 3, we
see that the computation of/xi and/x requires four multiplications and four additions.

A.4.5. Overall complexity.

Additions Multiplications Comparisons

Initial basis 4 + 6 + 2 + 2
Successive iterations 11(2r-4) 5(2r- 4) 4(2r-4)
Optimal solution 4 4 0

Total 26r-34 11 r- 14 9 r- 14

Appendix B. Algorithmic details and complexity for best-case variances.
B.I. Preliminaries. The results from A1 hold verbatim, with the exceptions that

now the optimal solution has /x1,’" ,/xi-1 nonbasic at their lower bounds,
gi+l,"" ",/X_l nonbasic at their upper bounds, and /z+,...,/xr nonbasic at their

BEST-CASE AND WORST-CASE VARIANCE 1359

lower bounds. In addition, we redefine
i--1 j--1

(B1) a=l-E ek-- E fk-- ek,
k=l k=i+l k=j+l

(B2) fl= E Wkek + E Wkf + Wkek.
k=l k=i+l k=j+l

B.2. Moving from one basis to another. Recall that Algorithm 2 has us decreasing
h from to h.

1. If Am Ares--> hmi, then decreasing h to Am introduces a primal degeneracy in
row 2 (because/zs is driven up to f).

(a) Ifj -< r- 1, then pivoting in row 2 and column j + 1 yields an alternate optimal
tableau for h- Am with /Z/l basic at its lower bound e+l. Further small
decreases in h increase/j+l, but row 2 remains primal feasible (i.e.,/j+l <fs+l)
for sufficiently small decreases.

(b) If j =r, then decreasing h below Am introduces a primal infeasibility in row
2, which cannot be removed by any pivot that maintains dual feasibility, i.e.,
AL =_h.

2. If Am hm> hmj, then decreasing A to Am introduces a primal degeneracy in
row I (because/z is driven down to e).

(a) If <_-j 2, then pivoting in row I and column + 1 yields an alternate optimal
tableau for h Am with /z+1 basic at its upper bound f+. Further small
decreases in h decrease/z+, but row I remains primal feasible (i.e., k+ > e+)
for sufficiently small decreases.

(b) If =j- 1 and j -<_ r- I, pivoting in row and column j + 1 (and switching
rows 1 and 2) yields an alternate optimal tableau in which j+ is basic at its
lower bound e+, and the discussion in l(a) applies to further decreases in h.

(c) If r- 1 and j r, the discussion in l(b) applies.
The preceding discussion leads to the following implementation of step 3 of

Algorithm 2. Again, no simplex tableau is ever explicitly computed.

3A. If f + ei <-- a and
(a) If j -<_ r- 1, then set

i’=i, j’=j+l,

a’= c -+ e+,

"- wjf Wj+ ej+

(b) If j =r, then Am _h, and IB is optimal in (PB).
B. If f + ei > a, and

(a) If i<-_j-2, then set

i’= i+1, j’=j,

a’=a--ei+f+l,

[’’- [+ Wig Wi+lfi+
(b) If =j- 1 -<_ r-2, then set

i’=i+1, j’=j+l,
a a es_ + es+l
[3’ fl -F Wj_ ej_ Wj+ ej+

(c) If r 1 and j r, then Am and IB is optimal in (PB).

1360 G. S. FISHMAN, B. L. GRANOVSKY, AND D. S. RUBIN

B.3. Finding an initial basis. Step 1 of Algorithm 3 is modified as follows:
1. (b) If i=r, then/xl and J-r are the initial basic variables.

(c) If i > 1 (and i< r), then/Zl and/xi are the initial basic variables.

B.4. Complexity of Algorithm 2. This algorithm is essentially identical to
Algorithm 1 except that

(i) We do not check the current basis for optimality, thereby saving one addition,
one multiplication, and three comparisons.

(ii) At each basis, we compute

and compare it to Cn, thereby doing four additions, two multiplications, and one
comparison.

(iii) For each basis with q(hL)< Cn, it takes four multiplications and four addi-
tions to compute Ixn from the tableau with h AL.

Since these differences change the number of operations at each basis by a constant,
and since there are at most 2r-4 bases to consider, the overall time complexity of
this algorithm is also O(r), as claimed.

Acknowledgments. We are grateful to Professor Scott Provan for his advice on
computing the Ball-Provan bounds and to Stephen Yarberry and Ben Hao Wang for
their programming assistance.

REFERENCES

1] M. O. BALL AND G. L. NEMHAUSER, Matroids and a reliability analysis problem, Math. Oper. Res., 4
(1979), pp. 132-143.

[2] M. O. BALL AND J. S. PROVAN, Calculating bounds on teachability and connectedness in stochastic
networks, Networks, 13 (1983), pp. 253-278.

[3] G. S. FISHMAN, A Monte Carlo sampling plan for estimating reliability parameters and relatedfunctions,
Networks, 17 (1987), pp. 169-186.

[4] K. G. MUrTY, Linear Programming, John Wiley, New York, 1983.
[5] L. D. NEL AND C. J. COLBOURN, Combining Monte Carlo estimates and bounds for network reliability,

Networks, 20 (1990), pp. 277-298.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1361-1376, November 1992

1992 Society for Industrial and Applied Mathematics
006

STABILITY AND INSTABILITY IN THE COMPUTATION OF
FLOWS WITH MOVING IMMERSED BOUNDARIES:

A COMPARISON OF THREE METHODS*

CHENG TU’ AND CHARLES S. PESKIN"

Abstract. This paper describes thee different numerical methods for the computation of flows with
moving immersed elastic boundaries. A two-dimensional incompressible fluid and a boundary in the form
of a simple closed curve are considered. The inertia is assumed to be negligible and the Stokes equations
are solved. The three methods are explicit, approximate-implicit, and implicit. The first two have been used
before, but the implicit method is new in the context of flows with moving immersed boundaries. They differ
only with respect to the computation of the boundary force. The results of the above methods at various
values of the time-step size are compared in order to explore the numerical stability of the computation.

Key words, stability, computational fluid dynamics, immersed boundaries, Stokes flow

AMS(MOS) subject classifications. 65C20, 65N99, 76Z99

1. Introduction. The purpose of this paper is to present a new method for the
study of flows with immersed elastic boundaries and to compare its stability with two
other existing methods [10], [11]. The essential features of these methods are: (1) that
the fluid computation is done on a fixed, regular computational lattice, (2) that the
(Lagrangian) representation of the immersed boundary is independent of this lattice
and involves a collection of moving material points, (3) that the immersed boundary
acts on the fluid by means of a system of forces computed from the elastic stresses in
the immersed boundary and applied to the nearby lattice points of the fluid with the
help of a computational model of the Dirac 8-function, and (4) that the representative
material points of the immersed boundary move at the local fluid velocity, which is
obtained by interpolation from the nearby lattice points of the fluid. The same 8-
function weights are used in the interpolation step as in the application of the boundary
forces to the fluid. Methods of this general type have now been applied to blood flow
in the heart [5], [6], [7], [9]; aquatic animal locomotion [1]; platelet aggregation during
blood clotting [2]; and flows with suspended particles [3]. Much of the recent work
in this area has been concerned with the supercomputer implementation of such
methods in the three-dimensional case [4], [8], [12].

In all of the applications cited above, there has been a serious issue of numerical
stability. Explicit computation of the boundary forces (i.e., the computation of these
forces from the boundary configuration at the beginning of each time step) has typically
led to explosively unstable results when computations with reasonable time steps have
been tried.

The practical cure for this problem, first introduced in [10], has been to compute
the boundary forces from an estimate of the boundary configuration at the end of the

* Received by the editors August 13, 1990; accepted for publication (in revised form) February 21,
1992. This work was supported by the National Institutes of Health under Research grant HL-17859.
Computation was supported in part by the Minnesota Supercomputer Center and by Department of Energy
contract DE-AC02-76ER03077 at the Courant Mathematics and Computing Laboratory, New York Uni-
versity.

t Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
New York 10012.

t Present address, Universit6 Catholique de Louvain, Unit6 de Mcanique Appliqu6e, Place du Levant
2, P-1348 Louvain-la-Neuve, Belgium.

1361

1362 CHENG TU AND CHARLES PESKIN

time step. For this to work, it is essential that the above-mentioned estimate take into
account the influence of the (unknown) boundary forces themselves on the (unknown)
boundary configuration at the end of the time step. Until now, the estimate that has
been used for the boundary configuration at the end of the time step is based on the
assumption that the force applied to the fluid by each boundary point acts exclusively
on that point and not on any of the others. (This assumption is only made in the
computation of the boundary forces. Once those forces are computed, they are applied
to the fluid, and each element of force acts instantaneously everywhere, since the fluid
is incompressible.)

In this paper, we compare three methods which differ only with regard to the
computation of the boundary force. The three methods are"

(1) Explicit: boundary force computed from the boundary configuration at the
beginning of the time step.

(2) Approximate-implicit: boundary force computed from an estimate of the
configuration at the end of the time step.

(3) Implicit: boundary force computed from the configuration at the end of the
time step.

Note that method (1) is essentially the forward-Euler method, while method (3),
the principal subject of this paper, is essentially the backward-Euler method. Method
(2), the one that has been used in practice, represents a compromise in which one
hopes to achieve the good stability properties of the backward-Euler method at a
smaller computational cost. In method (1), the boundary forces are obtained by
evaluation of a definite formula; there are no equations to solve. In method (2), one
must solve a nonlinear fixed-point problem for a self-consistent set of boundary forces
and (estimated) final boundary configuration. Because only an estimate of the final
boundary configuration is used, however, this nonlinear system may be formulated on
the boundary itself, without reference to the fluid. Thus, method (2) leads to sparse
systems of equations, since each boundary point is coupled only to its neighbors. In
method (3), by contrast, the nonlinear fixed-point problem for the boundary forces
involves the fluid-mediated interaction of each boundary point with every other boun-
dary point. This leads to dense systems of equations which are much more expensive
to solve.

The model problem that is used as a vehicle for the comparison of the three
methods is as follows. We consider a two-dimensional incompressible fluid containing
an immersed elastic boundary in the form of a simple closed curve. We assume that
inertia is everywhere negligible, and so we use the Stokes equations, in which time
enters in only as a parameter. Initially, the boundary is in the form of an ellipse, and
it relaxes to a circular configuration. Area should be preserved during this transforma-
tion, since the fluid is incompressible. We compare the three methods for this problem
at various values of the time-step parameter.

2. Assumptions and equations. We consider a two-dimensional viscous incompress-
ible fluid containing an immersed elastic boundary. We assume that effects of inertia
are negligible both for the fluid and for the immersed boundary. The boundary is in
the form of a simple closed curve. Note that both the fluid inside and the fluid outside
the immersed boundary curve are physically significant in the problem and influence
the motion of the boundary. Although one might like the external region to extend to
infinity, we put the entire problem in a periodic box. This keeps the domain finite
while retaining the feature of translation invariance that the unbounded problem would
have.

STABILITY AND INSTABILITY 1363

On the basis of the above assumptions, we can write the equations of motion that
are valid for both the fluid and the immersed boundary as the Stokes equations

(2.1) 0 =-Vp + r/Au+F(x, t),

(2.2) 0=V "u,

where u is the fluid velocity, p is the fluid pressure, r/ is the constant fluid viscosity,
and F is the force density, which differs from zero only on the immersed boundary
and which is infinite there; see below.

In order to calculate the force density F which arises from the elastic stress in the
immersed boundary, we need to specify the material points of the boundary. Thus,
we need a Lagrangian description of the boundary. Let x-X(s, t) be the position of
the material point whose label is s at time t. The parameter s indicates the unstressed
length along the immersed boundary from some reference point denoted by s 0. Let
T be the tension in the immersed boundary. We assume that T obeys a possibly
nonlinear generalization of Hooke’s law

(2.3) T= cr

then it can be verified [12] that the local density (with respect to the measure ds) of
force applied by the boundary to the fluid is

(2.4) f= 0-- (Tx),
Os

where "r is the unit tangent to the boundary

0X

To connect the boundary with the fluid we need to relate F and f. Following 11], we
can establish this correspondence using a Dirac 6-function:

(2.6) F(x, t)= f(s, t)6(x-X(s, t)) ds,

where the integral is over the entire boundary and is a two-dimensional 6-function
(x) (Xl)6(x2) where x (Xl, x2). The final assumption is that the fluid adheres to
the boundary. Thus, we impose the no-slip condition

(2.7) XO._= (s, t)= u(X(s, t), t).
Ot

Note that this plays the role of an equation of motion for the boundary and not the
more standard role of a constraint on the fluid motion, since the boundary motion is
unknown. We remark that u in (2.7) can be expressed in a form similar to (2.6) by
using the definition of the -function

(2.8) u(X(s, t), t)= u(x, t)6(x-X(s, t)) dx.

We can summarize the equations of motion as follows: (2.1) and (2.2) are the Stokes
equations of a viscous incompressible fluid with viscosity r/. Equations (2.3)-(2.5) are
elastic boundary equations enabling us to compute the boundary force density.
Equations (2.6)-(2.8) are the connecting equations, which give the interaction between
the boundary and the fluid.

1364 CHENG TU AND CHARLES PESKIN

3. Dimensionless form of the equations. It is useful to write these equations in
terms of dimensionless variables. In this way once the solution for a particular flow
with a particular immersed elastic boundary is known, we can obtain the solutions
that are dynamically similar.

First, let us consider the equations describing the motion ofthe fluid. We arbitrarily
choose a constant time to (which will be specified at the end of this section) and a
constant length L, which is the length of the regular square box on which the Stokes
equations are solved. We then make the following change of variables:

x’
x

u’ Uto p, pto
F’ FLtot’--

to ’ L 7 7

Note that the variables denoted with the superscript are dimensionless for a two-
dimensional fluid. Using these new variables we also have

1
V’, A

1
A’.V--

L

Substituting the above into the fluid equations in the previous section gives

(3.1) 0 -V’p’ + A’u’ + F’,

(3.2) O=V’. u’.

Next, we consider the equations for the elastic boundary. The particular choice
of the function tr in this paper is

0X -1), 0X
>_-1

OS

otherwise,

where Sb is the stiffness of the elastic boundary. We make the following changes of
variables:

Then (2.3)-(2.5) become

(3.3)

X’
X s T
L’ s , T’=--,

Sb

cr fL
0" "r’ % f, m.

Sb’ Sb

T’= (OX’
OS’ -1),

(3.4) f,=
0

Os----7, (T’,t’),

Finally, we consider the equations that describe the interaction of the boundary
and the fluid. From the properties of the t%function, we know that 6(Lx’)= (1/L)6(x’).
Thus (x)=(1/L2)(x’) for the two-dimensional t%function.

STABILITY AND INSTABILITY 1365

Now we substitute the rimed variables into (2.6)-(2.8) to obtain

Sbto f Lb/L

f’(s’, t’)(x’-X’(s’, t’)) ds’,(3.6) F’(x’, t’) - Jo

(3.7)
0X’
Ot’

(s, t’)-u’(X’(s t’) t’)

(3.8) u’(X’(s’, t’), t’): fc u’(x’, t’)t(x’-X’(s’, t’)) dx’,

where Lb is the unstressed length of the boundary. If we pick to such that Sbto/rlL 1,
then the only parameter in this problem is Lb/L, which is dimensionless.

4. Discretization of the dimensionless equations. We now drop the primes in the
dimensionless equations and discretize them for the numerical computation. The
numerical scheme described below generalizes readily to the three-dimensional case,
although the description of the immersed elastic boundary is then more complicated.

First, we introduce the notation that will be used to describe the numerical method.
The Stokes equations are solved on a regular square box of length 1 with periodic
boundary conditions. Let N be the number of lattice points in each direction; then
h 1/N is the lattice width. We divide time into time steps of size At and use notation

u and F for flow and force density evaluated at t= nat, x=(ih, jh). Note that all
functions of x are periodic with period 1 in each direction, that is, all arithmetic
involving lattice coordinates is modulo N.

We introduce the forward, backward, and centered difference operators as follows:

(D+g)i (g,+l- g,)/ h,

(D-g),=(g,-gi_l)/h,

(Dg)i (gi+l- g,_l)/2h.

We also use the subscript s to indicate the variable with respect to which the differencing
is accomplished (s 1, 2 denotes the two spatial dimensions), for example,

Moreover, let

(4.1)

(4.2)

(4.3)

"u=DlUl+Du2V "U,

p=(Dlp, Dp)Vp,
+u D-D-(u + D: D2 u AU.

We discretize the Stokes equations with the above notation:

(4.4) 0 -p +u+ F,

(4.5) 0= "u.

We now proceed to describe the notation used for discretization of the boundary
equations. Recall that Lb here denotes L Lb/L, the dimensionless unstressed length
of the boundary. Let Nb be the number of Lagrangian points used to represent the
boundary. We define As Lb/Nb and use the notation X to denote the position of
the kth point on the boundary at nat where the subscript k 0 (Nb- 1). Since

1366 CHENG TU AND CHARLES PESKIN

the boundary is a closed curve, the arithmetic on k is modulo Nb. According to the
definition of the boundary tension T and the tangent vector ,r, we discretize them as

r,<+,/_ o-(Ix,<+,- x,<l/a)

(4.6) I Ix’<+’-x’<l 1 IX<+l-X<l> 1
As As

0, otherwise,

Xk+ Xk(4.7) Ix,<+, x,<l
Finally, the discrete force density fk is given by

(4.8) fk Tk+l/2k+l/2 Tk_l/2k_l/2
AS

Note that these equations define functions fk "-fk(Xo, Xl,""", XNb--1) but that each fk
depends only on Xk-1, Xk, and Xk+I.

We find that fk can also be computed from an elastic energy function defined as

(4.9) E(Xo,Xl,’’’, Xrvb-1) E g’ As.
k=0

If " r, then grad E =-f.
We now consider the equations connecting the fluid lattice and the boundary

points. Since the positions of the boundary points generally do not coincide with those
of the lattice points, we have to interpolate the velocity field from the fluid lattice to
the boundary points and spread the boundary force from the boundary points to the
nearby lattice points of the fluid. This problem is solved by introducing a sufficiently
smooth approximation to the Dirac 8-function:

(4.10) (x) (x,),(x),

where

(4.11) 8(x)
1 +,os Ixl _-<2h,

0, Ixl>2h.
The reasons for the particular choice of 8-function are given in 11].

We define

N-1

(4.12) Uk E Ui.ith(Xo--Xk) h2
i,j =0

for the approximation to the identity (3.8).
Similarly, a discrete form of the force density (3.6) is given by

Nb--1
(4.13) Fij fk(Xo, Xl,’" ", XNb-1)th(Xij --Xk)AS.

k=0

Finally, the no-slip condition is discretized as

(4.14) X+1 --Xk
At

STABILITY AND INSTAmLITY 1367

In (4.12)-(4.14) we have omitted the time index on certain quantities. Different choices
of this index (e.g., n or n + 1) will result in the different schemes that we consider below.

5. An FFT Stokes solver. In this section we will describe a method to solve the
Stokes equations using the fast Fourier transform (FFT). Suppose we are given the
force density F. We need a device to find the velocity u and the pressure p that satisfy
the Stokes equations.

We consider a grid function b and define the discrete Fourier transformation of
b as

N-1

(5.1) 4)k,k: e-i(2"n’/N)(j’k’+J2k2)tjlJ2, 0<= k, k<-_ N- 1.
jl,JE=0

According to this definition, the discrete Fourier transform of the Stokes equations is
as follows:

(5.2) 0 ----i sin (2k)/k, k2 -54 sinE (-) t k’ k2 + (/3) k’2’’=
S 1, 2,

0= -sin (),2.
-=l

(5.3)

Multiplying by

sin

on both sides of (5.2) and summing over s from 1 to 2, then making use of (5.3), we
get an algebraic equation for the Fourier transform of the pressure. The solution of
this equation is"

jk, k2
--)-=1 (i/h) sin (27rk/N)(L)k,k:

(5.4)
--1 1/hE) sinE (2.a-k/N)

Once/ is known, (5.2) can be solved for fi as follows"

-(i/ h sin (2"n’ks/ N)k,kz ff?s)k,k(5.5) (t)k’k (4/hE) ,=1 sinE (rk,/S)

We remark that certain values of k will cause difficulty in (5.4) and (5.5). When
(k, k2)- (0, 0), (0, N/2), (S/2, 0), or (S/2, N/2), k,k is undefined; see (5.4). In
those cases, however, the value of/ has no effect on fi; see (5.5). Therefore, we may
set/ 0 for these values of (k, kE). In the case (kl, k2) (0, 0), however, there is an
additional problem that is not present in the other three cases, since the denominator
in (5.5) is zero. To obtain a solution, the numerator must be zero also, and this means
that Foo 0. Note that this is equivalent to

N-1

Z Fi =0.
i,j--O

The latter condition follows directly from the discrete Stokes equations in a periodic
domain by summing over all grid points. In our case, we know that this condition
must be satisfied since we construct F from forces generated in links, since each link
generates a pair of equal and opposite forces, and since total force is preserved by
our 6-function method of spreading the forces onto the fluid grid. In this indeterminate
case, we may set fi O, for there is an arbitrary constant in the general solution of the
discrete Stokes equations.

1368 CHENG TU AND CHARLES PESKIN

In summary, the procedure to compute velocity u and pressure p from a given
force density F is as follows" first, compute the Fourier transform of F. This is
accomplished by a fast Fourier transformation. We then use (5.4) to compute/, and
once/ is found, we use (5.5) to compute ft. Finally, the velocity u and the pressure p
can be calculated by an inverse Fourier transformation on fi and p, respectively, using
an FFT.

6. The explicit method. We now describe the first of the three numerical methods
for computing the boundary force in the presence of an elastic immersed boundary.
This is the simplest among them and takes the smallest amount of computer time (per
time step) and storage space. However, this method is not always stable. When the
size of the time step is big, the boundary will explode.

The first step in the algorithm to compute Xn+l given X is to evaluate the force
density. This is done using the energy function described in 4"

0E
(6.1) f 0--(X, X, , Xm_l).

Once the forces f have been computed, we use the 8-function to spread the force out
on the computational lattice

N

(6.2) F X fT,Sh (x,j X,)As.
k=O

We next find the velocity at the lattice points by means of the FFT Stokes solver and
use the 8-function again to interpolate the velocity to the boundary points

N-1

(6.3) UT, E uth(X0--X,) h2-
i,j =0

Finally, we update the positions of the boundary points using

(6.4) x+l--X+ AtUT.
Results will be given after the other methods have been described.

7. The approximate-implicit method. This method is similar to the foregoing except
that here the force density is computed implicitly to avoid numerical instability. We

1,,, X1 ," n-i by a system of equations of the formdefine points Xo+ ,+1,, v-+,,

(7.1) X+1’*

where is the magnitude of the velocity induced at a point by a unit force applied to
that point. It can be estimated either by applying a unit force at a point and then
measuring the displacement of" that point after one time step or from the fundamental
solution of" the discrete Stokes equations. (This fundamental solution plays a critical
role in the method that is described in the following section.) The quantity Xn+l’* is
intended to approximate the positions of the boundary points at the end of the time
step. The formula for X"+1’*, (7.1), takes into account the influence of the boundary
force f but only in an approximate way. The approximation is that each element fk is
allowed to act only on the point Xk. This approximation is removed in the implicit
method that is the subject of the next section.

We now describe the method to solve the nonlinear fixed-point problem given by
(7 1) We introduce the notation X (X+1’* X+1’* vn+l’*" X0

.’Nb--1 1,

(X,X’," , X-I); and f= (fo, fl," ", fm-l). Now the system in (7.1) can be
rewritten as

(7.2) X X + AtAf(X).

STABILITY AND INSTABILITY 1369

We can form a problem equilvalent to (7.2), which solves for the force density f instead
of X. The motivation for this is to permit the consistent comparison to the implicit
method discussed in the next section. Since f--grad E, we have

f(X) -V(X)

-VE(X+ AtAf(X)).

Treating f as a new independent variable, we then get

(7.3) f+ VE (X + AtAf) 0.

Next we consider the function

1 1
(7.4) b(f) (f, f)+- E(X + AtAf).

If E is continuous and bounded from below, then th has an absolute minimum at
some point f*. That is, b(f*)-<_ b(f) for all f. If E is also differentiable, then f* is a
solution of our fixed-point problem (7.3).

The numerical solution of (7.3) is found by Newton’s method. Let f" be the ruth
guess. (Here we use superscripts for the iteration number within Newton’s method.
This should not be confused with the time step, which is fixed during this discussion.)
Then fm/l is obtained by solving the following system of equations"

(7.5) (l+AtAH(X+AtAf’))(fm+-f’)=-(fm+VE(X+AtAfm)).
Here H is the Hessian matrix of E.

It can easily be verified that this is a periodic block-tridiagonal system (with 2 x 2
blocks, since each fk is a 2-vector). A sufficient condition for this system to be positive
definite is that o- and the derivative of tr be positive (see [12]). The solution of such
a periodic, block-tridiagonal system is also described in [12]. The repeated solution
of (7.5) results in a sequence f which converges quadratically to a force density f*
that solves (7.3).

We have just described how to compute the boundary force density implicitly.
Once this new force is found, we use it to define the force density F that acts on the
fluid, and we continue with the rest of the algorithm as in the explicit method.

We remark that the argument of t% used in this method is the same as in the
explicit method. That is, it involves X", not X+1 or X+1’*. This is because X+1 is not
yet known and X+’* involves displacements from X" that were not generated by an
incompressible flow.

8. The implicit method. This new method is different from the above two methods
because here the boundary force is computed from the unknown configuration at the
end of the time step. It makes use of the fundamental solution of the Stokes equations
to compute the fluid-mediated influence of one boundary point on another.

Ordinarily, the fundamental solution would be associated with a unit singular
point force located at the origin"

(8.1) -s es6(x), s 1, 2,

where e are the unit vectors in each of the two coordinate directions and 6(x) is a
two-dimensional Dirac 3-function. We mentioned earlier, however, that the existence
of the solution in a periodic domain requires that

(8.2) f F dx= 0,

1370 CHENG TU AND CHARLES PESKIN

or in discrete form,
N-1

(8.3) 2 0=0.

Thus we need to subtract a uniform background force from -s so that (8.2) will be
satisfied. We define ’s as follows:

(8.4) ’ (6(x)- 1)es,

or in the discrete case,

(8.5) ’, 6io6jo 1 e,.

We note that any F that satisfies (8.3) can be written as

N-1 2

(8.6) Fo h2 Z , _,,.j_j,(F),,,.
i’,j’ =O

This can be shown by substituting (8.5) into (8.6) and using the definition of the
onecker delta and (8.3).

If we let the solution corresponding to the singular force be (us, p), then the
velocity field u corresponding to F can be expressed in terms of u in the same way
as (8.6) by linearity

N-1 2

(8.7)
i’,j’=O s=l

Note that u does not depend on time. We can compute it by the FFT Stokes solver
once and for all and store it in an N x N array G of 2 x 2 matrices. G is the discrete
Green’s function of the Stokes equations on a periodic domain. Each entry of G is a
2 x 2 matrix, since u is a 2-vector for each s’s 1 corresponds to the fundamental
solution for the singular point force applied in the x direction, while s 2 corresponds
to that in which the singular point force is applied in the y direction. With the notation
G, we are able to write (8.7) as

N-1

(8.8) u0 h2 E G(i-i’,j-j’)F,,j,.
i’,j’=O

We now seek an implicit method to compute the force density. It follows from (4.12)
and (4.14) that

N-1

n+16h(Xij --X)(8.9) X+l=Xk+Ath2 , u
i,j----0

Note that the argument of 8h here is also Xn, as in the previous two methods. In this
sense, this method is not completely implicit. We call it the "implicit method" because
the boundary force is computed from Xn+l.

Now if we substitute (8.8) into (8.9), we get

(8.10)
N-1 N-1

x+l=X+Ath4 G(i-i’,j-j’)Fflih(Xj-X).
i,j=O i’,j’=O

From (4.13) we deduce
Nb--1 N-1 N-1

X+I=x+AtAsh4 ’. E E G(i-i’,j-j’)6h(Xi-X)
k’=O i,j=O i’,j’=O

,X ,.,,Nb_l)"
(8.11)

8h (Xi,j, Xk,)fk,(Xo +1 n+l Vn+l

STABILITY AND INSTABILITY 1371

Let

N-1 N-1

=h4

i,j.-o i,,j’=o
G(i-i’,j--j’)6h(Xo--X,)6h(X,,j,--X’).

We can then rewrite (8.11) as

N

(8.12) XT,+1 XT, + At As k,f,(Xg+1, Xl +1 X"+[1).
1-0

n+ a. XoLet X= (Xg+1,v"+1 .,X (Xg,Xl,.. ",--1 ," v-l/, Xu-); and f=(fg+,
.n+l rn+l Let be the matrix whose k, entry is 6kl. Equation (8.12) becomesal Nb--1].

(8.13) X-X-At As ;f(X) 0.

This is again a nonlinear fixed-point problem. It is useful to put this problem in the
form grad b 0 because then the linear problems that arise at each iteration of Newton’s
method will be symmetric. This can be done by using f as the independent variable
instead of X and then by multiplying by on the left. The result is

(8.14) (f+ (VE(X + At As f) 0,

in which the left-hand side is the gradient of the function 4 defined as follows:

(8.15)
1 1

b(f) = (f, (f)+ AtAs E(X+ At As

Now two comments relating to (are in order. First, we see that if we replace ;
byhiwe obtain (7.3), the same problem that is solved when we use the approximate-
implicit method. This implies that another (equivalent). method of estimating A is to
multiply the average value of the diagonal element of G by As.

Second, we note that G is positive semidefinite. This can be shown by applying
u to the discrete form of the Stokes equations and summing over all the lattice points

(8.16)
N-1 N-1 N-1

0 h2
Uij" (-----Pij) + h2 ., Uij" Uij -- h2 ., Uij" Fij.

i,j=O i,j =0 i,j =O

The first term after summation by part gives

N-1

h2 Z (u)ijPo,
i,j=0

which is zero.
Operating in the same way on the second term yields

N-1

h2 . (D-u/" D-ui.i + D’ui." Duo).
i,j =0

This is always less than or equal to zero. It is equal to zero only if u is constant. But since

N-1

E u: O,
i,j=O

it is equal to zero only if u O.

1372 CHENG TU AND CHARLES PESKIN

Now we consider the third term:

N-1 N--1 Nb--1
h2 uij’Fij=h2

uij" fk(Xo,X1,’’’,XNb-1)gh(X--Xk)AS
i,j =0 i,j =0 k=O

Nb--1 N--1

=As fk(Xo, X1,’’’,XNb-1)’h2 Uogh(Xo-Xk)
k=0 i,j =0

N

AS 2 fk(X0, Xl," XNb--1) Uk
k=0

Nb--1 Nb--1
As , fk(Xo,X,,’’ .,X_,). Z Gtf,(Xo, X,,’" .,Xm_,)

k=0 1=0

As f. Gf.

Note that it is important that we use the same &function for interpolating the
velocity field from the fluid lattice to the boundary points and for spreading the
boundary force from the boundary points to the nearby lattice points of the fluid. If
different g-functions were used, we would not have obtained the above proof. Combin-
ing the above results, we see that G is positive, semidefinite, as was to be shown.

The foregoing argument shows only that G is po.sitive semidefinite. Does have
a nontrivial null space? By examining the proof that G is positive semidefinite we can
see that f= 0 if and only if the velocity field u that results from the application of
f is constant and hence 0. In fact, this can happen for nontrivial f when the boundary
points are too close together in relation to the fluid mesh. Roughly speaking, this
difficulty arises when there are four or more immersed boundary points per mesh
width. Although we have no proof, our experience is that G is positive definite when
such high densities of boundary points are avoided. The followin.g method for finding
the numerical solution of (8.14) applies to the situation in which G is positive definite.

As before, this numerical solution is found by Newton’s method. Let f" be the
mth guess. Then fm+l is obtained by solving the following system of equations:

(8.17) [+ At As H(X+At As fm)](f,+l _f,)

(fm +VE(X + A As f")).

As promised, this is a symmetric system of equations. Since it is positive definite (if
high density of boundary points are avoided), we can use Cholesky factorization to
find the solution. Once fn+l is found, we update the position of the boundary points by

(8.18) Xn+l X+ At As {jfn+l.

Note that this method makes no direct use of the Stokes solver during the computation
for each time step, but it needs the Stokes solver to precompute the matrix G.

Note also that this method is very expensive. First, computing (requires O(N2b)
ope.rations even when G has been precomputed. (Only O(1) operations per element
of G are required because of the local character of gh.) Second, computing the matrix
for solving the system of equations in (8.17) requires two matrix multiplications, each
of which is O(N3b) for a dense matrix. Third, solving the system of equations also
requires O(N3b). In the presence of many boundary points, this will imply heavy
demands on both computer time and storage.

9. Results. The results of three sets of numerical experiments are given in Figs.
1, 2, and 3. In the experiments shown in Fig. 1, we compare the results of the three

STABILITY AND INSTABILITY 1373

At 15.65

At 23.48

At 31.30

Explicit Approximate-Implicit Implicit

FIG. 1. Results of the three methods with different step sizes. Only the configurations of the last time step
are shown.

StepO

Step 12

Step 14

Step 16

Explicit Approximate-Implicit Implicit

FIG. 2. Results of the three methods with a fixed, intermediate step size. Time evolution of the boundary
configuration in each case is depicted.

1374 CHENG TU AND CHARLES PESKIN

Explicit Approximate-Implicit Implicit

Step 8

Step 10

Step 16

Step 20

FIG. 3. Results of the three methods with a fixed, large step size. Time evolution of the boundary
configuration in each case is shown.

TABLE
Areas inside the boundaries in Fig. 1.

Approximate-
Explicit implicit Implicit

At 15.65 0.1244
At 23.48
At 31.30

0.1244 0.1246
0.1236 0.1242
0.0599 0.1236

TABLE 2
Areas inside the boundaries in Fig. 2.

Step No. Explicit
Approximate-

implicit Implicit

0 0.1256 0.1256 0.1256
12 0.1222 0.1236 0.1242
14 0.1078 0.1236 0.1242
16 0.1236 0.1242

STABILITY AND INSTABILITY 1375

methods with different sizes of the time step parameter. Only the last step of each run
is shown in Fig. 1. In Figs. 2 and 3, the time evolution is shown for all three methods
at one fixed value of At. The area inside the boundary in each case is shown in Tables
1,2, and3.

The domain of the experiment is the 1 x 1 square box. We use a uniform square
lattice with 64 points along each direction. The initial boundary configuration is an
ellipse with 128 boundary points. Each experiment was allowed to run until the results
diverged or until 20 time steps had been computed.

The pictures in the top row of Fig. 1 show the results of the three methods with
a relatively small step size (At 15.65) at time step 20, We find that in this circumstance
all three methods are stable. The boundaries all converge to a circle. We see that the
area inside the boundary is somewhat different in the three cases. The implicit method
preserves the area better than the approximate-implicit method while the latter preserves
the area better than the explicit method (the area within the initial boundary is 0.1256).
In the middle row of Fig. 1 we depict the results of the three methods with a medium
step size (At-23.48). The implicit and approximate-implicit methods are shown at
step 20 and the explicit method is shown at step 16, where it has already diverged. At
this bigger step size, the explicit method is unstable. The boundary becomes very
complex, diverging from the simple closed curve. However, the results for the other
two methods are both stable and their boundaries converge to a circle, as in the case
of a small step size. The results of the three methods with a relatively big step size
(At-31.30) are given in the bottom row of Fig. 1. The results are at step 20 except
for the explicit method, which is at step 10. The explicit method is again unstable,
with an explosive boundary diverging from the circle. At this high level of step size
the approximate-implicit method shows signs of instability. While after 20 steps its
boundary is still a simple closed curve, its star shape is a very poor approximation to
a circle. Only the implicit method remains stable at this value of At.

We can obtain a more detailed comparison of the methods by observing the time
evolution of the boundary configuration in each case. This is done in Fig. 2 for the
intermediate step size (At 23.48). The figure shows that both the implicit and approxi-
mate-implicit methods are stable and that their patterns of convergence over time are
similar: the ellipse gradually becomes a circle. By contrast, the explicit method quickly
diverges. By step 12, the boundary shows an oscillating pattern and eventually becomes
a complicated curve.

The time evolution of the boundary configuration for the largest step size (At--
31.30) is shown in Fig. 3. At time step 0, the shapes are the same as in Fig. 2. The
explicit method starts to show signs of instability at step 8 and quickly diverges at step
10. Beyond this step the results have exploded outside the boundary of the fluid domain.
In the approximate-implicit method, the boundary becomes a star shape at step 16
and remains star-shaped at step 20. Only the implicit method is still stable in this case.

TABLE 3
Areas inside the boundaries in Fig. 3.

Step Approximate-
No. Explicit implicit Implicit

8 0.1157 0.1226 0.1239
10 0.1221 0.1238
16 0.1117 0.1237
20 0.0599 0.1236

1376 CHENG TU AND CHARLES PESKIN

10. Summary and conclusions. We have presented a new method for computing
the boundary force in problems with an elastic immersed boundary and have compared
its stability with two other existing methods. The results clearly rank these methods
from the standpoint of stability. The implicit method has the best stability properties
and the explicit method has the worst. The approximate-implicit method will be stable
for a larger range of the time-step parameter than the explicit method but for a smaller
range of that parameter than the implicit method. When viewed from the perspective
of required computational time (per time step) and storage space, the methods have
the reverse ordering. The explicit method is the most economical, the approximate-
implicit comes next, and the implicit method is the most expensive. Thus there appears
to be a trade-off between stability and cost of the computations.

Indeed, in its present form, the fully implicit method is probably too expensive
for practical application. One purpose of the present investigation, however, was to
determine whether substantial improvement in stability could be achieved through the
use of the fully implicit approach, which had not previously been tried on this type
of problem. The answer appears to be "yes," and this should serve as a motivation to
develop more efficient implementations of the fully implicit scheme. Other challenges
for the future include extending this work to the Navier-Stokes equations and to the
three-dimensional case.

REFERENCES

[1] L. FAUCI AND C. S. PESKIN, A computational model of aquatic animal locomotion, J. Comput. Phys.,
77 (1988), pp. 85-108.

[2] A. L. FOGELSON, A mathematical model and numerical method for studying platelet adhesion and
aggregation during blood clotting, J. Comput. Phys. 56 (1984), pp. 111-134.

[3] A. L. FOGELSON AND C. S. PESKIN, A fast numerical method for solving the three-dimensional Stokes
equations in the presence of suspended particles, J. Comput. Phys. 79 (1988), pp. 50-69.

[4] S. GREENBERG, D. M. MCQUEEN, AND C. S. PESKIN, Three-dimensional fluid dynamics in a
two-dimensional amount ofcentral memory, in Wave Motion: Theory, Modeling, and Computation,
A. J. Chorin, ed., Springer-Verlag, New York, 1987, pp. 85-146.

[5] D. M. MCQUEEN, C. S. PESKIN, AND E. L. YELLIN, Fluid dynamics of the mitral valve: Physiological
aspects of a mathematical model, Amer. J. Physiol., 242 (1982), pp. H1095-H1110.

[6] D. M. MCQUEEN AND C. S. PESKIN, Computer-assisted design ofpivoting-disc prosthetic mitral valves,
J. Thorac. Cardiovasc. Surg., 86 (1983), pp. 126-135.

[7], Computer-assisted design of butterfly bileaflet valves for the mitral position, Scand. J. Thor.
Cardiovasc. Surg., 19 (1985), pp. 139-148.

[8] , A three-dimensional computational method for blood flow in the heart: (II) Contractile fibers, J.
Comput. Phys., 82 (1989), pp. 289-297.

[9] J. S. MEISNER, D. M. MCQUEEN, Y. ISHIDA, H. O. VETTER, U. BORTOLOTTI, J. A. STROM, R. W.
M. FRATER, C. S. PESKIN, AND E. L. YELLIN, Effects of timing of atrial systole on LV filling and
mitral valve closure: Computer and dog studies, Amer. J. Physiol., 249 (1985), pp. H604-H619.

[10] C. S. PESKIN, Flow patterns around heart valves: A digital computer method for solving the equations

of motion, Ph.D. thesis, Department of Physiology, Albert Einstein College of Medicine, 1972.
11 C. S. PESKIN, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp. 220-252.

[12] C. S. PESKIN AND D. M. MCQUEEN, A three-dimensional computational method for blood flow in the
heart: (I) Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81 (1989),
pp. 372-405.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1377-1393, November 1992

1992 Society for Industrial and Applied Mathematics
007

NUMERICAL SOLUTION OF THE TIME-DEPENDENT AXISYMMETRIC
BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS*

MICHAEL SCH,FER"

Abstract. The paper deals with the numerical solution of time-dependent nonisothermal flow problems,
governed by the axisymmetric incompressible Boussinesq equations, on array processors. Using finite
difference methods for discretization and a pressure correction method in combination with a successive
iteration process for linearization and decoupling of variables, the problem is approximated by a sequence
of sparse linear systems. The parallel solution of these systems by preconditioned conjugate gradient (PCG)
methods and multigrid (MG) methods is discussed. Numerical experiments on an array processor for a

number of test problems, derived from a practical application in the field of crystal growth, are reported.
Included are comparisons ofthe implicit Euler scheme and the Crank-Nicolson scheme for time discretization
for different flows, as well as comparisons of PCG methods and MG methods.

Key words, viscous time-dependent flow, incompressible Boussinesq equations, finite differences,
pressure correction methods, preconditioned conjugate gradient methods, multigrid methods, array
processors

AMS(MOS) subject classifications. 65M05, 76D05

1. Introduction. The numerical solution of time-dependent nonisothermal flow
problems in cylindrical geometries is of practical interest in a variety of applications,
especially in the field of material processing. Important examples are the common
manufacturing techniques for semiconductor crystals, such as the widely used
Czochralski method (see e.g., Derby and Brown [5]).

In this paper we consider the numerical solution ofthe time-dependent incompress-
ible Boussinesq equations, which constitute an appropriate, widely accepted mathe-
matical model for the flow problems considered here. We restrict ourselves to the
axisymmetric case, but mention that a generalization of the examined methods to the
fully three-dimensional case is straightforward.

It is well known that a numerical treatment of flow problems, especially in the
time-dependent case, requires a large amount of computational work and storage
capacity. Parallel computers, which are increasingly becoming available commercially,
can help to treat such problems with the required accuracy in reasonable amounts of
time.

Among the different concepts for parallel architectures, we concentrate here on
the case of a two-dimensional mesh-connected array of processors working in single
instruction multiple data (SIMD) mode (see, e.g., Hockney and Jesshope [10]), which
seem to be a very natural architecture for the type of problems considered here. For
the time being, the major advantages of SIMD architectures as against local memory
multiple instruction multiple data (MIMD) machines (e.g., SUPRENUM, transputer
arrays, etc.) are the larger numbers of processors and the much faster local data
communication among the processors. The algorithms given in this paper take into
account the considered architecture.

For space discretization, second-order finite differences on a staggered grid [7]
are used. For time discretization, we consider the 0-method [4] including, in particular,
the first-order implicit Euler (IE) scheme and the second-order Crank-Nicolson (CN)

* Received by the editors February 19, 1991; accepted for publication (in revised form) August 21, 1991.
? Lehrstuhl fiir Str6mungsmechanik, University of Erlangen-Niirnberg, Cauerstr. 4, D-8520 Erlangen,

Germany.

1377

1378 MICHAEL SCH,FER

scheme. The solution ofthe resulting nonlinear algebraic systems, one for each timestep,
is reduced to the solution of a sequence of linear systems by means of a pressure
correction approach [11] and a successive iteration process. For the solution of these
sparse linear systems, we consider basic iterative-method preconditioned conjugate
gradient (PCG) methods and multigrid (MG) methods [6]. Special attention is paid
to the basic iterative methods involved herein, which are the crucial components with
regard to an efficient parallelization. We consider a parallel Gauss-Seidel method,
based on a domain decomposition and a multicolor ordering of the unknowns, which
is easy to implement and which results in efficient algorithms for the considered type
of parallel architectures.

By various numerical experiments on a DAP 510, a SIMD machine with a 32 32
array of single-bit processors, we study the numerical behaviour and the computational
efficiency of the considered algorithms. The test problems are derived from a model
of Czochralski crystal growth, a practical application proposed in 18] as a benchmark
problem. The tests include an investigation of the IE scheme and the CN scheme for
different kinds of flows, as well as a comparison of the considered PCG methods and
MG methods. The results show, as proved in [11] for two-dimensional isothermal
flows for the CN scheme, that the pressure correction approach does not spoil the
accuracy of the underlying time discretization scheme. Rather, if the driving forces of
the flows are not too large, due to the higher order, the CN scheme is superior to the
IE scheme. For large driving forces (e.g., high Rayleigh number flows), especially when
Hopf bifurcation effects become apparent due to the better stability properties, the
implicit Euler scheme clearly shows its advantages.

Concerning the sparse linear system solves, we already find that for relatively
small problem sizes the multigrid methods are superior to the PCG methods. Clearly,
due to the optimal order of MG methods, this superiority grows with the problem size.
For smoothing in the MG methods, as well as for preconditioning in the CG methods,
the proposed multicolor Gauss-Seidel (MCGS) method is more efficient than the
Jacobi method, which is known as an optimally parallel algorithm.

2. Statement of the problem. We consider nonisothermal flows of an incompress-
ible viscous fluid in a vertical circular cylinder of height H and radius R. The
mathematical description of such flows can be derived from the basic conservation
laws of continuum mechanics for mass, momentum, and energy. We assume the validity
of the Boussinesq approximation [14] and an axisymmetric flow. Using a cylinder
coordinate system (r, z) as shown in Fig. 1, the nondimensional balance equations for

H

Flow region

R

Gravity

FIG. 1. Problem configuration.

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1379

(1)

with

the flow region can be written in the following compact form:

x,+K(x)x+Gp=O,
Lx =0,

g(x) (A(, w) 0 -B(v) 0

Aw(u,w) 0 F

k B(0v) 0 A(u, w) 0

0 0 At(u, w)
Gr

CJ= !z L=(Lr, Lz,0,0),

where x (u, w, v, T)r and the differential operators are defined by

A,(u, w)dp Uqbr + Wd?z- Pr(Aqb qb/r2),
Aw(u, w)dp udpr + Wdpz PrAdA
Ao(u, w)d?=A,(u, w)6,
At(u, w 4, Ul) "Jl" W

G, 4,, G4, ,
Lr6 (rb)r/r, Lzth bz,
B(v)b vdp / r, rp =-RaPrqb,

for a scalar function b. Pr and Ra are the Prandtl number and the Rayleigh number,
respectively, and denotes the time variable. A subscript denotes differentiation with
respect to the subscript variable and A is the axisymmetric Laplace operator in
cylindrical coordinates.

The (nondimensional) unknowns in (1) are the radial, axial, and azimuthal
velocities u, w, and v; the temperature T; and the hydrostatic pressure p. In order to
get a well-posed problem, the nonlinear system of partial differential equations (1)
must be completed with boundary and initial conditions for the velocities and the
temperature. On the symmetry axis r 0, we have the symmetry conditions

(2) u V Wr Tr=Pr=O.
We consider the numerical solution of (1), together with (2) and some boundary and
initial conditions, on a parallel computer consisting of a mesh-connected array of
Px x Py processors with local memories (Fig. 2). We assume that the processors work

Px Processors

FIG. 2. Processor array.

Processor with
local memory

1380 MICHAEL SCH,FER

in SIMD mode, which means that all processors perform the same operation at the
same time, but on different data. As will be seen, for the type of problems considered
here, the SIMD principle means no restriction with respect to the parallelization of
the arithmetic operations, and it allows for a very fast local communication. Examples
of currently available SIMD array computers are the distributed array processor (DAP),
the connection machine, or the MasPar data-parallel computer.

3. Discretization and mapping. For the space discretization of (1), we use finite
differences on a staggered grid, as introduced by Harlow and Welch [7]. The staggered
arrangement of the unknowns and the grouping into cells is illustrated in Fig. 3 for
an 8 x 4 grid. As discussed, for instance, in 15], a staggered grid has several advantages
over an ordinary grid. Replacing the spatial derivatives by central differences and using
standard second-order interpolation when needed (in consequence of the staggered
grid), we obtain a system of ordinary differential equations for the unknown grid
functions Xb and Ph"

Xht -t- Kh Xh Xh "Jr- GhPh O,
(3)

LhXh O.

By Taylor expansion it can easily be shown that (3) is an O(h:z) consistent approxima-
tion of (1), where h > 0 is a measure of the resolution of the grid (e.g., the maximum
grid spacing). We remark that the boundary conditions for x are already included in
(3). Because of the staggered grid, no artificial pressure boundary conditions are
required. The initial conditions Xoh for (3) can be obtained as restrictions of the initial
values for (1) to the grid points.

In order to allow an efficient mapping into our processor array, it is advantageous
to take into account the size of the processor when choosing the grid. We assume here
that the number of cells is given by

N x N= krPx x kPy
with some positive integers kr and kz. We subdivide the cell grid into kr kz parts and
map each part to one processor. As an example, Fig. 4 shows the mapping of an 8 x 4

z

FIG. 3. Staggered grid.

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1381

Processor (1,1)

Processor (1,2)

Processor (2,1)

Processor (2,2)

FIG. 4. Distribution of the data to the processor array and multicolored numbering.

cell grid onto a 2 x 2 processor array (the indicated numbering will be discussed later).
For the time discretization, i.e., for the solution of the system (3), we consider the IE
scheme and the CN scheme. In order to handle both schemes simultaneously, we
formulate them in the setting of the 0-method [4]. The 0-method applied to (3) yields,
starting from the initial values

Xh Xoh, pOh --(LhGh)-Kh(Xh)Xh,

approximations x, and p, to Xh and Ph at the time levels t, nat, n 1, 2,... from
the solution of a nonlinear algebraic system of the form

(4a) x+OAt[Kh(x,)x,+Ghp,]=x,-l+(o--1)At[Kh(x-l)x,-l+Ghp,-1],

(4b) LhX ---0.

At > 0 is the timestep and, in general, the parameter 0 can be in the interval [0, 1]. In
the following, we only consider the cases 0 1, yielding the IE scheme, and 0 0.5,
yielding the CN scheme. It can be shown by Taylor expansion that the CN scheme
approximates (3) with a consistency error of O(At2), while the IE scheme is only
O(At) accurate. Both methods are unconditionally stable, but it is well known that
for spatially nonsmooth solutions, the CN scheme may cause numerical oscillations
[4]. The IE scheme does not show such behaviour. In 7, we compare the two methods
numerically for different kinds of problems.

4. Linearization and decoupling of variables. Each timestep with the 0-method
requires the solution of the nonlinear algebraic system (4). Treating (4) directly, for
instance with a Newton method, would be very inefficient, since the resulting linear
systems would be very large and very poorly conditioned. We apply here a technique
that reduces the solution of (4) to the solution of a sequence of smaller and better-
conditioned linear systems. In a first step, we decouple the computation of x and
by means of a pressure correction approach that is based on a fractional step method
due to Chorin [3]. We first compute an approximation) to x from the system

(5) : + OAtKh(:): X-1 -t-(0-- 1)AtKh(x-l)x-l-AtGhp -1,

which results from (4a) by replacing the pressure term OAtGhp on the left side by
OAtGhp-1. Subtracting (5) from (4a) and neglecting the terms involving the operator
Kh we obtain

(6) x), OAtGh(p, _p-l).

1382 MICHAEL SCH,FER

Applying the operator Lh to both sides of (6) together with (4b) yields the linear system

n--1 1__ Lh:,(7) OLhGhPh OLh(hPh +At
from which the new pressure p can be computed. Finally, x can be computed
from (6).

Applying the same technique as in [11], where the above approach is used in
combination with the Crank-Nicolson scheme for two-dimensional isothermal flows,
it can be shown that the pressure correction (PC) method does not spoil the accuracy
of the 0-method.

Summing up, solving (4) with the PC scheme requires the following steps:
PC1" Compute), from (5).
PC2: Compute p, from (7).
PC3" Compute x from (6).

The correction step PC3 consists of a direct computation and needs no further comment.
Step PC2 requires the solution of a sparse system of linear equations. The coefficient
matrix of the system is symmetric positive definite and it remains unchanged during
the timestepping process. It can easily be verified [15] that the problem is equivalent
to a discretization of a Poisson equation with Neumann boundary conditions.

Step PC1 requires the solution of a nonlinear algebraic system. We treat this
problem by a successive iteration (SI) process involving a Gauss-Seidel technique,
which results in a decoupling of the computation of the components Uh, Wh, Vh, and
Th of Xh. The SI method is defined as follows

SII" ,,o ,-1
--X h

SI2" For k 1,. ., m compute :,,k from
n--1 n--1(8) ’kq-oAtSh(’k,’k-1)’k-Xh +(O--1)AtKh(X-I)Xh

n,mSI3" h Xh

-AtGhp, -1.

In (8), the operator Sh(’k
Xh), an approximation to Kh(), is defined by

(, , 0 -B(,) 0

Awh(a,,k-1, ff,k-1) 0 Fh

I VO" 0 Avh(’-’,h 0Bh(’) "’-)
0 0 A

Looking at this matrix we realize that the computation of YT,’k in step SI2 can be
performed by a back substitution process, which involves the successive solution of
four linear systems for 7,’k, 7,’k, 7,’k, and gT,’k. We remark that the linearization of
(5) by a Newton process, which would converge more rapidly, would not allow for
such a decoupling. All components of YT,’k would have to be computed simultaneously,
resulting in a higher computational effort per iteration and higher memory requirements.

The number of iteration steps m in step SI2 either can be fixed (e.g., tn 1 may
be sufficient), or it can be held variable by iterating until a stopping criterion such as

with a suitable norm I1" and some e > 0 is reached. We investigate this question
numerically in 7.

In summation, we have reduced the solution of the nonlinear algebraic system
(4) to the solution of 4m + 1 sparse linear systems. So we are left with the problem of
solving these systems in an efficient way on our processor array. This is the topic of 5.

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1383

5. Parallel linear system solvers. For the solution of the sparse linear systems that
arise in the algorithms of 4, we consider MG methods and PCG methods, which
rank among the most efficient methods for dealing with such problems. Let us denote
by

(10) My=b

the system that we wish to solve.
PCG methods [2] start with a transformation of (10) into an equivalent system

(11) P-1My P-lb,
with a nonsingular preconditioning matrix P. Applying a conjugate gradient algorithm
to (11), we obtain a PCG method. For symmetric positive definite systems the classical
conjugate gradient (CG) method of Hestenes and Stiefel [8] can be used. A generaliz-
ation of this method to nonsymmetric systems is the conjugate gradient squared (CGS)
method of Sonneveld [13].

The rate of convergence of PCG methods is determined by the ratio of the largest
and smallest eigenvalues, the condition number, of the matrix P-1M [2]. The smaller
the condition number the more rapid is the convergence. Therefore in order to obtain
a rapidly convergent algorithm, P should be an approximation to M in some sense.
On the other hand, since required one or more times in each step of a PCG method,
the inverse of P should be as simple as possible. A compromise between the two
extreme cases P M and P Id (identity matrix) must be found.

We concentrate here on basic iterative method preconditionings, as discussed, for
instance, in [1]. In this approach, P is defined by

s--1

p-l__ L (Id-Q-1M)iQ-,
i=o

with a positive integer s and a nonsingular matrix Q corresponding to a basic iterative
method defined by a splitting M Q-R of M and an iteration process of the form

(12) y<-y-Q-(My-b).
The resulting algorithm is known as s-step basic iterative PCG method. We shall return
to the problem of choosing a suitable Q for the use on our processor array below.

The main components of MG methods, which are thoroughly treated in [6], are
a sequence of coarsened grids, an interpolation procedure and a restriction procedure
for the intergrid transfers, and an iterative method like (12) for smoothing on the
different grids. As an example, we describe here the multigrid approach that is used
for the solution of the pressure systems (7).

We coarsen the grid as indicated in Fig. 5 and choose the coarsest grid such that
each subregion contains at least one grid point. Together with the induced mapping
of the coarse-grid points (corresponding to that for the finest grid), this approach
results in a uniform data distribution over the processor array for all grid levels and,
therefore, ensures a full utilization of the processor array during the algorithm. It
should be noted that for very large processor arrays, where, with the above strategy,
the problem on the coarsest grid remains very large, it may be advantageous to put
up with the full utilization and coarsen the grid below the numbers of processors.

The interpolation operator is illustrated on the right in Fig. 6. It results from
piecewise linear interpolation and is of second order with respect to h. For restriction,
we take the weighted restriction operator corresponding to the adjoint of the interpola-
tion operator, shown on the left in Fig. 6. We remark that the seemingly natural and
much easier to implement restriction operator, resulting from assigning each coarse-grid

1384 MICHAEL SCHFER

@

@

@ @

@ @

@ @

@ @

@ @

@ @

@ @

@ @

@ @

1t
@ @

FIG. 5. Grid coarsening.

fine-grid points

coarse-grid points

Restriction Interpolation

FIG. 6. Second-order interpolation and corresponding weighted restriction.

point the mean value of its four fine-grid neighbours, in connection with the correspond-
ing piecewise constant first-order interpolation, would not be accurate enough to solve
our second-order problems [17].

For the movement through the different grid levels, we use the standard V-cycle
approach with a fixed number of presmoothing and postsmoothing steps [6]. The
coarse-grid matrices are chosen according to the discretization on the respective grids.
The solution on the coarsest grid is approximated by means of some steps of a PCG
method. We found that the reduction in the required number of V-cycles when solving
more exactly on the coarsest grid is too small to compensate for the additional work.

In order to obtain an efficient algorithm for a parallel computer, the crucial point
for both PCG methods and MG methods is the choice of the iterative method (12).
The parallelization of the other components of the methods, with the considered data
mapping, is straightforward. Unfortunately, basic iterative methods that are very
attractive with respect to their preconditioning or smoothing properties (for example,
the powerful incomplete factorization methods 12], 16]) are inherently recursive and,
therefore, not amenable to an efficient parallelization. It seems that a compromise

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1385

between parallelism and convergence properties, which takes into account the type of
problem and the available hardware, must be found.

The simple choice

Q coMo, 0<co_-<l,

where Mo denotes the diagonal matrix corresponding to the main diagonal of M,
results in the damped Jacobi (DJAC) method [6]. When used as a preconditioner,
to 1 should be taken, and when used as a smoothing iteration, to 0.5 is a suitable
choice. DJAC can be viewed as an ideally parallelizable algorithm. The degree of
parallelism is equal to the number of grid points independent of the numbering of the
unknowns.

As an improvement of DJAC, we consider here a parallel version of the Gauss-
Seidel method, which can be described in the setting of multicolored basic iterative
methods as discussed in Adams [1]. We choose a coloring that is induced by the
number of processors and the problem size, as opposed to, for instance, the well-known
red/black coloring [19], which is induced by the finite-difference discretization. The
coloring strategy is as follows" all cells in the same subregion obtain a different color
and all subregions are colored identically. Therefore, kr kz colors are required, and
the number of unknowns corresponding to the same color is equal to the number of
processors. Numbering the unknowns color by color in the usual lexicographical way
gives M a block structure such that each of the kr x kz diagonal blocks is a diagonal
matrix, whose size equals the number of processors. As an example, Fig. 4 illustrates
the multicolor numbering for an 8 x 4 grid and a 2 2 processor array.

With the usual splitting M ML+Mo+Mu of M into the lower diagonal part
ML, the diagonal part Mo, and the upper diagonal part Mt, the MCGS method is
defined by

Q=Mo+M.

The method is easy to implement and it is optimal concerning the utilization of the
processor array. Since all points of the same color can be updated simultaneously, the
degree of parallelism is equal to the number of processors. Concerning the convergence
properties, the method lies somewhere between the Jacobi method and the lexico-
graphical Gauss-Seidel method, depending on the number of subdomains (see [19,
Ch. 4, Thm. 5.8]). If the processor array has the same size as the cell grid (kr= kz
1 color), the method is equivalent to the Jacobi method, and if we only have one
processor (k x kz N,. x Nz colors), it is equivalent to the lexicographical Gauss-Seidel
method.

For use as a preconditioner, we also consider the symmetric variant (SMCGS) of
the method, which is defined by

Q (Mo +Mt)M91(Mo + M).

Using SMCGS, some symmetry properties of M carry over to P, e.g., a symmetric
positive definite 1M yields a symmetric positive definite P, as is required when precon-
ditioning the CG algorithm.

Concerning the data communication among the processors, we remark that only
the summations in the innerproducts of the CG methods and the computations of
some norm for checking the convergence require global communication. For all other
components of the algorithms discussed above, only local communication is required.
In 8 we give a numerical comparison of the considered methods.

1386 MICHAEL SCH,FER

6. Test problems and implementation considerations. Our test problems are derived
from a model of Czochralski crystal growth proposed in [18] as a benchmark problem.
The (nondimensional) configuration consists of a rotating vertical cylindrical crucible
of radius r 1 filled with a melt to a height z 1. The melt is bounded above by a
rotating coaxial crystal of radius r 0.4. Concerning the boundary conditions the
following assumptions are made"

The surface of the melt between the crystal and the crucible is flat and free of
shear stress with a linear temperature distribution from the crystal to the crucible wall;

The crystal is isothermal with temperature T 0 and rotates with an angular
velocity v g(t);

The crucible rotates with an angular velocity v =-g(t)/4, the crucible wall is
heated with a temperature T =f(t) and the crucible base is a perfect insulator.

This leads us to the following set of boundary conditions:

u=w=0, v=-g(t)/4, T=f(t) for r=l, 0<-z<_-l,

u=w=0, v=-rg(t)/4, Tz=O for0 -<r -<1, z=0,

Uz= Vz= W=O, T=(5r-2)f(t)/3 for0.4_-<r=<l, z=l,

u w T=0, v rg(t) for 0 -< r-<0.4, z 1.

The initial conditions are taken to be Uo Wo Vo To 0.
Varying the Rayleigh number Ra and the functions f and g, this model allows us

to investigate the numerical behaviour of the considered algorithms for the most
relevant aspects of our flow problem" time-dependent thermal convection, time-
dependent forced convection, and Hopf bifurcated oscillatory convection. We fix the
Prandtl number to Pr 0.05, which is in the range of the values for semiconductor
and metal melts (e.g., silicon, mercury, etc.).

The array processor that we use for our computations is an AMT DAP 510, which
consists of a mesh-connected array of Px x Py 32 x 32 single-bit processors working
in SIMD mode (see, e.g., [10] for a detailed description of the hardware). The total
memory size of the machine is 4 MBytes and the clock rate is 10 MHz. For the
computations, we use 48-Bit arithmetic. In order to allow a classification of the
performance, we remark that we can solve our test problems on the DAP 510 about
35 times faster than on a SUN 3/50 and about 1.2 times faster than on a CYBER955.

For the space discretization, we use a uniform mesh with a grid spacing

1
h-32k, k=l,2,...

which results in a number of Nr Nz kPx x kPy cells. Following the mapping strategy
discussed in 3 (see Fig. 4), we divide the cell grid in 32 x 32 subregions, and each
processor obtains the data for the k x k cells contained in each subregion. We remark
that the memory size of the DAP 510 only allows for calculations up to k =4. The
mesh size of the coarsest grid in the multigrid methods is h 1/32. For all computations
the stopping criterion for the linear system solvers is chosen to be

Ily k-l-ylloo
< 10-5,

where yk- and yk are two consecutive iterates and I1" I1(R) denotes the maximum norm.
For the presentation of the results we introduce the stream function , defined by

u g,,I r, w -g,,I r,

and 0 on the boundary.

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1387

7. Comparison of discretization schemes. In the first instance, we study the conver-
gence behaviour of the considered algorithms with respect to time. For this we consider
our test problem in the time interval [0, 1] with the data sets

f(t)=sin(Trt/2), g(t)=0, Ra=500,

which.results in a pure thermal convection flow driven by the temperature gradient
between the crystal and the crucible wall, and

f(t)=O, g(t)=lOsin(Trt/2), Ra=500,

which yields a pure forced convection flow driven by the rotation of the crucible and
the crystal.

We want to compare the IE scheme and the CN scheme. For the number of
iteration steps in the SI algorithm we consider the cases m 1, denoted by IE1 and
CN1, and m according to (9) with the maximum norm and e 10-5, denoted by IE*
and CN*. We fix the grid spacing to h 1/64.

In order to obtain reference values we first run CN* with the very small timestep
At 1/1000. Next we compute the solution with IE1, IE*, CN1, and CN* for At 1/10,
1/20, 1/40,. .. Figure 7 shows the results for the thermal convection problem. On
the left-hand side plots of the relative errors of the maximum norms of the stream
function p at 1 as against the number of timesteps are shown, and on the right-hand
side the relative errors are plotted against the required computing times. The corres-
ponding results for the forced convection problem are shown in Fig. 8.

From the results we can conclude:
As can be expected, due to the higher order, with the CN schemes the same

accuracy can be reached faster, as with the corresponding IE schemes.

IE1 CNI IE EN*

-! -1

-4
",,,
I’’’- -4

1.0 1.5 2.0 2.5 3.0 0 10 20 30 40 50

loll(time steps) Computtn time (rain)

FIG. 7. Convergence behaviour with respect to time for IE1, IE*, CN1, and CN* for the thermal
convection problem.

For both problems the convergence behaviour of IE1 and IE* does not differ
very much. Looking at the errors obtained with more than 100 timesteps, the linear
convergence rate predicted by the theory can be observed for both schemes. Since one
timestep with IE* takes longer than with IE1, it is not useful to choose m > 1.

1388 MICHAEL SCH,FER

IE1 CN1 E CN

-I

It II Ill I"k,l Ill
1.5 2.0 2.5 3.0

oil(time steps)

4
0 10 20 30 40 50

ComputlnR time (rain)

FIG. 8. Convergence behaviour with respect to time for IE1, IE*, CN1, and CN* for the forced
convection problem.

For both problems, CN* shows the quadratic convergence behaviour predicted
by the theory for the Crank-Nicolson scheme. For the CN1 scheme the convergence
order deteriorates with decreasing At. Due to the subdiagonal element Bh() in
the matrix Kh() this effect is stronger for the forced convection problem. In this
case, in order to improve the accuracy, it is preferable to choose rn > 1 rather than a
smaller A t.

Now we investigate the behaviour of the IE and CN schemes when used for a
high Rayleigh number problem having a Hopf bifurcated time-periodic solution. We
consider our test problem in the time interval [0, 0.4] with the data

f(t)=l, g(t)=0, Ra=750,000.

We only present results for IE1 and CN1, because the schemes with variable rn show
the same behaviour. Figure 9 shows the variation of the maximal radial velocity with
time obtained with the IE1 scheme using different values of At and h.

Let us first discuss the nature of the flow. Looking at the diagram for At 0.00005
and h 1/128, yielding the most accurate solution, we can see that after a startup
phase with irregular oscillations, which is due to the incompatibility of the boundary
conditions and the initial conditions (the initial temperature does not satisfy the
boundary conditions on the crucible wall), the flow becomes periodic.

Now we turn to the numerical behaviour of the IE1 scheme. If At is chosen too
large we do not find the periodic time dependency in the solution. Looking at the
diagrams for h 1! 128, we see that with increasing At, the amplitude of the oscillations
becomes smaller and smaller and finally disappears, such that we get a stationary
solution corresponding to some mean value of the amplitude. For h 1/64 this effect,
which is due to the strong damping properties of the IE scheme, can also be observed.

If h is chosen too small we also get a stationary solution. Looking at the diagrams
for At =0.00005 we can see that by increasing h the amplitude of the oscillations
decrease and disappear for h 1/32. In this case, the stationary values for the maximal
radial velocity are far away from the values for smaller h (observe the different scale
in the diagrams for h 1/32). This is because of spatial oscillations (also called wiggles)
due to drastic changes of the solution in boundary layers at the rigid boundaries [4].
The oscillations can be suppressed by choosing a smaller h (the oscillations are no

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1389

300

25O

2OO

150

100
0 .2 .4 .4

3OO

250

2OO

150

tOO I,,,

0 .2

3OO

250

200

5o

tO0

300

250

2OO

150

t00
0 .2 .4 0 .2

3OO

25O

2OO

150

I00

.0008, h=t/64

0 .2 .4 .4

3OO
h=1/128

250

200

150

00 1J
0 .2

5OO

400

300

2OO

tO0

At=0. 0008, h=t/32
5OO

400

3OO

2OO

tO0

At=0.00005, h=I/32

0 .2 .4 0 .2 .4

Time Time

FIG. 9. Maximal radial velocity versus time for the IE1 scheme with various At and h.

1390 MICHAEL SCHFER

longer apparent for h-1/64), a local refinement near the boundaries would be
sufficient, or by choosing upwind differences for the first-order derivatives in the
convective terms.

We were not able to compute a reasonable solution with the CN1 scheme. We
tried stepsizes down to At =0.000025 and h- 1/128 (due to the limited memory size,
a smaller h is not possible on our DAP 510). As an example, Fig. 10 shows the maximal
radial velocity as against time computed with At =0.0001 and h- 1/128. For other
values of At and h, we obtain similar results or, as in some cases, the program even
terminates with an arithmetic overflow. While in the startup phase, the results are
comparable to those for the IE1 scheme; they become chaotic when the flow enters
the periodic phase. This effect seems to be due to the fact that the damping property
of the CN scheme deteriorates for high-frequency components of permanently acting
rough disturbances [4]. As suggested in [9], a damping by means of replacing some
CN steps by IE steps or by shifting the CN scheme slightly to the implicit side may
save the situation, but we have not yet investigated these techniques.

300

200

150

100
0 .2 .4

Time

FIG. 10. Maximal radial velocity versus time for the CN1 scheme with At =0.0001 and h 1/128.

8. Comparison of linear system solvers. For a comparison of the sparse linear
system solvers discussed in 5, we consider the mixed convection problem in the time
interval [0, 1] resulting with the data

f(t)=sin(Trt/2), g(t)=10sin(Trt/2), ga=500.

We discretize with the CN1 algorithm and fix At 1/80.

TABLE
Numbers of iterations and timings for PCG methods with h 1/32, 1/64, 1/128.

Method
Iterations Computing time (min)

h= 1/32 h 1/64 h= 1/128 h 1/32 h 1/64 h= 1/128

CG
CG-DJAC1
CG-DJAC2
CG-DJAC3
CG-DJAC4
CG-SMCGS1
CG-SMCGS2

8476 16391 32916 0.9 6.4 49.1
5456 10509 19026 0.6 4.4 31.0
3275 5519 10373 0.6 3.6 26.2

3561 6287 11443 0.8 5.5 39.0
2408 4246 7435 0.7 4.7 32.0

3275 4842 8226 0.6 3.1 21.7
2408 3933 6191 0.7 4.0 25.7

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1391

TABLE 2
Numbers of iterations and timings for MG methods with h 1/64, 1/128.

Iterations Computing time (min)
Method h 1/64 h 1/128 h 1/64 h 1/128

MG-DJAC1 447 561 1.4 3.4
MG-DJAC2 396 424 1.5 3.5
MG-MCGS1 387 352 1.3 2.4
MG-MCGS2 370 330 1.4 2.9

First we study the convergence behaviour of the PCG and MG methods with
varying h. The methods are applied to the symmetric positive definite systems (7)
arising in the timestepping process. Table 1 shows the results for the PCG methods.
Indicated are the numbers of iterations and the computing times required to solve all
80 systems for h 1/32, 1/64, 1/128 with the different preconditionings. The corres-
ponding results for the MG method for 1/64, 1/128 (h= 1/32 corresponds to the
coarsest grid), and the different smoothing methods are given in Table 2. Concerning
the notation, CG-BIs denotes the CG method preconditioned with s steps of the basic
iterative (BI) method. MG-BIs denotes the MG method with s BI presmoothing steps.
We note that for h 1/32, the basic iterative methods DJACs and MCGSs, as well as
the methods DJAC2s and SMCGSs, are equivalent. Several conclusions can be drawn
from the results:

All PCG methods are considerably faster than the unpreconditioned CG method.
The saving of computational work due to the fewer iterations is much larger than the
additional work due to the preconditionings.

Only a small number of basic iterative method steps for preconditioning is
efficient. The optimal value is s 2 for the DJAC preconditioning and s 1 for the
SMCGS preconditioning. The reduction in the number of iterations when using larger
values of s is too small to compensate for the additional work due to the larger number
of basic iterative method steps.

In agreement with theoretical results in [1], the DJAC preconditioning for odd
s > 1 is not as efficient as for even s (CG-DJAC3 needs more iterations than CG-
DJAC2).

The SMCGS preconditioning is more efficient than the JAC preconditioning.
For all h, CG-SMCGS1 is the fastest PCG method.

The MG methods are more efficient than the PCG methods. The smaller h is,
the more superior the MG method becomes.

Using only one presmoothing step and one postsmoothing step is sufficient.
The reduction in the number of iterations when using more steps is not large enough
to compensate for the additional work.

The MCGS smoothing is more efficient than the DJAC smoothing. The
superiority grows with decreasing h. For all h, MG-MCGS1 is the fastest method.

Finally, we investigate the performance of the preconditioned CGS methods. We
use the methods for the solution of the nonsymmetric systems arising during the
timestepping process for our test problem. The numbers of iterations and the computing
times for solving the 320 systems are given in Table 3 for the different preconditionings.

The results are very similar to those for the PCG method in the symmetric positive
definite case. The reduction of the computing time by the preconditionings is larger
in the nonsymmetric case. For instance, for h 1/128 the ratio of the computing time

1392 MICHAEL SCHFER

TABLE 3
Numbers of iterations and timings for PCGS methods with h- 1/32, 1/64, 1/128.

Iterations Computing time (min)
Method h= 1/32 h= 1/64 h= 1/128 h- 1/32 h= 1/64 h- 1/128

CGS 9869 18291 33295 1.7 10.8 75.9
CGS-DJAC1 2831 4848 8581 0.6 3.2 21.7
CGS-DJAC2 1606 2615 4494 0.4 2.9 19.3
CGS-DJAC3 1744 3355 6020 0.7 5.2 36.6
CGS-DJAC4 1274 2005 3396 0.7 4.0 26.6
CGS-SMCGS 1606 2383 3698 0.4 2.6 16.7
CGS-SMCGS2 1274 1811 2797 0.7 3.4 21.2

for CGS to those for CGS-SMCGS1 amounts to 4.5, while the ratio is only 2.3 for CG
and CG-SMCGS1.

9. Conclusion. We have presented a highly parallel algorithm for the numerical
solution of time-dependent nonisothermal flow problems. If the driving forces of the
flow are not too large, the proposed method with the Crank-Nicolson discretization
is well suited to solving the type ofproblems considered here on SIMD array processors.
If the driving forces become larger, the arising stability problems can be resolved by
the use of the implicit Euler discretization. For the solution of the sparse linear systems
occurring during the algorithm it was shown that already for relatively small problem
sizes, MG methods are superior to PCG methods. For the involved basic iterative
methods the multicolor block Gauss-Seidel method is preferable to the simple Jacobi
method.

REFERENCES

1] L. ADAMS, M-step preconditioned conjugate gradient methods, SIAM J. Sci. Statist. Comput., 6 (1985),
pp. 452-463.

[2] O. AXELSSON AND V. BARKER, Finite Element Solution ofBoundary Value Problems, Academic Press,
Orlando, FL, 1984.

[3] A. CHORIN, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), pp. 745-762.
[4] C. CUVELIER, A. SEGAL, AND A. V. STEENHOVEN, Finite Element Methods and Navier-Stokes

Equations, D. Reidel, Dordrecht, the Netherlands, 1986.
[5] J. DERBY AND R. BROWN, On the dynamics ofCzochralski crystal growth, J. Crystal Growth, 83 (1987),

pp. 137-151.
[6] W. HACKBUSCH, Multi-Grid Methods and Applications, Springer-Verlag, Berlin, 1985.
[7] F. HARLOW AND J. WELCH, Numerical calculation of time dependent viscous incompressible flow of

fluids with free surface, Phys. Fluids, 8 (1960), pp. 2183-2189.
[8] M. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res. Nat.

Bur. Standards, 49 (1952), pp. 409-436.
[9] J.G. HEYWOOD AND R. RANNACHER, Finite-element approximation ofthe nonstationary Navier-Stokes

problem Part IV: Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27
(1990), pp. 353-384.

[10] R. W. HOCKNEY AND C. JESSHOPE, Parallel Computers: Architecture, Programming and Algorithms,
Adam Hilger, Bristol, U.K., 1981.

11] J. V. KAN, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J.
Sci. Statist. Comput., 7 (1986), pp. 870-891.

[12] J. MEIJERINK AND H. VAN DER VORST, An iterative solution method for linear systems of which the
coejficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[13] P. SONNEVELD, CGS, a fast Lanczos-type solverfor nonsymmetric linear systems, SIAM J. Sci. Statist.
Comput., 10 (1989), pp. 36-52.

[14] E. SPIEGEL AND G. VERONIS, On the Boussinesq approximation for a compressible fluid, Astrophys.
J., 131 (1960), pp. 442-447.

SOLUTION OF BOUSSINESQ EQUATIONS ON PROCESSOR ARRAYS 1393

15] J. TEN THIJE BOONKKAMP, The odd-even hopscotch pressure correction scheme for the incompressible
Navier-Stokes equations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 252-270.

16] P. WESSELING, Theoretical and practical aspects of a multigrid method, SIAM J. Sci. Statist. Comput.,
3 (1982), pp. 387-407.

17] , Linear multigrid methods, in Multigrid Methods, Chap. 2, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1987.

18 A. A. WHEELER, Four Test Problemsfor the Numerical Simulation ofFlow in Czochralski Crystal Growth,
J. Crystal Growth, 102 (1990), pp. 691-695.

19] D. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1394-1417, November 1992

() 1992 Society for Industrial and Applied Mathematics
0O8

STOCHASTIC BREAKTHROUGH TIME ANALYSIS OF AN
ENHANCED OIL RECOVERY PROCESS*

HANS PETTER LANGTANGEN

Abstract. Input data to mathematical models for petroleum reservoir flow are commonly
subjected to a significant degree of uncertainty. In this paper, input data, such as porosity, absolute
and relative permeabilities, and adsorption functions, are treated as stochastic quantities in a one-
dimensional polymer flooding model. Tools from structural reliability theory are used to solve the
governing stochastic partial differential equations. The statistics of the time T to water breakthrough
in the production well are studied. In particular, the sensitivity of T to the input quantities are
reported. Correlations between the input variables seem to have a considerable effect on their relative
importance.

Key words, stochastic differential equations, polymer flooding, reliability methods, sensitivity
analysis

AMS(MOS) subject classifications. 65C20, 65U05

1. Introduction. The input data to many mathematical models are subjected
to significant uncertainty and may thereby cause unreliable simulation results. This is
especially the case for the standard continuum models of multiphase/multicomponent
porous media flow which are of particular importance in the petroleum recovery indus-
try. Important decisions are made on the basis of results from mathematical models,
and it is often desired to have measures of uncertainties available. The simplest ap-
proach to gaining insight into how input data uncertainties affect the solution is to
carry out a deterministic sensitivity analysis [13]. Each input parameter is given a
prescribed perturbation, expressing an "uncertainty," and the resulting perturbation
of the output data is found by solving the equations entering the mathematical model.
This approach has some deficiencies. The perturbation in input, reflecting some kind
of uncertainty, is difficult to estimate. Often the perturbation corresponds to a sta-
tistical quantity such as one standard deviation. When using a deterministic model,
the resulting perturbation in output can seldom be given any statistical significance.
Another deficiency of deterministic sensitivity analysis is related to the fact that cor-
relations between the input data cannot be taken into account. Changing one input
parameter without changing others, according to some underlying physical structure
among the input variables, may be unphysicM. In practice, the relationship among
input variables is seldom completely known, and covariances, which can be measured
from physical experiments alone, may be an attractive way to represent such relation-
ships. In order to incorporate information on correlations and to consistently compute
statistics of the output data of a model, given input data statistics, one should use a
stochastic mathematical model of the physical process.

In this paper, we are concerned with a stochastic flow model for a rather compli-
cared oil recovery process where accurate measurements of the input data are almost
impossible to obtain. Input data are modeled in terms of stochastic variables, or
fields, and the governing stochastic partial differential equations are solved to pro-
duce statistics of an interesting output parameter in the model. Although there are
very important applications for stochastic reservoir flow models, the major part of
industrial reservoir simulations is based on deterministic analysis. In recent years,

Received by the editors March 27, 1991; accepted for publication (in revised form) November
15, 1991.

Department of Mathematics, University of Oslo, P. O. Box 1053, N-0316 Oslo 3, Norway.

1394

STOCHASTIC EOR PROCESS 1395

statistical methods for describing reservoir geometry and reservoir parameters have
emerged (see, e.g., [9]). Activity in the solution of flow models with stochastic input
is also evolving [6], [17], [14], [18].

Also, in a stochastic simulator there are input data to the code that are subjected
to uncertainties. These input data are usually associated with parameters entering
statistical distributions, such as mean and standard deviation values. This paper is
especially concerned with the sensitivity of the output parameters to perturbations
in input parameters that enter the distributions.

The particular physical problem to be treated here is one-dimensional displace-
ment of oil by an injected mixture of water and polymer. This is a widely used
enhanced oil recovery (EOR) process. We study the output data in terms of the
time to water breakthrough in the production well. The breakthrough time is an
important parameter to petroleum engineers and decision makers. Moreover, it is
also closely related to the total oil production until breakthrough. The mathematical
model consists of a system of three, coupled, nonlinear, time-dependent partial differ-
ential equations. Uncertain input quantities, such as porosity, absolute and relative
permeablity, and adsorption effects, are modeled as stochastic variables. The result-
ing stochastic partial differential equations must then be solved to find the statistics
of the desired output quantities. Variants of Monte-Carlo simulation techniques are
presently dominating for solving stochastic partial differential equations and applica-
tions to reservoir simulation can be found in [6] and [14]. In this paper, we employ an
alternative approach by adapting methods from probabilistic structural analysis. The
particular method to be used is the first-order reliability method (FORM). FORM
analysis of finite-element discretized continua is emerging [12], and a feasibility study
of possible applications to reservoir simulation has been performed [17]. The main
reason for using FORM to solve stochastic differential equations is that it is efficient
for the present type of problem, and that it gives sensitivity measures on how pa-
rameters in the distributions, like expectations and standard deviations, influence the
statistical results. A general discussion of Monte-Carlo simulation and analytically
based reliability methods, such as FORM, is given by Bjerager [5]. Contrary to most
work on stochastic reservoir flow models, we do not focus on absolute permeability
heterogeneities, but instead on the interplay between stochastic representations of
many of the physical input parameters.

In 2, we present the governing partial differential equations. Section 3 discusses
the FORM application to the present problem. Applications to porous media flow
appear in 4. A short summary with conclusions is given in 5.

2. The governing equations. Polymer flooding is an EOR technique where a
mixture of water and polymer is injected into the reservoir to displace oil. The ap-
pearance of the polymer causes the viscosity ratio between the injected and displaced
fluid phases to decrease and hence enhance the recovery process [7]. The mathemat-
ical model for polymer flooding is based on the continuum mechanical equations for
multiphase/multicomponent porous media flow. In the present case, we consider the
flow of an oil phase and an aqueous phase in a porous medium. The phases are con-
sidered to be immiscible and incompressible. The aqueous phase consists of water and
a polymer component which is totally miscible in water. Let S(x, t) be the saturation
of the aqueous phase, where x is the spatial coordinate and t denotes time. Only
unidirectional flow is considered. Moreover, let C(x, t) be the concentration of the
polymer component in the aqueous phase. We may derive a system of partial differ-
ential equations governing S and C by applying Darcy’s law and the principle of mass

1396 HANS PETTER LANGTANGEN

conservation. Neglecting capillary pressure effects results in the following equations

cOS OF+ =0,

0
v
0

[CF] O,0- [SC / (1)A]-t-

where 0 < x < L and t > 0. We expect water to be injected in x 0 (injection
well) and oil to be produced in x L (production well). Moreover, we have v as the
total Darcy filtration velocity (independent of x) and as the porosity. Furthermore,
F is the fractional flow function [16] which depends on S and C. Adsorption of the
polymer on the rock is modeled by the function A that depends on C. The two
equations above determine S and C when v is known. This is the case if the velocity
is controlled in the injection well. To model the influence of the absolute permeability
adequately, we prescribe a pressure difference between the injection and production
well. Then v will depend on the time-dependent pressure field P, which is governed
by

(31 N] 0.

We have v -HOP/Ox, where H is a function of S and C.
The fractional flow function has the form

(4) F
k,.w / k,.o

where kr, and kro are the relative permeability of the aqueous and oil phases, respec-
tively. Here # #a/#o, where a and #o are the viscosities of the aqueous and oil
phases, respectively. Gravity effects are excluded in this paper. The viscosity of the
aqueous phase depends on the polymer concentrations. In this work, we have used
a linear relation between #a/#o and the concentration C (cf. Johansen, Tveito, and
Winther [10], and the references therein):

+ . 100C,

with - #w/o, where #w is the water viscosity.
The relative permeability curves have been written on the form

(5) krw(S) K,,,m
1 So,. S,r

[1-S-So,"]
b

(6) k,.o(S) go,
1- S,,,,.- So,.

In these formulas K,,,m and Kom are maximum values of kr, and kro, respectively,
Swr is the irreducible saturation of the aqueous phase, and So,. is the irreducible oil
saturation. The function H, which enters the pressure equation (3), has the form

STOCHASTIC EOR PROCESS 1397

Here/ is the absolute permeability. However, it is convenient to define a charac-
teristic absolute permeability , and to introduce K //. Hereafter this K is
referred to as the absolute permeability. The adsorption function is assumed to have
the Langmuir form [2] . 100C

1 -4-r/. 100C’

where f and r/are empirically determined constants.
As initial and boundary conditions for the equations (1), (2), and (3) we have

used

s(z, 0)
s(0, So ,

0)=0,

c(0,
A,

0,
P(0, t) AP,
P(L,t) =0,

t <

t >_

where Sor denotes Sot at x 0. Only pressure differences, and not the pressure
level, influence incompressible flow. The injection concentration A is usually small,
typically A 0.01.

If Swr 0, we can characterize the solution as follows. Without adsorption there
is one shock in C, say, at x xs. C equals the constant A behind the shock, provided
t8 > t. For ts < t, the C profile becomes plug formed. With adsorption there are two
shocks in S, one at x x and one for x > x. More details and examples can be
found in [10]. Observe that the well-known Buckley-Leverett problem [16] is a special
case of the polymer model where either C is constant or 0.

In the stochastic analysis we need to solve the above inital-boundary value prob-
lem for a deterministic set of physical input parameters. This can generally only be
accomplished by numerical methods. The elliptic pressure equation (3) is solved by
a central finite-difference method. A first-order Godunov scheme is used for the two
hyperbolic conservation laws (1) and (2). All equations are solved on a uniformly
partitioned grid with N grid points. Let At be the timestep length and let Ax be the
length of the intervals in the spatial grid. The stability condition for the Godunov
scheme reads [10]

At<Ax min ()0<x<L V]-O-IOF V
In each simulation we have chosen At as large as possible according to this stability
criterion. The choice of Ax is discussed in 4.5.

The present numerical scheme leads to rather diffusive solutions for C, and the
C shock usually extends over eight to ten intervals. If there is only a single shock
in S, our scheme resolves this shock quite satisfactorily, that is, over about two grid
intervals. When there are two shocks in S, the shock that has the same position as
the shock in C is dispersed over eight to ten intervals. The shock in the front of the
saturation profile is ordinarily resolved over a couple of grid intervals.

1398 HANS PETTER LANGTANGEN

The output parameter to be studied in this paper is the time T to water break-
through in the production well. For the present system of hyperbolic equations and
boundary conditions, T can be defined mathematically as

T inf {t" S(L, t) > S(L, 0)}.

This criterion is, of course, sensitive to the truncation error of the numerical method.
However, the front shock in S is usually resolved over about two grid intervals and
with a sufficiently small Ax, the errors can be made insignificant for the cases treated
in this paper (see 4.5). If the numerical solution is guaranteed to be monotone,
a more robust criterion is to let T equal the arrival time of the "rightmost" local
minimum of OS/Ox at x L. Numerical experiments showed that the differences
between the two criteria are less than 1 percent for the numerical method and the
parameter values of interest in this paper.

3. Stochastic analysis. Recently developed methods from structural reliability
[15] will be employed for solving the the equations (1), (2), and (3) for S, C, and P,
0 < x < L and 0 < t _< T when some of the input variables like , K, kw, and kro are
modeled as stochastic quantities. Structural reliability methods have the advantage
over sampling techniques (of the Monte-Carlo type) in that sensitivity of probabilities
to variations in parameters in both the flow model and the input distributions are
cheaply computed. In the problems studied herein reliability methods are also consid-
erably more efficient than Monte-Carlo simulation. Reliability methods generally give
accurate results when the computed probabilities are small. As we show below, it is
likely that reliability methods may be accurate over the whole range of probabilities
in the present reservoir flow problems.

Viewing the input data as a collection of real numbers, we choose r of these num-
bers to be modeled as stochastic variables. The stochastic variables are denoted by
X E Rr, X (XI,..., Xr)T, and called basic variables. Given statistical information
about X we want to establish statistics of the output parameter T. For this purpose
FORM is used.

The next section reviews some of the basic theory. We also introduce notation
and definitions and describe how the present problem can be formulated for FORM
analysis.

Let X (X1,...,Xr)T be a vector of basic variables. We are interested in
computing the probability of the event Pr {g(X) <_ 0}, where g(X) is a limit state
function. Let f E Rr be the set of points where g <_ 0 (the failure domain). Clearly,
the probability can be computed as

(7) Pr {g(X) <_ 0} fa /X(x)dx,

where fX(x) is the joint probability density of the vector X. We define the limit state
function as g T T, giving Pr {g _< 0} Pr {T _< T}, where T w. is the
deterministic value of T when E[X] is used as input to the governing equations (1),
(2), and (3). Note that T must be computed by solving the differential equations from
2. There are two problems with using (7). First, it may be difficult to establish the
joint density, and second, the evaluation of the integral, for example by quadrature
rules, becomes very expensive even for moderate values of r. The first problem may
be solved to some extent by using methods such as those in [11], discussed below.
The second problem can be treated by FORM analysis.

STOCHASTIC EOR PROCESS 1399

In general, it is extremely difficult to assign a joint density to input variables in
reservoir simulation. At most, we can hope to establish marginal distributions for
each basic variable and perhaps some correlation coefficients. Let @x(xi) be the
marginal distribution function of Xi. The associated density dx/dx is denoted
by 8x(x). If Cov[.,-] is the covariance operator and D[.] is the standard deviation
operator, the correlation coefficient is

Cov[X ,X]x,)

The correlation matrix R is then {R}i o(Xi, X). he method used herein restricts
the 8tisical information bout the bic variables o only include x, i 1,..., r,
and R. We refer o [11] for extensions to ces where some or 11 joint distributions
are prescribed.

a.1. ORM approximations to probabilities. Let (x,x=) be the Euclidian
inner produc of x*,x= R, and let []x]] g(x,x) be the corresponding norm.
In he ce where he failure ,urfaee, defined by 9(X) 0, i8 a hyperplane, nd &(x)
is a standardized, multivariate normal density,

/X(X) exp -[xll2

the integral in (7) can be calculated analytically:

(8) &(x)dx

Here is the cumulative, univariate, standardized, normal distribution function, and
is the distance between X 0 and the (linear) failure surface g 0. Let x* be

the point on g 0 which is closest to the origin (x* is called the design point). Then

To formulate a first-order reliability method, we consider a mapping X Z +
Y, such that Y (Y,... ,Yr)T is a vector of statistically independent, normally
distributed variables with mean zero and unit variance. If the failure surface is linear
in the Y-space, the result (8) gives

(9) Pr { 0} (-), IY*,

with y* the design point in the Y-space. In the general ce where the failure
surface is nonlinear, (9) holds approximately, i.e., Pr {9 0} (-), provided the
curvature of the surface at y y* is small. FORM refers to this approximate method
of calculating Pr {9 0}.

3.2. ansformation of the basic variables. In Z-space the variables are -sumed to be jointly normally distributed with correlation matrix , zero mean, and
unit standard deviation. The mapping Z + Y will therefore be a linear transfor-
mation Y LZ. L0 is here the lower triangular Cholesky decomposition of :
R0 LoL. The mapping X + Z is given by

(10) (z,) ex, (*,), 1,-.., .
In addition, the R matrix must be transformed into R0. This mw be done ap-
proximately by empirically bed formul (see [11]) for a wide range of distributions

1400 HANS PETTER LANGTANGEN

Ox. However, we are exclusively concerned with normally or lognormally distributed
variables in X-space. In this case, the transformation (10) and the formulas for trans-
forming tt to R0 can be simplified and made exact. Let {R0}O (Z, Zj). If Xi is
normally distributed with mean n[xi] and standard deviation D[Xi], we have

X- E[X]

If both Xi and Xj are normal variables, (Zi, Zj) (Xi, Xj). For a lognormally
distributed variable Xi, the transformation (10) simplifies to

with

In Xi E[ln Xi]
Zi= D[ln X]

E[lnXi] ln E[X]- In
E[Xi]] + 1

D[X]= In
\E[X] +1

Moreover, o(Zi, Z) Ao(Xi, X), where

+ e(x,,
o(Xi, Xj) ln(1 + 5) ln(1 + 5)’

when both Xi and X are lognormally distributed. The coefficient of variation, 5i, is
defined

5i E[Xi]"

If Xi is normally distributed and Xy is lognormally distributed, we have

(le)

he formul (11) and (12) are exacg. We noe ghag ghe joing normal disribugion of
is, of course, an sumption and implies a cergain join density of X. This joint

density is generally differeng from ghe exacg joing densigy which is unknown, bu ghe

gwo densigies have ghe same correlagion matrix N. he bic sumpgion is hag the
distribution is characgeried o a large exgent by second-order sagisgics. Noe
uncorrelaed bic viables imply sgochgically independen variables when we use
ghe ransformagion X described above.

g.g. Determination ofthe design point. Leg 9(y) be ghe limi sage funcgion

in Y-space. he design poing y* is he solugion of the constrained minimiagion

problem

y* min Ilyll.
v=O

STOCHASTIC EOR PROCESS 1401

There are generally several local minima of the distance to the failure surface. The
computation of a local minimum is carried out by a standard procedure [11]. In
this work, we iterate in X-sp..ace and linearize the transformation X --. Y in each
iteration. Define the vector M (fl,’", fr)T and the matrix
Given an initial guess x (x, ,xr)T for the design point in X-space, we iterate
for g 0, 1,... as follows:

^ {- [x,()]}(la) Ox, (f)
i 1,...,

(14) f=xi-ai i-- 1,... r,

(15)

-M,Vxg(xt)/ g(xt)
(16) xTM t + <xt "t

<Vxg(x), QVg(x)>
QVg(x)

(17) yt+= L- [t]- (xt+- t),

(18) t+l_ V/<yt+l, yt+l>.
In these equations, V is the gradient operator in X-space, that is,

V Ox’
denotes the univariate normal density function with zero mean and unit variance.

Equation (17) shows that M and D can be interpreted as the instantaneous, or
equivalent, means and standard deviations of X. In fact, when X are jointly normally
distributed, M and D contain the means and standard deviations, respectively. Since
the value of g is a result of a numerical solution of partial differential equations, the
gradient Vxg of g with respect to the basic variables must be computed numerically.
In each iteration the algorithm above therefore requires r+ 1 evaluations of g T-T.
The iteration is stopped when I/TM -1 <- eft, where, for our purposes, ef 0.01
suffices. Having found , we utilize the approximation

Pr {g(X) <_ 0}
(I)(-f),

((),
a(x*) > 0,

g(x*) < 0.

We note that if X is jointly normally distributed, f coincides with the Hasofer-Lind
reliability index [15].

1402 HANS PETTER LANGTANGEN

3.4. Sensitivity measures. One of the attractive features of FORM is that we
can compute sensitivity coefficients very efficiently. Let the transformation X -- Ybe denoted by Y T(X; E[X], D[X]). Then we have

(19) 0E[X]
y*’

0E[X] T(x*; E[X], D[X])

and

(20) oZ 1 < o
0D[X]

y*’
0D[X]T(x*; E[X], D[X])/

The limit state function may contain a set of parameters r besides the basic vari-
ables X: g g(X; r). In our case, r may be input variables that are not treated
stochastically. It can be shown that

0Z -(x*;)or(1) o- v/(V(x,), q,v(x,))

where Q* is the value of Q in the last iteration. Strictly speaking, the sensitivity
coefficients above are approximately correct and approach the exact coefficients as
/9 - <x). It is important to remark that the gradients of g with respect to limit state
function parameters or distribution parameters must be determined numerically in our
application. In practice, we are often interested in the sensitivity of Pr {T _< T} to
distribution or limit state function parameters. Such quantities are obtained straight-
forwardly:

0
TE --- OE[X] oZPr {T _< T} o(fl) 0E[X]

0
TD = OD[X]

oZPr {T <_ T} o(fl) 0D[X]
0ZTR _= Pr {T _< T} o(fl)rr.

2Define the unit vector a (al,..., ar)T as a y*/ft. The quantities a2, ar
r 2 1, 2 reflects the relative impor-are termed importance factors, and since Yi=I ai ai

tance of Xi in determining fl or Pr {g <_ 0}.
Omission sensitivity factors reflect the error in/9 when one of the basic variables

Xi is treated as a constant with value equal to, say, the median rhi of Xi. Generally,
we have

1 fl(X) 2() " v’l , fl a ---0.

Thus, when { is close to unity, the variable X{ contributes little to/9 (or Pr {g _< 0})
and may be omitted from the stochastic analysis and instead replaced by its median
value.

STOCHASTIC EOR PROCESS 1403

4. Results. In this section, we first present the exact analytical solution of a
simplified oil recovery model. Then, some general considerations on the numerical
search algorithm from 3 are reported. We discuss which of the input parameters in
the problem should be modeled as stochastic variables and present a justification of the
chosen values of statistical and physical parameters. A quantification of the numerical
discretization errors is also given. Furthermore, we discuss the quality of the FORM
approximations in the present application. Finally, the numerical method is applied
to the hydrocarbon recovery model and the results are reported and discussed.

4.1. Analytical solution of a simplified model. With normally distributed
variables and a linear limit state function g, (I)-1 () is the exact probability Pr (T _< T
In this case, the numerical search algorithm converges to the exact solution in a single
step. Let M E[X], let D diag(D[X],... ,D[X]), and let R0 be the correlation
coefficient matrix. The exact FORM solution is then obtained by

(23) Q DRoD,

(24)
(x ,Vxg/- g(x)

x* M + ...QVg,

(25) y’-L_I []-1 (x’-

(26) /*-- V/<*, y*).

It is trivial to show that

(x-
Let us introduce the constant X by

We then have
y,

The present polymer flooding model generally gives rise to nonlinear limit state
functions. However, with a particular choice of the input parameters, it is possible
to obtain a g that is linear in the basic variables. Let 1, O, Sw So O,
Kwm gore 1, and a b 1. Then the pressure field is constant throughout the
spatial domain and the saturation fulfills the initial-boundary value problem

(27) S /cKS --O, S(x,O) -O, O < x < L, S(O,t) l,

where c is a constant that depends on the pressure gradient a and the viscosities. The
general solution of this linear equation is

S(x,t)-l-H x---t

1404 HANS PETTER LANGTANGEN

where H(.) is the Heaviside function. The corresponding breakthrough time becomes

T= eL
cK"

Assume that the porosity and the permeability are the only stochastic variables (X1, X2 K) and that both variables are normally distributed. Then the deterministic
breakthrough time reads

E[]L
ElK]c"

The limit state function has previously been defined as g T- To,, T w.
Since only the failure surface g 0 has any statistical significance, we may write
g KT- KwT or

g(, K) E[]- w
E[K]

By introduction of the coefficients of variation 5 D[]/E[] and 5K D[K]/E[K],
we achieve

5Vxg E[]
L
(6,--W6K)T

The correlation coefficient matrix is written as

P 1:to
1

with lower triangular Cholesky factor

(1 0)
This gives

(28) Y* 2
-V/1 02WK

where : xLE[]/c.
Let us study the ratio of the importance factors

(29)

where 6K/6. Without correlation and with K, the relative importance
of vs. K depends on w-2. For small probabilities, is most important, while for
probabilities close to 1, K is the dominating stochastic variable. It is obvious from
the formula that the introduction of a correlation coefficient has significant influence
on the relative importance of and K.

Although the physical and statistical simplifications that were required in this
analytical model are highly questionable, the simple formula (29) gives valuable insight
into the dynamics of a stochastic porous media flow model.

STOCHASTIC EOR PROCESS 1405

4.2. Performance of the search algorithm. When the partial differential
equations are discretized, T can only be determined as mat, m being an integer.
Numerical computations of limit state function derivatives, e.g.,

may then result in a zero derivative if e is so small that g(xl + e, x2,...,x)-
g(xl,... ,xr) _< At. Even if e is large enough to prevent vanishing derivatives, con-
vergence problems of the search algorithm may occur. Of course, the value of e when
computing Og/Oxi depends on the magnitude of xi. We have scaled all basic variables
such that their magnitudes are of order unity. In this work, we have obtained good
results with e -0.1 for all basic variables.

It is required that the entries in R must be chosen such that R0 becomes positive
definite; for example, correlation coefficients o(Xi,Xj) close to +1 must be avoided,
as these may result in I(Z,Zj)I > 1. If a high correlation (e.g., (X,X) >_ 0.7) is
assigned for many of the basic variables, convergence problems of the algorithm (1.3)-
(18) may occur.

In general, the convergence rate of the search algorithm depends on w. Usually,
the algorithm requires about three iterations to converge. For w values corresponding
to very small probabilities or to probabilities close to 1, the convergence may be
slower. When using FORM, convergence problems can sometimes be avoided by
applying log g as limit state function instead of g. Such an approach was tested but
not found necessary in the present study.

4.3. The choice of stochastic variables. Of the parameters entering the frac-
tional flow function, it is physically reasonable to assume that and can be treated
as known constants with negligible uncertainty. On the contrary, , K,, Kom, S,
So, a, b, K, , and represent rock, or fluid-rock mixture, properties with a possibly
significant inherent uncertainty. A deterministic sensitivity analysis of the present
problem [13] indicated little sensitivity of T to perturbations in and . These two
parameters are hence treated deterministically while the other parameters are rep-
resented by stochastic variables. If the reservoir is considered homogeneous, only
one stochastic variable is needed to represent a stochastic physical parameter. How-
ever, in the general heterogeneous case, the physical parameters should be modeled as
stochastic fields and then discretized to vectors of stochastic variables. The numerical
examples in this section are limited to homogeneous reservoirs. We thus exclude the
important effects of fine-scale permeability heterogeneity. The present model is there-
fore relevant when either the fine-scale permeability heterogeneities are negligible,
or when some averaging procedures have been applied to approximate heterogeneity
effects by an uncertain constant permeability value.

4.4. Statistical and physical parameters. The values of the rock parameters
throughout the homogeneous reservoir are modeled by stochastic variables. The basic
variables in the problem are defined as

X=, X2-a, X3=b, X4-S,

Xs=So, X6=Km, XT=Kom, Xs:K.
Adsorption parameters are taken as 0.25 and /- 1.0. Moreover, 2 unless
otherwise stated. In all calculations, we have used L 1000 m, a 10- m2,

1406 HANS PETTER LANGTANGEN

A 0.01, (#w/#o) 1/4, and AP 50 GPa. Polymer is injected during the whole
simulation (ts > T).

In accordance with common practice, the porosity is assumed to be normally
distributed, whereas the absolute permeability is assigned a lognormal distribution.
The other basic variables can attain positive values only; some of them are also
restricted to certain intervals, for example, 0 < Kwm, Kom <_ 1 and 0 <_ S+Sot <_ 1.
Due to lack of better knowledge, we let all variables except the porosity be lognormally
distributed.

In order to achieve reliable conclusions regarding the present recovery process,
the values of expectations, standard deviations, and correlations must be physically
relevant. As an aid for evaluating the physical relevance of expectation and coefficient
of variation values, we introduce an interval I$ for Xi such that Pr {Xi E I$ } p. In
Table 1 the intervals I, corresponding to a choice of p 0.997, are listed for various
values of ii. All values of E[Xi] and 5i in Table 1 are considered physically relevant
to the present displacement process; cf., for example, [1], [2], [3], [4], and [8].

TABLE 1
Relations between distribution parameters and intervals where Pr(Xi E 1).997} --0.997.

Quantity Distribution E[Xi] 5i 1.997
normal 0.2 1/10 [0.14, 0.26]

K lognormal 1.0 1 [0.06, 8.60]
K lognormal 1.0 1/2 [0.22, 3.69]
K lognormal 1.0 1/10 [0.74, 1.34]
a, b lognormal 2.0 1/10 [1.48, 2.68]
Swr, Sot lognormal 0.2 1/10 [0.15, 0.27]
Kwm, Kom lognormal 0.6 1/10 [0.44, 0.81]
Kwm lognormal 0.4 1/20 [0.34, 0.46]
Kom lognormal 0.8 1/20 [0.69, 0.93]

Correlations among the basic variables do exist in the present problem, but nu-
merical values of the correlation coefficients are difficult to assign. Lithologically
similar samples show a linear relationship between porosity and the logarithm of the
permeability [3], [1]. It is therefore widely accepted experimental evidence for setting
(, ln K) close to 1; here we use (, In K) 0.8. From both a numerical and a
physical point of view, it may be interesting to investigate the impact of a stronger
correlation between several of the basic variables, although the experimental data for
such correlation coefficients are sparse. Based on a rough comparsion of different rel-
ative permeability curves in the literature, we make the assumption that increasing
the curvature of k is usually reflected in an increased curvature of kro. Moreover,
a decrease in Sr is assumed to be related to a decrease in Sot. This means that
(a, b) > 0 and (Sor, S) > 0. The latter two correlation coefficients are introduced
in only one numerical example, since their physical relevance is not well documented.
However, the results from such an example may reveal interesting features of the
stochastic dynamics of the present ilow model.

4.5. Numerical errors. It is important to identify which features of the results
are due to numerical approximations and which are due to the mathematical model,
that is, the physics in the problem. By running relevant examples on a sequence of
grids with decreasing Ax, the sensitivity of the results to the discretization parameters
can be demonstrated. We have chosen three test cases. In all cases, E[] E[Swr]
E[So] 0.2, E[K,] E[Kom] 0.6, E[K] 1, and 5 1/10. Moreover, test cases

STOCHASTIC EOR PROCESS 1407

1 and 2 have E[a] E[b] 2, while test case 3 has E[a] E[b] 1. All basic variables
are uncorrelated in test cases 1 and 3, while test case 2 has significant correlations:
t(,lng) t(Sr, Sor) (a,b) 0.8. The test cases are constructed to cover
various expected numerical difficulties, such as strong correlations and linear relative
permeability curves.

Table 2 presents the deterministic reference breakthrough time and the proba-
bility Pr T <_ 0.8 for L/Ax 40, 80, 160,320. It is seen that the errors in T are

less than 3 percent for L/Ax 80, while the errors in the probability are less than
21 percent. The variations of a are not shown, but these were always less than 0.01.

The fairly slow convergence of T as Ax --. 0 has little effect on the statistical results,
since the latter is solely based on the failure surface T wT. If the error 5T in T
is of the form 5T pT, the relative error p cancels in the expression for the failure
surface.

Based on the results in Table 2 and our additional experience, the choice L/Ax
80 seems to give sufficient accuracy. Variations of numerical parameters in the con-
strained optimization algorithm have less influence on the accuracy than Ax as long
as these parameters are chosen as described in 3 and 4.2.

TABLE 2
Variation of probabilities and deterministic breakthrough times with mesh partition, p Pr{T _<

T0.s}.

Test L/Ax 40 L/Ax 80 L/Ax 160 L/Ax 320

case p p p p

1 0.132 1440 0.120 1410 0.120 1390 0.114 1380
2 0.068 1440 0.071 1410 0.072 1390 0.069 1380
3 0.018 643 0.056 634 0.058 629 0.059 625

4.6. Examples of failure surfaces in reservoir flow. Recall that the accu-
racy of FORM depends on the curvature of the failure surface g 0 at the design
point in Y-space. If the failure surface is approximately linear, (-) will be a very
good approximation to Pr (g

_
0). There may frequently be many local minima of

the distance to the failure surface, and the computation of the probabilities is then
more complicated and expensive [15].

To gain insight into the quality of the FORM approximations in the present
problem, we have plotted contour lines of the limit state function when there are only
two basic variables. Deterministic input parameters or expected values of stochastic
variables have the following values: 0.2, K 1.0, a b 2.0, Kwm Kom 0.6,
Swr =Sor 0.2, 0.25, 1.0, and 2. In addition, we have used 5i 1/3. A
deterministic calculation gave 1410 days.

Figure 1 shows g as a function of a and b in X-space and as a function of trans-
formed variables in Y-space. A lognormal distribution is assigned to a and b. The
variables are uncorrelated. At this point it would be natural to introduce additional
symbols to distinguish deterministic and stochastic quantities. However, with the
widely used notation employed here for the input parameters, no simple rule (e.g.,
upper case stochastic variables, lower case deterministic variables) seems applicable.
In Fig. 2 we have plotted g as a function of Sw and Sot. These basic variables are
lognormally distributed with correlation coefficient 0(Swr, Sor) 0.5. Fig. 3 visual-
izes g as a function of Kwm and Kom. These two basic variables are uncorrelated
and lognormally distributed. Finally, in Fig. 4, g is plotted as a function of and

1408 HANS PETTER LANGTANGEN

K, where (, ln K) 0.8, and is normally distributed while K has a lognormal
distribution function.

3.0

2.8

2.6

2.4

2.2

o2.0

g as a function of a and b

1.2 1.6 2.0 2.4 2.8

1.0

0.5

0.0

-0.5

-1.0

-1.5

g in the standarized 1,-space

!-’ |

’,,

1.5 1.0 -0.5 0.0 0.5 1.0
1’1

FIG. 1. The limit state function g T- Tw as a function of X1 a and X2 b (top) and the
corresponding transformed variables Y1 and Y2 (bottom). (a, b) O.

The plots of g(X) indicate how T varies with a, b, Swr, Sot, Kwm, Kom, , and K,
and can be of interest with respect to interpretation of the results from a deterministic
simulator.

From the plot of g in Y-space we see that the failure surfaces,which correspond to
the contour lines of g, are approximately linear. This indicates satisfactory accuracy
of FORM probabilities. We also see that there is not more than one local minimum

STOCHASTIC EOR PROCESS 1409

0.4

0.22

0.20

0.18

0.10

g as a function of Swr and

0.1{} O. 18 0.20 0.22 0.24
Swr

1.0

0.5

-0.5

-1.0

g in the standarized Y-space

-0.4 0.0 0.4 O.e
Y1

FIG. 2. The limit state function g T- Tw as a function of Xl Swr and X2 Sot (top)
and the corresponding transformed variables Y1 and Y2 (bottom). (Swr, Sot) O.

of the distance to the failure surface, and that the formulas presented previously are,
in this case, sufficient for calculating probabilities.

4.7. Stochastic polymer flooding. Some examples of FORM analysis ap-
plied to reservoir simulation are now given to indicate the potential of the proposed
method. Most of the numerical examples are concerned with the computation of
Pr T < 0.8, that is, the probability that the breakthrough time is underestimated

by more than 20 percent when using a deterministic simulator. This probability is
important for management decisions. We also give examples of complete probability

1410 HANS PETTER LANGTANGEN

g as a function of (win and

.4

0.3 0.4 0.5 0.6 0.’7 0.8 0.9
Kwm

l.O

0.5

0.0

-0.5

-1.0

-1.5

-1.5

8 in the standarized Y-space

-1.0 -0.5 0.0 0.5 1.0
Y1

FIG. 3. The limit state function g T- Tw as a function of X1 Kwm and X2 Kom (top)
and the corresponding transformed variables Y1 and Y2 (bottom). o(gwm, gore)--O.

distributions. All tables are written directly in the text processing format by the
computer in order to minimize typing errors.

Selected results from the proposed stochastic model appear in Tables 3-9. Table 3
shows the statistical results for pure water flooding with uncorrelated basic variables.
The corresponding polymer flooding problem gave the results presented in Table 4.
There are minor differences in the statistical results. However, the deterministic
breakthrough time is, as expected, significantly increased when polymer is injected.
Imposing the physically relevant correlation coefficient 6(, In K) 0.8 on the problem

STOCHASTIC EOR PROCESS 1411

1.4

1.2

0.8

0.8

g as a function of porosity and abs. permeability

/,
0.12 O. 18 0.20 0.24 0.28

porosity

-4

-1.5

8 in the standarized Y-space

-1.0 -0.5 0.0 0.5 1.0 1.5
Y1

FIG. 4. The limit state function g T- Tw as a function of X1 and X2 K (top) and
the corresponding transformed variables Y1 and Y2 (bottom). (,ln K)= 0.8.

in Table 4 led to the results displayed in Table 5. Without correlations, has the
largest importance factor. That is, is the input parameter that is most important
to model as a stochastic variable. When and In K are correlated, their importance
factors decrease and become approximately equal, while the importance factor of
increases significantly. It may be of interest to investigate the impact of additional
correlations (Sr, So) (a, b) 0.8. The corresponding results are presented in
Table 6. In this case, Sw is definitely the most important variable.

1412 HANS PETTER LANGTANGEN

The coefficient of variations were fixed at 0.1 for , a, b, S,or, Sot, and K in
Tables 3-6. Although the associated standard deviations are physically reasonable
for a homogeneous reservoir, it is interesting to investigate the effect of increasing the
uncertainty in the absolute permeability. Table 7 corresponds to Table 4, with the
exception that the coefficient of variation of the absolute permeability is five times
larger in Table 7 than in Table 4. As expected, this leads to a larger importance factor
of K. Less expected results arise, however, when the correlation (, In K) 0.8 is
imposed (see Table 8). In this latter case is almost as important as K.

The stochastic analysis provides two different measures of input parameter im-
2 which reflects the importance of modelingportance: (1) the importance factor i,

a parameter as a random variable, and, (2) the TE and To values, which give in-
formation about the parameters that are most important to measure accurately in
laboratory experiments. It is seen from these tables that the sensitivity of Pr (T <_ T}
to expectation values of the basic variables is significantly larger than the sensitivity
to the standard deviations. We must also note that the degree of importance of a

2 TE, or TD Forvariable depends highly on the chosen importance measure: ai,
example, in the problem associated with the results in Table 7, K is the most im-
portant quantity to model as a stochastic variable, while has the most important
expectation value. The sensitivity to expectation values is generally considerably less
for K than for and S,or.

A widely accepted assumption on the distribution functions is that follows a
normal distribution while K is lognormally distributed. For the other basic variables,
we have prescribed lognormal distributions, and it is therefore necessary to investi-
gate the sensitivity of the results in the previous tables to variations in the type of
distributions. If all the basic variables are assigned normal distribution functions in
the physical problem associated with Table 5, we obtain the results shown in Table
9. It is evident that the particular choice of either normal or lognormal distributions
has little influence on the results in this example. This observation increases the rel-
evance of the analytical results obtained in 4.1, which required the permeability to
be normally distributed.

TABLE 3
Buckley-Leverett flow (pure water flooding). No correlations,/ 1.47, Pr {T < T0.8o}

Pr{T < 659} --0.07, two iterations.

Parameter E[X] D[X] x* 2c 9’i TE TD
0.20 0.020 0.18 0.55 1.50 5.04 -0.33

a 2.00 0.200 1.93 0.04 1.02 0.15 --0.03
b 2.00 0.200 1.99 0.00 1.00 -0.01 0.00
Swr 0.20 0.020 0.21 0.05 1.03 -2.41 0.03
So 0.20 0.020 0.21 0.06 1.03 -2.44 0.03
Kwm 0.40 0.020 0.40 0.02 1.01 -1.22 0.01
Kom 0.80 0.040 0.81 0.02 1.01 -0.54 0.00
K 1.00 0.100 1.07 0.26 1.16 -0.74 -0.08

The results in Tables 3-9 were restricted to the computations of Pr {T _< T0.8},
i.e., w 0.8. The sensitivity of the importance factors to variations in w has also been

2 for andinvestigated, and Table 10 displays an example of the extreme values of ci
K when w E [0.5, 1.5]. The physical problem corresponded to that in Tables 7 and 8.
In contrast to the simplified analytical model in 3, w has little impact on the rela-
tive ranking of the basic variables in the present example. Similar sensitivity studies of

STOCHASTIC EOR PROCESS 1413

TABLE 4
No correlations, f 1.36, er(T < To.so} er{T < 1496} --0.09, four iterations.

Parameter E[X] D[X] x* 2c ?i TE TD
0.20 0.020 0.18 0.47 1.37 5.44 -0.30

a 2.00 0.200 1.92 0.07 1.03 0.23 -0.04
b 2.00 0.200 2.00 0.00 1.00 -0.03 0.00
Swr 0.20 0.020 0.21 0.13 1.07 -4.26 0.02
Sot 0.20 0.020 0.21 0.07 1.04 -3.24 0.03
Kwm 0.40 0.020 0.410 0.05 1.02 -2.22 0.01
Kom 0.80 0.040 0.80 0.00 1.00 -0.06 0.00
K 1.00 0.100 1.06 0.22 1.13 -0.82 -0.07

TABLE 5
Same problem as in TableS except that t)(,lnK)- 0.8. / 1.98, Pr(T<To.8o}

Pr {T < 1496} 0.02, five iterations.

Parameter E[X] D[X] x* 2c ")’i TE TD
0.20 0.020 0.18 0.17 1.10 1.17 --0.06

a 2.00 0.200 1.84 0.16 1.09 0.13 --0.04
b 2.00 0.200 2.01 0.00 1.00 -0.01 0.00
Swr 0.20 0.020 0.22 0.27 1.17 -2.15 -0.03
Sot 0.20 0.020 0.22 0.16 1.09 -1.66 -0.01
gwm 0.40 0.020 0.41 0.08 1.04 -1.06 -0.01
gore 0.80 0.040 0.80 0.00 1.00 -0.02 0.00
K 1.00 0.100 0.98 0.15 1.09 -0.26 0.02

TABLE 6
Same problem as in Table 5 but with additional correlations: t(,lnK) (Swr, Sot)

0(a, b) 0.8./ 1.77, Pr{T < To.s0} Pr{T < 1496} 0.04, seven iterations.

Parameter E[X] D[X] x* 2c i TE TD
0.20 0.020 0.19 0.11 1.06 1.40 -0.05

a 2.00 0.200 1.90 0.07 1.03 0.12 --0.03
b 2.00 0.200 1.93 0.00 1.00 -0.01 0.00
Swr 0.20 0.020 0.23 0.60 1.58 -4.59 -0.14
Sot 0.20 0.020 0.23 0.05 1.03 1.34 -0.04
gwm 0.40 0.020 0.41 0.06 1.03 1.36 0.00
Kom 0.80 0.040 0.80 0.00 1.00 -0.05 0.00
K 1.00 0.100 0.98 0.11 1.06 -0.33 0.02

TABLE 7
Same problem as in Table 4 except that the coejicient of variation of K is larger. No correla-

tions,/ 0.70, Pr(T < To.so} Pr(T < 1496} 0.24, three iterations.

Parameter E[X] D[X] x* 2c 9’i TE TD
0.20 0.020 0.20 0.07 1.04 4.16 --0.05

a 2.00 0.200 1.97 0.01 1.01 0.19 --0.02
b 2.00 0.200 1.99 0.00 1.00 -0.01 0.00
Swr 0.20 0.020 0.20 0.02 1.01 -3.52 0.07
Sot 0.20 0.020 0.20 0.01 1.01 -2.54 0.05
gwm 0.40 0.020 0.40 0.01 1.00 -1.79 0.03
gore 0.80 0.040 0.80 0.00 1.00 -0.08 0.00
K 1.00 0.500 1.22 0.88 2.85 -0.63 -0.02

TE and TD showed that the variation with w was not significant. As w - 1 (from
both sides) TE increased in absolute value for all basic variables. The variation of
To with w did not exhibit a regular pattern common to all Xi’s.

1414 HANS PETTER LANGTANGEN

TABLE 8
Same problem as in Table 5 except that the coeicient of variation of K is larger, t(, In K)

0.8, f 0.85, Pr{T < T0.s0} Pr{T < 1496} 0.20, five iterations.

Parameter E[X] D[X] x* 2c 9’i TE TD
0.20 0.020 0.21 0.41 1.30 --8.85 --0.28

a 2.00 0.200 1.97 0.02 1.01 0.20 --0.02
b 2.00 0.200 1.99 0.00 1.00 -0.03 0.00
Swr 0.20 0.020 0.20 0.03 1.02 -4.00 0.07
Sot 0.20 0.020 0.20 0.02 1.01 -3.11 0.06
Kwm 0.40 0.020 0.40 0.01 1.01 --2.11 0.03
gore 0.80 0.040 0.80 0.00 1.00 -0.09 0.00
K 1.00 0.500 1.30 0.51 1.43 -0.40 -0.04

TABLE 9
Same problem as in Table 5 except that all variables are normally distributed. (, ln K)

0.8, 1.95, Pr{T < To.so} Pr{T < 1496} 0.03, five iterations.

Parameter E[X] D[X] x* 2c /i TE TD
0.20 0.020 0.18 0.17 1.10 1.22 --0.06

a 2.00 0.200 1.84 0.17 1.10 0.12 -0.04
b 2.00 0.200 2.02 0.00 1.00 -0.02 0.00
Swr 0.20 0.020 0.22 0.24 1.14 -1.43 -0.08
Sot 0.20 0.020 0.22 0.16 1.09 -1.19 -0.06
gwm 0.40 0.020 0.41 0.09 1.05 --0.88 --0.03
gore 0.80 0.040 0.80 0.00 1.00 --0.03 0.00
K 1.00 0.100 0.98 0.17 1.10 -0.24 0.01

TABLE 10
2 to variations in w.Sensitivity of importance factors i

Quantity t(, In K) 0 t(, In K) 0.8

w 0.5 w 1.5 w 0.5 w 1.5
0.07 0.07 0.42 0.38
0.87 0.88 0.49 0.53

The continuous variation of Pr T _<w with w is demonstrated by the cumula-

tive distribution function of T in Fig. 5 with the corresponding density plotted in Fig.
6. The physical problem had expectation values as in Tables 3-9, while the coefficient
of variation of all variables equaled 0.1. The effect of correlations on the computed
probabilities is most pronounced in the tails of the distributions.

The importance measures in the tables indicate that only a few basic variables
contribute significantly to the calculation of the probabilities. For example, b and
Kom could be replaced by their median values with negligible effect on the statistical
results. A natural way to reduce the number of basic variables, and hence increase
the efficiency of the computations, is to omit basic variables for which 7i are less than,
say, 1.03 after the first iteration. We have tested this approach, but found that the
iterative procedure converged more slowly, so that no overall increase in efficiency was
achieved. However, after an initial study of a problem we can simply omit some basic
variables completely (if /i 1) from the description. This approach enhances the
efficiency considerably.

It must be mentioned that increasing the coefficient of variation of the basic vari-
ables may give rise to results that deviate from those presented here. Particularly,
if Dial is increased, for example, to , the importance of a increases considerably. This

STOCHASTIC EaR PROCESS 1415

1.0

0.8

0.6

0.4

0.2

0.0

cumulot|ve distribution functions

I

500 1000 1500 2000 2500

FIG. 5. Probability distributions (T($) Pr(T _< $} for the $ime T to water breakthrough.
The solid line represents uncorrelated variables, while the dashed line represents correlated variables
((, In K) =0.8).

0.0020

0.0015

0.0010

0.0005

0.0000

Breakthrough time densities

500 1000 1500 20’00 2500

FIG. 6. Probability densities corresponding to the distributions in Fig. 5.

is probably because the breakthrough time is highly sensitive to variations in a when
2a 1 [13] and, with Dial 5, a values in this regime have significant probabilities

(e.g. 2

5. Conclusion. The purpose of this paper has been to formulate and apply a
one-dimensional mathematical model for polymer flooding where some of the geo-
logical input parameters were treated as stochastic variables. The time to water
breakthrough in the production well constituted the investigated output parameter
from the model. Using recently developed methods from structural reliability theory,
the system of stochastic partial differential equations was solved as a sequence of the
standard deterministic polymer flooding equations. Typically, about 30 deterministic

1416 HANS PETTER LANGTANGEN

problems must be solved to compute a point on the cumulative distribution curve for
the breakthrough time in the present study. With only a few stochastic variables, the
method is very efficient compared to Monte-Carlo simulation. An advantage of the
method is the straightforward and efficient computation of the relative importance of
stochastic variables and various input data, such as expectations and covariances. In
one space dimension, the suggested numerical method seems appropriate. However,
in higher space dimensions the discretization of heterogeneous stochastic fields implies
that a large number of stochastic variables is introduced. In such cases, Monte-Carlo
simulation is probably competitive.

One of the most serious deficiencies of a deterministic study is the problem with
incorporation of the experimentally reported degree of functional relationship between
the input parameters. The stochastic analysis in this paper showed that correlations
between the stochastic variables had a significant effect on their relative importance
in a stochastic analysis. The expectations of the residual saturation variables and
the porosity were the most important input data to this stochastic simulator. On
the other hand, the most important parameters to be modeled as stochastic variables
were the porosity, the permeability, and the residual water saturation. The computed
statistical quantities showed little sensitivity to the choice of either lognormal or nor-
mal distribution functions for the basic variables. It is emphasized that the numerical
results that have been obtained here may be highly dependent on the probability
level, the coefficients of variations, and the correlation coefficients, as was indicated
by the simplified analytical solution to the problem.

If simulation methods of Monte-Carlo type are applied for further work concern-
ing two- and three-dimensional problems, effort should be made to develop efficient
procedures for calculating important measures of the kind used here. Such measures
give valuable physical insight into the stochastic problem and provide information for
increasing the efficiency by replacing unimportant stochastic quantities by determin-
istic values.

REFERENCES

[1] J. O. AASEN, J. K. SILSETH, L. HOLDEN, H. OMRE, K. B. HALVORSEN, AND J. HOIBERG,
A stochastic reservoir model and its use in evaluations of uncertainties in the results of
recovery processes, in North Sea Oil and Gas Reservoirs--II, The Norwegian Institute of
Technology, Graham & Trotman, Norwell, MA, 1990.

[2] M. S. ALLEN, III, G. A. BEHIE, AND J. A. TRANGENSTEIN, Multiphase flow in porous media,
Lecture Notes in Engineering, Springer-Verlag, Berlin, New York, 1988.

[3] J. S. ARCHER AND C. G. WALL, Petroleum Engineering, Principles and Practice, Graham
Trotman, Norwell, MA, 1986.

[4] g. AzIz AND A. SETTARI, Petroleum Reservoir Simulation, Applied Science Publishers, Lon-
don, 1979.

[5] P. BJERAGER, Probability computation methods in structural and mechanical reliability, in
Computational Mechanics of Probabilistic and Reliability Analysis, W. K. Liu and T.
Belytschko, eds., Elme Press International, Switzerland, 1989.

[6] L. Y. DING, R. K. MEHRA, AND J. K. DONNELLY, Stochastic modeling in reservoir simulation,
in Proc. 10th SPE Symposium on Reservoir Simulation, Texas, 1989, pp. 303-320.

[7] R. E. EWING, Problems arising in the modeling of processes for hydrocarbon recovery, in The
Mathematics of Reservoir Simulation, R. E. Ewing, ed., Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1983.

[8] A. GALLI, D. GUtRILLOT, C. RAVENNE, AND HERESIM GROUP, Combining geology, geo-
statistics and multiphase fluid flow for 3D reservoir studies, in Proc. Second European
Conference on the Mathematics of Oil Recovery, Arles, France, 1990, D. Gurillot and O.
Guillon, eds. pp. 11-20.

STOCHASTIC EOR PROCESS 1417

[9] H. H. HALDORSEN AND E. DAMSLETH, Stochastic modeling, J. Petrol. Tech., (1990), pp. 404-
412.

[10] W. JOHANSEN, A. TVEITO, AND R. WINTHER, A Riemann solver for a two-phase multicom-
ponent process, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 846-880.

[11] A. DER KIUREGHIAN AND P.-L. LIu, Structural reliability under incomplete probability in,or-
marion, J. Engrg. Mech., 112 (1986), pp. 85-104.

[12] A. DER KIUREGHIAN AND J.-B. KE, The stochastic finite element method in structural relia-
bility, Probab. Engrg. Mech., 3 (1988), pp. 83-91.

[13] H. P. LANGTANGEN, Sensitivity analysis of an enhanced oil recovery process, Appl. Math.
Modelling, 15 (1991), pp. 467-474.

[14] F. MA AND M. S. WEI, Monte Carlo simulation of linear two-phase flow in heterogeneous
media, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 1053-1072.

[15] H. O. MADSEN, S. KRENK, AND N. C. LIND, Methods of Structural Safety, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

[16] D. PEACEMAN, Fundamentals of numerical reservoir simulation, Elsevier, Amsterdam, 1977.
[17] A. SELVIG, Feasibility study of possible applications of PROBAN in reservoir simulation, Tech.

Report, A.S. Veritas Research, Norway, 1988.
[18] P. J. SMITH AND C. E. BROWN, Stochastic modeling of two-phase flow in porous media, in

Proc. 57th SPE Annual Technical Conference, New Orleans, LA, 1982.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1418-1432, November 1992

() 1992 Society for Industrial and Applied Mathematics
OO9

A FAST ALGORITHM TO SOLVE NONHOMOGENEOUS
CAUCHY-RIEMANN EQUATIONS IN THE COMPLEX PLANE*

PRABIR DARIPAt
Abstract. An algorithm is provided for the fast and accurate computation of the solution of

nonhomogeneous Cauchy-Riemann equations in the complex plane in the interior of a unit disk. The
algorithm is based on the representation of the solution in terms of a double integral, some recursive
relations in Fourier space, and fast Fourier transforms. The numerical evaluation of the solution at
N2 points on a polar coordinate grid by straightforward summation for the double integral would
require O(N2) floating point operations per point. Evaluation of these integrals has been optimized
in this paper giving an asymptotic operation count of O(ln N) per point on the average. In actual
implementation, the algorithm has even better computational complexity, approximately of the order
of O(1) per point. The algorithm has the added advantage of working in place, meaning that no
additional memory storage is required beyond that of the initial data. The performance of the
algorithm has been demonstrated on several prototype problems. The algorithm has applications in
many areas, particularly fluid mechanics, solid mechanics, and quasi-conformal mappings.

Key words, complex variable, nonhomogeneous Cauchy-Riemann equation, Beltrami equation

AMS(MOS) subject classifications. 65E05, 30C99, 65D30

1. Introduction. Cauchy-Riemann (CR) equations arise in many areas includ-
ing fluid mechanics, solid mechanics, and electrostatics. These equations are given
by

(1.1) Cy, Cy -,
where real variables and are functions of x and y. The CR equations suggest
that the complex function u -t- i is an analytic function of the complex variable
a x + iy:

(1.2) u g(a).

This equation can be equivalently written as us 0. Henceforth we refer to this
equation as the CR equation in the complex plane. The CR equation plays an impor-
tant role for two main reasons: the first is the fact that these equations model many
problems in many areas of applications; the second is that the power of complex vari-
able theory may be used in solving these problems. It should be noted that the CR
equation is linear and homogeneous. Thus it is not surprising that CR equations arise
due to some linear approximations or some nonlinear transformations of the original
equations that actually arise in applied fields.

An obvious extension of the CR equation would be to add a nonhomogeneous
term to it:

(1.3) ua h(u, a,),

where the complex function h may be a nonlinear function of u and depends explicitly
on a and . This equation naturally reduces to a CR equation when h is identically
zero. Note that this equation is nonlinear as well as nonhomogeneous. A well-known
special case of (1.3) is the following Beltrami equation (see [1] and [2]):

(1.4)

Received by the editors November 21, 1990; accepted for publication (in revised form) September
8, 1991. This research was partially supported by National Science Foundation grant DMS-8803669.

Department of Mathematics, Texas A & M University, College Station, Texas 77843.

1418

FAST ALGORITHM FOR NONHOMOGENEOUS EQUATIONS 1419

where # may depend on u, a, and . This equation arises in many instances, most no-
tably in the transformation of a quasi-linear partial differential equation to canonical
form [2], in quasi-conformal mapping [7], and in compressible fluid flow [6]. In fact,
recent work has been done by solving these equations in the real as well as complex
plane (see [5] and [6]) in the context of compressible fluid flow and quasi-conformal
mapping [7]. It may also arise in other applied areas.

In this paper we are interested in constructing a fast algorithm to solve an ap-
propriate boundary value problem associated with the following linearized version of

(1.5) u, f(a,),

in the unit disk lal < 1. The nonanalytic function f is assumed to satisfy a Hblder
condition with exponent a in a unit disk f: lal < 1. Henceforth we refer to this equa-
tion as the nonhomogeneous Cauchy-Riemann (NCR) equation. Below, we denote
f(a,#) by f(a).

In [6], Daripa introduced a numerical method to solve this problem. The method
is based on splitting the solution of (1.5) as (see also [2])

+
where ua(o") is the analytic part of the solution and uP(a) is the nonanalytic part of
the solution. The nonanalytic part uP(a) is then given by

(1.7) u’(a) -L f)" dd7’

where ff + it/.
The analytic part admits a Taylor series representation which can be efficiently

computed using the fast Fourier transform (FFT) (see [3], [4], [6], and [8]). However,
there are two main difficulties in the computation of the nonanalytic part uP(a). The
first has to do with the singularity of the integrand in (1.7) at a. In [6, Appendix
C], Daripa proposed a method of desingularizing the integral. This desingularized
version of the integral can then be directly integrated, but with poor accuracy, as is
explained in 5. The second has to do with the algorithmic complexity of straight-
forward integration. The straightforward computation of the double integral in (1.7)
requires performing an integral with an operation count of the order of O(N2) for
each node in the discretization. There are N2 such nodes in the discretization of the
domain and hence N2 such integrals to be evaluated. Thus this method of evaluation
is computationally very intensive. These are the main drawbacks of the method.
However, our goal in this paper is to develop an efficient and accurate algorithm for
evaluating this integral and to thus make this a desirable alternative to the above
approach.

The process of evaluating these integrals is optimized in this paper, giving a net
operation count of the order of O(N2 InN) for N2 points. This algorithm has the
added advantage of working in place, meaning that no additional memory storage is
required beyond that of the initial data.

Our method is basically a recursive routine in Fourier space that divides the entire
domain (the interior of the unit disk) into a collection of annular regions and expands
the integral in Fourier series in angular direction with radius-dependent Fourier coef-
ficients. A set of exact recursive relations are derived which are then used to produce

1420 PRABIR DARIPA

the Fourier coefficients of the integral. These recursive relations involve appropriate
scaling of one-dimensional integrals in annular regions. The desired integrals at all
N2 grid points are then easily obtained from the Fourier coefficients by the FFT.

The algorithm developed in this paper also provides a constructive analytical
method for evaluating certain integrals that are otherwise difficult to evaluate. An
example is provided in Appendix B.

The rest of the paper is structured as follows. Section 2 develops the mathematical
foundation of the efficient algorithm to evaluate the particular solution uP(a) within
the unit disk. The fast algorithm and the algorithmic complexity are discussed in
3. In 4, an area integral is evaluated corroborating the algorithmic steps. Section
5 discusses the computational results in evaluating the particular solution using our
algorithm of 4. In 6, Dirichlet problems associated with the NCR equation (1.5)
and computations of their solution are discussed. We conclude in 7.

In a sequel, we shall apply our algorithm to equations of compressible fluid flow.

2. Mathematical foundation of the algorithm. In this section, we develop
the theory needed to construct an efficient algorithm for evaluating the double integral
that appears in (1.7).

In the following, we use the notations gtr: lal _< r < 1, e: gt\gtr, and lj: r <_
lal _< rj. The following theorem is crucial for the later development of the algorithm.

THEOREM 2.1.. The particular solution of us f(a) with a re can be written
a8

(2.1) uP(a)= E cn(r)e’na’

where

n<0,

n>0.

Proof. If we introduce the notation

2r e-ina
(2.3) Pn (r,) re-----da,
then it follows from (1.7) and (2.1) that

(2.4) rc,(r) I()P,(r,)d(dr.

The integral in (2.a) can be evaluated using complex variables. It is an elementary
exercise in complex variable theory to show thag

)

where
--(nq-l),

(2.6) Sn() =-5(n)-(n+l) + 0.5-(n+l)

O

FAST ALGORITHM FOR NONHOMOGENEOUS EQUATIONS 1421

In (2.6), i(n) 0 for n < 0 and i(n) 1 for n > 0. Substitution of (2.5) into (2.4)
yields the desired result, i.e., (2.2).

Remark 2.1. The above theorem can also be derived by first expanding in

power of and , followed by integration in the complex plane.
COROLLARY 2.1. Suppose that pei0 and f() has Fourier coefficients

then it easily follows that the coe]Jicients cn(r) in (2.2) can be written as

2 fn+l(p) dp, n<0,

COROLLARY 2.2. It follows directly from (2.7) that cn(1) 0 for n > O, cn(O) 0
for all n O. It also follows from the Fourier expansion of f() that fn(O) 0 for
n O, and f0(0) f(0).

COROLLARY 2.3. Let rj > ri. Define

(2.s) c 2 r[fn+(P) ()ndP,
where

(2.9) R
vi, n > 0,

rj, n <0.

After some algebraic manipulation it follows from (2.7) that

(2.10) cn(rj) (rJ)
n

cn(r)+c, n <0,
ri

and

(2.11) cn(r){r-Z*] > 0.
\r}

COROLLARY 2.4. Let 0 r < r2 < /’3"’’ < rM 1. It follows from recursive
applications of (2.10) and (2.11) and from using Corollary 2.2 that

(rl)n i- l,i

i=2 ri
Cn for n < 0 and 2,...,M,

for n > O and l,...,M-1.

3. The fast algorithm. We construct the fast algorithm based on the theory
of 2. The unit disk is discretized using M N lattice points with M equidistant
points in the radial direction and N equidistant points in the circular direction.

1422 PRABIR DARIPA

Initialization. Choose M and N. Define K N
2"

Step 1. For e [1, M] and n e [-g A- 1, g], compute the Fourier coefficients
of f() from the known values of f(rje2ik/N), j 1,..., M; k 1,..., N.

Step 2. Compute cidi+1, i E [1, M- 1] for n [-g,g- 1] using (2.8).
Step 3. Compute the Fourier coefficients cn(r),n [-g,g- 1],/ [1, M] using the
relations (2.10) and (2.11).

set cn(rM) 0 V n e [0, K- 1]
don-O,...,K-1

do M- 1,...,1
Use (2.11) of Corollary 2.4 to compute cn(r).

enddo

enddo

set cn (rl) 0 V n C I-K, 1]
do n -K,.-.,-1

do 2,...,M
Use (2.10) of Corollary 2.4 to compute cn(r)

(+
enddo

enddo

Step 4. Finally compute uP(a rje2ik/N),j [1, M], k e [1,N] using a truncated
version of (2.1).

3.1. The algorithmic complexity. Here we consider the computational com-
plexity of the above algorithm. We discuss the asymptotic operation count, the asymp-
totic time complexity, and asymptotic storage requirement, in that order. In Steps
1 and 4 above, there are 2M FFTs of length N and all other computations in Steps
2 and 3 are of lower order. With each FFT of length N contributing N InN opera-
tions, the asymptotic operation count and hence the asymptotic time complexity is

O(MNlnN).
The algorithm requires storing the MN Fourier coefficients fn(r) in Step 1, the

MN Fourier coefficients cn(r) in Step 3, and the MN values of the desired up at
MN grid points in Step 4. Therefore the asymptotic storage requirement is O(MN).

Remark 3.1. The computation c in Step 2 can be embedded within the inner
do-loops of Step 3, thus avoiding the storage requirement for these. Note that we
present the algorithm in the form shown above for the sake of clarity and without any
sacrifice in the asymptotic time complexity.

4. Integral evaluation using the algorithmic steps. We illustrate the algo-
rithmic steps mentioned above through an explicit example. There are three main
reasons for doing this. The first is to give an explicit exposition of the operations
in each of the algorithmic steps in detail, the second is to show the power of the
algorithm to evaluate the integral analytically when function f is known explicitly in

FAST ALGORITHM FOR NONHOMOGENEOUS EQUATIONS 1423

terms of the complex coordinates, and the third is to generate an explicit example
to test the accuracy and the algorithmic complexity at each step of the algorithm by
explicit numerical calculations. This is also useful for debugging various stages of the
computation.

We first summarize our result in the following note, proof of which follows.
Note. If

(4.1) f(a) a’q

where p and q are constants, so that k p-q is an integer, then the integral uP(a)
in (1.7) is given by the following.

For k=p-q>_ 1,

(4.2)

r(k-1)

up(a q + 1 ([a[2(q+l) 1) if q ?t --1,

2a-1 In a[if q 1,

and, For k =p- q < 1,

(:rk-1

uP(a) q + llal2(q+) if q > -1,

oc ifq _< -1.

Proof.
Step 1. Since pe, we have from (4.1),

(4.4) 1’ / pp+q

0

Step 2. From (2.8)and (4.4)

We prove this through the use of the algorithm described in 3.

ifn k,

if nt k.

(4.5) c O for n t k-1.

The nonzero coefficient ij is evaluated as follows according to the algorithm.Ck_

r+l

(4.6) _i,i+ / pp+q+kck 2Rk- dp.

Since k p q, upon integration, (4.6) becomes

1 [2(q+1) r2(q+l)
11 V

Ok_

ln(ri+i/ri)

ifq # -1,

if q -1.

Step 3. It follows from (2.10), (2.11), (4.5), and Corollary 2.2 that

(4.8) cn(rj)--O forn#k-1, and j --1,2,. ,M.

1424 PRABIR DARIPA

The calculation of the coefficient ck-1 (rj), j 1, 2,.’., M, according to our algorithm,
follows. There are two separate cases to be considered depending on whether q -1
or q - -1.

Case l. q l.
(i) For k < 1, upon using (4.7) in (2.12) we obtain, after some manipulation,

i2

where 0 _< rt <_ 1. To arrive at the last equality in (4.9) we have used

(4.10) Eln (rr_l)---- E(lnri-lnri_l)=lnr-lnO=oc.
i--2 i--2

(ii) For k >_ 1, upon using (4.7) in (2.12) we obtain, after some manipulation,

ck-l(rt)---2r-llln(ri+--l)(4.11) i=t \ ri

e-(),
where 0 _< rt _< 1. To arrive at the last equality in (4.11) we have used

11n (ri+---l)=(ln(rm)-ln(rm_l))+(ln(rm_l)-ln(rm_2))
i= \ ri

(4.12) +... + (+)

In 1 In rt In rt.

Case2. q l.
(i) For k < 1, upon using (4.7)in (2.12) e obtain, after some manipulation,

q + 1 (r’(q+)Ck-l (rt) ,ri_
i2

r-1
2(q+1) 2(q+1)

(4.3) q+ --k--1_(+)
+1 r if q > -1,

if q < -1,

where we have used

(4.14) E(r(q+) "i--l’2(q+1)) ’1",-2(q+1) rl2(q+l)
i--2

(ii) For k _> 1, upon using (4.7) in (2.12) we obtain after some manipulation

(4.15)
_() - 2

(ri+1 r2(qT (q+l)

/ 1q
i--m--1

rk-1,_ 2(q+D 1)
q + 1 (r

FAST ALGORITHM FOR NONHOMOGENEOUS EQUATIONS 1425

where 0 _< r _< 1. To obtain the last equality in (4.15) we have used

(4.16)

We can summarize the calculations of Step 3 by rewriting (4.9) and (4.13) into
(i) For k < 1,

(4.17)
r/k-1 2(q+l)

Ck-1 (r) q + lr if q > -1,

x if q

_
-1,

and by rewriting (4.11) and (4.15)into
(ii) For k >_ 1

r-1

(4.18) ck-l(rt) q + l
(r(q+) 1), q -1,

2r- ln(rt), q -1.

Step 4. Using the Fourier coefficients given by (4.8), (4.9), (4.11), (4.3), d (4.5)
in the Fourier series (2.1), we obtain our results (4.2) and (4.3).

Remark 4.1. The above method of integral evaluation is meant only to show the
algorithmic steps explicitly. There are easier analytical methods to evaluate the above
integral. For example, it is much easier to evaluate the coefficient ck- directly from

Remark 4.2. We note that uP(a) in the above example can be determined directly
to within an arbitrary additive analytic function by simply integrating (4.1) with
respect to the conjugate of the complex coordinate.

Remark 4.3. The above calculation is exact. In actual implementation, the
errors will arise from finite truncation of Fourier series and approximate evaluation
of the one-dimensional integrals. However, in this particular example there is only
one mode, namely, (p- q)th mode, in f(a) (see (4.1)). Therefore, the error due to
discrete Fourier approximation in this example is zero, provided this mode is included
in the truncated Fourier series, i.e., N > p. In actual implementation, the errors due
to numerical evaluation of the integrals depend on the method of integration and the
values of p and q. In our implementation, we use trapezoidal rule and thus the error in
Step 3 of the algorithm can be made zero if q is chosen to be zero in (4.1) (regardless
of how many points are chosen in the radial integration).

The following two remarks have to do with the divergence of the double integral
(1.7) for some specific choices for f(a). For the specific functional form (4.1) for f(a),
the divergence of the double integral depends on the values of p and q.

Remark 4.4. From (4.3), it follows that uP(a) blows up at all values of a within
the unit disk if p- q 1 < 0 and q _< -1, or equivalently, if p < q -t- 1 _< 0.

Remark 4.5. From (4.2), it follows that uP(r--0) blows up if p-q- 1 >_ 0 and
q- -1, or equivalently, if p >_ q / 1 -0.

5. Numerical results I. A computer program has been written which can com-
pute the integral using the fast algorithm of this paper or using the naive method of
directly integrating the double integral in [6, Appendix C, eq. (C.4)]. The program

1426 PRABIR DARIPA

has been tested with various functions f(a) in (1.7). However, we present the per-
formance of our fast algorithm using the example of 4. Since the exact value of
the integral is available in this case, the relative maximum error in the numerical
computation can easily be calculated.

Computations were carried out for different radial and angular grid spacings on
a Cray Y-MP at Texas A&M University in single precision. The computations were
performed in two ways: (i) using the fast algorithm, and (ii) using the direct method.
We compare these two methods by monitoring CPU time and relative maximum error
for various values of M and N. We summarize our numerical results below.

Computations were performed for various values of p and q such that (p- q) is
an integer. The results obtained with q 0 and with N > p using the fast algorithm
were accurate up to seven decimal places in single precision regardless of the number
of radial grid points. In this calculation, the effect of the number of radial grid points
is zero, as it should be according to Remark 4.3. The effect of the number of angular
grid points is also zero since this number N has been chosen to be greater than p.
Thus, the only error in this case is due to truncation error. However, there were no
signs of truncation errors within seven decimal places in this case.

The results of the computations using p 3 and q 1 in the choice f(5) is
summarized in Table 1. The number of angular grid points N is kept constant at 17.
The first column contains the number of radial grid points. The second and the third
columns contain the CPU times Tfast, required by the fast algorithm of the present
paper, and Tdir, required by the direct method, respectively. The fourth and fifth
columns contain the maximum relative errors fast and dir in these two methods,
respectively.

TABLE
CPU times in seconds and maximum relative errors on Cray Y-MP. The terms within paren-

theses are approximate estimates.

101
151

201

251

501

i001

0.00913 1.61807
0.02
0:00S .3go
o.oai7
0.03987
0.07786
0.15409

"25.41’848
"’39’.65’647
158.16779

(63167i16)

5fast 5dir
2.878941E-04 7.7745298E-02

’7.’i94522iE-05 8.438147E-02
31’i9777E-05" ’8.666666E’’0’2
1.7987853E-05 8.78808483E-02
l.151a032E-05" 8.88519315E’02
2.8797382E-06 8.9932327E-02
7.2160367E-07

Remark 5.1. The fast algorithm of the present paper takes only 0.154 seconds
of CPU time when M 1001. The CPU time when using the direct method with
M 1001 is estimated by extrapolation (shown within parentheses in Table 1). It
was not considered practical to use approximately 632 seconds of Cray CPU time to
produce an exact value of this CPU time.

The following observations can be made about Table 1.
(i) The CPU time required by the fast algorithm increases linearly with M. In

contrast, the CPU time required by the direct method increases quadratically with
M.

(ii) The relative maximum error fast decreases with increasing M. This is because
the error in the numerical integration by the trapezoidal method in Step 2 decreases
with increasing M.

FAST ALGORITHM FOR NONHOMOGENEOUS EQUATIONS 1427

(iii) The relative maximum error (dir decreases very slowly with increasing M. In
this case, the function f() is very poorly resolved by only 17 points in the angular
direction. Most of the error is probably due to this poor resolution.

(iv) The accuracy of the fast algorithm is remarkable. In contrast, the direct
method has very poor accuracy.

The results of similar computations using M 101 are shown in Table 2 for
varying values of N. The first column contains the number of angular grid points N.

TABLE 2
CPU times in seconds and maximum relative errors on Cray Y-MP. The terms within paren-

theses are approximate estimates.

N Tfast Tdir
17 0.0162’ 6.40785
33 0.03216 24’32479
65 0.’06680 93.81604
129 ’0.’13908 376.73983
257 0.30031 (1500.00)
513 0’64261 (6000.00)
1025 1.36825 (24000’00)

fast Sdir
7’i945221E:05 8.438147E-02’"
7.1974139E-05 2.592902E-02
7.1972282E-05 6.968137E-03
7.1977357E-05 -1.576032E-03
7.1972305E-05 6.520931E-04

7’ 1977943E-05 4.129121E-04
7.1972308E-05 2.152631E-04

Remark 5.2. The Cray Y-MP CPU seconds shown within parentheses are ap-
proximate and were estimated from computations on the local MIPS computer. The
corresponding errors were obtained on the local MIPS computer. The errors on Cray
Y-MP and on the local MIPS computer for the same problem agree up to five decimal
places.

The following observations can be made about Table 2.
(i) The CPU time required by the fast algorithm increases superlinearly with N

and is less than the theoretical asymptotic estimate of N In N. In contrast, the CPU
time required by the direct method increases quadratically with N.

(ii) The relative maximum error fast does not change with changing N. This is
expected since the values of N used are greater than (p- q) 2 (see Remark 4.3).

(iii) The relative maximum error dir decreases with increasing N. However, the
accuracy of the fast algorithm is much better.

6. Dirichlet problems for nonhomogeneous Cauchy-Riemann equations.
This section shows the application of our fast algorithm of 3 on a Dirichlet linear
boundary value problem. Computations of nonlinear and other types of boundary
value problems associated with (1.5) using our fast algorithm are under way and will
be addressed elsewhere in detail. This section has been kept as brief as possible. We
consider solving the following Dirichlet problem in the interior of a unit disk.

uo f(a, O),

(P) Real [u(a eia)] Uo(a), 0 <_ a <_ 2r,

Imag [u(a 0)] v0.

We are interested in finding the solution of (P) in the entire domain.
It follows from the solution (1.6) of (1.5) that the above problem is equivalent to

solving the following problem:

1428 PRABIR DARIPA

uS 0,

(RP) Real [ua((7 eia)] Uo() uP(c), 0 <_ <_ 2r,

Imag [ua(a 0)] Vo uP(a 0).

lal <__ 1,

Once this problem has been solved, the solution of the problem (P) is constructed
from (1.6). Therefore our method of solving (P) involves the following three steps:

(1) First, find the particular solution uP(a) in the entire domain using the al-
gorithm of the previous section. As shown previously, the algorithmic complexity
of this stage of the computation is at worst MNlnN with MN grid points in the
discretization of the unit disk.

(2) Second, construct the analytic function ua(a) by solving the reduced problem
(RP).

(3) Third, construct the solution of the original problem (P) by adding the above
two solutions according to (1.6).

Note that the algorithmic complexity in solving the reduced problem (RP) must
not exceed MN InN so that the computational complexity of the entire calculation
remains the same. There are many efficient algorithms that can be used to solve this
problem. We use the following simple procedure in constructing the solution of the
reduced problem (RP) at MN lattice points.

(i) The solution is expressed in terms of Taylor series

(6.1) 72a((7) CnO’n.
n--0

(ii) The FFT is used to construct the complex conjugate of the specified bound-
ary values and the Fourier coefficients of the Taylor series. This step takes N InN
operations with N points on the boundary of the unit disk.

(iii) Next, the Fourier coefficients are used in constructing the solution ua(a) at
all interior points by using the FFT. This step takes MNlnN operations with M
divisions in the radial direction.

Note that this approach has an asymptotic operation count of the order MN In N.
Thus overall complexity is retained at the desired level.

Remark 6.1. More efficient algorithms can be constructed to solve the reduced
problem (RP). We will implement better algorithms for this part of the calculation
in the future.

6.1. Numerical results II. The following problems were numerically solved
using the above steps.

Example 1.

(El) Real [u(a eia)] 2cosc, 0 <_ c <_ 2r,

0)] O.

The exact solution to this problem is

(6.2) u(a) a + , lal <_ 1.

FAST ALGORITHM FOR NONHOMOGENEOUS EQUATIONS 1429

Example 2.

(E2) Real [u(a ei")] 0,

Imag [u(a 0)] O.

The exact solution to this problem is

Icrl _< 1,

0 < a < 2r

Example 3.

(E3) Real [u(a ei)] cos a, 0 < a < 2r,

Imag [u(a O)l O,

where k is. either 1 or 2. The exact solution to this problem is

The above three problems were numerically solved using our fast algorithm to obtain
the solution at all MxN nodes with N-17 and M-101. The computed solutions were
compared with the exact solutions for accuracy and the CPU times were recorded.
These are shown in Table 3. The data for (E3) corresponds to k 2 (see (E3) above).
The first column contains the reference to one of the problems mentioned above. The
second column contains the total CPU seconds (Ttot) required to solve these problems.
The third and the fourth columns contain the breakup of Ttot into Th (CPU seconds
required to find ua(cr) at all interior points from the Taylor series (6.1)) and Tnh (CPU
seconds required to find uP(q) by evaluating the double integral using our algorithm
of 3). The fifth column contains the maximum relative error 5.

TABLE 3
Computational results on boundary value problems (El), (E2), and (E3) using the fast algorithm.

Examples Ttot Th Tnh 6

E1 0.00932 0.00251 0.00681 5.6915101E-06
E2 0.00969 0.00269 0.00700 8.174026SE-06
E3 0.00932 0.00251 0.00681 7.3560102E’06

In Table 3, we note that our fast algorithm solves the boundary value problems
within the entire unit disk with very good accuracy and within a fraction of a CPU
second. The CPU seconds for computing the analytic part (Th) is less than half of the
CPU seconds Tnh needed to evaluate the particular solution uP(a) at all interior points.
Similar computations have been done on other types of boundary value problems with
similar conclusions.

Remark 6.2. The computation of the analytic part can be accelarated by bor-
rowing some of the ideas from [9], [12], and [13], which will be undertaken in the
future.

1430 PRABIR DARIPA

7. Conclusions. The present work develops a fast algorithm to solve nonhomo-
geneous Cauchy-Riemann equations in the interior of a unit disk in the complex plane.
It is based on computation of the particular solution from its Fourier coefficients. The
recursive relations satisfied by these Fourier coefficients are derived, which is at the
heart of the algorithm. The speedup provided by the algorithm is dramatic even for a
moderate number of nodes in the domain. Our numerical experiments show that the
actual CPU time requirements for the algorithm are even less than the asymptotic
CPU estimate, which is very encouraging.

The algorithm has the limitation that the problem has to be solved within the
interior of a unit disk. Therefore to construct a solution in a domain which is not
circular, a conformal mapping of the domain to the interior of a unit disk must be
done prior to the use of our algorithm. This should not be difficult, as there are many
numerical methods these days to perform such conformal mapping (see [10] and [12]).

Prototype linear boundary problems have been solved here using the fast algo-
rithm to provide some future directions. Nonlinear boundary value problems can be
solved using this algorithm iteratively. Computations of nonlinear and other types
of boundary value problems associated with the NCR equation using our fast algo-
rithm are currently under way. The application of the algorithm is not limited to
any particular field, thus its application to compressible fluid problems should be
straightforward, since the compressible fluid flow equations already admit a formu-
lation similar to (1.5) (see [6]). In fact, many compressible flow problems, including
those solved in Woods [14] with the tangent gas approximation, can now be solved
exactly, accurately, and very efficiently using the algorithm of this paper.

The algorithm presented here is suitable for implementation on a serial computer.
However, the recursive set of equations of 2 has a structure suitable for implemen-
tation on a parallel computer, which will yield considerable savings in computational
time depending on the number of processors. Construction of algorithms suitable
for implementation on a parallel computer needs further work. Some of the ideas
presented by Katzenelson [11] in connection with computational structure involving
recursive relations may be useful here.

Appendix A. Application of the results of 2 in double integral eval-
uation. The results obtained in 2 provide an analytical technique to evaluate the
double integral (1.8) with complicated f(), which are otherwise difficult to evaluate
analytically. We provide a prototype example.

Consider the following choice for the function f():

(A.1) f()=Psin() for p>_0.

Then the Fourier coefficients fn (r) are given by

rP 0
2w

(A.2) fn(r) e(p-n) sin(e0)dO.

Using a eie, (A.2) reduces to

rP / (Tp--n--1(A.3) f, (r) - sin ada.

Using the residues, we have from (A.3),

(A.4) fn(r) rPE(n p),

FAST ALGORITHM FOR NONHOMOGENEOUS EQUATIONS 1431

where

(A.5)

0

1
E(n-p) (n-p)!

-1

Using (A.4)in (2.8) we obtain

if (n p) <_ 0 or (n p) even integer,

if (n-p)- 1,5,9,-..,

if (n p) 3, 7, 11,....

0 for n <_ p,
_i,i+
ca-1 2E(n p) Rn+l (..n+p

(n + p) riq-1 rq-p) for n > p.

It then follows from (2.12) that

(A.7) c_l(rj)-O for n<_p, and j-I,2,...,M.

For n > p, upon using (A.6) in (2.12) we obtain after some manipulation,

(A.8) c_(rl) 2E(n p) n- n+p 1).r rn+p

Using (A.7), (A.8), and (A.5), we obtain

oo 2E(n q- 1 -p) (n+p+ 1)einO(A.9) uP(a) (n + p + 1) rtvt
np

Using n-p m and (A.5), we can rewrite (A.9)

2 a4mWp([a4mW2p+l 1)UV(a) (4m + 1)(4m + 2p + 1)m0(A.10)
2 a4m+p+2 a[4m+2p+3

+ + +

Appendix B. Desingularization of Tp -- f f f()/(a)dd. The
desingularized version of this integral appears in Append C [6]. However, the equa-
tions (C.8) and (C.9) of that paper were in error and should be corrected, respectively,

(B.2) and (B.3) of this appendix. We prescribe here a much eier procedure than
the one in [6] to desingularize this integral.

The above integral can be desingularized in the following manner:

dd
(B.1)

The second imegral in (B.1) can be evaluated by using the imegral evaluated in 4.
With p 0 and q 0 in (4.1), we obtain the following from (4.3):

(8.2) -a -

1432 PRABIR DARIPA

From (B.1) and (B.2) we have

1 // f()-f(a)cld.(B.3) up f(a) - a

This desingularized version of the integral is suitable for numerical computation in
the direct method (see also [6]).

Acknowledgments. The allocation of computer resources by the Texas A&M
Supercomputer Center is gratefully acknowledged. It is a pleasure to thank Eric
Grosse for making some useful suggestions that helped to reduce the length of the
paper.

REFERENCES

[1] L. BErts, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley, New
York, 1958.

[2] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, Vol. II, John Wiley, New
York, 1961.

[3] P. DAlIPA AND L. SIROVICH, Exact and approximate gas dynamics using the tangent gas, J.
Comput. Phys., 62 (1986a), pp. 400-413.

[4] ., An inverse method for subcritical flows, J. Comput. Phys., 63 (1986b), pp. 311-326.
[5] P. DArtIPA, An exact inverse method for subcritical flows, Quart. Appl. Math., XLVI (1988),

pp. 505-526.
[6] On applications of a complex variable method in compressible flows, J. Comput. Phys.,

88(1990), pp. 337-361.
[7] , On a numerical method for quasi-conformal grid generation, J. Comput. Phys.,

96(1991), pp. 296-307.
[8] P. R. GARABEDIAN, Supercritical Wing Sections III, Springer-Verlag, New York, 1977.
[9] L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulation, J. Comput. Phys.,

73 (1987), pp. 325-348.
[10] P. HENRICI, Applied and Computational Complex Analysis, Vol. 3, John Wiley, New York,

1986.
[11] J. KATZENELSON, Computational structure of the N-body problem, SIAM J. Sci. Statist. Corn-

put., 10 (1989), pp. 787-815.
[12] S. T. O’DONNELL AND V. ROKHLIN, A fast algorithm for the numerical evaluation of confor-

real mapping, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 475-487.
[13] V. ROKrlLIN, Rapid solution of integral equations of classical potential theory, J. Comput.

Phys., 60 (1985), pp. 187-207.
[14] L.C. WOODS, The Theory of Subsonic Plane Flow, Cambridge University Press, New York,

1961.

SIAM J. SCI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1433-1459, November 1992

() 1992 Society for Industrial and Applied Mathematics
010

PARALLEL IMPLEMENTATION OF THE hp-VERSION OF THE
FINITE ELEMENT METHOD ON A SHARED-MEMORY

ARCHITECTURE*

I. BABUKAt, H. C. ELMAN$, AND K. MARKLEY
Abstract. The costs incurred by an implementation of the hp-version of the finite element for

solving two-dimensional elliptic partial differential equations on a shared-memory parallel computer
are studied. For a collection of benchmark problems, the costs in CPU time of various individual
subtasks performed by the finite element solver are systematically examined, including construction of
local stiffness matrices, elimination of unknowns associated with element interiors, and global solution
on element interfaces by a preconditioned conjugate gradient method. General observations are that
the costs of the "naturally" parallel computations associated with local elements are significantly
higher than any global computations, so that the latter do not represent a significant bottleneck to
parallel efficiency. However, memory conflicts place some limitations on the sizes or number of local
problems that can be handled efficiently in parallel.

Key words, finite element, hp-version, parallel, shared memory, domain decomposition

AMS(MOS) subject classifications, primary: 65F10, 65N20, 65W05

1. Introduction. The finite element method is a standard computational tool
for solving partial differential equations arising from engineering analysis. Variants
include the standard h-version, which uses low-order basis functions and achieves ac-
curacy by refining meshes [13]; the p-version, which uses a fixed mesh and .achieves
accuracy by increasing the order of the basis functions; and the hp-version, which
combines these two approaches. See [7] for a survey and comprehensive list of refer-
ences on the p- and hp-versions. For the first and last of these techniques, which divide
domains into local elements and compute associated local stiffness operators, a large
component of the required computations can be implemented very naturally on paral-
lel architectures. In particular, for the h-version, domain decomposition methods (see,
e.g., [8]-[121, [21], [22], [26], [27], [31])group collections of elements into subdomains,
or super-elements. The local stiffness operators associated with super-elements are
independent of one another, so that they can be constructed in parallel on separate
processors. Similarly, elimination of degrees of freedom internal to super-elements
can be performed in parallel. For the p- and hp-version, we think of the space of
high-order basis functions in each element as analogous to the grouping of h-elements
into super-elements. Then, just as for domain decomposition methods, construction
of local operators and partial elimination can be done in a natural way on independent
processors. A combination of these points of view, with multiple high-order elements
collected into super-elements, is also possible.

Received by the editors December 3, 1990; accepted for publication (in revised form) September
9, 1991.

Department of Mathematics and Institute for Physical Science and Technology, University of
Maryland, College Park, Maryland 20742. The work of this author was supported by U.S. Office
of Naval Research contract N00014-90-J-1030, and by National Science Foundation grant CCR-88-
20979.

Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, Maryland 20742. The work of this author was supported by U.S. Army
Research Office grant DAAL-0389-K-0016, and by National Science Foundation grants ASC-8958544
and CCR-8818340. Computer time was provided by the Advanced Computing Research Facility at
Argonne National Laboratory.

Department of Mathematics, Rice University, Houston, Texas 77001.

1433

1434 BABUKA, ELMAN, AND MARKLEY

After the fully local computations have been performed, the result is a subprob-
lem with unknowns on super-element interfaces. If an iterative method such as the
conjugate gradient method (CG) is used to solve this subproblem, then much of the
required computation is also local, so that there is a large amount of natural par-
allelism. However, these computations entail some interaction across super-element
interfaces, and, in addition, CG requires some global computations. Moreover, con-
vergence of such methods is often significantly accelerated by some type of global
preconditioner [3], [9]-[12], [21], [22], [31], which may be less natural to implement
in parallel. The effects of both super-element interactions and global operations on
overall performance on parallel architectures is not well understood.

In this paper, we describe the results of an experimental study of an implementa-
tion of the hp-version of the finite element method for solving two-dimensional linear
elliptic problems on a shared-memory parallel computer. We examined the computa-
tional costs of the various subtasks required by the hp-method, including:

construction of local stiffness matrices;
partial elimination of unknowns associated with purely local elements;
CG iteration; and
preconditioning derived from low-order elements.

Our goals were to determine how efficiently such computations can be done on parallel
architectures, and what bottlenecks may exist that limit efficiency. Some particular
issues considered were"

the relative costs of the various individual subtasks;
the effects of global operations, especially preconditioning, on overall perfor-
mance and parallel efficiency;
the overhead of using unassembled local matrices to perform the matrix-vector
products required by CG; and
whether there are any limitations associated with the "natural" subdivision
of problems based on independent elements.

Our tests were performed on an Alliant FX/8, an eight-processor shared-memory
computer with a fast cache memory and vector processors. In addition to examining
the general issues of parallel implementation, we also considered the effects of the
latter two architectural features. In general, we found that the dominant costs come
from the local computations, especially the construction of local stiffness matrices, and
that global computations required for fast convergence do not represent a significant
bottleneck. However, there are some drawbacks to having local computations that
operate on large sets of data, which appear to be architecture-related, derived from
inefficient data movement for parallel processing.

An outline of the paper is as follows. In 2, we present the continuous model
problem used for experiments, and we describe the hp-version of the finite element
method used for the discretization. In 3, we give a high level description of the solu-
tion algorithm and a detailed description of our implementation. Section 4 contains
the main results of the paper, a series of experimental results for a set of benchmark
problems. These include overviews of iteration counts and CPU times, as well as sev-
eral refinements of timing statistics showing where computational efforts are spent,
and analyses of the effects of synchronization and vectorization. Finally, in 5, we
summarize our observations and discuss their implications for computations on other
classes of problems and parallel computers.

PARALLEL IMPLEMENTATION OF HP-VERSION 1435

2. The model problem and its finite element solution. Consider the model
problem

(o obo (1) -xa-x + y Oy] f ona,

(2) u gd on FD, Onc
gn on FN.

Here, Q c R2 is a bounded domain with piecewise smooth (e.g., polygonal) boundary;
F ID [-J lg is the boundary of t; a, b, f, gd and gn are functions that satisfy the
usual conditions guaranteeing existence and uniqueness of the solution; and nc is the
conormal. We are interested in the weak solution of (1)-(2), i.e., u e H(Q) (u e
H (gt) u 0 on FD) such that

Ou
b

Ov frB u v =_ a --x --x + Oy -y dx dy fv dx dy + gnv ds f v
N

holds for any v e H(t). Hl(t) denotes the usual Sobolev space.
We now give a general description of the hp-version of the finite element dis-

cretization of (1)-(2). Let P {gt } denote a partitioning of t into open subdomains
such that t U (where denotes the closure of t). Assume that i is a curvilinear
polygon, typically a triangle or quadrilateral. Let

F miI..Jj__I Fj

denote the set of (curved) open sides of ti, and let

Ai miUj=1Aj
denot its vertices. Assume that

1. i J ’, i.e., i and J have common entire sides; or

2. i N tJ A A, i.e., and tJ have one vertex in common; or
3. fi n fi .

The set (U,jFj) U (U,jAj) will be denoted the frame of the partitioning
On every i E :P, we use a set of linearly independent functions . E H (i), j

1,..., Pi, called shape functions, which are divided into three categories:

Internal shape functions: 2" C {(z) e Hl(ti) (z) 0 on Fi}.
Side shape functions: ,S C {(sj) e Hl(i) lffP(s’J) 0 on F F.}.
Nodal shape functions: Afc {O(At’j) e H () (’j) 0 on A, k = j}.

The following typical examples will be used in the sequel. Let $ (-1, 1) x (-1, 1)
be called the standard element. The nodes and sides of $ are given by

/1 --(1,--1), A2 (1, 1), A3 (-1, 1), /4 (-1,-1),

F1 {(, r/)l 1, I/{ < 1},
F3 {(, /) 1, I/1 < 1},

F2 {(,r/)lll < 1, r/= 1},
F4 {(, r/) I11 < 1, r/= -1}.

1436 BABUKA, ELMAN, AND MARKLEY

(See Fig. 1.) Let

(3) Cj() 2j-1/ Pj_l(t)dt, j > 2,
2 1

where P(t) is the Legendre polynomial of degree j [14]. Thus Cj() is a polynomial
of degree j and j(4-1) 0. Two spaces, (p) and ’(p), are defined as the span of
the following shape functions on

Internal shape functions. For (p),

2<_j,k<_p;

and for Q’(p),
z) j,k_>2, j+k_<p.

Hence for (p), there are (p- 1)2 internal shape functions, and for ’(p) there are
(p- 2)(p- 3)/2 internal shape functions when p _> 4, and none when p < 4.

FIG. 1. The standard element

Side shape functions. For both Q(p) and Q’ (p), the side shape functions are given

j=2,...,p.

Thus, there is a total of 4(p- 1) side shape functions.
Nodal shape functions. For both (p) and ’(p), the four nodal shape functions

are given by

2

PARALLEL IMPLEMENTATION OF HP-VERSION 1437

Here, Q(p) contains all polynomials of degree p in each variable, and Q’ (p) con-
tains all polynomials of total degree p. For some choices of p, internal or side shape
functions are not present, and the method can reduce to the standard h-version. Also,
the spaces Q(p) and ’(p) could be defined as the span of some other shape func-
tions. For example, (p) is the span of all functions of the form fj()fk(l) where
{fj()} are Lagrange polynomials with interpolation points chosen to be the (p 4- 1)
Gauss-Lobatto quadrature points [28]. Similar sets of standard shape functions can
be defined on a triangular element.

Assume that T(, r/) is a mapping of the standard element 8 onto gti. Let Q*
denote either Q(p) or Q’(p), and let

v e v e Q*}.

We impose on Ti the usual conditions of the finite element method, e.g., if fi is a
parallelogram, then Ti is a linear mapping. Thus the basis functions of) can easily be
constructed using the three categories of standard shape functions. The finite element
solution UF E V is defined by

(4) B(UFE, V)= F(v) for all v e V.

Condition (4) uniquely defines UFE except when FD qJ, in which case UFE is deter-
mined up to a constant.

Accuracy of UFE is achieved either by increasing the degree p of the shape func-
tions, or by refining the partitioning P. Consider the case where :P partitions a
rectangular domain f into an m x n rectangular grid composed of squares with side
h. The following results contain typical error bounds for the finite element solution
in the energy norm

Ilu UFEIIE =-- B(u UFE, u UFE)/2 inf B(u v, u v) 1/2.

See [7] and references therein for further details.
THEOREM. (1) Suppose h is such that clh-1 G m, n G c2h-, and u Hk().

Then

where c min{k- 1,p} and C depends on k, Cl, c2, and the discretization (Q(p) or
Q’(p)), but is independent of u, h, and p.

(2) If u is analytic in t, then for any fixed h > 0,

Ilu- UFEIIE < De-p,
where D depends on u and h and fl > 0 depends on the region in which u is analytic.

Thus for very smooth problems, the p and hp finite element solutions display
exponential convergence.

For our investigation, we will restrict our attention to the case where 9t (-1, 1) x
(-1, 1), P partitions 9t into a uniform n x n grid, Ti is a bilinear mapping, and f 0,
FD . We will consider the constant coefficient case a b 1. To ensure a unique
solution, we will constrain the solution at the corners of OFt.

1438 BABUKA, ELMAN, AND MARKLEY

3. The solution algorithm and its implementation. Formal specification
of the finite element solution UFE as a linear combination of the basis functions of)
leads to a system of linear equations S(s, where S is the global stiffness matrix
and (is the vector of coefficients of the basis functions. In this section, we present the
algorithm used to solve this problem and describe the details of our implementation.

3.1. The solution algorithm. Conceptually, the algorithm can be divided into
four steps.

1. Construction of the local stiffness matrices. The global matrix has the form

S=Si,

where S is the local stiffness matrix associated with fi. Formally, Si is a large, sparse
matrix with nonzero entries determined from shape functions in fi. In the following,
Si will also be identified with the local matrix of order pi given by the Gramm matrix
[B,(u, v)], where

Ou Ov
b
OU Ov

(5) B u v) a-x -x + Oy -y dx dy

and u and v range over all shape functions in fi. The local contribution s to s is
determined similarly from (F(v)}. For our study, we do not form S or s explicitly,
but work directly with the local versions of Si and si.

2. Condensation of the local stiffness matrices. The local stiffness matrices and
right-hand sides have the form

Ai Bi bi
8i(6) Si

BT Ci c

A corresponds to interactions among internal shape functions, Ci corresponds to
interactions among side and nodal shape functions, and Bi corresponds to interactions
between internal shape functions and side and nodal shape functions. Before solving
for the unknowns associated with the frame of the partitioning 7, the unknowns
associated with the interior fi can be decoupled from the system. This process
of condensation, or elimination of internal unknowns, entails computing the Schur
complement

(7) C BTA-B,and modifying the right-hand side in a similar manner:

(8) 5, c, BT AT b,.

We will also normalize these quantities so that all local diagonal matrix entries are
one, i.e.,

(9) 7 D:/2D/2 DY /25
where D diag(). This is equivalent to scaling the shape functions.

3. Computation of the frame unknowns. After the internal unknowns are elimi-
nated, the result is a system of linear equations

PARALLEL IMPLEMENTATION OF HP-VERSION 1439

for the unknowns associated with the frame of 7) Here

and (i and i are determined from (O). We solve (10) using the preconditioned
cougate gradient method (PCG) [25]. For the preconditioner, we use the submatrix
of S associated with nodal unknowns. That is, if the entries of are arranged in the
form

VT Q

where Q corresponds to connections among nodal unknowns and R corresponds to
connections among side unknowns, then the preconditioner for (10) is given by

0

It is shown in [3] that the condition number of the resulting preconditioned matrix is

(11) 0(1 + (logp)).

Hence the number of PCG iterations required for convergence is independent of h,
and it grows very slowly as a function of p.

4. Computation of the internal unknowns. After the unknowns &i associated with
the boundary Fi have been computed at step 3, the internal unknowns ai associated
with i can be computed by solving the system Aiai bi Bi&i, using the Cholesky
factorization of Ai computed in step 2.

3.2. Local stiffness matrix computations. Assume that the finite element
discretization is made on an n n element grid, and we have a parallel architecture
with k processors where k divides n2. The first two steps of the solution algorithm,
construction of the local stiffness matrices and condensation, are naturally paral-
lelizable. There are n2 elements, so that there are n2 local stiffness matrices to be
constructed, each of which contains a subblock corresponding to a set of internal un-
knowns to be eliminated. All of these computations are obviously independent, so
that they can be executed in parallel. Each processor has n2/k elements assigned to
it, for which it constructs the associated local stiffness matrices and then performs
the corresponding condensation.

Consider the construction of the local stiffness matrices. The entries of Si (6)
are determined using (5). For general operators and domains, these entries must be
computed by some quadrature rule that depends on the coefficients a and b, the shape
of i, and the mapping Ti from $ to i. In general, the resulting local stiffness matrix
Si is dense, although its nonzero structure may also be affected by these criteria. For
rectangular elements, the shape functions specified in 2 have the form
where Oj is a polynomial of degree j. Therefore, (5) simplifies to an expression of the
form

+ O’

1440 BABUKA, ELMAN, AND MARKLEY

In this study, we axe restricting our attention to the case where a and b are
constant. For these problems, (12) further simplifies to

(13)

where

(14)

and

Bfl (u, v) a Ix (j, k, l, m) + b Iu (j, k, l, m),

I(j, k, l, m) I1 (j, 1)Io(k, m), Iu(j, k, l, m) Io(j, 1)Ii (k, m),

(15) Io(s,t) =/OOt, Ii(s,t) =/’’.0
This reduces the costs of constructing S, since (15) can be computed in closed form,
and many entries are zero. In particular, for both the Q(p) and ’(p) discretizations,
S has order p O(pa), but only O(p2) entries are nonzero. (See Appendix.) For
example, for the Q(p) discretization, if the rows and columns of S are ordered using
the lexicographic ordering of shape functions

22 ’" ’"
$,1) 3,1),2)... S,2),3)... ,3)$,4)... ,4)

then the nonzero structure for the Q(p) discretization is shown in Fig. 2.
In our code for constructing the local matrices, each entry of S is computed using

(13)-(15), where the indices j, k, l, and m range over all values corresponding to the
lower triangle of S. I, I, I0, and I1 can be thought of representing FORTRAN
functions, and (15) is computed in closed form using (23), (27), (28), and analogues
for handling side and nodal shape functions. The routines corresponding to I0 and I
axe cMled only if the result is nonzero, specified by (22). Thus the construction of S
entails O(1) scalar computations per entry, giving a total cost of O(p4). Computation
of a zero entry entails several queries about the indices j, k, l, and m and at most
three floating point operations; computation of a nonzero entry entails subroutine
calls to I, Iy, Io, and I, the latter two of which require on the order of 10 scalar
floating point operations.

Now consider the other purely local operation, the condensation of the local stiff-
ness matrix, to produce the Schur complement of (7). To perform this step, we
compute the Cholesky factorization A LL, and then compute LB and
C . These operations were implemented using (a slightly modified version of)
off-the-shelf software from the BLAS2 subroutine library, which is designed to take
advamage of vector architectures [17]. A general description of the lgorithm is
follows. Assume that in (6), S h order p and A h order A p. For any matrix
M with the same dimensions S, let

)Tm:, (mm+l, mT,v

denote the column vector consisting of entries through 7 of the uth column of M,
and let

[m], ap, u-i ifA,
M=

[m], ap, uA if>A.

PARALLEL IMPLEMENTATION OF HP-VERSION 1441

:.. "’:’"

-----.:=---:.. :.: ,-v- :-.’..- .

::::::::::::::::::::::::::
FIG. 2. The nonzero structure of the local stiness matrix for the Q(p) discretization. Solid

lines indicate nonzeros; dashed lines delineate the sets :, 3, and Af dotted lines delineate blocks o]
size p 1, and "o" identifies a zero band.

M# is a submatrix of M in the lower left-hand corner of M. (See Fig. 3.) In the
following code fragment, M initially contains the local matrix S of (6); as the com-
putation proceeds, the contents of M are dynamically modified. In steps 1 through
A, the lower triangle of A is overwritten by the Cholesky factor L, and BT is over-
written b_y/T. In steps / + 1 through p, the lower triangle of C is overwritten with
that of C.

for #= 1 to p do

l/max +"- min{# 1, A}
m#:p,t -- mt:p,i M#ml:uma,#
if (A) then

m#+l:p,#

endif

enddo

Except for ml:v #, only the lower triangle of M is referenced. In the program used
to implement this computation, only the lower triangle of M is stored, by column in
packed form. That is, the contents of the array containing M are

ml,l m2,1 mp,l ?T2,2 m3,2 77p,2 m3,3 mp,p.

(Since the vector ml:v is, therefore, not available in contiguous storage, m,:mXT
is accumulated in a temporary vector at each step of the outer (/) loop.) The sub-

1442 BABUKA, ELMAN, AND MAI:tKLEY

1 P

m :tmax ,ll

FIG. 3. Submatrices and subvectors used for internal elimination. Quantities used for a
Cholesky factorization step are shown on the left. Quantities used to compute the Schur complement
are shown on the right.

matrices and subvectors of M used in one step of internal elimination are depicted
graphically in Fig. 3.

The algorithm (16) is essentially the "GAXPY" form of Gaussian elimination
[19], [24], [25], in which the main large-scale operation at each step is a matrix-vector
product

(17) mu:p, +- Muml:u
The computations are arranged to take advantage of architectures with vector regis-
ters, by computing (17) as a linear combination of the columns of Mi. Our implemen-
tation is essentially that of the BLAS2 library [17]. In principle, the vector m:p,
can be accumulated in one or more vector registers without being stored to memory
until the computation (17) is complete.

For the Q(p) and Q’(p) discretizations, this implementation of the condensation
step requires O(p4) floating point operations. This is determined by the cost of
the matrix-vector product (17), and it is also strongly influenced by our choice of
implementation. Consider the Q(p) discretization, where A (p-1)2 and p (p+ 1)2.
A feature of the BLAS2 software used for (17) is that only the nonzero entries of the
vector ml: u are used for the linear combination of columns of Ms. There are at
most three such nonzeros for steps 1 through A, and an average of 2.5(p- 1) nonzeros
for steps A + 1 through p. At step #, the block Mu contains (p + 1)2 (#- 1) rows.
Hence the number of floating point multiplications performed is approximately

(p--l) (pT1)

3[(p + 1)2 -(#- 1)] + y 2.5(p- 1)C(p + 1) 2 -(#- 1)] 1.5pa + 26p3.
--1

These computations are vectorized, but they do not take full advantage of sparsity,
since M is treated as a dense matrix. An implementation that operated only on the
nonzeros of M would require O(p2) operations.

We used a slight modification of the subroutine DTPMV from the BLAS2 library. DTPMV
computes a matrix-vector product w Lv where L is a lower triangular matrix stored in packed
form; our modification allows variations on outer loop counters to handle rectangular subblocks of
L.

PARALLEL IMPLEMENTATION OF HP-VERSION 1443

It is evident from this discussion that many factors contribute to the cost of con-
struction and condensation of the local stiffness matrices. As we have noted, our
program takes some advantage of the special structure of the test problem, but it
does not make full use of sparsity in either construction or condensation. By way
of comparison, consider the situation for more general problems, where the O(pa)
entries of Si are computed by applying a quadrature rule to (5) or, for rectangular
domains, (12). Typically, O(p) quadrature points are used in both the x and y co-
ordinates, so that (ignoring the costs of function evaluations) (5) will require O(p6)
floating point computations. For (12), this cost can be reduced to O(p5) by taking
advantage of the tensor product structure [30]. The condensation is, asymptotically,
an O(p6) computation. Of course, asymptotics also do not tell the whole story, since
in general we work with relatively small values of p (on the order of 10); we expect
asymptotic characterizations to be pessimistic for these values [4]. Both construction
and condensation allow for significant amounts of vectorization, e.g., in the quadra-
tures for construction and as in 3 for condensation. Our implementation is intended
to take advantage of special problem structure in a "natural" way: in the matrix
construction, by performing some computation for each entry, but not performing
unnecessary quadratures; and in the condensation, by handling sparsity only in the
manner inherited from standardized software. We believe that this implementation
gives a plausible picture of the relative costs of construction and condensation; for
more complex problems, absolute costs will be higher.

Step 4 of the solution algorithm, recovery of the internal unknowns, also entails
purely local computations. However, because the solutions to our benchmark prob-
lems are identically zero, we did not experiment with this stage of the algorithm.

3.3. Computation of the frame unknowns. Next, consider the solution of
the global linear system (10) by the preconditioned conjugate gradient method. We
use the standard implementation of PCG, as described, for example, in [25, Algorithm
10.3.1]. Each step of the iteration requires a matrix-vector product by the coefficient
matrix , a preconditioning solve of the form w - Q-lV, and a set of vector operations
consisting of three inner products a - vTw and three daxpy’s w - aVl + v2. (This
is one more inner product than specified in [25]. The extra one is used for a stopping
test; see 4.1.)

The preconditioning operator and vectors required by PCG are represented with
global indices; implementation issues associated with these quantities are discussed in

3.4. In this section, we focus on the matrix-vector product, which shares some of the
purely local character of the local stiffness matrix computations. The global matrix
; is not constructed explicitly; instead the matrix-vector product is computed as

(18) w=wi=Zivi=v
where the sum is taken over all elements, and 0i is the Schur complement associated
with an individual element. The vector vi is gathered from a globally indexed vector
v, the local matrix-vector product wi ivi is performed, and then wi is used to
update the global vector w. Hence the steps required for the local matrix-vector
product are

a. Index and copy: determine the indices in v corresponding to vi and copy vi
from v.

b. Arithmetic: wi Civi.
c. Update: accumulate wi into w.

1444 BABUKA, ELMAN, AND MARKLEY

For the parallel implementation, each processor performs this computation on all
elements assigned to it. Ignoring any memory conflicts, all processors can read from
the global vector v and compute the local matrix-vector product independently, so
that steps a and b can be implemented with a high degree of parallelism. However, for
the program to be correct, no more than one processor can write into a given location
of w at any time. We enforce this by synchronizing all writes into w, so that execution
of step c by different processors is performed serially. (See 3.4 for the method used
to achieve this.) For the arithmetic step b, recall that only the lower triangle of (i
is stored, by column. The actual computation has the form shown in the following
code fragment, in which /- p- is the order of (i, and for the sake of simplicity,
the subscript i is omitted:

(19)

for --1 to do

W -- W q- V(:,
w, w, + (,+:,,)Te,+:,,

enddo

That is, multiplication by the lower triangle is done using a linear combination of the
columns, and the additional inner product and accumulation for the upper triangular
multiplication are performed in the same loop. No extraneous vector writes (of wi) or
reads (of columns of 7) need be performed. (Thus this is also essentially a BLAS2-
type computation [17].) For our test problems, approximately 50 percent of the entries
of (are nonzero; however, as in the condensation, (i is treated as a dense matrix.

3.4. Other coding conventions. We conclude this section with an outline of
our coding conventions. All code was written in Alliant FX/8 FORTRAN and com-
piled using the global "-O" optimization switch. All vectorizable loops were preceded
with the Alliant compiler directives VECTOR and (for global inner products) hSS0C.
Thus all computations are fully vectorized. Although parallelism on the Alliant FX/8
can be achieved using compiler constructs, the compiler does not permit easy control
of individual processors, and it also does not permit data-driven synchronization of
the type required for the matrix-vector product. To circumvent these difficulties, we
implemented all the local computations described above using the scheduling pro-
gram SCHEDULE [20]. For a local computation such as construction of the local
stiffness matrix, SCHEDULE runs on k processors by initiating k processes consist-
ing of n2/k matrix constructions. This is a relatively simple use of this software,
which has the property that any overhead associated with it is amortized over n2/k
large-scale computations. Compiler-generated parallelism is explicitly prevented us-
ing Alliant FORTRAN compiler directives (i.e., I{:}C01CUR). Synchronization of the
updates required by the matrix-vector products in PCG is enforced using SCHED-
ULE’s lockon and lockoff primitives, which force processes to spin-wait when access
to w is restricted. Finally, to handle SCHEDULE’s requirement that multiple copies
of subroutines be used simultaneously, all compilation was done with the "-recursive"
switch.

Computations not discussed in detail above are the construction and factorization
of the preconditioner, and the preconditioning and vector operations (inner products
and scalar-vector products) performed during the PCG iteration. All these computa-
tions are global operations, in the sense that they are concerned with global quantities
associated with the nodal and side unknowns. Constructing the preconditioner con-
sists of assembling the (global) nodal operator Q from entries of the local stiffness

PARALLEL IMPLEMENTATION OF HP-VERSION 1445

matrices, and then computing the Cholesky factorization Q LLT. The factor-
ization was performed using band elimination [25]. The preconditioning operation
consists of forward-solves w +- L-iv and backsolves w +- L-Tv. The preconditioning
and vector operations all contain a large amount of natural parallelism, but not at
the element level. As a result, parallelism for these tasks was handled using Alliant
compiler directives (C01CUI).

4. Experimental results. In this section, we present the results of a series of
numerical tests of the algorithm of 3. For several problems, we give a general overview
of costs, and then we show how these costs are broken down by individual compu-
tational tasks. Our objectives are both to show how the methods perform, and to
understand what aspects of algorithms and computer architecture affect performance.
In particular, we examine the influences of local and global computations required by
algorithms, and of architectural considerations such as number of processors, vec-
torization, and cache memory. We remark that we are not examining the issue of
accuracy of the computed solution here. Correlations.between accuracy requirements
and cost will be discussed in a subsequent report [5].

4.1. Machine independent results. For most results presented in this section,
we used benchmark problems with the Q(p) discretization on n x n grids, with p 4,
8, and 16, and n 4, 8, 16, and 32. In addition, we have observed [5] that often
the (p) and ’(p) discretizations provide solutions of comparable accuracy when
pQ /pQ,, so that we examined the ’(p) discretization with p 6, 11, and 23,
on the same grids. The choices for degree represent moderate, large, and very large
values. The values p 16 for (p) and p 23 for ’(p) are larger than values
typically used in practice and are studied primarily to see trends in the data; these
values were not considered on the 32 x 32 grid. Tables 1 and 2 show the number of
global and local unknowns of various types associated with these problems.2

In all experiments, the problems were posed with s _= 0, so that the solution to
(10) is & 0. The stopping criterion for the PCG iteration was based on the relative
error in the energy norm,

<

where {&(J)} are the PCG iterates and the initial guess {&(0)} is a vector of random
numbers between 0 and 1. Table 3 shows the number of iterations required to reach
this stopping criterion. Note that these iteration counts are consistent with condition
numbers of the form (11).

4.2. Overview of timing results. We first give a general overview of CPU
times needed to solve these benchmark problems. For all experiments, reported times
are in seconds, and they represent averages over three runs. The timings were deter-
mined from the "user time" returned by the Unix function etime; the measurements
exclude timing overhead [1]. Speedup is defined to be the ratio of CPU time using
one processor to CPU time on multiple processors; the same program was used in all
experiments, so that the timings on one processor include a small amount of overhead
associated with the scheduler.

2 For simplicity of progrmming, we constrained the four vertices of 0 by adding a constant
to the diagonal entries of Ci associated with these vertices. This corresponds to constraining the
vertices by spring supports. It does not influence any results discussed below.

1446 BABUKA, ELMAN, AND MARKLEY

TABLE 1
Number of global unknowns for benchmark problems.

(P)
’Inenai Frame Total

4 ’4’gri’d 144 145 289
8 8 grid 576 513 1089
16 16 grid 2304 1921 4225
,32 ,x,,, 32,g,,rid ,9,,21,,6 7.42,5 1664!,,,
4 4 grid 784 305 1089
8 8 grid 3136 1089 4225
16 16 grid 12544 4097 16641
3,.2 x,,,,,32, g.rid 50,176 15873 66049
4 4 grid 3600 625 4225
8 8 grid 14400 2241 16641
16 16 grid 57600 8449 66049

Internal Frame Total
96 225 321
384 801 1185
1536 3009 4545
6144 11649 17793
576 425 1001
2304 1521 3825
9216 5729 14945
36864 22209 59073
3360 905 265
13440 3249 16689
53760 12257 66017

TABLE 2
Number of unknowns in each element for benchmark problems.

Internal Frame Total
9 16 25
49 32 81
225 64 289

Frame Total

p 6 6 24 30
p 11 36 44 80
p 23 210 92 302

Internal

TABLE 3
Iteration counts for benchmark problems.

44
88
16 x 16
32 32

(,) ’(,)
p=4 p=s p= 16 p=6 p= 11 p= 23

16 20 27
15 19 26
14 18 23
14 18

13 17 24
13 17 20
13 16 20
12 16

Tables 4 and 5 show timing statistics and speedups for the Q(p) and Q’(p) dis-
cretizations, respectively, for the entire solution procedure. Table 6 shows the efficien-
cies of these computations, defined to be the ratio of speedup to number of processors.
(Table 6 was computed with raw data, so there are some differences between these
numbers and those obtainable from the rounded quantities shown in Tables 4 and 5.)
These results show that, in general, speedups are higher for both larger values of p
and for larger grid sizes. For the Q(p) shape functions, efficiency on eight processors
ranges from 40 percent for the smallest grid (4 4) and polynomial degree (p 4),
where scheduling overhead is high; to a maximum of 85 percent, corresponding to
maximum speedup of slightly under 7. There are some examples of slight declines in
efficiency when p increases from 8 to 16. The Q’(p) shape functions incur larger costs
and they have slightly higher efficiencies, but otherwise they produce qualitatively
similar results to those for the Q(p) shape functions.

Because the Q(p) basis functions have lower costs, we restrict our attention to
them in the sequel. Table 7 shows a breakdown of costs and speedups of several of
the individual tasks performed by the solution algorithm, for n 16 and three values
of p. This data corresponds to the third row of each block row in Table 4. The
computations are broken into three large-scale steps, consisting of the construction

PARALLEL IMPLEMENTATION OF HP-VERSION 1447

TABLE 4
Timings and speedups for O-type shape functions.

p=8

p--16

4 x 4 grid
8 x 8 grid
16 16 grid
32 32 grid
4 x 4 grid
8 x 8 grid
16 16 grid
32 x 32 grid
4 x 4 grid
8 8 grid
16 16 grid

Timings
Number of processors

1 4 6 8
0.71 0.27 0.24 0.22’
2.55 0.80 0.62 0.53
9.94 2.87 2.13 1.77

41.56 11.53 8.56 7.07
3.76 1.10 0.88 0.69

14.65 3.96 2.90 2.26
57.98 15.39 10.80 8.60

234.37 61.73 43.17 34.61
37.19 10.09 7.93 5.83
147.92 40.21 28.98 22.37
587.83 156.81 111.23 87.07

Speedups
Number of processors

1 4 6 8
’1.0 ’2:6
1.0 3.2
1.0 3.5
1.0 3.6
1.0 3.4
1.0 3.7
1.0 3.8
1.0 3.8

1.0 3.7
1.0 3.7
1.0 3.7

3.0 3.2
4.1 4.8
4.7 5.6
4.9 5.9
4.3 5.4
5.1 6.5
5.4 6.7
5.4 6.8
.7 .

TABLE 5
Timings and speedups .for ’(p) shape functions.

p=6

p--ll

p-- 23

4 x 4 grid
8 x 8 grid
16 x 16 grid
32 x 32 grid

4 x 4 grid
8 x 8 grid
16 16 grid
32 32 grid

4 x 4 grid
8 x 8 grid
16 x 16 grid

Timings
Number of processors

1 4 6 8
0.92 0.31 0.27 0.24
3.49 1.02 0.78 0.64

13.91 3.89 2.82 2.29
56.10 15.22 11.08 9.02

4.23 1.19 0.96 0.74
16.68 4.46 3.23 2.52
65.97 17.39 12.31 9.63

266.09 69.85 48.81 38.81

50.47 13.66 10.68 7.76
201.69 53.93 38.80 30.16
796.02 211.54 148.83 117.94

Speedups
Number of processors
1 4 6 8
1.0 3.0 3.4 3.8’
1.0 3.4 4.5 5.5
1.0 3.6 4.9 6.1
1.0 3.7 5.1 6.2

1.0 3.6 4.4 5.7
1.0 3.7 5.2 6.6
1.0 3.8 5.4 6.9
1.0 3.8 5.5 6.9

1.0 3.7 4.7 6.5
1.0 3.7 5.2 6.7
1.0 3.8 5.3 6.7

TABLE 6
Overall efficiency.

p 16(Q)

4 x 4 grid
8 x 8 grid
16 x 16 grid
32 x 32 grid
4 x 4 grid
8 x 8 grid
16 x 16 grid
32 x 32 grid
4 x 4 grid
8 x 8 grid
16 x 16 grid

(v)
Processors

4 6 8
65% 48 400
80 68
87 78
90 81

’(v)
Processors

4 6 8
730 560 490

86
93
94
95

60
70
74

71 69’
84 81
90 84
91 85

92 78 80
92 85 83
94 88 84

86 75 68
90 82 76
92 84 78
89 74 7
94 86 83
95 89 86
95 91 86
92 79 81
94 82 84
94 89 84

and condensation of the local stiffness matrices, the construction and factorization of
the nodal preconditioning matrix, and the preconditioned conjugate gradient itera-
tion for computing the nodal and side unknowns. The first of these steps entails purely

1448 BABUKA, ELMAN, AND MARKLEY

local computations, the second is associated with the global (nodal) mesh, and the
third requires both local and global computations. We see the following trends in this
data:

The costs are dominated by local stiffness matrix computations (construction
and elimination). Since these are purely local, they are very highly paral-
lelizable, and we see speedups on eight processors of 7.47, 7.25, and 6.86,
respectively, for p 4, 8, and 16 (efficiencies of 93 percent, 91 percent, and
86 percent). Thus efficiencies are generally high, although there is a decline
as p increases.
The construction and factorization of the (nodal) preconditioning matrix rep-
resents a small percentage of the overall cost.
The PCG iteration also represents a small percentage of the computation,
although it is more costly than the construction of the preconditioner. The
speedups achieved for this part of the computation are smaller than those of
the local matrix computations, but they are strictly increasing as p increases.

TABLE 7
Breakdown of timing costs and speedups for Q(p) shape functions on a 16 16 grid.

Timings Speedups
p 4 Number of processors Number of processors

1 4 6 8 1 4 6 8
Construct / condense LSM
Construct / factor precon.
PCG iteration

6.27 1.61 1.10 0.84
0.45 0.13 0.12 0.11
3.22 1.13 0.91 0.82

1.0 3.9 5.7 7.5
1.0 3.5 3.8 4.0
1.0 2.8 3.5 3.9

Complete computation 9.94 2.87 2.13 1.77 1.0 3.5 4.7 5.6

p 8 Number of processors Number of processors

1 4 6 8 1 4 6 8
Construct / condense LSM
Construct / factor precon.
PCG iteration

48.59 12.52 8.58 6.70
0.50 0.14 0.13 0.12
8.89 2.73 2.09 1.77

1.0 3.9 5.7 7.3
1.0 3.6 3.8 4.2
1.0 3.3 4.3 5.0

Complete computation 57.98 15.39 10.80 8.60 1.0 3.8 5.4 6.7

p 16 Number of processors Number of processors

1 4 6 8 1 4 6 8
Construct / condense LSM
Construct / factor precon.
PCG iteration

555.79 147.68 104.14 81.04
0.67 0.19 0.17 0.16

31.37 8.94 6.92 5.87

1.0 3.8 5.3 6.9
1.0 3.5 3.9 4.2
1.0 3.5 4.5 5.3

Complete computation 587.83 156.81 111.23 87.07 1.0 3.7 5.3 6.8

Remark 1. The preconditioning operations and the CG vector operations were
implemented in parallel using compiler directives, and we did not limit the number
of processors on which these computations were performed. As a result, the timings
for four and six processors are underestimates. However, as we show below, the
contributions of both these operations to overall cost are small, so that these timings
do give a reasonable picture of performance.

Figures 4 and 5 show the asymptotic behavior of the timings from Table 4, as
functions of n and p, respectively, in loglog scale. Both figures reflect the fact that
costs are dominated by the local matrix computations. Thus for any fixed p, there
are n2 independent local constructions and condensations, and the costs grow like n2.
For fixed n and large p, growth is slightly slower than O(p4), the asymptotic cost;
for example, the line segment between p 8 and p 16, for one processor and n 16,

PARALLEL IMPLEMENTATION OF HP-VEI:tSION 1449

1 Proessor103 ;,’,,,,

102 : p=16"":::....... .-’"’,/
10 -__: n^2

..... ..-""/-= p=8-"10 -=" p=4

10-1
100 10 102

10

102

10o

10-1
10o

8 Processors
’i’ ’l’i

p=16""

p=8 "’""p=4

101 102

FIG. 4. CPU times as functions of n, on loglog scale.

1 Processor10s ,"’,’,’.__

102__.101 ::31;,/

......’"
.............

n=8 "" ..."
10o- n-4

/ .,’
10-1

100 01 12

8 Processors103

102

101-_-
100

10q
100

n=16"" .-""
n=8 -"/~^4
n=4/

101 102

P P

FIG. 5. CPU times as functions of p, on loglog scale.

has slope 3.34. For small p, growth is closer to O(p2"5) because of the larger cost of
computing the O(p2) nonzero entries.

4.3. Refined breakdown of costs. We now refine and elaborate on the timing
results of Tables 4-7, showing how subsidiary steps of the tasks represented in Table
7 compare in cost. For these refined statistics, we compute costs on a single processor
and supplement these results with discussion of how synchronization and memory
conflicts affect performance on multiple processors.

First, consider the local stiffness matrix computations, i.e., construction and con-
densation of the local matrices. Table 8 shows the CPU times for each of these two
steps on one processor, for n 16 and p 4, 8, and 16.3 The results indicate
that construction of the local matrices is more expensive than condensation. Since
the matrix construction often involves a less regular set of computations than the
condensation, we expect this phenomenon to be more pronounced for more general
problems.

3 To prevent calls to the timer from affecting measurements, the data in Tables 8 and 9 was
generated separately from that in Tables 5 and 7, and Table 10 was produced separately from all of
these. This is why these tables do not contain identical subtotals for identical computations.

1450 BABUKA, ELMAN, AND MARKLEY

TABLE 8
Breakdown of timing costs of local stiffness matrix computations on one processor, for a 16 16

grid.

p-4 p--8 p-- 16

Construct 3.98 33.24 366.28
Condense 2.58 15.06 184.99
Total 6.56 48.30 551.27

As noted above (see Table 7), although the local stiffness matrix computations
corresponding to different elements are independent of one another, parallel efficiency
declines as p increases. From Table 7, it is evident that efficiency also goes down
as the number of processors grows. Figure 6 shows a more detailed picture of these
phenomena. The curves represent speedups of the local matrix computations on four
and eight processors, for n 8, 12, and 16, and p 4 through 18 in increments of 2.
(As above, each curve represents average CPU times over three runs.) Here, the two
sets of curves in each part of the figure correspond to two versions of the condensation
step. The first version is the one used for all experiments described thus far; as shown
in 3, it takes some advantage of sparsity of the local matrices. The second version
takes no advantage of sparsity during the condensation, so that the computation
(7) is performed as though all participating matrices are dense,a Thus this version is
considerably more expensive. The same procedure for constructing the local matrices,
as described in 3, was used with both versions of the condensation. The results of
these figures show that there is indeed a decline in speedup as p increases, especially
for the more costly version of condensation; in addition, efficiency is greater on four
processors than on eight processors.

To understand these issues, it is necessary to examine the computer architecture
in more detail. A feature of the Alliant FX/8 is that data moves between main
memory and computational elements (i.e., processors) through a cache memory. Main
memory and cache memory are connected by two buses, and cache memory and
computational elements are connected by a crossbar switch with four paths to the
cache [1], [18], [29]. Thus there are two sources of delay associated with movement of
data between memory and processors: (i) it will take longer for data to move between
processors and main memory than between processors and cache memory; (ii) when
multiple processors are used, there will be contention for the buses (between main
and cache memories), and possibly some delay in moving data through the crossbar
switch (between cache memory and processors). We expect the crossbar switch to be
less of a bottleneck than the buses [29]. However, if more than two processors attempt
to move data to or from main memory, some processors will have to wait for access
to the buses. Consequently, contention for the buses will tend to increase any delays
caused by the need to move data between main and cache memories.

Although it is difficult to prove rigorously that these observations provide a com-
plete explanation of parallel performance, the results of Fig. 6 are consistent with
them. The machine used for these experiments has a cache memory with 512K bytes,
or 64K double precision words. For the local stiffness matrix computations, each pro-
cessor works with one block of storage of size equal to the number of entries in the
upper triangle of the local stiffness matrix (approximately (p-- 1)4/2). Consequently,
k such blocks of storage fit into the cache provided k (p+ 1)a/2 <_ 65536, which gives

4 This entails removing checks for zero entries in the vector ml: t for the matrix-vector
product (17).

PARALLEL IMPLEMENTATION OF HP-VERSION 1451

3.9

3.8

3.7

3.6

3.5

3.4

3.3

3.2

Four processors

::
condensation............

n=12
n=15

3.1

3
4 6 8 1’0 1’2 1’4 1’6 18

Eight processors

7.5

8

J

4 6 8 10 12 14 16 18

FIG. 6. Speedups of local stiffness matrix computations for three meshes, on four and eight
processors.

1452 BABUKA, ELMAN, AND MARKLEY

p <_ 12 for k 4 and p _< 10 for k 8. Examination of Fig. 6 shows steeper declines in
speedups at precisely these values of p. The delays are greater for dense condensation,
which we attribute to the additional memory references required for this version. We
suspect that the (less pronounced) drops in speedup for smaller problems are partly
explained by the lesser delays associated with the crossbar switch. In addition, in
general we have no control over how data is distributed between cache memory and
main memory, and it may be that the cache is not used with maximum efficiency even
when all local matrices could fit into it. Thus there may be some additional conges-
tion between the two levels of memory even for smaller problems. Finally, note that
Fig. 6 suggests that speedup is essentially unaffected by the number of elements. This
is substantiated by the following simple analysis. Let c8 denote the cost of processing
a single local stiffness matrix in a serial computation, and assume that the parallel
cost is increased to Cp (1 +)cs, where (which may increase with k) reflects the
delay due to memory contention. Then the speedup on k processors is

n2cs k/(1 +

i.e., it is independent of the number of elements.
Remark 2. The last observation contrasts with our previous statement that

speedups are somewhat lower for very coarse grids, i.e., n 4, especially when p is
also small. (See Tables 4 and 5.) For such small problems, smaller speedups are the
result of scheduling overhead, which is amortized over a relatively small amount of
computation.

Remark 3. The effects of memory conflicts of the type discussed above can also
be diminished by implementing the condensation with BLAS3-type constructs [16],
which are designed to use cache memory efficiently.

The PC(; iteration does not contribute as much to overall cost as the local com-
putations. Nevertheless, consideration of its individual steps still reveals some inter-
esting properties of the particular form of the matrix-vector product (18), as well as
some differences between global and local operations. We^group the iterations into
four subsidiary operations: matrix-vector products w - Sv; preconditioning solves
w +-- Q-iv; and two types of vector operations, inner products a -- vTw, and daxpy’s
w - aVl -t- v2, of which there are three each. Table 9 shows a breakdown of the costs
of these individual operations on a 16 x 16 grid, using one processor, and Table 10
further refines the details of the matrix-vector produ.ct. Here, "arithmetic" refers to
the computation (19) used to perform the matrix-vector product; "index/copy" refers
to the identification of global locations of local vectors and the copying of entries of
global vectors (v in (18)) to local vectors (v); and "synchronize/copy" refers to the
copy from wi to w, plus the execution of the synchronization functions that prevent
simultaneous writes to shared locations of w. "I/O" refers to the cost of copying the
local stiffness matrix from one memory location to another.5

These results indicate that the matrix-vector product dominates the PC(] iter-
ation. This is largely a consequence of floating point operation counts (multiplications

5 This cost is an artifact of the program design, which allows either in-core or out-of-core storage
for local stiffness matrices, but in both cases requires that the local matrix be explicitly read from
some source. This data movement could have been avoided, so that the cost of the matrix-vector is
artificially high. It does not, however, alter our general conclusions. The cost of I/O would be much
higher with out-of-core techniques.

PARALLEL IMPLEMENTATION OF HP-VERSION 1453

TABLE 9
Breakdown of timing costs of local stiffness and PCG computations on one processor, .for a

16 16 grid.

p=4 p=8 p= 16
Matrix-vector product 2.92 8.31 30.19
Precondition 0.23 0.30 0.44
Inner product 0.05 0.13 0.34
Daxpy 0.06 0.17 0.43
Total 3.26 8.91 31.40

TABLE 10
Breakdown of timing costs of matrix-vector product, for a 16 16 grid.

p--4 p--8 p-- 16

Arithmetic 1.86 5.65 21.17
Index/copy 0.63 0.95 1.89
Synchronize/copy 0.30 0.67 1.37
I/O 0.26 1.21 5.45
Total 3.05 8.48 29.88

and additions), which are summarized as follows:

matrix-vector product" 32n2p2,
CG-vector operations" 24n2p,
preconditioning solves" 4n3.

The first line of Table 11 shows the ratios of operation counts for the matrix-vector
products to operation counts for the other two steps, for n 16 and several values
of p; the data reveals the dominance of the matrix-vector product. The second line
of the table shows the analogous ratios of CPU times, where the timing data for
the CG-vector and preconditioning operations comes from Table 9, and the data
for the matrix-vector product is from the "Arithmetic" entry of Table 10. We see
that the results for operation counts agree qualitatively with those for CPU times,
but they do not tell the whole story. For example, in the comparison of matrix-
vector product and CG-vector operations, the ratios for operation counts are smaller
than those for CPU times, indicating that the CG-vector operations are implemented
more efficiently. Other factors that affect performance are vector startups and vector
lengths. Each of the n2 local matrix-vector products requires 4p vector startups,
giving a total of 4n2p startup overhead for the matrix-vector product; this contrasts
with just six vector startups for the CG-vector operations. In addition, we are using
only the lower triangle of the matrix i, so that some of the vectors used in (19)
are smaller than the Alliant’s basic vector length of 32. Hence, although all these
computations are vectorizable, performance for the matrix-vector is somewhat lower
than for the CG-vector operations. The effect of startup overhead will be diminished
on multiple processors, since some startups will be performed in parallel. In the
comparison of matrix-vector and preconditioning steps, we see that for p _> 8, the
cost of the preconditioning (band)-solve is higher than the operation counts predict
(i.e., the ratios of CPU times are smaller than the ratios of operation counts); this
is because its typical vector length is the bandwidth n, or 16 for these data, i.e., less
than 32.

A second general issue, which limits the speedups achieved by the PCG computa-
tions (Table 7), is the need to synchronize the results of local matrix-vector products

1454 BABUKA, ELMAN, AND MARKLEY

TABLE 11
Ratios of costs of PCG operations on a 16 16 grid.

Ratio of operation counts
Ratio of CPU times

Matrix-vector product
vs. CG-vector operations

p -4 p -8 p -16
5.7 10.7 21.3
16.2 16.7 27.7

Matrix-vector product
vs. preconditioning

p --4 p --8 p --16
4.0 32.0 128.0
8.0 18.0 48.0

in forming the global product (18). Consider the following analysis. Let Cp denote the
fully parallel part of the local matrix-vector product, consisting of the "index/copy"
and "arithmetic" and "I/O" steps; here, we are ignoring any memory conflicts that
may exist in these steps. Let c8 denote the serial part, consisting of the "synchro-
nize/copy" steps. The cost of the global matrix-vector product on one processor is
n2(Cp + cs). In a parallel computation, processes often have to wait for access to w,
and the wait can be as long as (k- 1)c. Suppose every local matrix-vector product
waits this long. The cost of the parallel computation is then approximately

n2- (Cp + (k- 1)cs),

so that the speedup is approximately

(20) n-A(Cp + (k- 1)cs) p + (k- 1)csk

Since the matrix-vector product dominates the PCG iteration, we also take (20) as
a measure of the speedup achievable by PCG. Table 12 compares the values of (20)
(where cp and c8 are taken from Table 10) with the actual speedups from Table 7.
The results suggest that (20) is a good indicator of the qualitative behavior of the
PCG iteration. We attribute the fact that the accuracy of the model decreases with
additional processors to added memory conflicts.

TABLE 12
Comparison of speedup model with actual speedups of the PCG iteration, for a 16 16 grid.

Processors
p--4

Model Actual
3.35 2.84
4.32 3.53
5.06 3.95

p 8

Model Actual
3.45 3.26
4.56 4.26
5.43 5.01

p--16

Model Actual
3.66 3.’51
5.07 4.54
6.27 5.34

Remark 4. Although this model is pessimistic in the sense that (k- 1)cs may be
a long waiting time, we have observed empirically that processors do not reach the
synchronization step in a fixed order, so that there are large delays for many local
computations. It is also possible to decrease synchronization overhead using better
bookkeeping techniques to identify specific locations of w that are available.

4.4. Comments on performance. Finally, we discuss the performance, in
terms of floating point operations, of parts of the code that are both vectorized and im-
plemented in parallel. Consider the condensation of the local stiffness matrices, which
entail Cholesky factorization and computation of the Schur complement. To simplify
operation counts, in the experiments considered here we used the dense version of

PARALLEL IMPLEMENTATION OF HP-VERSION 1455

condensation, as described in the discussion of Fig. 6. For the (p) discretization,
the floating point operation (multiplications and additions) counts are:

Factor Ai LiLTi 1/2(p- 1)6 -b (p- 1)4 -(p- 1)2

Compute/}i n-1Si" 4(p 1)2 ((p 1)2 / 1)p

Compute i Ci -/}T/i" 4p(4p + 1)(p- 1)2.

CPU times on one processor, for n 16 and p 8 and 16, are 28.4 and 874.5 seconds,
respectively, giving performances in millions of floating point operations per second
(Mflops) of 1.55 for p 8 and 2.35 for p 16. Based on the speedups for the local
computations from Fig. 6 (6.75 for p 8 and 5.36 for p 16), this gives performance
estimates on eight processors of 10.5 and 12.6 Mflops, respectively. Similar results
were also obtained for the matrix-vector product (18)-(19), with a maximum rate of
three Mflops on one processor (for local matrices of order approximately 500).

By way of contrast, the LINPACK benchmark (for dense elimination with dense
matrices of order 100) on a single processor of an Alliant FX/4 is 2.1 Mflops [15],
and on eight processors, the BLAS2 kernels with arguments in main memory achieve
18-20 Mflops [24, p. 81]. Hence our performance on vectorized code is at best compa-
rable to that of the BLAS2 kernels. Note that this is lower than performance achieved
for a variety of matrix operations reported, e.g., in [24], where BLAS3-type blocking
strategies lead to performance of upwards of 30 Mflops. There are several reasons for
this. First, despite the fact that (17) and (19) are designed to avoid unnecessary stores
of the accumulating products m:p, and w, examination of the generated assembler
code reveals that the actual computations are not performed efficiently. For example,
in principle, the outer loop of (17) requires a daxpy with one argument (columns of
M) taken from memory, but no loads or stores to memory; the actual code performs
one store, one load, and a daxpy with one argument in memory. Thus there are three
times as many memory references as are necessary, leading to a degradation of perfor-
mance on the order of 50 percent. Second, we have little control over management of
the cache memory; we suspect that because there are many local matrices being pro-
cessed, they are likely to be located in main memory rather than cache memory. The
good performances exhibited in [24] were achieved using hand-coded assembler [23].
We believe that better performance of the techniques under consideration here can be
obtained using more sophisticated coding techniques. However, since these tasks do
not have the dominant cost of the overall computation, further tuning will not affect
our conclusions, and we have not pursued this issue. For more complex problems, e.g.,
where local stiffness matrices are constructed by (vectorized) quadrature, it would be
imperative to implement the quadratures efficiently.

5. Conclusions. In this paper, we have examined the computational costs of an
implementation of the hp-version of the finite element method on the Alliant FX/8,
a shared-memory parallel computer. Our main conclusions are as follows:

1. Costs are dominated by the local computations, i.e., construction of local
stiffness matrices and condensation of these matrices for elimination of internal un-
knowns.

2. Global operations, particularly the preconditioning associated with nodal un-
knowns, contribute a relatively small amount to overall cost.

3. Communication and synchronization costs associated with the use of unassem-
bled local stiffness matrices for CG iteration do not greatly degrade performance, and
their effects are understood.

1456 BABUKA, ELMAN, AND MARKLEY

4. The likelihood of memory conflicts places limitations on the sizes and number
of local problems that can be handled efficiently. We expect this problem to be
ameliorated through the use of more sophisticated coding techniques such as those
available in the BLAS3 [16] or LAPACK [2] libraries, but we do not expect it to
disappear entirely.
Thus the "natural parallelism" associated with the decomposition of problems by
elements can be exploited in a straightforward manner to get good speedups, provided
the size or number of local problems are not too large. These conclusions apply to
a particular type of architecture, a shared-memory machine with a relatively small
number of processors. We expect similar results to apply to other machines in this
class, e.g., the CRAY-2.

We now discuss how we expect our observations to carry over to other classes of
problems and computers.

1. Different problem coefficients or domain topologies. As long as the element
grid is topologically rectangular, the general methodology described here should be
applicable. As shown in 3, if the coefficients of (1) are more complex, or if the domain
is less regular, then the fully local computations are more expensive, and we expect
these costs to be more dominant. For highly anisotropic problems (e.g., large a/b)
or discretizations with very flat rectangular elements, there may be an increase in
PCG iteration counts, but we suspect this will not offset the dominance of the local
computations.

2. Use of the h-version. If the h-version is used for discretization, then the
analogue of the solution method presented here is domain decomposition, with local
super-elements consisting, e.g., of p2 elements. In this case, for PCG iterations to
display convergence rates independent of problem size, it is necessary to perform
some type of modification of the super-element side and internal shape functions [3],
[6], [11]. We expect conclusions similar to those above to hold for such methodologies.
An alternative for achieving fast convergence is to use standard shape functions, but
to apply a relatively fine nodal preconditioner [27]. For such a strategy, a larger
percentage of computational effort is devoted to the sparse matrix factorization and
solves associated with preconditioning than we have observed.

3. Adaptive methods. In contrast to the methodology considered here, where all
operators were computed "from scratch," the hp-method is often implemented in a
hierarchical manner, where higher-order elements are used to supplement previously
computed low-order operators. In this case, the local computations will be somewhat
less dominant. Many issues along these lines, such as load balancing if different order
basis functions are used in different elements, as well as mesh refinement strategies,
remain open.

4. Shared-memory computers with more processors. Increasing the number of
processors decreases the costs of the local stiffness matrix computations more than
those of the other computations. For example, for all of the problems of Table 7, we
estimate that increasing the number of processors by as much as a factor of four (to
32) will decrease the local costs significantly, but the effect on the costs of PCG will
be small. In such a scenario, for p >_ 8 local costs will still dominate. In light of the
fact that our local costs are artificially low, we expect our conclusions to apply for
shared-memory machines with on the order of 50 processors. However, for this to be
borne out, it will be necessary for the local matrix computations to be implemented
so that memory conflicts do not limit efficiency.

PARALLEL IMPLEMENTATION OF HP-VERSION 1457

5. Local-memory computers. We do not attempt to make a precise statement
about this class of architectures, but to outline some of the issues. The memory con-
flicts associated with local matrix computations on shared-memory computers should
not be a factor on local-memory machines, so that we expect the local computations
to be more efficient on the latter class of architectures. The matrix-vector products
entail exchanges of data corresponding to super-element boundaries, but we expect
the effect of this overhead to be similar to that of the synchronization required by
the shared-memory implementation. It is necessary to implement the global precon-
ditioner and other CG operations efficiently.

Appendix. We outline the properties of the shape functions that give rise to
sparse local stiffness matrices for constant coefficient problems. Consider the repre-
sentation

(z,z) (z,s)

(21) Si (8,2") (S, ,S’)(S, N’)

where each entry represents a block matrix containing all terms (5) in which the shape
functions come from the indicated set. Thus, for example, the block (,,/7) contains all
terms in which u E and v E/7. (In (6), Ai corresponds to (/7,/7).) From properties
of the Legendre polynomials, it can be shown that the following relations hold:

(22)

In (Z, Z)" Ba (q)) i(z),=lm) #0 iff

In (8, Z):

In (Af, 8)
In (Af, Af)

Ba, ((I)(f’k), (I)s’’)) - 0

Ba,((v,), (v,)) O.

(j=lorj=l:k2) andk=m; or

(k m or k m :t: 2) and j 1.

iff j=mand(l=2orl=3).

iff j and (m-- 2 or m-- 3).

iff l-m is even and (j k

or j-k+2).

iff j 2 or j =3.

Relations in (/7, 8), (/7,Af), and (S, Af) are determined from symmetry.
As an example of how (22) is established, consider the entries of (/77,/7). Let

(f g) =_ fl f()g(()d. The Legendre polynomials satisfy [14]

[1/(2j+l) ifj=k,
(23) (Pj,

0 ifj # k;

1
(24) PJ()

2j + 1 (P+I()- P-I(())

1458 BABUKA, ELMAN, AND MARKLEY

() p(-) (-).

From (3) and (13)-(15), we have

(26)

Consequently, (3), (24), and (25)imply that

1
(Pi()- Pi-2()),()

(- 1)

so that

(27) (j,)

[(P, p) + (P_, P-:)] / [(ej)]

-(Pj, Pj) /[2V/(2) 1)(2j -t- 3)]

-(Pj-2, Pj-2) /[2V/(2j 1)(2j 5)]

0

ifj l,

ifj =l- 2,

if j=l+2,

otherwise.

Moreover,

I()= ’,, p_(),

so that

(28) (, m)
[(2k 1)/2] (Pk-1, Pk-1) if k m,

(0 otherwise.

Thus the first term of (26) is nonzero if and only if j or j +/- 2 and k m; the
second term is handled in an identical way.

Acknowledgment. We thank Kyle Gallivan for several helpful discussions.

REFERENCES

[1] ALLIANT COMPUTER SYSTEMS CORPORATION, Littleton, MA, FX/FORTRAN Programmer’s
Handbook, March 1987.

[2] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. J. DONGARRA, J. Du CROZ, A. GREEN-
BAUM, S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK: A portable linear
algebra library for high-performance computers, Tech. Report CS-90-105, Computer Sci-
ence Department, University of Tennessee, Knoxville, TN, 1990.

[3] I. BABUKA, A. CRAIG, J. MANDEL, AND J. PITKXRANTA, EJficient preconditionings for the
p-version finite element method in two dimensions, SIAM J. Numer. Anal., 28 (1991), pp.
624-661.

[4] I. BABUKA AND H. C. ELMAN, Some aspects of parallel implementation of the finite element
method on message passing architectures, J. Comp. Appl. Math., 27 (1989), pp. 157-187.

[5] , Performance of the hp-version of the finite element method with various elements, Tech.
Report, University of Maryland Institute for Physical Science and Technology, College
Park, MD, 1991.

[6] I. BABUZA, M. GRIEBEL, AND J. PITK)RANTA, The problem of selecting the shape functions
for a p-type finite element, Internat. J. Numer. Methods Engrg., 28 (1989), pp. 1891-1908.

PARALLEL IMPLEMENTATION OF HP-VERSION 1459

[7] I. BABUKA AND M. SURI, The p- and h-p versions of the finite element method, an overview,
Comput. Methods Appl. Mech. Engrg., 80 (1990), pp. 5-26.

[8] P. E. BJORSTAD AND O. S. WIDLUND, Iterative methods for the solution of elliptic problems
on regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), pp. 1097-1120.

[9] J. n. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction of preconditioners for
elliptic problems by substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[10] , The construction of preconditioners for elliptic problems by substructuring, II, Math.
Comp., 49 (1987), pp. 1-16.

[11] , The construction of preconditioners for elliptic problems by substructuring, III, Math.
Comp., 51 (1988), pp. 415-430.

[12] , The construction of preconditioners for elliptic problems by substructuring, IV, Math.
Comp., 53 (1989), pp. 1-24.

[13] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amster-
dam, 1978.

[14] S. D. CONTE AND C. DE BOOR, Elementary Numerical Analysis, An Algorithmic Approach,
McGraw-Hill, New York, 1980.

[15] J. J. DONGARRA, Performance of various computers using standard linear equations software,
Tech. Report CS-89-85, Computer Science Department, University of Tennessee, Knoxville,
TN, 1989.

[16] J. J. DONGAIRA, J. Du CPOZ, I. DUFF, AND S. HAMMARLING, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1-17.

[17] J. J. DONGARRA, J. Du CROZ, S. HAMMARLING, AND R. J. HANSON, An extended set of
FORTRAN basic linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp.
1-17.

[18] J. J. DONGARRA AND I. S. DUFF, Advanced Architecture Computers, Tech. Report 57, Math-
ematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 1989
(Revision 2).

[19] J. J. DONGARRA, F. G. GUSTAVSON, AND A. KARP, Implementing linear algebra algorithms
for dense matrices on a vector pipeline machine, SIAM Rev., 26 (1984), pp. 91-112.

[20] J. J. DONC:ARRA, D. C. SORENSEN, g. CONNOLLY, AND J. PATTERSON, Programming method-
ology and performance issues for advanced computer architectures, Parallel Comput., 8
(9SS), .

[21] M. DRYJA, A method of domain decomposition for three-dimensional finite element elliptic
problems, in Domain Decomposition Methods for Partial Differential Equations, R. Glowin-
ski, G. H. Golub, G. A. Meurant, and J. Periaux, eds., Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1988, pp. 43-61.

[22] M. D. DRYJA AND 0. B. WIDLUND, Some domain decomposition algorithms for elliptic prob-
lems, in Iterative Methods for Large Linear Systems, D. R. Kincaid and L. J. Hayes, eds.,
Academic Press, San Diego, CA, 1990, pp. 273-291.

[23] K. A. (ALLIVAN, Personal communication, 1990.
[24] K. A. (ALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH, Parallel algorithms for dense linear

algebra computations, SIAM Rev., 32 (1990), pp. 54-135.
[25] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, The Johns Hop-

kins University Press, Baltimore, MD, 1989.
[26] W. D. GROPP AND D. E. KEYES, A comparison of domain decomposition techniques for el-

liptic partial differential equations and their parallel implementation, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. 166-202.

[27] , Parallel performance of domain-decomposed preconditioned Krylov methods for PDEs
with adaptive refinement, Tech. Report RR-773, Computer Science Department, Yale Uni-
versity, New Haven, CT, 1990.

[28] A. T. PATERA, Advances and future directions of research on spectral methods, in Computa-
tional Mechanics: Advances and Trends, A. K. Noor, ed., AMD-Vol. 75, American Society
of Mechanical Engineers, New York, 1987, pp. 411-427.

[29] P. STENSTRSM, Reducing contention in shared-memory multiprocessors, IEEE Comput., 21
(1988), pp. 26-37.

[30] A. WEISER, S. C. ESENSTAT, AND M. H. SCHULTZ, On solving elliptic equations to moderate
accuracy, SIAM J. Numer. Anal., 17 (1980), pp. 908-929.

[31] O. B. WIDLUND, Iterative substructuring methods; algorithms and theory .for problems in the
plane, in Domain Decomposition Methods for Partial Differential Equations, R. Glowinski,
G. H. Golub, G. A. Meurant, and J. Periaux, eds., Society for Industrial and Applied
Mathematics, Philadelphia, 1988, pp. 113-128.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1460-1469, November 1992

() 1992 Society for Industrial and Applied Mathematics
011

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD
MACHINES

J. E. DENDY, JR.t, M. P. IDA’:, AND J. M. RUTLEDGE

Abstract. A semicoarsening multigrid algorithm suitable for use on single instruction multi-
ple data (SIMD) architectures has been implemented on the CM-2. The method performs well for
strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude
across internal interfaces. The parallel efficiency of this method is analyzed, and its actual perfor-
mance is compared with its performance on some other machines, both parallel and nonparallel.

Key words, multigrid, parallel computing

AMS(MOS) subject classifications. 65N20, 65W05

1. Introduction. Some previous papers have examined multigrid methods for
their suitability for calculation on machines with SIMD architectures. Frederickson
and McBryan [FM] developed and analyzed a method that was designed to keep all
the processors busy. Decker analyzed [D1] the performance on SIMD machines of
more traditional multigrid methods. Both of these papers were restricted to Poisson’s
equation with periodic boundary conditions; neither paper attempted to address the
sort of problem we are interested in, namely,

(1.1) V. (D(x, y)VU(x, y)) + a(x, y)U(x, y) F(x, y)

in a bounded region fl of R2, where D (D1, D2), D is positive, 1, 2, and Di, o’,
and F are allowed to be discontinuous across internal boundaries F of ; moreover,
D1 >> D2 and D << D2 in different subregions of fl is possible.

Another method was advocated by Hackbusch [HI and was shown to be robust
for constant coefficient, periodic, anisotropic problems. It can be argued that this
method, or at least its precursor, may be found in IT]. We refer to this method as
the Brandt-Hackbusch-Ta’assan method, if only to arrive at the acronym BHT. The
BHT method, like the Frederickson-McBryan algorithm, preserves the busyness of
the processors, and has the added advantage of only needing point relaxation for
anisotropic problems. However, as shown in 4, the BHT method, as described by
Hackbusch, does not handle problems like (1.1), and it is unclear how to give the
method this capability.

Both the Frederickson-McBryan and BHT methods have the presumed advantage
of keeping all the processors busy. However, idleness of processors is unimportant;
what is important is the convergence factor per machine cycle. If keeping all the
processors busy led to a significantly smaller convergence factor, then the busyness
of processors would indeed be important. Also, busyness of processors may be an
important issue only on grids with less than one point per processor (virtual processor
ratio (VP ratio) less than 1). When the VP ratio is greater than 1, the CM-2 makes
use of virtual processors. In effect, serial do loops (VP loops) are created on each

Received by the editors March 25, 1991; accepted for publication (in revised form) October 25,
1991. The work of the first two authors was performed under the auspices of the U.S. Department of
Energy under contract W-7405-ENG-36 and was partially supported by the Center for Research on
Parallel Computation through National Science Foundation Cooperative Agreement CCR-8809615.

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.
California Institute of Technology, Pasadena, California 91125.
Chevron Oil Field Research Company, P. O. Box 446, La Habra, California 90631.

1460

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1461

processor. Thus, when the VP ratio is greater than 1, "busy processor" methods
actually incur a substantial computational penalty. Since moderate-size problems
easily exceed VP ratios of 1 on today’s machines, "busy processor" methods would
seem to be, at best, methods for the future.

What about the more traditional methods of dealing with (1.1)? The first multi-
grid method to handle such problems successfully was given in [ABDP] and expanded
in [D2]; it used standard coarsening (discussed below), interpolation induced by the
operator, Galerkin coarsening, and alternating red-black line relaxation. An alterna-
tive was first discussed in [DMRRS] for three-dimensional problems. (However, we
must point out that the robustness of line relaxation coupled with semicoarsening
for constant coefficient anisotropic problems was first reported in [W].) The method
discussed in this paper is the two-dimensional analogue of the method in [DMRRS]; it
uses semicoarsening in y, interpolation induced by the operator, Galerkin coarsening,
and red-black line relaxation by lines in x. Additionally, the method in this paper uses
a technique due to Schaffer IS]; without this technique, the semicoarsening method
would not be competitive. The method discussed in this paper is largely the same as
the method given in [SW]. This fact should not be too surprising, since both papers
had their genesis in a code written by Dendy.

One potential liability of the method considered in this paper is the necessity to
perform line relaxation. The BHT method, were it robust, would avoid this difficulty.
The suggestion was made in [B] that anisotropies could be avoided by the use of local
grid refinement, under the assumption that physical problems are isotropic and that
anisotropies arise from nonuniform gridding. One way to avoid nonuniform gridding
is to use local grid refinement. In [D3], it was shown how to generalize [D2] to the case
of local grid refinement. However, many person-years have been invested in codes that
do not use local grid refinement, and all these codes would have to be rewritten to
use this approach. Moreover, it is not clear how local grid refinement algorithms will
perform on SIMD machines. Finally, there are important physical problems which
are strongly anisotropic; an example is petroleum reservoir engineering ILl. For these
problems, local grid refinement, although it may be desirable for other reasons, does
not lead to isotropic problems on the local grids. Thus it appears that the issue of
anisotropic problems must be directly attacked, not avoided.

Yet another method, due to Mulder [M], seems to have possibilities. The idea is
that each grid has two offspring, one obtained by semicoarsening in x, the other by
semicoarsening in y. When two offspring are of the same size in x and y, they are
declared to be the same offspring. This method is discussed further in 2.

2. Standard versus semicoarsening. In [ABDP] and [D2] standard coarsen-
ing was used; that is, given a Cartesian grid, the coarser grid is obtained by deleting
the even x- and y-lines. In this paper semicoarsening is used; that is, the coarser grid
is obtained by deleting the even y-lines. To handle general anisotropic situations with
standard coarsening seems to require alternating line relaxation, whereas with semi-
coarsening only, line relaxation by lines in x is required. (We note that there are some
situations in both cases that cannot be handled by these choices of relaxation [ABDP],
but for our purposes, these cases are pathological.) What is the sequential relaxation
work for the two methods? Given an nx ny grid, the relaxation work for semicoars-
ening is of the order of 2(nx)(ny)(1 + 1/4 +...) (8/3)(nx)(ny). For semicoarsening,
the relaxation work is of the order of (nx)(ny)(1 / 1/2 +-..) 2(nx)(ny).

To do this same counting argument for a SIMD architecture requires a short
discussion of the assumptions. We first consider the case where the VP ratio is less

1462 J.E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

than or equal to 1. In the simplest model for the CM-2, it is important that the
arrays be "compatible," that is, of the same size; otherwise, great inefficiencies in
communication result. Thus, given a fine grid and a coarser grid, it is assumed that
the data for each grid are stored in compatible arrays. Thus every other row of
the coarse grid matrix contains no useful information. Moreover, on a relaxation
sweep, a mask is employed which makes the processors for these rows idle. The
assumption, therefore, is that for every grid, the amount of work required to solve the
collection of tridiagonal systems on that grid depends only on the number of x- or y-
points on the finest grid. Thus the relaxation work in the standard coarsening case is
2W(nx) log2 ny, and the relaxation work in the semicoarsening case is W(nx) log2 ny,
where W(nx) is the work to solve an nx ny tridiagonal system. (There are log2 ny
grids, and on each grid the relaxation work is 2W(nx) or W(nx), respectively.) If
sparse Gaussian elimination (a.k.a. the Thomas algorithm) is used, W(nx) O(nx).
If straightforward cyclic reduction is used, W(nx) O(log2 ux).

The above argument is correct for the tridiagonal solver currently implemented
in CMSSL (CM Scientific Subroutine Library). However, we can write a tridiagonal
solver that yields the following relaxation work estimate for the standard coarsening

nx
2 (log2 nx + log2 - + ")

case:

2(log2 nx + (log2 nx- 1)/...)

2 log nx log n (log n 1)(log n_
log2 nx log2 ny.

The point is that when we know that, for example, every other processor is idle, the
cyclic reduction algorithm can be started further along, eliminating every fourth point
instead of every second point. For a VP ratio less than 1, however, communication
dominates computation, so it is unlikely that this improved algorithm will be twice
as fast as using the CMSSL tridiagonal solver, particularly since the latter is written
in carefully optimized assembly language.

When the VP ratio is greater than 1, a hybrid algorithm [J] becomes the algorithm
of choice for solving the tridiagonal systems; this algorithm performs the traditional
Thomas algorithm sequentially on the serial loop part of the/-index on each physical
processor and uses cyclic reduction to solve between physical processors; it is in fact
implemented in the tridiagonal solver in CMSSL. This algorithm is also used in [SW].
It is ironic that the same algorithm is the efficient one for these different architectures
(SIMD and MIMD (multiple instruction, multiple data)); however, the algorithm used
in [SW] is actually a SPMD (single program, multiple data) algorithm.

When the VP ratio is much greater than 1, the serial work on each processor
dominates, and the work estimate for relaxation reverts to the serial case. In any
case, the semicoarsening algorithm appears to be more efficient for all VP ratios than
the standard coarsening algorithm. The semicoarsening algorithm is also conceptually
simpler, particularly in three dimensions, when the alternative to coarsening in z and
performing xy-plane relaxations (using multigrid) [DMRRS] is standard coarsening,
performing alternating plane relaxation [D5]. Bandy and Brickner [Be], however,
are investigating the standard coarsening approach on the CM-2; hence, we should
eventually be able to compare directly the two approaches.

We briefly discuss how the interpolation operators are derived, even though the
description in [SW] is excellent. Let us denote the interpolation operator from the

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1463

coarse grid Gk-i to the fine grid Gk by I_i. (The coarse grid operator Lk-i is given
by Galerkin coarsening from the fine grid operator Lk by forming (I_i)*Lk(I_i).
We are interested in five-point or nine-point discretizations of (1.1); hence, we want
the coarse grid operators also to be five- or nine-point operators.) In [ABDP], [D1],
and [D3], Ikk_i was described as, follows: At coarse grid points coinciding with fine
grid points, Ikk_i is just the identity. At a fine grid point lying vertically between two
coarse grid points, let the template of the operator be given by

NW N NE

W C E

SW S SE

Then I_ at vi,j is given by avi,:i_l + bvi,:i+i where

a= -(SW + S + SE)/(W +C + E) and b= -(NW + N + NE)/(W +C + E).

That is, we think of summing away the x-dependence to obtain a three-point relation.
A problem with this approach, when using standard coarsening, is that if p C-
NW-N-NE-W-E-SW- S- SE is small, then instead of using W+C+E in
(2.1), we should use SW + S + SE + NW / N + NE instead; this point is discussed
in [D3]. With standard coarsening, results are relatively insensitive to switching
between formulas based on the size of p; however, for semicoarsening this is not
the case. With standard coarsening, interpolation is also being performed in the x-
direction; hence, there is a possibility of coefficient variations being averaged out in
that direction. In the semicoarsening case, some mechanism for averaging in the x-
direction is apparently needed. Schaffer IS] also came to this conclusion and discovered
the following scheme: Let

A-v- + Av + A+v+ 0

be the equation that would give the row v (vi,j, i 1,..., nx) in terms of the rows
v- (vi,j_, i 1,..., nx) and v+ (vi,j+, i 1,..., nx). Then

v -(A)-(A-v- + A+v+).

Unfortunately, use of (2.2) would lead to a nonsparse interpolation, leading to non-
sparse coarse grid operators. Schaffer’s idea is to assume that

-(A)-A and (-A)-iA+

can each be approximated by diagonal matrices in the sense that B- and B+ are
diagonal matrices such that

-(A)-lA-e B-e and (-A)-lA+e B+e,

where e is the vector (1,..., 1). To find B- and B+ requires just two tridiagonal
solves. The interpolation formula using B- and B+ is

v B-v- + B+v+.
At first blush it would appear that the SIMD relaxation work of Mulder’s algo-

rithm [M] is comparable to the SIMD relaxation work of our method, since the number

1464 J.E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

of grids in Mulder’s method, if nx ny, is approximately (log2 ny)2. In [NR], how-
ever, Van Rosendale and Naik (to be identified with the author of [D1]) show that
the subgrids in the Mulder method can be organized so that relaxation on all grids
simultaneously (concurrent relaxation) can be done efficiently. This approach leads to
a degradation in convergence factor as well as processor-to-processor communication
between grids for interpolation and residual weighting. In two dimensions [NR], the
grids can be packed in such a way that communication between grids is efficient, but
then the efficiency of relaxation suffers. Nevertheless, implementation of the Mulder
method on the CM-2 is planned, as is a comparison with the method of this paper.

3. Implementation. Implementation issues are complicated by the fact that
we are aiming at a moving target. The first version of this paper was written when
the compiler on the CM-2 was the bit-serial version. Subsequently, this version was
replaced by the slicewise compiler. For some time there will continue to be improve-
ments in the compiler, operating system, and CMSSL. Rather than delay publication
of this paper indefinitely, we have chosen to report the current status, and to try to
guess what the effects of future developments will be.

In the first version of this paper we discussed the inefficiencies present in the large
VP ratio case when compatible arrays for intergrid communication are assumed. Let
us denote the/-index as the tridiagonal solver direction and the j-index as the multi-
grid coarsening direction. If the j-index is declared parallel, then the code compiles
so that the VP loop on a physical processor always remains the same size, regardless
of the coarse grid size. Thus, if the j-index is declared such that the VP loop size
is 64, it remains so, instead of decreasing to 32, 16, etc., thus reflecting the inactive
j-direction grid elements on coarser grids. One way to avoid this difficulty is to code
the VP loop by splitting the j-index into parallel and serial parts; this kind of split-
ting was done for the CM-2 implementation (by Gyan Bhanot of Thinking Machines)
of Jameson’s FLOW 67 code, a timestepping multigrid code. In the first version of
this paper, this splitting was done for the relaxation routine only, since the coding for
this splitting is extremely cumbersome. Moreover, this splitting does not solve the
problem of wasted storage.

A better solution than splitting the j-index into parallel and serial parts is to have
arrays that are not compatible on fine and coarser grids, and to use temporary arrays
to achieve compatibility. For definiteness, assume that a fine grid array A is nx x ny,
and that a coarser grid array B is nx x -. If it is desired that A communicate with
B, every other row of A needs to be placed in a temporary nx x array C. This is an
intraprocessor move of data and can be accomplished efficiently with a routine written
by Brickner. This solution has two difficulties associated with it. The first is that it
creates a ragged array data structure not supported by FORTRAN 8X. (A and B in
the example are really D(k,...) and D(k- 1,...).) This difficulty has been cured by a
routine written in C which does dynamic storage allocation. With each array D(k,...)
is associated an array descriptor that contains the information on the dimensions of
D(k,...). Thus the FORTRAN 8X compiler can be fooled into emcepting a ragged
array data structure. The second difficulty is that the current compiler aggressively
monitors array layouts to assure that arrays are evenly distributed on processors. In
many applications, this aggressiveness is a good strategy; however, in this application,
because the semicoarsening leads to rectangular (as opposed to square) arrays, it can
lead to reallocation to different processors of points which need to communicate and
which should be on the same processor. We attempted to bypass this reallocation
by writing routines which essentially informed the compiler to leave our arrays alone.

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1465

Unfortunately, the compiler still intervened when creating temporary arrays, yielding
not only inefficiencies but also wrong answers. Our current remedy has been to
code at a lower level than FORTRAN 8X; this remedy solves the problem of the
compiler trying to take control of the layout, but does not generate as efficient code
per processor as the compiler is capable of generating.

One important aspect of this work has been to identify this compiler shortcoming.
(We must temper these whinings with the observation that the slicewise compiler was
created in an incredibly short time.) Ours has not been the only application in
which it is desirable for the programmer to take away control of the layouts from
the compiler, and indeed, new versions of the compiler have been promised which
will provide this capability. In the standard coarsening case, however, we may not
need this new compiler capability; in this case, the compiler’s choice of layout may
be acceptable.

A final comment for the large VP ratio case is that line relaxation performs with
nearly the same efficiency as point relaxation, since most of the work is serial work
done on each processor. For large problems, the work performed on the grids with the
VP ratio less than or equal to 1 is a small part of the overall calculation. Related to
this issue is the question of when the coarse grids calculation should be done on the
front-end machine. For a powerful front-end machine, the coarse grids may have to
be fairly fine before it even pays to invoke the CM-2’s power. This issue is addressed
further in 4.

There are at least two versions of the Thomas algorithm. One computes the
LU-decomposition on the tridiagonal matrix as it is needed. Other versions save
the LU-decomposition (one such version was exploited in [ABDP] to avoid expensive
divides on the CDC-7600). There is an analogous situation with respect to cyclic
reduction. In the first version of this paper, we found that a version that saves the
LU-decomposition ran two times faster on the CM-2 than a version that recomputes
the LU-decomposition. However, for cyclic reduction, the LU-decomposition must
be stored at each level of the parallel reduction. The result, for the/-index, is that
the requirement for storage is proportional to nx(log2 nx), where nx is the number
of/-grid points. However, for the hybrid version [J], the storage requirement of the
LU-decomposition is just proportional to nx, assuming that we do not save the two-
cyclic LU-decomposition needed for the processor boundary grid points. (For high VP
ratios, this assumption is reasonable since the cyclic reduction part of the tridiagonal
solves is a small fraction of the overall computational time.)

4. Results. Many authors present gigaflop rates as a figure of merit while others
report on speedup (of many processors compared to a single processor). While both
these measures are useful in comparing the improved running speed of a specific
algorithm, they can be misleading in determining the most efficient algorithm to
solve a given problem. Point Jacobi, for example, applied to solve a discretization of
(1.1), has an impressive gigaflop rate and speedup factor; however, it cannot compete
with the multigrid algorithm of this paper since its convergence factor is abysmally
near 1 for large problems while the multigrid convergence factor stays nicely bounded
away from 1. Hence what we concentrate on in this paper is actual timing data. The
convergence factors for various problems for the multigrid algorithm are reported in
detail in [SW] and need not be repeated here. Finally, it is impossible to give speedup
data for a CM-2 since it is impossible to access just one processor; we do, however,
compare performance of one-quarter of a 2048-processor machine with one-quarter of
a 1024-processor machine.

1466 J.E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

We present timing comparisons of several machines in Table 1. The timing results
are given as seconds per V-cycle and were obtained by running five V-cycles (including
setup time) and dividing by 5. Thus the timing results are independent of the difficulty
of the problem run. All of the CM-2 timings reported in this section were done using
one-quarter of a 2048-Weitek-processor machine or one-quarter of a 1024-Weitek-
processor machine. (These timings may be used to address, at least partially, the
issues of speedup and scalability.) The front end for the CM-2 was a Sun 4/90. The
iPSC/2 machine had 64 nodes of 386-type processors; several configurations of these
processors were considered for each problem size; here we have reported the timings
only for the best [SW].

TABLE 1
Time per V-cycle on three machines.

Size of
problem

iPSC/2 CRAY Y-MP CM-2, one-quarter CM-2, one-quarter
of 1024 processors of 2048 processors

32 x 32 0.3 0.01
64 x 64 0.7 0.04 0.65 0.77
128 x 128 2.0 0.09 0.99 0.80
256 x 256 0.27 1.84 1.79
512 x 512 0.95 4.55 3.04
1024 x 1024 3.69 +- 8.11
2048 x 2048 W-l- 25.39
-bq- too large

no information

The timing results on the CRAY Y-MP were obtained in a time-sharing envi-
ronment; with a dedicated Y-MP, we could have easily run problems larger than
2048 x 2048; however, if we had used all of a 2048-Weitek processor CM-2 we could
have also run problems larger than 4096 x 4096. The results on the Y-MP show that
great gains are easily made from vectorization for the smaller problems, but for the
larger problems, the asymptote of time being linearly proportional to problem size
has nearly been reached. The code used on the CRAY Y-MP uses only standard
FORTRAN and is run only in single-processor mode. Presumably, speedups could be
obtained using the multiprocessor capability of the Y-MP, but this is not considered
here. The 512 x 512 and 1024 x 1024 cases were too large for the current loader and
used a memory manager, to some obvious disadvantage in performance.

In the first version of this paper, we compared two versions of the hybrid tridi-
agonal solver: a version which recomputes the LU factorization on each call and a
version which saves the LU factorization; the latter was about two times faster than
the former. The figures in Table 1 use the CMSSL tridiagonal solve routine. This
routine, which recomputes the LU factorization on each call, is as fast as the faster
of our two versions since it is written in carefully optimized assembly language. If a
factor-of-two speedup can be expected from the CMSSL tridiagonal solver which saves
LU factorizations (not yet available), then we can expect to see nearly a factor-of-two
decrease in the timings in Table 1 for the CM-2.

We report in Table 2 the effect of changing the size of the coarsest grid direct
solve. The direct solve is done with a band solver on the front end with the LU-
decomposition of that matrix being precomputed once. The problem in Table 2 has
256 x 256 grid points. (The timings in Table 2 use an earlier version of our code and
should therefore only be considered in relation to each other and not to the timings in
Table 1.) Note that there is a minimum for both the case of saving and not saving the
cyclic reduction LU-decomposition. The reason for this is that on the coarser grids,

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1467

so few Weitek processors are active that the front end (which is considerably faster
than one Weitek processor) is more efficient, even when the time to transfer the data
from the CM-2 to the front end is taken into account.

TABLE 2
Time per V-cycle varying coarsest grid size.

Size of Number of Recompute LU
coarsest grid grid levels

Save LU

256 x 1 9 8.57 3.22
256 x 4 7 6.53 2.66
256 x 8 6 5.87 2.69
256 x 16 5 5.98 3.50
256 x 32 4 8.41 6.62

One other possibility for gaining efficiency from this algorithm is to make use
of the multiwire (multiple NEWS communication) library written by R. Brickner
and documented in [CM]. The routines in this library allow one to do simultaneous
communication and computation in each index of an array. We have investigated the
use of this library in a preliminary way, but have postponed further work until the
other issues above have been satisfactorily resolved.

Let us now consider the BHT method; first, for the problem

-AU+U=I in(0,1)(0,1),

U doubly periodic.

On a 16 16 grid we compare the result of using the method of [D4] (standard
coarsening, operator-induced interpolation, Galerkin coarsening, and red-black point
relaxation) to the method of [HI. (We use the method in [D4] because we have not yet
extended the method in this paper to handle periodic boundary conditions.) Both
methods achieve an average convergence factor, over ten V-cycles, of 0.05 per V-cycle.

Now let us consider the problem

f -V.(DVU)+U=F on(0,16)(0,16),
(4.1) t U doubly periodic,

where D and F are as shown in Fig. 1. Using a 16 16 grid, we again compare [D4]
to [HI; the average convergence factor per V-cycle is 0.06 vs 0.54, respectively. If we
modify the method in [HI to attempt to use the same operator-induced interpolation
used in [D4], we obtain an average convergence factor of 0.09 instead. The problem
is that within the context of the method in [HI, it is no longer clear what operator-
induced interpolation should be.

Finally, let us comment that we believe that some multigrid method is likely to
be the fastest algorithm for solving problems like (1.1) on SIMD machines. We intend
to substantiate this belief by timing the algorithm of this paper against some possible
competitors, such as preconditioned conjugate gradient methods. In this comparison,
the convergence factor per unit time must be considered for various problems, since
clearly conjugate gradient with no conditioning will win against multigrid on SIMD
machines for well-conditioned elliptic problems. In one sense the contest is over be-
fore it starts, since we already have an example in which a preconditioned conjugate
gradient method stagnates badly, but for which the method of this paper is robust.

1468 J.E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

F--I. F--I,
D--I D--I.

/
O. o. 7. 9. 16.

F--O.
D- 1000.

FI. 1. Diffusion coefficients and right-hand side for (4.1).

Nevertheless, we hope to perform a comparison for a set of problems with a wide
range of difficulty.

5. Conclusions. In this paper we have examined several multigrid methods in
an attempt to find one that performs well on SIMD machines for problems with rough
and anisotropic coefficients. We chose a semicoarsening multigrid algorithm for imple-
mentation on the CM-2 and have shown that it does perform well on that machine. We
expect even better performance from this algorithm as compiler, operating systems,
and library improvements become available.

Note added in proof. Recent advances in the version of BHT using operator-
induced interpolation have led to an improved average convergence factor per V-cycle
for (4.1): .09 per V-cycle instead of the .34 per V-cycle reported in this paper.

REFERENCES

[ABDP]

IS]

[BB]

[D2]
[D3]

IDa]

[D5]

R. E. ALCOUFFE, A. BRANDT, J. E. DENDY, JR., AND J. W. PAINTER, The multi-grid
method for the diffusion equation with strongly discontinuous coeJcients, SIAM J.
Sci. Statist. Comput. 2(1981), pp. 430-454.

A. BRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp.,
31(1977), pp. 333-39O.

V. BANDY AND R. BRICKNER, private communication.
N. DECKER, On the parallel eciency of the Frederickson-McBryan multigrid, SIAM

J. Sci. Statist. Comput., 12 (1991), pp. 208-220.
J. E. DENDY, JR., Black box multigrid, J. Comp. Phys., 48(1982), pp. 366-386.
-------, A priori local grid refinement in the multigrid method, in Elliptic Problems

Solvers II, G. Birkhoff and A. Schoenstadt, eds., Academic Press, New York, 1984,
pp. 439-452.
, Black box multigrid for periodic and singular problems, Appl. Math. Comput.,

25 (1988), pp. 1-10.
--------, Two multigrid methods for three-dimensional problems with discontinuous and

anisotropic coeffcients, SIAM Sci. Statist. Comput., 8 (1987), pp. 673-685.

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1469

[DMRRS]

[FM]

[HI

[ia]

IT]

[W]

J. E. DENDY, JR., S. F. MCCORMICK, J. W. RUGE, T. F. RUSSELL, AND S. SCHAFFER,
Multigrid methods for three-dimensional petroleum reservoir simulation, in Proc.
Tenth Symposium on Reservoir Simulation, Houston, TX, February 6-8, 1989, pp.
19-25.

P. O. FREDERICKSON AND O. i. MCBRYAN, Novnalized convergence rates for the
PSMG method, SIAM J. Sci. Statist. Comput., 12 (1981), pp. 221-229.

W. HACKBUSCH, The frequency decomposition multigrid method, Part I: Application
to anisotropic equations, Numer. Math., 56(1989), pp. 229-245.

S. L. JOHNSSON, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci.
Statist. Comput., 8 (1987), pp. 354-392.

L. W. LAKE, The origins of anisotropy, J. Petrol. Technology, April 1988, pp. 395-396.
W. A. MULDER, A new multigrid approach to convection problems, J. Comput. Phys.,

83 (1989), pp. 303-329.
N. NAIK AND J. VAN ROSENDALE, The improved robustness of multigrid solvers based

on multiple semicoarsened grids, SIAM J. Numer. Anal., 31 (1993), to appear.
S. SCHAFFER, private communication, manuscript.
R. A. SMITH AND A. WEISER, Semicoarsening multigrid on a hypercube, SIAM J. Sci.

Statist. Comput., 13 (1992), pp. 1314-1329.
S. TA’ASSAN, Multigrid methods for highly oscillatory problems, Ph.D. thesis, Weiz-

mann Institute of Science, Rehovot, Israel, 1984.
(. WINTER, Fourienanalyse zur Konstruktion schneller MGR-Verfahren, Ph.D. thesis,

Rheinischen Friedrich-Wilhelms-Universitt zu Bonn, Bonn, Germany, 1982.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1470-1487, November 1992

() 1992 Society for Industrial and Applied Mathematics
012

A MINIMUM-PHASE LU FACTORIZATION PRECONDITIONER
FOR TOEPLITZ MATRICES*
TA-KANG KUt AND C.-C. JAY KUOt

Abstract. A new preconditioner is proposed for the solution of an N N Toeplitz system
TNX b, where TN can be symmetric indefinite or nonsymmetric, by preconditioned iterative
methods. The preconditioner FN is obtained based on factorizing the generating function T(z)
into the product of two terms corresponding, respectively, to minimum-phase causal and anticausal
systems and is therefore called the minimum-phase LU (MPLU) factorization preconditioner. Due to
the minimum-phase property, IIF II is bounded. For rational Toeplitz matrices TN with generating
function T(z) A(z-1/Bz-1) -+-C(z)/D(z), where A(z), B(z), Cz), and D(z) are polynomials
of orders Pl, ql, P2, and q2, it is shown that the eigenvalues of F’TN are repeated exactly at 1
except at most cF outliers, where aF depends on Pl, ql, P2, q2, and the number w of the zeros of
(z) A(z-1)D(z) -t- B(z-1)C(z) outside the unit circle. A preconditioner gg in circulant form
generalized from the symmetric case is also presented for comparison.

Key words. LU factorization, minimum phase, preconditioned iterative methods, precondi-
tioner, Toeplitz, Laurent Padd approximation

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. Toeplitz matrices arise in many signal processing applications.
To solve a general N N Toeplitz system of equations TNx b, direct inverse algo-
rithms based on Levinson recurrence [24] with O(N2) operations have been studied
intensively in the past [13], [19], [32], [36]. Superfast algorithms with (N log2 N) com-
plexity have also been proposed [1], [3], [4], [12]. Although the computational com-
plexity of these algorithms is lower than that of Gaussian elimination with pivoting,
i.e., O(N3), their stability is still an issue when applied to indefinite or nonsymmet-
ric TN. It has been shown that these algorithms may become unstable if TN is not
symmetric positive definite (SPD) and well conditioned [5], [11]. A stable extension
of the Levinson algorithm to general Toeplitz matrices has recently been studied by
Chan and Hansen [9], [10].

In this research, we consider the use of preconditioned iterative methods for solv-
ing general Toeplitz systems Tgx b to reduce the computational complexity as well
as to avoid the numerical instability. Various preconditioners in circulant form have
been used in the the preconditioned conjugate gradient (PCG) algorithm [6], [8], [18],
[20], [30] to solve SPD Toeplitz systems. All the preconditioners can be inverted via
fast transform algorithms with O(N log N) operations. Besides, the spectra of the
preconditioned Toeplitz matrices have such a nice clustering property that the PCG
method converges superlinearly for TN generated by a positive function in the Wiener
class [7], [20]. Although it is possible to generalize this preconditioning technique to
general Toeplitz matrices in a straightforward way (see 4), the focus of this paper is
to develop a novel approach to construct a general Toeplitz preconditioner based on an
approximate LU factorization. The resulting preconditioned systems are then solved
by various iterative methods, such as the generalized minimal residual (GMRES) [28]
and the conjugate gradient squared (CGS) [29].

Received by the editors February 19, 1991; accepted for publication (in revised form) October
7, 1991. This work was supported by the University of Southern California Faculty Research and
Innovation Fund and by a National Science Foundation Research Initiation Award (ASC-9009323).

Signal and Image Processing Institute and Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, California 90089-2564 (tkkusipi.usc.edu and
cckuosipi,usc.edu).

1470

TOEPLITZ PRECONDITIONERS 1471

The idea of constructing the LU factorization preconditioner can be simply stated
as follows. Consider a banded Toeplitz matrix TN with a finite-order generating func-
tion T(z) r,=-8 "z-n" Let us assume that T(z) has no zeros on the unit circle.
The T(z) can be factorized into the product T(z) z.Cn(z-1)U(z), where L(z-)
and U(z) have all zeros inside and outside the unit circle, respectively. We associate
zJ, n(z-), and V(z) with a shift matrix SN, lower and upper triangular banded
Toeplitz matrices LN and UN, correspondingly, and the product FN ,.NLNUN is
the desired preconditioner for TN. The above factorization procedure has been used
frequently in the context of digital signal processing [26] to design the minimum-phase
causal (or maximum-phase anticausal) linear filter. The FN is therefore called the
minimum-phase LU (MPLU) factorization preconditioner. To generalize the MPLU
preconditioning technique to full Toeplitz matrices, we first obtain an approximating
rational generating function for the original one with the Laurent Pad approxima-
tion. Since a rational Toeplitz matrix can be transformed to a banded matrix which
is nearly Toeplitz, the appropriate MPLU preconditioner can also be constructed. A
similar factorization procedure was used by Trench to derive a stable direct method
for solving rational Toeplitz systems [35].

The condition number of the preconditioner FN is bounded due to the minimum-
phase factorization property. Thus, for well-conditioned Toeplitz matrices TN, the
condition number of the preconditioned matrix AN FITN is also bounded so
that the system ANx Fb can be stably solved by iterative algorithms. One
obvious choice is to form the SPD normal system ATNANX AFb, and to solve
the resulting system by the CG method (known as the CGN method [17]). Thus, for
well-conditioned nonsymmetric Toeplitz systems, numerical stability is easily obtained
by using preconditioned iterative methods.

The spectral clustering properties of the MPLU-preconditioned Toeplitz matrix

FTN are studied for both banded and rational TN. We prove that, for rational
TN with generating function T(z) A(z-)/S(z-) /C(z)/D(z), where A(z), B(z),
C(z), and D(z) are polynomials of orders p, q, p2, and q2, the eigenvalues ofFTN
are repeated exactly at 1 except at CF outliers, where OF depends on pl, q, P2,

q2, and the number w of the zeros of (z) A(z-)D(z) + B(z-1)V(z) outside the
unit circle. A direct consequence of these spectral properties is that the appropriate
preconditioned iterative methods converge in at most cF + 1 iterations. This result
should be compared to that of the circulant-preconditioned rational Toeplitz matrix

KTN. In [23], we proved that the eigenvalues of KTN, except Og outliers, are
clustered in the disk centered at 1 with radius eK, where the clustering radius eg is
proportional to the magnitude of the last elements used to construct the circulant
preconditioner. It is clear that e/ _> eF 0. Furthermore, if w max(p2, q2), it can
be shown that / 2oF (see Theorems 3 and 4) so that the MPLU preconditioner
provides better spectral clustering properties for a faster convergence rate. If w
max(p2, q2), we may have Og < F and eg 0 so that the circulant preconditioner
KN gives a faster convergence rate. In general, the MPLU preconditioner FN has
a better or a comparable convergence rate compared to the circulant preconditioner
KN.

Since the MPLU preconditioner FN is a product of the shift matrix SN and trian-
gular banded Toeplitz matrices LN and UN, the preconditioning step z Flr can be
achieved with a computational complexity proportional to O(N) only. The total com-
putational complexity for solving a rational Toeplitz system by MPLU-preconditioned
iterative methods is O(N), which is lower than the O(Nlog N) operations required

1472 TA-KANG KU AND C.-C. JAY KUO

by the circulant-preconditioned iterative methods and is in the same order as that
required by several direct methods [14], [15], [33], [34], [35]. However, there is a
drawback of the MPLU preconditioner in the context of parallel processing. That is,
the MPLU preconditioning has to be performed sequentially, whereas the circulant
preconditioning can be easily parallelized.

The outline of this paper is as follows. In 2, the procedure to construct the MPLU
preconditioner for banded Toeplitz matrices is described, and the spectral properties
of the preconditioned banded Toeplitz matrices are examined. In 3, the MPLU pre-
conditioning technique is generalized to full Toeplitz matrices, including both rational
and nonrational cases, and the spectral properties of the MPLU-preconditioned ratio-
nal Toeplitz matrices are studied. In 4, we compare the MPLU preconditioner with
the circulant preconditioner Klv. Finally, numerical results are given in 5 to assess
the efficiency of the MPLU preconditioner.

2. MPLU preconditioner for banded Toeplitz matrices. Consider a se-
quence of m m banded Toeplitz matrices Tin, m 1, 2,..., generated by a polyno-
mial

(2.1) T(z) tnz-n.

Let us assume that function T(z) has no zeros on the unit circle, i.e.,

(2.2) T(ei):O VO.

The system of linear equations

(2.3) TNx- b

can be solved by various iterative methods. To accelerate the convergence rate, a
preconditioner PN is introduced to solve the preconditioned system

(2.4) P1Tgx P b,

where PN is the preconditioner used to approximate TN.
2.1. Construction of the preconditioner. We can use a direct method to

factorize TN

(2.5) TN ,NN,

where N and LiN are lower and upper triangular matrices, respectively. The exact
factorization (2.5) with the Schur-type algorithm requires O(Nr-}-Ns) operations for
banded TN [14], [33]. If TN is not SPD, the numerical stability of these algorithms
cannot be guaranteed. Instead of performing the exact factorization, we propose to
factorize TN approximately as

(2.6)

where SN is a shift matrix and LN and UN are, respectively, lower and upper tri-
angular banded Toeplitz matrices. Our objectives include that the approximate fac-
torization (2.6) be achieved by a stable algorithm with operations independent of N,

TOEPLITZ PRECONDITIONERS 1473

that FN approximate TN well, and that IFI[I be bounded. Then, the FN can be
used as a preconditioner in preconditioned iterative methods.

To derive the approximate factorization, it is convenient to consider the problem
in the Z-transform domain and ignore the boundary effect arising in a Toeplitz system.
When TN is banded with lower bandwidth r and upper bandwidth s, its generating
function can be expressed as

d

1)(2.7) T(z) tnz- t-sz8 H(1 ziz-
n=--s i=l

where d r / s and zi is a root of T(z). From (2.2), we know that [zi[- 1. If T(z)
has w zeros outside the unit circle, we can factorize T(z) as

(e.8) T(z) zS-WL(z-1)U(z),

where

L(z-) H (1 ziz-), U(z) t_ H (z- zi).
Iz, l<l Iz, l>l

Note that the above factorization has a special feature, namely, all zeros of L(z-)
(or U(z)) are inside (or outside) the unit circle. The following example is used to
illustrate the factorization procedure.

Example 1. Let TN be an N N tridiagonal Toeplitz matrix with t 1.5,
to -6.5, and t_ 2. Then, we have that

T(z) 1.5z-1 6.5 + 2z 2z(1 0.25z-)(1 3z-) L(z-)U(z),

where

L(z-) 1 0.25z-1, U(z) 2z 6.

Since r s w 1 in this example, the term zs-w in (2.8) is equal to 1.
Let us associate the right-hand side of the factorization (2.8) with the following

matrices:

(2.9) L(z-) - LN, U(z) - UN, Zs-w SN -EN

where LN and UN are N N lower and upper triangular Toeplitz matrices with
generating functions L(z-) and U(z), respectively, EN is the N N unit row-shift
matrix,

EN [eN, el,e2,..-,

and en is the N 1 unit vector with the nth element equal to 1 and zeros elsewhere.
It is straightforward to verify that

E [e2, e3,..., eN, eli
kand that EN is the product of EN (or E Ikl times for positive (or negative) integer

k. The premultiplication of EN (or E) with an N N matrix is equivalent to the
circular upshift (or downshift) of its rows by one.

1474 TA-KANG KU AND C.-C. JAY KUO

Then, the product of SN, LN, and UN is used as the desired preconditioner

FN SNLNUN Ev-WLNUN.
Its inverse

can be performed effectively with O(N) operations due to the special structures of
N, LN, and UN. The factorization (2.8) has been frequently used in the context of
digital signal processing [26] to design the minimum-phase causal (or maximum-phase
anticausal) linear filter, which is by definition a system characterized by a lower (or
upper) triangular matrix with a stable inverse. Thus we call FN defined by (2.10) the
MPLU factorization preconditioner.

2.2. Spectral properties. The minimum-phase factorization procedure guar-
antees that]IFll] is bounded, which is proved in the following theorem.

THEOREM 1. Let TN be a banded Toeplitz matrix with lower bandwidth r and
upper bandwidth s satisfying condition (2.2), and LN and UN be obtained from the
minimum-phase factorization (2.8)-(2.10). Then, the 1-, 2-, and cx-norms of F
and FN are bounded for all N.

Proof. It is well known that there exists an isomorphism between the ring of
the power series G(z-) n=ogyZ-n and the ring of semi-infinite lower triangu-
lar Toeplitz matrices with go, g,’", 9N,’’" as the first column, and that the power
series multiplication is isomorphic to matrix multiplication [15]. With this isomor-
phism, we know that L is a lower triangular Toeplitz matrix whose first column
TO, T,..., n,’’" can be obtained from the coefficients of the power series, i.e.,

11 H (l_ziz-1)--E Tnz-n"L(z-1)
Izil<l n--0

It is clear that y’n__0 Iwl is bounded if and only if all poles of 1/L(z-) are inside the
unit circle, which is guaranteed by the minimum-phase factorization (2.8).

Since T(z) has no zeros on the unit circle,

[zi[_< 1- or 1+_< [zi[<

where > 0. Thus

n=0 n=0 [z <

The 2-norm of LN is bounded by

IlL,ill2 (llLvXlllllLvlll) 1/2--

Similar arguments can be used to prove that]IUI]2 _< -w.
I]E[[2 1, we have

Since I]ENI]2

TOEPLITZ PRECONDITIONERS 1475

which is independent of N. Besides, since [[LN[[1 [ILN[[, we have

[ILNI[2

_
(I[LNI[IlILN[I) 1/2.

Similarly, IIUrll is bounded and IIFvll _< IILvllllUvll is also bounded. [:]

A direct consequence of the above theorem is that the condition number of pre-
conditioner FN is bounded for all N.

if L(z-1) (or U(z)) is not chosen according to (2.8) so that there exist zeros
of the polynomial L(z-1) (or U(z)) with magnitude greater (or less) than one, i.e.,
nonminimum-phase factorization, we can easily check that IL1112 (or IUI 112) is
unbounded for asymptotically large N. For example, if we choose

L(z az O(z) ez

for LN and UN in Example 1, the product LNUN leads to an ill-conditioned matrix
whose smallest eigenvalue converges to zero for asymptotically large N. Thus the
minimum-phase factorization is crucial for the stability of the preconditioning step. F/lr.

Next, we study the spectral properties of FITN. For FN to be a good precon-
ditioner, it is desirable that FTN has clustered eigenvalues. In Theorem 2 we will
prove that it has only a finite number of eigenvalues different from 1. To derive this
theorem, we need two lemmas.

LEMMA 1. Let TN be a banded Toeplitz matrix with lower bandwidth r and upper
bandwidth s, where r + s d < N, generated by T(z) which has w zeros outside
the unit circle. Then, for LN and UN obtained by the minimum-phase factorization
(2.8) and (2.9), LNUN is a banded Toeplitz matrix generated by zW-ST(z) with lower
bandwidth d- w and upper bandwidth w except its northwest (d- w) x w block.

Proof. This lemma can be proved with definitions and direct matrix multiplica-
tion.

Lemma 1 basically states that the product LNUN is a nearly banded Toeplitz
matrix. Despite the fact that TN and LNUN have the same total bandwidth d, they
do not have the same lower bandwidth and upper bandwidth unless w s. By shifting
the rows of LNUN circularly, we are able to construct another nearly banded Toeplitz
matrix FN EN LNUN, which has the same lower and upper bandwidth as TN.

LEMMA 2. Let TN be a banded Toeplitz matrix with lower bandwidth r and upper
bandwidth s, where r + s d < N, generated by T(z), which has w zeros outside
the unit circle. Then, the matrix FN ESN-WLNUN defined in (2.10) is a nearly
banded Toeplitz matrix. Elements of matrices TN and FN are identical except for the
following:

(1) the northwest r s block when s w;
(2) the northwest r w block and the northeast (w- s) r block when s < w;
(3) the northwest r w block, the southwest (s- w) s block, and the southeast

(s- w) (d- w) block when s > w.

Proof. When s w, it can be directly verified that FN LNUN is a banded
Toeplitz matrix generated by T(z) with lower bandwidth r and upper bandwidth
s except the northwest r s block. When s < w, recall that the rows of FN
ESN-WLNUN are obtained from those of LNUN with circularly downward-shift w- s
rows so that the last w- s rows in LNUN become the the first w- s rows of FN and
the first N- (w- s) rows in LNUN become the last N- (w- s) rows of FN. By using
Lemma 1, we can clearly see that FN is a banded Toeplitz with lower bandwidth r

1476 TA-KANG KU AND C.-C. JAY KUO

and upper bandwidth s generated by T(z) except the northwest r w block and the
northeast (w- s) r block. Similarly, we can prove the case s > w. D

Lemma 2 tells us that/kEN FN- TN is a zero matrix except for at most three
small blocks. Based on this lemma, we characterize the spectral properties of FITN
in Theorem 2.

THEOREM 2. Let TN be a banded Toeplitz matrix with lower bandwidth r and
upper bandwidth s, where r + s d < N, generated by T(z) which has w zeros outside
the unit circle. Then, there are at most (F eigenvalues of FITN not equal to 1,
where

min(r, s),

(2.11) aF-- min(r,2w- s), s < w,

min(d w, s),

8"--W

8W.

Proof. Since we have

where IN denotes the N N identity matrix, the eigenvalue 1 of FITN corresponds
to the eigenvalue 0 of F/kEN, and the number of eigenvalues of FTN not equal
to 1 is determined by the rank of/kEN. Notice that the rank of a matrix is bounded
by the number of nonzero rows or columns, and the rank of the sum of two matrices
is bounded by the sum of their individual ranks. All nonzero elements in /kEN are
inside the blocks given by Lemma 2. When s w, since all nonzero elements of/kEN
are in the first r rows or the first s columns, the rank of/kEN is bounded by rain(r, s).
When s < w, we have w- s <_ d- s r. Since all nonzero elements of/EN are
either in the first r rows or in the union of the first w columns and the first w- s

rows, the rank of/EN is bounded by min(r, 2w- s). When s > w, since all nonzero
elements of/EN are either in the union of the first r and the last s w rows or in
the union of the first w columns and the last s- w rows, the rank of/EN is bounded
by min(d w, s). The proof is completed. D

Example 2 illustrates the above theorem.
Example 2. Consider the following N N banded Toeplitz matrices with N _> 4,

TN, [(r, s) (3, 0)]:

TN,2 [(r,s) (2, 1)]:

TN,3 [(r, 8) (1, 2)]:

TN,4 [(r, s) (0, 3)]:

t3 2, t2 --5, tl --6, to --2,

t2 2, tl --5, to ----6, t_l --2,

tl 2, to -5, t_ --6, t_2 -2,

t0--2, t_=-5, t_2--6, t-3=-2.

T(z) has zeros 0.5 + 0.5i, 0.5- 0.5i, and 2, so that w 1. For these matrices,
the MPLU factorization results in the same LN and UN defined by the generating
sequences

l0 1, ll -1, 12 0.5, In 0 n O, 1, 2,

uo 4, u_ -2, un O n O,-1.

To illustrate Theorem 2, we list values of d, s, r, w, and OF in Table 1.
Since FTN has only at most oF -- 1 distinct eigenvalues, appropriate precon-

ditioned iterative methods, such as GMRES and CGS, converge in at most aF + 1
iterations with exact arithmetic (see Test Problems 1 and 4 in 5).

TOEPLITZ PRECONDITIONERS 1477

TABLE 1
An example to illustrate Theorem 2.

d r s w aF

rN,1 3 3 0 1 ’2
N,2 3 2 1 1 1

N,3 3 1 2 1 ’2’
TN,a 3 0 3 1 2

3. Preconditioning full Toeplitz matrices. In this section, we generalize the
MPLU preconditioning technique to full Toeplitz matrices. It is known that a rational
Toeplitz system TNx b is equivalent to a banded system

(3.1) N ’,
where matrix g is a banded Toeplitz matrix except for a northwest block. Thus we
construct a MPLU preconditioner for TN as if it were an exact banded Toeplitz matrix
and determine the solution of the rational Toeplitz system from (3.1) by precondi-
tioned iterative methods. The equivalent MPLU preconditioner for rational Toeplitz
matrix TN is also a product of a shift matrix and triangular banded Toeplitz matrices,
and can be inverted with O(N) operations. The MPLU preconditioning scheme can
also be generalized to nonrational Toeplitz matrices. The basic idea is to approxi-
mate the full Toeplitz matrix with a rational Toeplitz matrix, and then construct the
MPLU preconditioner for the rational Toeplitz matrix.

3.1. Rational Toeplitz matrices. Toeplitz matrices with a rational generating
function can be transformed to banded ones [15]. We describe the transformation
briefly as follows. Let the generating function of TN be of the form

A(z-1) C(z)(3.2) T(z) B(z_l) D(z)’
where A(z), B(z), C(z), and D(z) are polynomials in z with orders pl, ql, p2, and
q2, respectively. Note that a special case of (3.2) is A(z) C(z) and S(z) D(z),
which leads to a symmetric rational Toeplitz matrix of order (p, q) with p p2 p
and q q2 q. By applying the isomorphism between the ring of the power series
and the ring of semi-infinite triangular Toeplitz matrices, we have the relationship

TN LaL{ + UcU1

where La (or Lb) is an N N lower triangular Toeplitz matrix with the first N
coefficients in A(z-) (or B(z-1)) as its first column and Uc (or Ud) is an N N
upper triangular Woeplitz matrix with the first N coefficients in C(z) (or D(z)) as its
first row. Since power series multiplication is commutative, we have

(3.3) g LbTNUd LaUd - LbVc,

where N is a banded and nearly Toeplitz matrix characterized by the following
lemma.

LEMMA 3. Let TN be the N N Toeplitz matrix generated by T(z) in (3.2); the
corresponding TN obtained from (3.3) is a banded Toeplitz matrix with lower bandwidth
r max(p1, ql) and upper bandwidth s max(p2, q2) generated by

(3.4) (z) A(z-)D(z) / B(z-)C(z),
except for the northwest r s block.

1478 TA-KANG KU AND C.-C. JAY KUO

Proof. Consider N N Toeplitz matrices La and Ud, where La is lower triangular
with lower bandwidth Pl generated by A(z-1) and Ud is upper triangular with upper
bandwidth q2 generated by D(z). We can verify that the product LaUd is a banded
Toeplitz matrix generated by A(z-)D(z), except for its northwest p q2 block.
This result can be easily generalized to the sum of two such products, i.e., N
LaUd + LbUc, and the proof is completed.

Through (3.3), the system TNx b is transformed to an equivalent system

N),

where x Ud and) Lbb. We then use the procedure described in 2.1 to
construct the MPLU preconditioner/N for N as if it were an exact banded Toeplitz
matrix. The following theorem characterizes the spectral properties of/IN.

THEOREM 3. Let TN be the N N rational Toeplitz matrix generated by T(z)
in (3.2), and N the MPLU preconditioner constructed with respect to (z) in (3.4).
In addition, r max(p, q), s max(p2, q2), and w denotes the number of zeros

of (z) outside the unit circle. Then, when r + s d < N, there are at most OF
eigenvalues of g not equal to 1, where

min(r, s),

CF min(r, 2w s),

min(d-w, 2s-w), 8w.

Proof. By Lemma 3, TN is a banded Toeplitz matrix with generating function
(z) except for the northwest r s block. The /g is a banded Toeplitz matrix
with generating function (z) except for the blocks described in Lemma 2. Define
/g /g N. We can use arguments similar to those in proving Theorem 2 to
determine the bound of the rank of/N and, hence, the number of eigenvalues of
/1N not equal to 1. D

Since lN has only at most OF -- 1 distinct eigenvalues, appropriate precondi-
tioned iterative methods converge in at most CF -- 1 iterations with exact arithmetic
(see Test Problems 2 and 5 in 5). Note that /N is a preconditioner for N rather
than TN. However, since N is related to TN via (3.3), the equivalent preconditioner
for matrix TN is

-N LINU L{I -@~ --1EN LNUNUd

where , @, iN, and N are obtained with respect to (z) (= A(z-1)D(z)+B(z-)C(z)).
Thus the preconditioning step can be implemented as

/P/I r UdILvlEv-Lbr,

for arbitrary r with O(N) operations.

3.2. Nonrational Toeplitz matrices. When TN is generated by a nonrational
function T(z), we use the Laurent Padd approximation [4], [16] to approximate T(z)
with a certain rational function

A’(z-) C’(z)T’(z)-- B,(z_ D’(z)’

TOEPLITZ PRECONDITIONERS 1479

where A’(z), B’(z), C’(z), and D’(z) are polynomials in z with orders Pl, ql, P2, and
q2, respectively. The coefficients of A’(z), B’(z), C’(z), and D’(z) are chosen such
that

T+(z-1)B(z-1) A(z-1) O(z-(pl+ql+l)),
T_ (z)n(z) C(z) O(zp2+q2+l),

where

+
n=l

T_ (z) (1 C)to + E t-nzn’
n--1

with given c. We then construct the preconditioner / with respect to ’(z) (--
A’(z-1)D’(z) / S’(z-1)C’(z)) or, equivalently, use F (- (Lb)-Iv(U)-1) as pre-
conditioner for TN. Since T(z) = T’(z), the eigenvalues of (Fv)-ITN are not repeated
at, but are clustered around, 1. Also, we find from our experiment that small values
of pl, ql, p2, and q2 such as 2, 3, or 4 are sufficient to give good performance (see
Test Problems 3 and 6 in 5).

4. Comparison of factorization and circulant preconditioners. Various
preconditioners in circulant form have been proposed for symmetric Toeplitz matrices
[6], [8], [18], [20], [30]. All these preconditioners can be inverted effectively via fast
transform algorithms with O(Nlog N) operations. This preconditioning technique
can be easily generalized to nonsymmetric Toeplitz matrices. In the following, we
discuss the generalization of the preconditioner KI,N [20] proposed by the authors to
the nonsymmetric case.

Let TN be an N N Toeplitz matrix

to t-1

tl to

TN tl tO

t-(N-2) t-(N-l)

t_(N_2)

tN-I iN-2 tl tO
We define a 2N x 2N circulant matrix using elements of TN as

(4.1) RN
/’,TN TN

tN iN-1 t2

t--(N-l) tN iN-1

/TN t-(N_l) tN

where

t_l t_2 t-(N-l)

tl

t2

tN-1

tN

1480 TA-KANG KU AND C.-C. JAY KUO

Since the augmented circulant system

/kTN TN x

is equivalent to

(TN + ATN)X b,

the (TN + ATN)-lb can be computed efficiently via fast Fourier transform (FFT) so
that

KN TN +/kTN

can be used as a preconditioner for TN. Note that KN is also a circulant matrix.
When TN is a symmetric Toeplitz matrix generated by a positive function in

the Wiener class, it can be proved [7], [20] that the eigenvalues of the circulant-
preconditioned Toeplitz matrix are clustered around 1 except at a finite number of
outliers. When TN is additionally rational of order (p, q), the eigenvalues of KclTN
are clustered between (1- g, 1 + eg) except at og 2max(p,q) outliers, where
eK O([tNI) [22], [31]. A special case of Theorem 3 is that when TN is a symmetric
rational matrix, we have r s w and Cf max(p, q) 1/20g. A more general
result applicable to the nonsymmetric case has been obtained under the following two
conditions:

(4.2) E Itl

(4.3) IT(eiO)l E tne-inO

THEOREM 4. Let TN be a rational Toeplitz matrix generated by T(z) of order
(pl, ql,p2, q2) as given by (3.2), and satisfying (4.2) and (4.3). For suJficiently large
N, the preconditioned Toeplitz matrix KcITN has the following two properties:

P(1): The number of outliers is at most a: 2rain(r, s).
P(2): There are at least N-? eigenvalues confined in the disk centered at 1 with

O(It l +
Proof. See [23] for the proof.
The spectral properties of FITN and KcTN for rational TN are compared as

follows. One main difference is that the eigenvalues except at outliers are exactly
repeated at 1 for FTN but only clustered around 1 for KcTN, i.e., g

__
F --0.

Another difference is the number of outliers that are, by definition, the eigenvalues
not converging to 1 for asymptotically large N. Asymptotically, eK converges to 0
and the CGS method with preconditioners FN and KN converges in at most aF / 1
and Og + 1 iterations, respectively. For finite N, eg 0 and the performance of
KN are determined by both the number of the outliers CK and the clustering radius
eg. Although it may happen that aK < aF, the MPLU preconditioner, in general,
provides a faster or a comparable convergence rate since g

__
eF 0.

The preconditioning step Fr can be accomplished with O(N) operations by
permutation, forward- and back-substitution, since FN is a product of a shift matrix,

TOEPLITZ PRECONDITIONERS 1481

lower- and upper-triangular banded Toeplitz matrices. In comparison, the precon-
ditioning step Klr requires O(NlogN) operations via FFT. Hence, in terms of
computational complexity per iteration, preconditioner FN is slightly better. How-
ever, note that Flr must be implemented sequentially, whereas Klr can be easily
parallelized via the parallelism provided by FFT.

5. Numerical results. Our numerical experiments include both SPD and non-
symmetric Toeplitz matrices with banded, rational, and nonrational generating se-
quences. The SPD problems are solved by the PCG method. For nonsymmetric
systems, there exist numerous iterative algorithms for their solution [2], [27]. As sug-
gested by [25], we applied the preconditioned version of three iterative methods, i.e.,
CGN, GMRES, and CGS, for our numerical experiments. We observed that GMRES
and CGS converge faster than CGN, and that CGS outperforms GMRES by a factor
of 1 to 2 for all test problems. Since our focus is on the preconditioners rather than
the iterative methods, only results solved by the CGS iteration are reported. All
experiments are performed with N 32, b (1,-.., 1)T, and zero initial guess.

TEST PROBLEM 1 (symmetric banded Toeplitz system). The generating function
is

T(z) z-4 + 3z-3 + 4z-2 + 7z-1 + 11 + 7z + 4z2 + 3z3 + z4.

The convergence history of the PCG method with preconditioners FN and KN is
plotted in Fig. 1. We clearly see that the 2-norm of the residual is significantly reduced
in four iterations for both FN and KN and that FN performs slightly better than Kw.
We point out that FITN and KITN have four and eight outliers, respectively.
However, for this test problem, the outliers of KITN are related in pairs and it takes
only 1/2(g iterations to eliminate these Cgg outliers. A similar kind of convergence
behavior for KITN was reported in [20]. In general, preconditioners FN and gg
have a similar performance for symmetric banded Toeplitz matrices.

10-3

10-9

10-15

10-21

10-27

No. of iterations

FIG. 1. The convergence history of the PCG method with preconditioners FN and KN for Test
Problem 1.

TEST PROBLEM 2 (symmetric rational Toeplitz system). The generating function

T(z) (1 0.2z-1)(1 + 0.3z-1)(1 0.5z-1) + (1 0.2z)(1 + 0.3z)(1 0.5z)
(1 0.3z-1)(1 + 0.5z-1)(1 0.7’z-1) (1 0.3z)(1 + 0.5z)(1 0.Tz)"

1482 TA-KANG KU AND C.-C. JAY KUO

Since TN is symmetric (r s w 3), the eigenvalues of FIT are repeated at 1
except at three outliers (see Theorem 3), and the eigenvalues of KcTN are clustered
around 1 except at six outliers (see Theorem 4). The convergence history of the PCG
method with preconditioners FN and KN is plotted in Fig. 2. Since FTN has
four distinct eigenvalues, the PCG method with preconditioner FN converges in four
iterations. However, although KzTN has six outliers, it only requires three iterations
to eliminate the outliers. The convergence rate after the first three iterations depends
on the clustering radius eg. It is clear that preconditioner F performs better than
preconditioner KN.

No. of iterations

FIG. 2. The convergence history of the PCG method with preconditioners FN and KN for Test
Problem 2.

TEST PROBLEM 3 (symmetric nonrational Toeplitz system). The generating se-
quence is

2, n 0,
tn

1/(1 + In[), n : 0,

and the corresponding generating function is

T(z) T+(z-) / T+(z),

where
OO --n

T+(z-1)
l+n

n--0

Consider the Padd approximant of order (p,q), i.e., A’p(Z-1)/B’q(Z-1), to T+(z-1).
Preconditioners Fp,q,g are then constructed with respect to

T,q(Z) A(z-1) AP(Z)
Bq(z- Bq(z)

In our experiment, (p, q) is chosen to be (3, 3) and (4, 4). The convergence history of
the PCG method with preconditioners F3,3,N, F4,4,N, and KN is plotted in Fig. 3.
All these preconditioners converge at a similar rate.

TOEPLITZ PRECONDITIONERS 1483

10-’*

"6 lO-n

lOqS

10-zS
0 10

No. of iterations

FIG. 3. The convergence history of the PCG method with preconditioners F3,3,N, F4,4,N, and
KN for Test Problem 3.

TEST PROBLEM 4 (nonsymmetric banded Toeplitz system). The generating func-
tion is

T(z) -z-3 + 2z-2 + 9z-1 + 4- 2z- 3z2 + z3,

so that TN is a banded Toeplitz matrix with lower bandwidth r 3 and upper
bandwidth s 3. Note also that T(z) has w 4 zeros outside the unit circle. The
convergence history of the CGS method with preconditioners FN and KN is plotted
in Fig. 4. According to Theorem 2, FITN has three eigenvalues different from 1 and,
consequently, the CGS method with preconditioner FN converges in four iterations.
According to Theorem 4, KTN has six eigenvalues not equal to 1 so that the CGS
method with preconditioner KN converges in seven iterations. We see clearly that
the CGS method with preconditioner FN converges faster.

TEST PROBLEM 5 (nonsymmetric rational Toeplitz system). The generating func-
tion is

T(z) (1 0.2z-)(1 + 0.3z-)(1 0.5z-) +(1 0.7z-1)(1 + 0.5z- l+2z
(1.5- z)(2 + z)(2- z)"

We can transform TN into a banded matrix with r s w 3. From Theorems
3 and 4, we know that FITN has only three eigenvalues not equal to 1 and the
eigenvalues of KTN are clustered around 1 except six outliers. The convergence
history of the CGS method with preconditioners FN and KN is plotted in Fig. 5. The
CGS method with preconditioner FN performs better.

TEST PROBLEM 6 (nonsymmetric nonrational Toeplitz system). Let TN be a
nonsymmetric Toeplitz matrix with generating sequence

tn

1/log(2 n), n _< -1,

1/log(2-n)+l/(l+n), n=0,

1/(1 + n), n >_ 1.

1484 TA-KANG KU AND C.-C. JAY KUO

10

10-2

I0-

10

I0-o

No. of iterations

FIG. 4. The convergence history of the CGS method with preconditioners FN and KN for Test
Problem 4.

103

lO-tO

" i0.2

10.

1049

10-2
0 4 +" 10

No. of iterations

FIG. 5. The convergence history of the CGS method with preconditioners FN and KN for Test
Problem 5.

The corresponding causal and anticausal generating functions can be written as

T+(z-1) l+n’
n--0
o Zn

T_(z) E log(2 + n)"n--0

Let the Padd approximants of order (p, q), to T+(z-1) and T_(z), be A(z-)/Bq(z-)
and C(z)/Dq(z), respectively. We construct preconditioner F;,q,N for

A;(z-1):T,q(Z)= Bp(z-) Dq(z)

TOEPLITZ PRECONDITIONERS 1485

TABLE 2
Numbers of iterations required for the CGS method.

N
32

64

128

F2,2,N F3,3,N
6 5

8 7

"9 "S

5 11

6 ii"
7 13

with p q 2, 3, 4. The convergence history of the CGS method with preconditioners
Fp,q,N and KN is plotted in Fig. 6. To understand the asymptotical behavior of the
preconditioned CGS method, we also performed experiments for this test problem
with N 64, 128. The numbers of iterations required with preconditioners Fp,q,N,
p q 2, 3, 4, and KN satisfying lib- TNXII2 < 10-15 are summarized in Table 2
for different N. Note that the numbers of iterations required for all preconditioners
increase slightly as N becomes larger. However, preconditioners Fp,q,N, p q 2, 3, 4
perform better than preconditioner KN.

lO-S

10-11

104

I0-3

10.41
0

No. ofitevafions

FiG. 6. The convergence history of the CGS method with preconditioners Pp,q,N P q 2, 3, 4,
and KN for Test Problem 6.

6. Conclusion. In this paper, we applied the minimum-phase factorization tech-
nique to Toeplitz generating functions and obtained a new Toeplitz preconditioner
called the MPLU preconditioner. This preconditioning technique is applicable to
both banded and full Toeplitz matrices. We characterized the spectral properties of
the MPLU preconditioned Toeplitz matrices, and showed that most of their eigen-
values are repeated exactly at unity for rational Toeplitz matrices. Thus an N N
rational Toeplitzsystem can be solved by preconditioned iterative methods with O(N)
complexity. We also demonstrate the superior performance of the MPLU precondi-
tioner over another Toeplitz preconditioner in circulant form with several numerical
examples, including both rational and nonrational cases.

Although our discussion on the MPLU factorization preconditioner has primarily
focused on real nonsymmetric Toeplitz systems, its application to complex nonher-
mitian Toeplitz systems can be generalized in a straightforward way. However, the
MPLU factorization preconditioning technique cannot be easily extended to higher-
dimensional Toeplitz systems, such as block Toeplitz matrices. This is due to the ab-

1486 TA-KANG KU AND C.-C. JAY KUO

sence of the fundamental theorem of algebra for multivariate polynomials. In contrast,
higher-dimensional Toeplitz matrices can be preconditioned with higher-dimensional
circulant matrices. See [21] for the two-dimensional case. Another limitation of the
MPLU preconditioner is that it is not as easily parallelizable as the preconditioners
in circulant form.

REFERENCES

[1] G. S. AMMAR AND W. B. GIAGG, Superfast solution of real positive definite Toeplitz systems,
SIAM J. Matrix Anal. Appl., 9 (1988), pp. 61-76.

[2] S. F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR, A taxonomy for conjugate gradient
methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542-1568.

[3] R. e. BITMEAD AND B. D. ANDERSON, Asymptotically fast solution of Toeplitz and related
systems of equations, Linear Algebra Appl., 34 (1980), pp. 103-116.

[4] R. P. BRENT, F. C. GUSTAVSON, AND D. Y. YUN, Fast solution of Toeplitz systems of
equations and computations of Padg approximations, J. Algorithms, 1 (1980), pp. 259-
295.

[5] J. R. BUNCH, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci.
Statist. Comput., 6 (1985), pp. 349-364.

[6] R. H. CHAN, Circulant preconditioners for Hermitian Toeplitz system, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 542-550.

[7] R. H. CHAN AND G. STRANG, Toeplitz equations by conjugate gradients with circulant precon-
ditioner, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 104-119.

[8] T. F. CHAN, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 766-771.

[9] T. F. CHAN AND P. C. HANSEN, A look-ahead Levinson algorithm for indefinite Toeplitz
systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 490-506.

[10] , A look-ahead Levinson algorithm for general Toeplitz systems, Tech. Report CAM 90-
11, Department of Mathematics, University of California, Los Angeles, CA, 1990; IEEE
Trans. Signal Process, to appear.

[11] G. CYBENKO, The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems
of equations, SIAM J. Sci. Statist. Comput., 1 (1980), pp. 303-319.

[12] F. DE HOOG, A new algorithm for solving Toeplitz systems of equations, Linear Algebra Appl.,
88/89 (1987), pp. 123-138.

[13] P. DELSARTE AND Y. V. (ENIN, The split Levinson algorithm, IEEE Trans. Acoust. Speech
Signal Process., ASSP-34 (1986), pp. 470-478.

[14] B. W. DICKINSON, Efficient solution of linear equations with banded Toeplitz matrices, IEEE
Trans. Acoust. Speech Signal Process., ASSP-27 (1979), pp. 421-422.

[15] , Solution of linear equations with rational Toeplitz matrices, Math. Comp., 34 (1980),
pp. 227-233.

[16] W. B. GRAGG, The Padd table and its relation to certain algorithms of numerical analysis,
SIAM Rev., 14 (1972), pp. 1-63.

[17] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.

[18] T. HUCKLE, Circulant and skew-circulant matrices for solving Toeplitz matrix problems, in
Copper Mountain Conf. Iterative Methods, Copper Mountain, CO, 1990; SIAM J. Matrix
Anal. Appl., 13 (1992), pp. 746-762.

[19] T. KAILATH, A. VIEIRA, AND M. MORF, Inverse of Toeplitz operators, innovations, and
orthogonal polynomials, SIAM Rev., 20 (1978), pp. 106-119.

[20] T. K. Ku AND C. J. Uuo, Design and analysis of Toeplitz preconditioners, Tech. Report 155,
Signal and Image Processing Institute, University of Southern California, Los Angeles, CA,
May 1990; IEEE Trans. Signal Process., 14 (1992), pp. 129-141.

[21] , On the spectrum of a family of preconditioned block Toeplitz matrices, Tech. Report
164, Signal and Image Processing Institute, University of Southern California, Los Angeles,
CA, Nov. 1990; SIAM J. Sci. Statist. Comput., 13 (1992), pp. 948-966.

[22] ., Spectral properties of preconditioned rational Toeplitz matrices, Tech. Rep. 163, Signal
and Image Processing Institute, University of Southern California, Los Angeles, CA, Sep.
1990; SIAM J. Matrix Anal. Appl., 14 (1993), to appear.

TOEPLITZ PRECONDITIONERS 1487

[23] , Spectral properties of preconditioned rational Toeplitz matrices: The nonsymmetric
case, Tech. Report 175, Signal and Image Processing Institute, University of Southern
California, Los Angeles, CA, Apr. 1991; SIAM J. Matrix Anal. Appl., 14 (1993), to appear.

[24] N. LEVlNSON, The Wiener RMS error criterion in filter design and prediction, J. Math. Phys.,
25 (1947), pp. 261-278.

[25] N. M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, How fast are nonsymmetric matrix
iterations?, in Copper Mountain Conf. Iterative Methods, Copper Mountain, CO, 1990;
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778-795.

[26] A. V. OPPENHEIM AND R. W. SCHAFER, Discrete-Time Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[27] Y. SAND, Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput., 10
(1989), pp. 1200-1232.

[28] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimum residual algorithm]or solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.

[29] P. SONNEVELD, C(S, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J.
Sci. Statist. Comput., 10 (1989), pp. 36-52.

[30] G. STtnNG, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp.
171-176.

[31] L. N. TREFETHEN, Approximation theory and numerical linear algebra, in Algorithms for
Approximation II, M. Cox and J. C. Mason, eds., Chapman, London, 1988.

[32] W. F. TRENCH, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust.
Appl. Math., 21 (1964), pp. 515-523.

[33] , Inversion of Toeplitz band matrices, Math. Comp., 28 (1974), pp. 1089-1095.
[34] , Solution of systems with Toeplitz matrices generated by rational functions, Linear Al-

gebra Appl., 74 (1986), pp. 191-211.
[35] Toeplitz systems associated with the product of a formal Laurent series and a Laurent

polynomial, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 181-193.
[36] S. ZOHAt, The solution o] a Toeplitz set of linear equations, J. ACM, 21 (1974), pp. 272-276.

SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 6, pp. 1488-1501, November 1992

() 1992 Society for Industrial and Applied Mathematics
013

DERIVATION OF EFFICIENT, CONTINUOUS, EXPLICIT
RUNGE-KUTTA METHODS*

BRYNJULF OWRENt AND MARINO ZENNAROt

Abstract. Continuous, explicit Runge-Kutta methods with the minimal number of stages are
considered. These methods are continuously diiferentiable if and only if one of the stages is the FSAL
evaluation. A characterization of a subclass of these methods is developed for orders 3, 4, and 5. It
is shown how the free parameters of these methods can be used either to minimize the continuous
truncation error coefficients or to maximize the stability region. As a representative for these methods
the fifth-order method with minimized error coefficients is chosen, supplied with an error estimation
method, and analysed by using the DETEST software. The results are compared with a similar
implementation of the Dormand-Prince 5(4) pair with interpolant, showing a significant advantage
in the new method for the chosen problems.

Key words, lunge-Kutta, interpolant, continuous, optimal

AMS(MOS) subject classification. 65L05

1. Introduction. We consider the first-order system of differential equations

y’(x) f(x,y(x)), y(xo) Y0, xo x <_

where f R Rm --+ Rm defines m generally nonlinear equations, and Y0 is the
m-vector of initial values. We are interested in a continuous approximation to the
solution y(x) for x E Ix0, xe]. A possible way to obtain such an approximation is to
apply a continuous, explicit Runge-Kutta method (CERK method) as proposed by
the authors in [16]. One may expect such a method to be appropriate in the case when
(1) is nonstiff. CERK methods may also be used for solving certain types of functional
differential equations, like delay differential equations, for which retarded arguments
in the right-hand side of (1) might be estimated by continuous extensions over previous
subintervals. The continuous approximation u(x) is obtained on Ix0, xe] by using a
mesh {x0 < xl < < XN xe} and computing polynomials Un+(xn + Ohn), n
0,...,N- 1, such that u(x) u,+(x, + Ohn) for xn <_ x xn + Ohn <_ x,+
where hn xn+ -xn. The continuity assumption on u(x) requires that Un(X,)
Un+(Xn) := Yn, n 1,..., N 1. The general form of un+ is

Ks f xn + cihn yn + hn aijKj
j’-i

i l,...,s,

u,+ (x, + Ohm) y, + h, b(O)K,
i---1

Oe [0, 1],

where b(), i 1,..., s, are polynomials of degree _< d for some positive integer d.
i--1We shall also require c -j= aj, and bi(0) 0 for i 1,..., s; the last condition is

necessary for continuity. Henceforth we shall denote by A the strictly lower triangular
matrix defined by the coefficients aj. Observe that a conventional Runge-Kutta

Received by the editors November 26, 1990; accepted for publication (in revised form) October
II, 1991.

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
Dipartimento di Matematica Pura ed Applicata, Universith dell’Aquila, 1-67100 L’Aquila, Italy.

1488

CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 1489

method is obtained by putting yn+l un+(xn + hn). In fact, a CERK method is
equivalent to a Runge-Kutta method supplied with an interpolant. On surveying the
literature one finds such interpolants for most of the commonly used Runge-Kutta
formulas, e.g., Shampine [17], [18]; Dormand and Prince [6], [7]; Calvo, Montijano,
and RAndez [4]; and Horn [13]. Enright, Jackson, NOrsett, and Whomsen [8] provides
a general technique for constructing interpolants to a Runge-Kutta formula while
Zennaro [20] discusses natural continuous extensions of Runge-Kutta methods which
are especially suited for functional differential equations when certain restrictions
are imposed on the mesh. In a recent paper Verner [19] elaborates on differentiable
interpolants of higher order.

An important issue in many of these papers has been whether or not the contin-
uous approximation should yield the same order of consistency in the interior of the
step as at the end-points. Following [16] we shall define the uniform order, or simply
the order of a CERK method, as the greatest integer p for which

(2) max lYn+(xn + Ohn) Un+(Xn + Ohn)l O(hPn+)

where yn+(x) is the local solution to the initial value problem
f(x, yn+(x)), Yn+(xn) Yn. Here].]can be any norm on pm. Of course, the
order q at the end-points satisfies q _> p and in this paper we shall not impose the
possible additional requirement that q > p for any of our methods. We shall always
require (see [16]) that the degree d of the polynomials b(e), i 1,..., s, satisfies
d <_ p. Again, according to [16], for each order p one may define the order barrier as
the smallest number of stages CEN(p) that a CERK method satisfying (2) can have.
These order barriers were derived for p _< 5. It was found that CEN(1) 1, CEN(2)

2, CEN(3) 4, CEN(4) 6, and CEN(5) 8. The first examples of fifth-order
CERK methods with only eight stages were developed. It should be made clear that
these new continuous methods with the minimal number of stages may only be ex-
pected to be cheap when the continuous approximation is required along the entire
interval of integration. In some applications the continuous approximation is needed
only occasionally, e.g., when it is used to locate discontinuities; see, e.g., [9]. In such
cases it is recommended that one use a discrete method that can be supplied with a
continuous extension, possibly at more than the minimal cost.

In this paper, we consider CERK methods with CEN(p) stages for p 3, 4, 5 with
the additional property that they are C() continuous. We give a complete recipe for
the construction of some if not all such methods, and we present pairs of formulas
with optimized error constants and show how the regions of absolute stability may be
optimized. Finally, we present some results based on tests made with the DETEST
package [10]. These tests are made with a fifth-order representative of the CERK
methods described in this paper, displaying the properties of the underlying discrete
method.

2. Preliminary results. Henceforth we shall make extensive use of the theory
of rooted trees and order conditions developed by Butcher [1], [2]. From [16] we find
the continuous version of the order conditions

Op(t)
(3) bj(O)Oj(t) for all trees t such that p(t) < p,

where (I)j(t) is the jth elementary weight for the tree t, p(t) is the order of t, and
(t) is a coefficient depending on the tree t. For each r _> 1, let nr be the number

1490 BRYNJULF OWREN AND MARINO ZENNARO

of trees such that p(t) r. Thus a CERK method of order p must satisfy Np
conditions where Np ,P=i hr. We number the Np trees t increasingly in terms of
p(t), such that p(t) > p(tj) only if i > j. This ordering is not unique. By putting
zj() :--b(0), j 1,... ,s, (3) can be written as

(a) ,z(e) P()e"(’)-
=1

(t)
i 1,..., Np,

where i (I)j(ti). Moreover, by writing

p--1 p(ti)Op(t)_ -i

zj (01 E zJkOk and E qi’Ol’
=o (t) =o

and by defining the Np x s matrix (I) :- ((@j)), the s x p matrix Z :-- ((zjk)), and
the Np x p matrix Q :-- ((qil)), (4) becomes

Z =Q.

The Np s matrix (I) depends on the s s matrix A of the coefficients of the RK
method, whereas the Np p matrix Q is independent of A. For convenience, we
introduce the mappings

s>l s>_l

such that Fp(A) :- (I),

and

v, U c(R’, U c(
s)l s)l

such that Gp(A) "= @lQ,

where (I)IQ is the Np (s + p) matrix obtained by attaching the rows of Q to the
rows of (I). It was pointed out in [16] that a CERK method is of order p if and only
if rank(Fp(A)) rank(Gp(A)). These methods constitute a set

A/[p := {A E Us>i L:(Rs, R)I A is strictly lower triangular,

rank(Fv(A)) rank(Gv(A)) }.

Consider the subset of jP,

A/if, := {A e]rank(F(A))= s},

where s is the order of the matrix A. It was proved in [16] that a necessary condition
for a CERK method of order p to have CEN(p) stages is that A E A/gP,. Thus,
henceforth we shall only consider methods for which A E A/g,p.

3. Optimal C(1) approximations. A property possessed by all explicit Runge-
Kutta methods is that the first stage of the step from xn+l to XnA_2 is given by
Ki f(Xn+l,Yn+l). Many methods take advantage of this property by also using
this stage in the previous step from Xn to Xn+l. In the literature, this reusable stage
is sometimes referred to as the FSAL (first same as last) evaluation. Because the
methods we consider are explicit, the FSAL evaluation cannot be involved in the
end-point approximation, but it may be used to obtain an error estimate or for the

CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 1491

continuous approximation. It turns out that there is a close connection between the
reusable stage being included in the CERK method and the uniform approximation
being continuously differentiable. We shall consider CERK methods where the last
stage Ks is the FSAL evaluation, i.e., we impose the stage reuse conditions

(5) cs 1 and asj bj(1), j 1,...,s.

For the discussion that follows we need the following lemma.
LEMMA 1. Let A E dp define a CERK method with stage reuse.

Fp+I (A) "= ((ij)) is such that
Then

is "y(ti)
i= 1, Np+l.

Proof. The lemma is proved by induction on the row index. The result holds
for i 1 since the first row corresponds to the only tree, T, of order 1 and since

(T) p(’) 18(T) 1. Then assume that the lemma is true for all i such that
i _< n- 1. The nth condition corresponds to a tree tn which either has the form [tn,]
for some tree t, of order p(tn)- 1 or the form [tvl,..., tv] for u (>_ 2) trees t where
1 <_ p(t) <_ p(tn) 2 and p(t,) 1 + YU=l p(t). In the latter case, with t,, [t],
we immediately obtain from the definition of -y [3, p. 88] that

u

9/(t) p(t) H /(tn,)
,=1

p(tn,)

such that
u p(t,)

i=1 i=1
")’(tn)

In the former case, we get
s--1 s--1

Cn8 aj,,j bj(1)n,j 1//(tn,)= (tn)’

where we have applied the stage reuse conditions along with the order conditions at
0 1. Finally, observe that the induction works for all n such that p(tn) <_ p+ 1 since
we only used the order condition corresponding to tn, and p(tn,) p(t,) 1.

With this result, the following theorem is now easy to prove.
THEOREM 2. Let A A/IP. be a CERK method with stage reuse. Then the global

continuous approximation is continuously differentiable.
Proof. It is sufficient to prove that u’(xo) K1 and that u’(xo + h) Ks. By

Lemma 1, the last column of Fp(A) is equal to the right-hand side of (4) evaluated at
0 1. Moreover, the first column of Fp(A) equals the right-hand side of (4) evaluated
at 0 0. Since, by assumption, the columns of Fp(A) are linearly independent, we
obtain z(1) 5 and zi(0) 51 such that u’(xo) gl and u’(xo + h) Ks.

It is of interest to know whether there exist CERK methods with stage reuse
having a total of CEN(p) stages. It is easy to prove that such methods cannot exist
for p _< 2 under the assumption that the degree d of the polynomial weights does
not exceed p. We have not been able to answer this question for general p > 2,
but we shall see that such methods exist for p 3, 4, 5. During this discussion we

1492 BRYNJULF OWl:tEN AND MARINO ZENNARO

shall sometimes impose some additional conditions, which we shall refer to as the
simplifying assumptions; see, e.g., [3, p. 195],

i-1
1 2 i=3, s.(6) ajc:1- ci, ...,

:i=1

We begin by considering the case p 3. By combining the four continuous order
conditions with (5), we find that a third-order CERK method with four stages and
stage reuse can be constructed in the following way:

Choose c2 and C3 with c2 0, C3 0, C2 C3, and c2 ?t - in order that
A e .M3,.

Put ca 1 and compute a32, a42, and a43 from the formulas

a32

a42

(:3 (C3 C2)
C2 (2 3C2)’

3c3 2 2- 3c2
6C2 (C3 C2)’ a43 6c3 (c3 c2)"

The continuous weights are then given by

b (0) (1 2a41)03 + (3a41 2)02 + 0,

b2 (0) -a42 (203 302),
b3(0) -a43(203 302),
b4(O) :03-02

Observe that this continuous extension of the three-stage discrete method above is
nothing but the cubic Hermite interpolant based on the end-points x and x / h.

Considering order p 4 we shall restrict ourselves to the methods derived in [16]
having CEN(4) 6 stages. These methods satisfy the simplifying assumptions (6)
with s 6 and, using the notation of [3], we let the row space of Ga(A) be spanned
by the rows corresponding to the order conditions arising from the trees

Combining these conditions with (5) we find that one may choose c2 0 and c3, ca, c5
nonzero and distinct. Then if 6c3ca -4(c3 + ca) -+- 3 0, the remaining coefficients
are uniquely determined. If c3 1/2 and ca 1, there exists a one-parameter family of
methods (with a54 arbitrary). Given c2, c3, ca, c5, one may use the following procedure
to obtain a fourth-order CERK method with stage reuse having six stages.

Put c6 1, a62 O, and compute a63, a64, a65 from the linear system

5

k 2, 3, 4.

By assumption, there exists a unique solution.
Consider the equation

12a65a54c4(c4 c3) 1 2c3,

CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 1493

arising from the condition corresponding to the tree [37"]3 If a65 0 this equation
can be satisfied in any case and thereby a54 is uniquely determined. This requires
that 6c3c4 -4(c3 + c4) / 3 0. If a65 0, then c3 1/2 leading to c4 1, in which
case a54 is arbitrary.

We obtain the remaining coefficients from the formulas

a32 2c2

a42 6432C2C3 C
(3c3 2c5)c + 6a5ac,(c4 c3)

a52 2C2C3

a53
(c5 c3)c asaca(3ca 2c3)

The continuous weights are found by solving the linear 6 x 6 system of equations
arising from the order conditions corresponding to the trees (7).

Also for the order-five case we shall impose the simplifying assumptions (6) with
s CEN(5) 8 and the row space of G5(A) is assumed to be spanned by the rows
corresponding to the trees

(8)

For a detailed discussion of such fifth-order CERK methods with eight stages, see
[16]. Now, combining these conditions with the stage reuse conditions (5) and the
assumption A E 2A5., one finds after some long but straightforward algebra that
c2 # 0 c3 # 0 c6 # 0 c7 # 0, and a54 # 0 can be chosen subject to the constraints
c6 # c3, c6 # 2c3, c7 # c3, c7 # 2c3, c7 # c6, cs # 2c3, i.e., c3 # and 22_

c(c3)2. The following procedure provides the remaining coefficients:
Put c5 c4 2c3.
Put cs 1 and a82 0. Compute a86 and a87 from the formul

Observe that as7 0 would violate the assumption c322 1/4c3
_

c6(c3 1/2)2.
We may now compute a76 from the formula

a76 a87c6(c6 C3)(C6 2c3)"

Now we turn to the sixth stage, which is independent of the stage reuse
conditions

a62

a64

c(2c3 c6 c(c6 c3

2C2C3 a63 3c
+

12a54c a65 12a54c32

1494 BRYNJULF OWREN AND MAI:tINO ZENNARO

The remaining coefficients of the seventh stage are given by

-()() (-(4)(c]) +)
a73 c(c7 2c3) 4(a74 + a75).

a72 is obtained from (6).
We next give formul for the remaining coefficients of the eighth stage:

(1 c3) (1 2c3) as6f6 as7f7
as5 12a54c

whe , 4 + 4,d +,,c= S, Z;

(1 -c3)(1 2c3) (1 2c3 + 2a54)as5c -as6g6 -asvg74asa (1 2c3)c

where g c(3c, 2c3)(1 2c3) _1 2, +(+ a,), S, V;

I c3 a86c6(3c6 2c3) a87c7(3c7 2c3) 8(as + ass).a83 c
The remaining coefficients are independent of the stage reuse conditions

a42 ---- a43 4c3a32 2c2 c2

2c3 (3a54 c3)
a52 a53 4c3 8a54.

C2

The polynomials bl (O),..., bs(0) are found by solving the linear 8 8 system of equa-
tions arising from the order conditions corresponding to the trees (8).

Remark. An interesting question is whether there exist methods among this fifth-
order class such that their first six stages define a discrete RK formula of order five.
This would clearly require as7 bT(1) 0, a case which is excluded in the formulas
above because of the assumption c32 -34C3 -+- C6(3 1 2) However, it can be
shown that this condition is also necessary for the existence of eight-stage fifth-order
CERK methods with stage reuse based on the simplifying assumptions and the choice
of linearly independent rows of G5(A) made above.

4. Error estimation. Variable step Runge-Kutta methods are usually supplied
with an error estimation device. We shall be concerned with the strategy based on
embedded formulas (see [12] for details) and we shall see how this strategy can be
adapted to pairs of CERK methods. Such a pair will be denoted by CERK(p,q),
which means that the integration is proceeded by a continuous method of order p as
described in the previous section, while a discrete formula of order q is used to obtain
an error estimate at the end-point of each step. It is obvious that we must require
p = q and it is customary to assume that IP- ql 1, but it is not clear whether one

CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 1495

should have q > p or p > q. Most implementations of the discrete pairs proposed by
Fehlberg [11] are of the former type, while in the methods of Dormand and Prince
[5] the intention is to impose p q + 1 (local extrapolation). We will pay most of
our attention to the latter type of pairs, mainly for two reasons. First, we have the
following negative result for the typical Fehlberg-type implementations.

PROPOSITION 3. There exist no CERK(p,p+ 1) pairs with s -CEN (p) stages.
Proof. Assume that s CEN(p) for a method given by the s x s matrix A. Then,

since rank(Fp(A)) s, it is impossible to find two distinct sets of weights that satisfy
the first Np discrete-order conditions.

The second reason is based on a recent result by Jackiewicz and Zennaro [14].
They find that given a CERK method of order p with s CEN(p) stages, it is
possible to obtain a two-step Runge-Kutta method of order p + 1 at no additional
cost. Hence, one may use this two-step approximation of order p + 1 to obtain an
error estimate. The authors have no experience with practical use of such estimates.

Having constructed a CERK method of order p, several possibilities remain for the
construction of a (p- 1) st-order discrete formula. We suggest that the final reusable
stage be omitted from the error estimation formula, as this will cause rejected steps to
cost only s- 2 function evaluations if properly implemented. We shall take advantage
of the fact that all our pth-order methods with CEN(p) stages, p 3, 4, 5, described
in the previous section turn out to have an imbedded CERK method of order p- 1
with CEN(p- 1) stages. We shall use this method evaluated at 0 1 as the error
estimation method.

5. Minimization of the error constant. For a CERK method of order p, the
local truncation error is given by

hp+ Np+

ly(xo + Oh) u(xo + 0h)l (p + 1)! E ei(O)aiFi(xo, Yo) + O(hp+2),

where F :- F(t) is the elementary differential corresponding to the tree ti, ai :-
a(t) is a positive integer weight corresponding to the tree t and e(0), i Np +
1,..., Np+ are the error polynomials given by

e(0) 0p(t’) -(t,) ,jbj (0), i Yp + 1,..., Np+l.
j--1

By considering the structure of the matrix ((j)), it is easy to see that all the
error polynomials have vanishing zeroth- and first-degree coefficients such that both
e(0) and e{(0) are zero. Moreover, for the CERK methods of the previous section,
the derivatives of the error polynomials also vanish at/9 1. We have the following
proposition.

PROPOSITION 4. Let A E A4P. be a CERK method with stage reuse. Then all the
error polynomials ei (0), i Np + 1,..., gp+, satisfy e(1) O.

Proof. The derivatives of the error polynomials are given by

j--1

i= Np + l,...,Np+.

As in the proof of Theorem 2 we must have zs (1) 1 and z (1) zs- (1) 0
and by Lemma 1 it follows that e(1) 0.

1496 BRYNJULF OWREN AND MAI:tINO ZENNARO

Following, e.g., Calvo, Montijano, and tL4ndez [4] we shall attempt to make the
error polynomials small in some sense. The literature is not consistent with regard
to what norm should be used on this np+l-vector of polynomials. Calvo, Montijano,
and Pndez [4] minimize the quantity

g* g(O)dO

over the free parameters, where

a(o)

Enright, Jackson, NCrsett, and Thomsen [8] consider bounds for the principal error
term on the intervals 0 _< 0 _< 1 and 0 _< 0 _< 2. They use the norm

max { max
Nv+l<_i<_Np+t 0C[0,0e]

where 0e 1 or 0e 2. This latter case is of interest when the continuous method is
to be used beyond the current step, e.g., for the purpose of handling discontinuities.
We present here method pairs of orders 3, 4, and 5 where the free parameters have
been chosen to minimize the numerator of (9). The optimization was done numer-
ically, and the values found for the free parameters were approximated by rational
numbers. The weights n+l in Figs. 1-3 are those of the error estimation method
and have nothing to do with the underlying discrete method of the CERK method.
Several numerical investigations conducted with the methods derived in this paper
show that the vector of error polynomials tends to have one dominating component,
which is the polynomial that corresponds to the tree [vr]p. Moreover, this error poly-
nomial turns out to be independent or only weakly dependent on some of the free
parameters of our optimal CERK methods. We illustrate this point by considering
the optimal third-order CERK methods of the previous section. The error polynomial
e8(0) corresponding to the tree [3T]3 of order four is given by

 8(o) o=(o

12 12

68 368
375 375

31 529 125
144 1152 384

__1 23 0 024 24

b2() --5293
__

3__529@2

b3(8) 1--9
125 }3 -- 1i"125D2

FIG. 1. Optimal third-order CERK method with stage reuse.

CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 1497

11

11

13

n+l

44 363
1369 1369

3388 8349 8140
4913 4913 4913

36764 767 32708 210392
408375 1125 136125 408375

1697 0 50653 299693 3375
18876 116160 1626240 11648

10___1 0 1369 11849 0363 14520 14520

bl () 8665774 3 1042172

b2(0) 0

b3(O) 123,08679 04 2178079 03 + 861101025072320 380424 230560

62444233 63869 2b4() 7816583 4 +10144640 5325936 293440

b5() 6243754 9821253 15221252217984 190736 762944

b6() 2964 4613 1652

FIG. 2. Optimal fourth-order CERK method with stage reuse.

and hence is completely independent of the free parameters c2 and C3. For 0 <_ 0 _< i it
attains the maximum value 1 at 1 and it can be shown that c2 and c3 can be chosen
such that the three remaining error polynomials satisfy le(O)l < 0.05, [0, 1].
Consequently, one may suspect that the minima of the various error measures are flat
and if the max-norm is used, the minimum is not likely to be unique.

Remark. Dormand and Prince attempt to minimize the denominator of (9) in
their discrete pair RK5(4)TM [5]. If we use the same error measure for our discrete
underlying formulas of the fifth-order methods, it turns out that we can only obtain
an error at the end-point about three times the size of that of RK5(4)TM. The corre-
sponding error for the optimized fifth-order method above is about four times that of
RK5(4)7M.

6. Stability. When applied to ODEs, the methods of the previous sections will
obviously have the stability characteristics of the underlying discrete method. The
region of absolute stability of the methods of order four and five is influenced by the
choice of the free parameters. We write the stability .polynomials of pth-order CERK
methods with CEN(p) stages and stage reuse in the form

CEN(p)-I zk

k---0

1498 BRYNJULF OWREN AND MARINO ZENNARO

1 3

!

__
I4 4

3 1 -3 !
4 4 2

369 243 297 1485 297
1372 343 343 9604 4802

133 1113 7945 12845 315
4512 6016 16544 24064 24064

83 0 24.._8 4__..1 1
945 825 180 36

156065
198528

2401
38610

I 0 4.0_0 ! 34:3
9 33 4 12 198

6016
20475

0 0

bl(O) 17893 03 3292 02_+_ 0596 05 4969 04_+_81--"-9- 2457 819

=0

1984 05
__

1344 04 43568 03 _+_ 02275 2145

0_ 6 O+ 03

_
02

2 05 04 + 03 63 02

9604 05 2401 04 60025 03 40817 02-- + + 50193 33462

96256 4 637696 3+ 18048 2

3_ s4 05 0a +

FIG. 3. Optimal fifth-order CERK method with stage reuse.

where s0 Op 1. It can be shown that for our fourth-order methods we have
c5 5(1 2c3)c4. Following [15] the largest disk of stability is obtained by choosing
5 0.5806; For example, the choice c3 and c4 - leads to a nearly optimal
stability region in the sense of [15]. The fifth-order methods yield

c6 6(-5c + 2c3) 2c6D, c7 14c3c6

with 20c 15c3 + 3.

Thus, for any (#, v) E R x R, there exist real c3 and c6 such that 6 # and
7 v. So the stability polynomial is only restricted by the assumptions made in
the construction of the CERK formulas. In particular, one may choose c3 and c6
such that c6 0.7956 and a7 0.3305 which, again according to [15], maximizes the
region of absolute stability.

CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 1499

7. Numerical results with DETEST. We have tested the fifth-order pair,
henceforth denoted CM54, on some selected problems using the DETEST package
[10]. We used absolute error control, attempting to control the local error at the
end-point of each step. As reference we have performed the same tests with an
identical implementation of the Dormand-Prince RK5(4)TM method [5], henceforth
called DP54, with a continuous extension obtained at the additional cost of two stages
per step; see, e.g., [4]. Hence, the effective cost per step is eight stages for the
Dormand-Prince extension and seven stages for our fifth-order CERK method. In
order to compare these two pairs, we have found it natural to use normalised efficiency,
a feature of the DETEST software. Thus, instead of comparing the cost of the two
pairs for a given tolerance,, we make comparisons for a given expected global accuracy
at the end-point of integration. This expected accuracy is obtained in terms of the
tolerance by assuming a relation of the form

global error C-TOLE,
where C and E are found by a least squares fit to the computed data. Piecewise linear
interpolation then yields continuous extensions of the tabulated efficiency statistics.
See [10] for a more detailed explanation.

We believe that the test problems chosen give a good idea of how the two methods
perform with DETEST. On some of the omitted problems the discrepancy between
equivalent tolerances (see tables) for the two methods were substantial or the least
squares fit was too poor to be reliable.

TABLE 1
Efficiency statistics for DETEST problem Ad, y’-- 4(1 2-Y-60), y(0) 1.

Expected
accuracy

10"*-3
10"*-4
10"*-5
10"*-6
10"*-7
10"*-8

Equiv. Tol
DP54 CM54

10"*-2.50 10"*-1.35
10"*-3.55 10"*-2.38
10"*-4.61 10"*-3.42
10"*-5.66 10"*-4.45
10"*-6.72 10"*-5.49
10"*-7.77 10"*-6.52

FCallsSteps
DP54 CM54 DP54 CM54

4 2 33 19
4 3 37 31
6 4 50 41
9 7 83 59
14 11 137 91
22 17 208 138

TABLE 2
Efficiency statistics for DETEST problem C5, the five-body problem.

Expected
accuracy

10"*-2
10"*-3
10"*-4
10"*-5
10"*-6
10"*-7

Equiv. Tol
DP54 CM54

10"*-3.16
10"*-4.13
10"*-5.10
10"*-6.07
10"*-7.05
10"*-8.02

10"*-1.15
10"*-2.31
10"*-3.47
10"*-4.63
10"*-5.79
10"*-6.95

FCallsSteps
"5P54 CM54 DP54 CM54

5 3 42 23
6 4 52 33
9 6 77 49
14 10 117 74
21 17 173 123
33 29 266 206

Tables 1-4 show the efficiency of DP54 versus CM54. The first column contains
the expected accuracy, while columns 2 and 3 predict the value of the tolerance that
corresponds to this accuracy for the two methods. Note that CM54 is more pessimistic
in estimating the error than DP54. Columns 4-7 show the expected number of steps
and function evaluations for the two methods, respectively. Note that since the num-
ber of steps and the number of function calls are obtained by interpolation, they may
disagree with the number of stages per step that each of the methods actually has.

1500 BRYNJULF OWl:tEN AND MARINO ZENNARO

TABLE 3
Ejciency statistics for DETEST problem D4, an orbit problem.

Expected Equiv. Tol StePs FCalls

...ccrac P54 CM54 DP54 I..CM54-.DP54 CM54
10"*-1 10"*-3.40 10"*-1.76 52 40 553 384’
10"*-2 10"*-4.27 10"*-2.63 70 57 741 529
10"*-3 10"*-5.14 10"*-3.51 99 80 1017 735
10"*-4 10"*-6.01 10"*-4.39 142 115 1427 1031
10"*-5 10"*-6.88 10"*-5.26 205 165 1699 1370
10"*-6 10"*-7.75 10"*-6.14 307 237 2464 1713

TABLE 4
Eciency statistics for DETEST problem E2, the van der Pol oscillator.

Expected
accuracy

10"*-2
10"*-3
10"*-4
10"*-5
10"*-6
10"*-7

Equiv. Tol Steps FCalls
DP54

10"*-3.04
10"*-3.97
10"*-4.90
10"*-5.83
10"*-6.75
10"*-7.68

10"*-2.29
10"*-3.23
10"*-4.16
10"*-5.09
10"*-6.02

42 33 488 317
61 48 651 430
91 68 944 582
135 101 1346 861
201 150 1768 1242
305 224 2534 1717

DETEST itself does not support any feature for testing interpolants. But by
carefully modifying the program code, we found that the maximum of the uniform
global error of CM54 rarely exceeds the maximum global error of the underlying
discrete method for any problem in the DETEST package. This can be explained by
the fact that the underlying discrete method has the same local order as the continuous
method. When comparing the error at the end-point of the first step (i.e., the local
error) to the maximum of the uniform error over this step, we found a maximum ratio
of about 6.14. The ratio was equal to 1.0 in 87 percent of the cases, and in the range
1.0-1.32 in 99 percent of the tests.

In this paper we have used the framework of [16] to characterize differentiable,
continuous, explicit Runge-Kutta methods with the minimal number of stages for
orders 3, 4, and 5. Of particular interest are the fifth-order methods with only seven
effective stages, since no such methods have been presented before. It is by no means
obvious that the number of stages per step is an appropriate efficiency measure for
continuous Runge-Kutta methods of a given order. However, the numerical results
presented in this section may indicate that the new fifth-order methods are at least
comparable to those previously known.

Acknowledgement. We would like to express our thanks to the referees, who
gave us many useful suggestions and pointed out several misprints in the manuscript.

REFERENCES

[1] J.C. BUTCHER, Coecients for the study of Runge-Kutta integration processes, J. Austral.
Math. Soc., 3 (1963), pp. 185-201.

[2] , Implicit Runge-Kutta processes, Math. Comp., 18 (1964), pp. 50-64.
[3] , The numerical analysis of ordinary differential equations, John Wiley, New York, 1987.
[4] M. CALVO, J.I. MONTIJANO, AND L. PNDEZ, A fifth order interpolant for the Dormand and

Prince Runge-Kutta method, J. Comp. Appl. Math., 29 (1990), pp. 91-100.
[5] J.R. DORMAND AND P.J. PRINCE, A family of embedded Runge-Kutta formulae, J. Comp.

Appl. Math., 6 (1980), pp. 19-26.
[6] Runge-Kutta triples, Comput. Math. Appl., 12A (1986), pp. 1007-1017.

CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 1501

[7] Practical Runge-Kutta processes, SIAM J. Sci. Statist. Comput., 5 (1989), pp. 977-989.
[8] W.H. ENRIGHT, K.R. JACKSON, S.P. NORSETT, AND P.G. THOMSEN, Interpolants for Runge-

Kutta formulas, ACM Trans. Math. Software, 12 (1986), pp. 193-218.
[9] , Effective solution of discontinuous IVPs using a Runge-Kutta formula pair with inter-

polants, Appl. Math. Comput., 27 (1988), pp. 313-335.
[10] W.H. ENRIGHT AND J.D. PIYCE, Two fortran packages for assessing initial value problems,

Trans. Math. Software, 13 (1987), pp. 1-27.
[11] E. FEHLBERG, Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with

step size control, Tech. Report 287, NASA, 1968. Extract published in Computing, 4
(1969), pp. 93-106.

[12] E. HAIRER, S.P. NORSETT, AND G. WANNER, Solving Ordinary Differential Equations I,
Nonstiff Problems, Springer-Verlag, Berlin, New York, 1987.

[13] M.K. HORN, Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense output,
SIAM J. Numer. Anal., 20 (1983), pp. 558-568.

[14] Z. JACKIEWICZ AND M. ZENNARO, Variable step explicit two-step Runge-Kutta methods, Tech.
Report 125, Dept. of Mathematics, Arizona State University, Tempe, AZ, May 1990.

[15] B. OWlEN AND K. SEP, Some stability results for explicit Runge-Kutta methods, BIT, 30
(1990), pp. 700-706.

[16] B. OWREN AND M. ZENNARO, Order barriers for continuous explicit Runge-Kutta methods,
Math. Comp., 56 (1991), pp. 645-661.

[17] L.F. SHAMPINE, Interpolation for Runge-Kutta methods, SIAM J. Numer. Anal., 22 (1985),
pp. 1014-1027.

[18] , Some practical Runge-Kutta formulas, Math. Comp., 173 (1986), pp. 135-150.
[19] J. VEaNER, Differentiable interpolants for high-order Runge-Kutta methods, Tech. Report

1990-9, Dept. of Mathematics and Statistics, Queens’s University, Kingston, Ontario,
Canada, 1990.

[20] M. ZENNARO, Natural continuous extensions of Runge-Kutta methods, Math. Comp., 46
(1986), pp. 119-133.

	SJOCE_V13_i1_p0vii.pdf
	SJOCE_V13_i1_p0001.pdf
	SJOCE_V13_i1_p0030.pdf
	SJOCE_V13_i1_p0047.pdf
	SJOCE_V13_i1_p0071.pdf
	SJOCE_V13_i1_p0088.pdf
	SJOCE_V13_i1_p0101.pdf
	SJOCE_V13_i1_p0119.pdf
	SJOCE_V13_i1_p0128.pdf
	SJOCE_V13_i1_p0146.pdf
	SJOCE_V13_i1_p0168.pdf
	SJOCE_V13_i1_p0194.pdf
	SJOCE_V13_i1_p0227.pdf
	SJOCE_V13_i1_p0243.pdf
	SJOCE_V13_i1_p0259.pdf
	SJOCE_V13_i1_p0289.pdf
	SJOCE_V13_i1_p0307.pdf
	SJOCE_V13_i1_p0319.pdf
	SJOCE_V13_i1_p0339.pdf
	SJOCE_V13_i1_p0364.pdf
	SJOCE_V13_i1_p0379.pdf
	SJOCE_V13_i1_p0397.pdf
	SJOCE_V13_i1_p0411.pdf
	SJOCE_V13_i1_p0425.pdf
	SJOCE_V13_i2_p0449.pdf
	SJOCE_V13_i2_p0459.pdf
	SJOCE_V13_i2_p0484.pdf
	SJOCE_V13_i2_p0499.pdf
	SJOCE_V13_i2_p0512.pdf
	SJOCE_V13_i2_p0531.pdf
	SJOCE_V13_i2_p0541.pdf
	SJOCE_V13_i2_p0550.pdf
	SJOCE_V13_i2_p0573.pdf
	SJOCE_V13_i2_p0596.pdf
	SJOCE_V13_i2_p0611.pdf
	SJOCE_V13_i2_p0631.pdf
	SJOCE_V13_i2_p0645.pdf
	SJOCE_V13_i3_p0655.pdf
	SJOCE_V13_i3_p0666.pdf
	SJOCE_V13_i3_p0676.pdf
	SJOCE_V13_i3_p0687.pdf
	SJOCE_V13_i3_p0694.pdf
	SJOCE_V13_i3_p0723.pdf
	SJOCE_V13_i3_p0727.pdf
	SJOCE_V13_i3_p0742.pdf
	SJOCE_V13_i3_p0765.pdf
	SJOCE_V13_i3_p0771.pdf
	SJOCE_V13_i3_p0794.pdf
	SJOCE_V13_i3_p0815.pdf
	SJOCE_V13_i3_p0826.pdf
	SJOCE_V13_i4_p0841.pdf
	SJOCE_V13_i4_p0860.pdf
	SJOCE_V13_i4_p0874.pdf
	SJOCE_V13_i4_p0885.pdf
	SJOCE_V13_i4_p0904.pdf
	SJOCE_V13_i4_p0923.pdf
	SJOCE_V13_i4_p0948.pdf
	SJOCE_V13_i4_p0967.pdf
	SJOCE_V13_i4_p0994.pdf
	SJOCE_V13_i4_p1009.pdf
	SJOCE_V13_i4_p1025.pdf
	SJOCE_V13_i5_p1039.pdf
	SJOCE_V13_i5_p1062.pdf
	SJOCE_V13_i5_p1085.pdf
	SJOCE_V13_i5_p1097.pdf
	SJOCE_V13_i5_p1123.pdf
	SJOCE_V13_i5_p1142.pdf
	SJOCE_V13_i5_p1151.pdf
	SJOCE_V13_i5_p1173.pdf
	SJOCE_V13_i5_p1194.pdf
	SJOCE_V13_i5_p1218.pdf
	SJOCE_V13_i5_p1236.pdf
	SJOCE_V13_i6_p1265.pdf
	SJOCE_V13_i6_p1287.pdf
	SJOCE_V13_i6_p1314.pdf
	SJOCE_V13_i6_p1330.pdf
	SJOCE_V13_i6_p1347.pdf
	SJOCE_V13_i6_p1361.pdf
	SJOCE_V13_i6_p1377.pdf
	SJOCE_V13_i6_p1394.pdf
	SJOCE_V13_i6_p1418.pdf
	SJOCE_V13_i6_p1433.pdf
	SJOCE_V13_i6_p1460.pdf
	SJOCE_V13_i6_p1470.pdf
	SJOCE_V13_i6_p1488.pdf

